

HAC T-Coil Signal Test Report

Test report no.:	Salo_HAC_0624_12	Date of report:	2006-Jun-16
Template version:	1.0	Number of pages:	17
Testing laboratory:	TCC Salo P.O. Box 86 Joensuunkatu 7H / Kiila 1B FIN-24101 SALO, FINLAND Tel. +358 (0) 7180 08000 Fax. +358 (0) 7180 45220	Client:	Nokia Corporation Lise Meitner Strasse 10 89081 ULM GERMANY Tel. +49 731 1754 0 Fax. +49 731 1754 6800
Responsible test engineer:	Ari Orte	Product contact person:	Jukka Pekkala
Measurements made by:	Ari Orte		
Tested devices:	RM-126 (Hearing aid mode), HW: 0572		
FCC ID:	PPIRM-126H	IC:	661U-RM126
Supplement reports:	Salo_HAC_0618_15.pdf related HAC RF report		
Testing has been carried out in accordance with:	ANSI C63.19-2006 (RD version 3.12) American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids		
Documentation:	The documentation of the testing performed on the tested devices is archived for 15 years at TCC Nokia.		
Test results:	The tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.		

Date and signatures:

2006-06-16

For the contents:

Ari Orte
Test System Manager

CONTENTS

1. SUMMARY OF HAC T-COIL SIGNAL TEST REPORT	3
1.1 TEST DETAILS.....	3
1.2 SUMMARY OF T-COIL TEST RESULTS	3
1.2.1 <i>T-Coil Coupling Field Intensity</i>	3
1.2.2 <i>Frequency Response at Axial Measurement Point</i>	3
1.2.3 <i>Signal Quality</i>	3
1.3 DESCRIPTION OF THE DEVICE UNDER TEST (DUT)	4
1.3.1 <i>Picture of Device</i>	4
2. TEST CONDITIONS	5
2.1 TEMPERATURE AND HUMIDITY.....	5
2.2 WD CONTROL.....	5
2.3 WD PARAMETERS.....	5
3. DESCRIPTION OF THE TEST EQUIPMENT	6
3.1 MEASUREMENT SYSTEM AND COMPONENTS	6
3.1.1 <i>Audio Magnetic Probe AM1DV2</i>	7
3.1.2 <i>Audio Magnetic Measurement Instrument AMMI</i>	7
3.1.3 <i>Audio Magnetic Calibration Coil AMCC</i>	7
3.1.4 <i>WD positioner</i>	8
3.2 VERIFICATION OF THE SYSTEM	8
4. DESCRIPTION OF THE TEST PROCEDURE	9
4.1 TEST ARCH AND DEVICE HOLDER	9
4.2 TEST POSITIONS.....	9
4.3 T-COIL SCAN PROCEDURES	10
4.4 MEASUREMENT PROCEDURE AND USED TEST SIGNALS	10
4.5 T-COIL REQUIREMENTS AND CATEGORY LIMITS	10
5. MEASUREMENT UNCERTAINTY	12
6. RESULTS	12
APPENDIX A: MEASUREMENT SCANS	14
APPENDIX B: MEASUREMENT UNCERTAINTY.....	17

1. SUMMARY OF HAC T-COIL SIGNAL TEST REPORT

1.1 Test Details

Period of test	2006-Jun-09 – 2006-Jun-12
SN, HW, SW and DUT numbers of tested device	004400/90/164403/7; HWID: 0572; SW: 4.06; DUT#: 11307
Batteries used in testing	BL-4C, DUT#'s: 11061, 11060
State of sample	Prototype unit
Notes	AWF = -5 for GSM

1.2 Summary of T-Coil Test Results

1.2.1 T-Coil Coupling Field Intensity

1.2.1.1 Axial Field Intensity

Mode	Minimum limit [dB (A/m)]	Result [dB (A/m)]	Verdict
GSM 850	-13	6.8	Pass
GSM 1900	-13	7.4	Pass

1.2.1.2 Radial Field Intensity

Mode	Minimum limit [dB (A/m)]	Minimum Result [dB (A/m)]	Verdict
GSM 850	-18	6.1	Pass
GSM 1900	-18	6.6	Pass

1.2.2 Frequency Response at Axial Measurement Point

Mode	Verdict
GSM 850	Pass
GSM 1900	Pass

1.2.3 Signal Quality

Mode	Minimum limit [dB]				Minimum result [dB]	Category
	T1	T2	T3	T4		
GSM 850	-15	-5	5	15	26.9	T4
GSM 1900	-15	-5	5	15	26.8	T4

Mode	RF emissions category at T-coil axial measurement point (E- and H-fields)*	HAC category of the tested device (RF emissions and T-coil requirements combined)
GSM 850	M3	M3/T3
GSM 1900	M3	M3/T3

*See separate report 'Salo_HAC_0618_15.pdf'

1.3 Description of the Device Under Test (DUT)

Modes and Bands of Operation	GSM 850	GSM 1900
Modulation Mode	GMSK	GMSK
Duty Cycle	1/8	1/8
Transmitter Frequency Range (MHz)	824...849	1850...1910

Outside of USA, tested device is also capable of operating in GSM900 and GSM1800 band, which are not part of this test.

1.3.1 Picture of Device

2. TEST CONDITIONS

2.1 Temperature and Humidity

Ambient temperature (°C):	21.5 to 23.5
Ambient humidity (RH %):	35 to 45

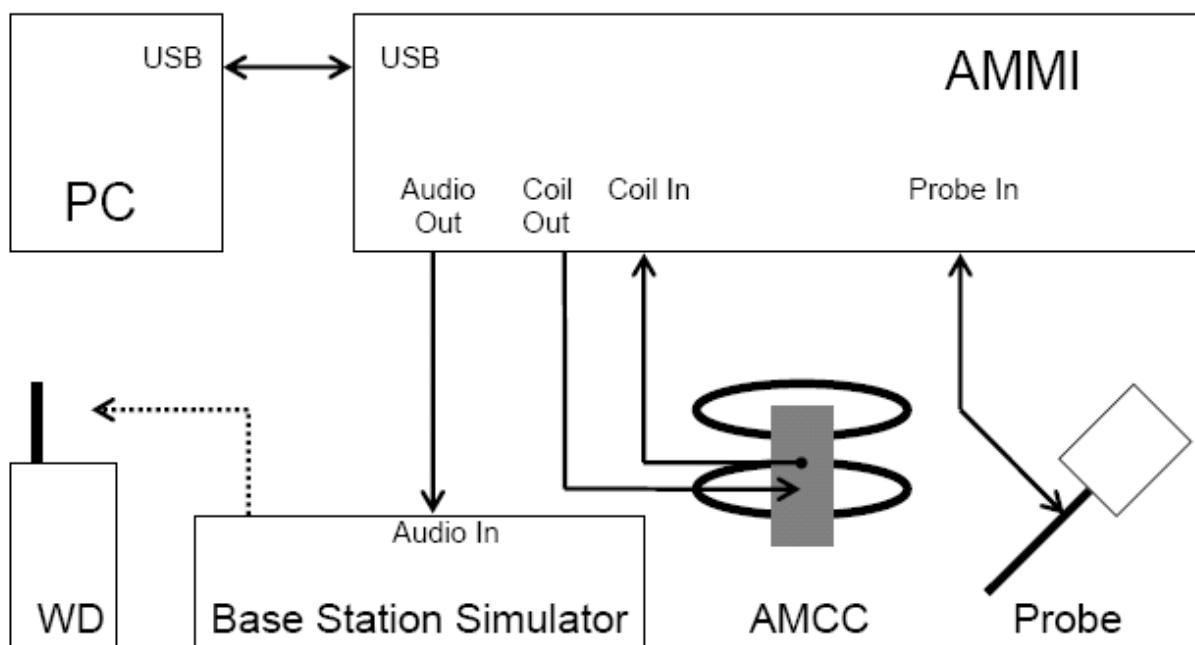
2.2 WD Control

The transmitter of the device was put into operation by using a call tester. Communications between the device and the call tester were established by air link. EFR speech codec was used during testing.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on middle channel.

2.3 WD Parameters


HAC mode was switched on from the WD user interface, volume setting was 1/10 and microphone was muted.

3. DESCRIPTION OF THE TEST EQUIPMENT

3.1 Measurement system and components

The measurements were performed using an automated near-field scanning system, DASY 4 software version 4.7, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland.

Components and signal paths of used measurement system are pictured below:

The following table lists calibration dates of measurement equipment:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE V3	388	12 months	01/07
AMMI Audio Magnetic Measurement Instrument	1002	12 months	02/07
AM1DV2 Audio Magnetic Probe	1001	12 months	02/07
AMCC Helmholtz Audio Magnetic Calibration Coil	1004	12 months	02/07
R&S CMU200 Radio Communication Test Set	101111	12 months	07/06

Additional test equipment used in testing and validation:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Oscilloscope	TDS 3052	T011185	12 months	07/06

3.1.1 Audio Magnetic Probe AM1DV2

Construction	Fully RF shielded metal construction (RF sensitivity < -100dB)
Calibration	Calibrated using Helmholtz coil
Frequency	0.1 – 20 kHz
Sensitivity	< -50 dB A/m
Dimensions	Overall length: 290 mm; Tip diameter: 6 mm

3.1.2 Audio Magnetic Measurement Instrument AMMI

Sampling Rate	48 kHz / 24 bit
Dynamic Range	85 dB
Test Signal Generation	User selectable and predefined (via PC)
Calibration	Auto-calibration / full system calibration using AMCC with monitor output

3.1.3 Audio Magnetic Calibration Coil AMCC

Dimensions	370 x 370 x 196 mm (ANSI-PC63.19 compliant)
-------------------	---

3.1.4 WD positioner

The WD positioner and Test Arch are manufactured by Speag (<http://www.dasy4.com/hac>). Test arch is used for all tests i.e. for both validation testing and device testing. The positioner and test arch conforms to the requirements of ANSI C63.19.

The SPEAG device holder (see Section 4.1) was used to position the test device in all tests.

3.2 Verification of the System

Audio Magnetic Probe AM1D is calibrated in AMCC Helmholtz Audio Magnetic Calibration Coil before each measurement procedure using calibration and reference signals.

4. DESCRIPTION OF THE TEST PROCEDURE

4.1 Test Arch and Device Holder

The test device was placed in the Device Holder (illustrated below) that is supplied by SPEAG. Using this positioner the tested device is positioned under Test Arch.

Device holder and Test Arch supplied by SPEAG

4.2 Test Positions

The device was positioned such that Device Reference level was touching the bottom of the Test Arch. The speaker output is aligned with the intersection of the Test Arch's middle bar and dielectric wire. The WD is positioned always this way to ensure repeatability of the measurements. Coordinate system depicted below is used to define exact locations of measurement points relative to the center of the speaker output.

Photo of the device positioned under Test Arch and coordinate system

4.3 T-coil Scan Procedures

Manufacturer can either define measurement locations for WD categorization or optimum locations can be found using following procedure; First, coarse scans in all measurement orientations, centered at the earpiece, are made to find approximate locations of optimum signal. More accurate fine scans are made in these locations to find final measurement points.

4.4 Measurement procedure and used test signals

During measurements signal is fed to WD via communication tester. Proper gain setting is used in software to ensure correct signal level fed to communication tester speech input. Measurement software compares fed signal and signal from measurement probe and applies proper filtering and integration procedures.

Broadband voice-like signals are used during scans and frequency response measurement to ensure proper operation of WD vocoder and audio enhancement algorithms.

Both signal (ABM1) and undesired audio noise (ABM2) are measured consequently to enable determination of signal+noise to noise ratio (SNR).

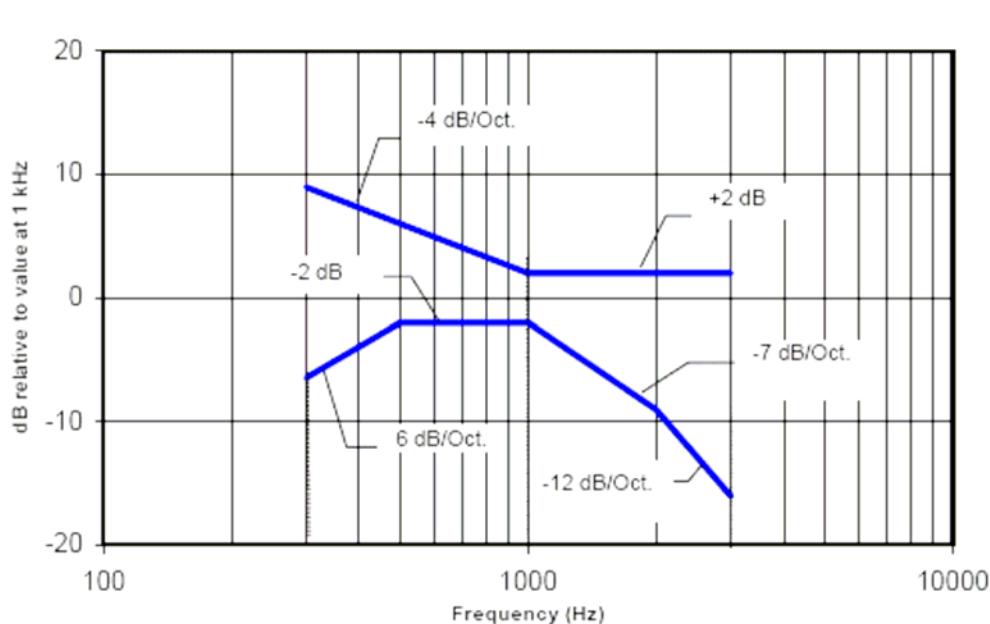
In final measurement sine signal is used to determine signal strength @ 1 kHz.

4.5 T-coil Requirements and Category Limits

RF Emissions

Wireless device has to fulfill RF emission requirements at the axial measurement location.

Axial Field Intensity


The axial component of the magnetic field shall be $\geq -13\text{dB(A/m)}$ at 1 kHz, in 1/3 octave band filter.

Radial Field Intensity

The radial components of the magnetic field shall be $\geq -18\text{dB(A/m)}$ at 1 kHz, in 1/3 octave band filter.

Frequency Response

Frequency response of the axial component must follow the frequency curve depicted below:

Frequency response window applicable for devices with axial field strength > -10dB(A/m)

Signal Quality

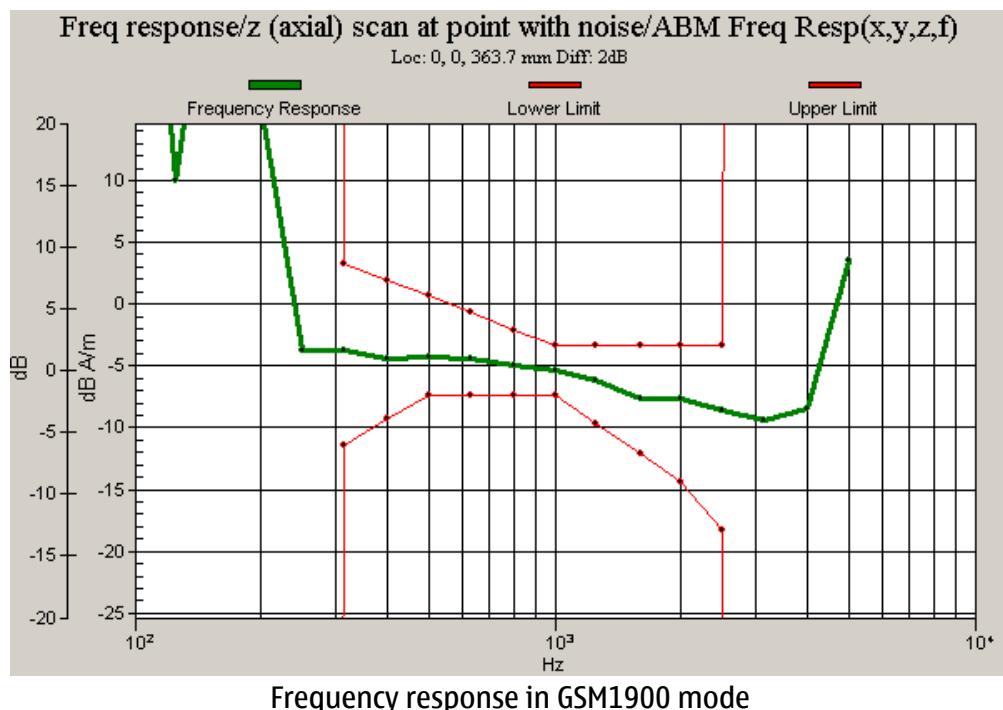
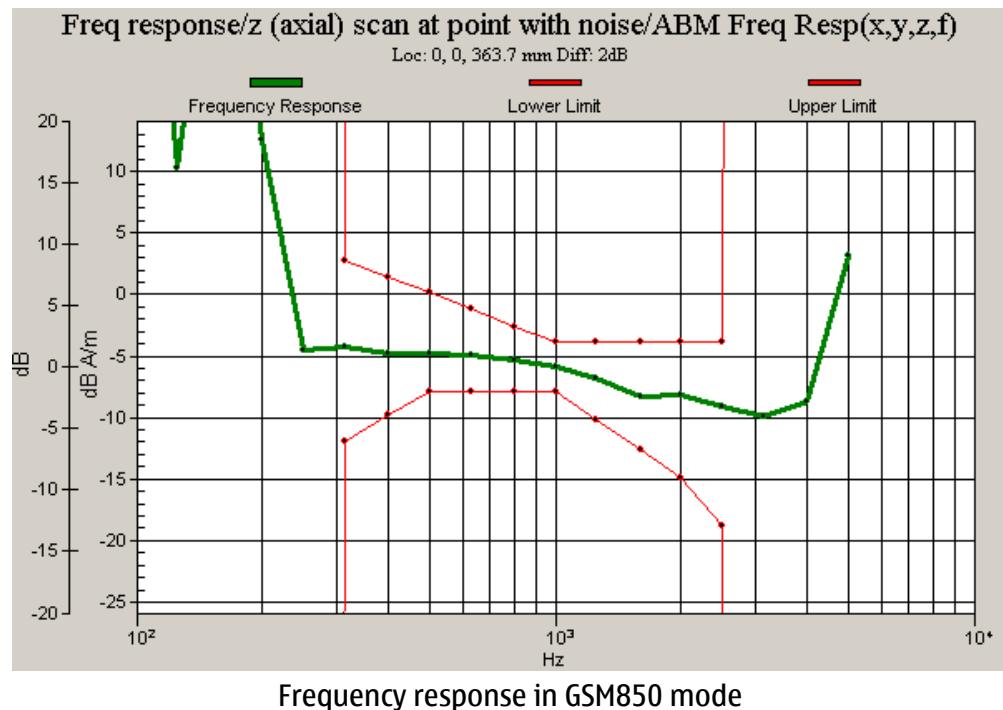
The worst result of three T-coil signal measurements is used to define WD Hearing Aid T-category according to the category limits:

Category	AWF [dB]	Limits for Signal Quality [dB]
T1	0	-20
	-5	-15
T2	0	-10
	-5	-5
T3	0	0
	-5	5
T4	0	10
	-5	15

5. MEASUREMENT UNCERTAINTY

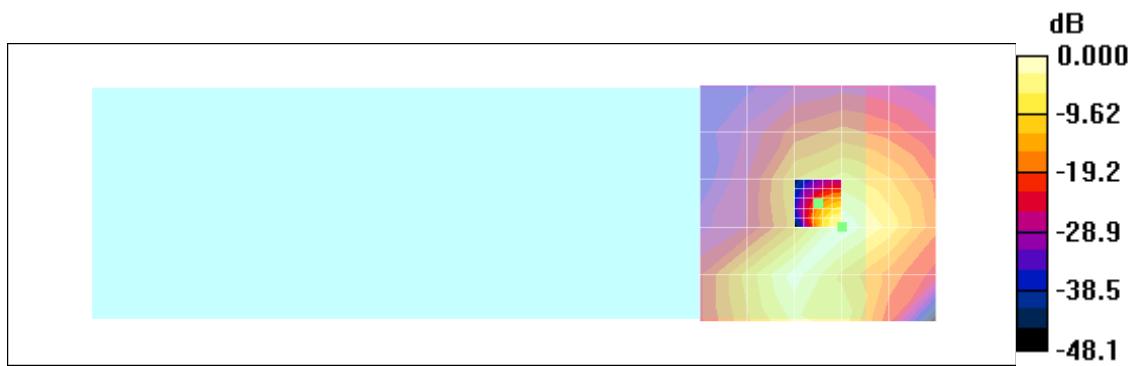
Measurement uncertainty budget presented in Appendix B.

6. RESULTS

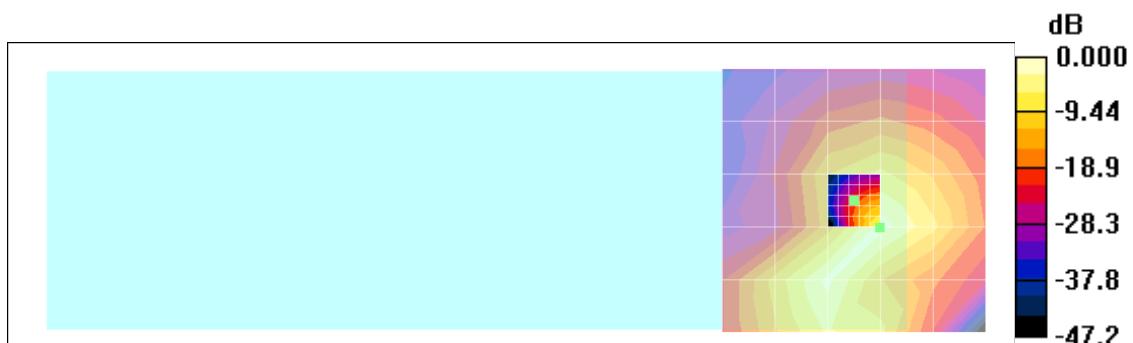


Measurement position coordinates are defined as deviation from earpiece center in millimeters. Coordinate system is defined in chapter 4.2

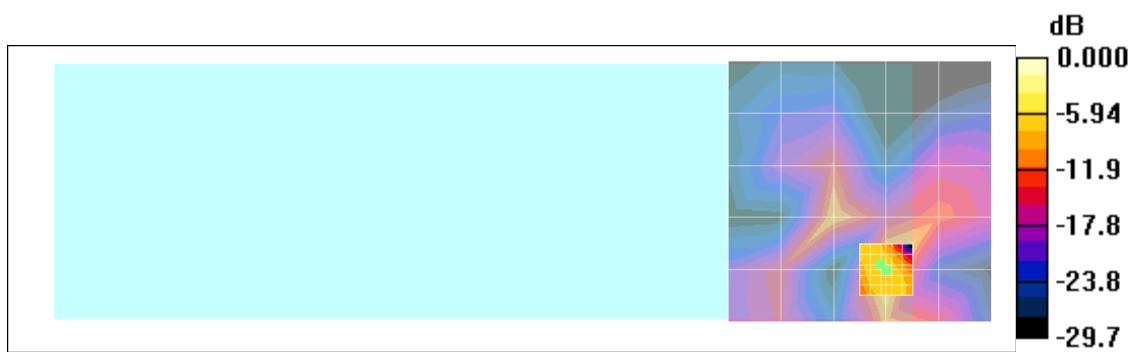
Axial measurement location was defined by the manufacturer of the device.

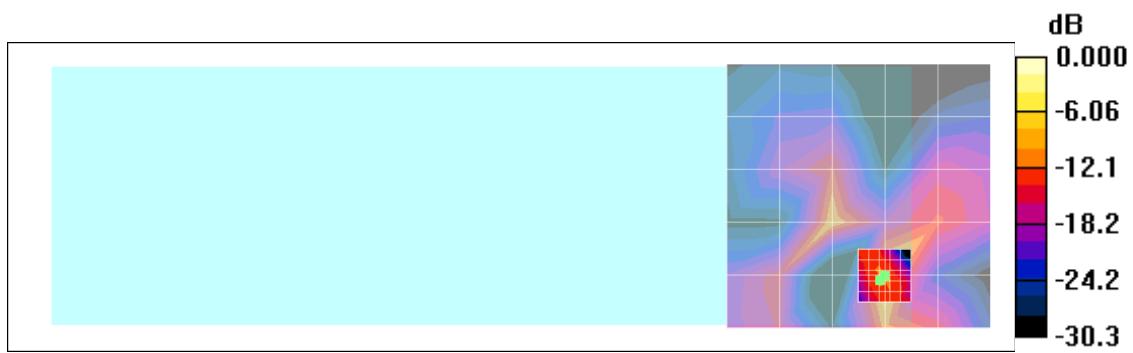
	Radial 1 (longitudinal)		Radial 2 (transversal)		Axial (Perpendicular)	
Mode	850	1900	850	1900	850	1900
Measurement position (x,y) [mm]	(-4,14)	(-4,16)	(-2,12)	(-2,12)	(0,0)	(0,0)
Signal strength [dB A/m]	6.1	6.6	11.1	10.9	6.8	7.4
Signal quality [dB]	26.9	26.8	26.9	26.9	26.9	27.1

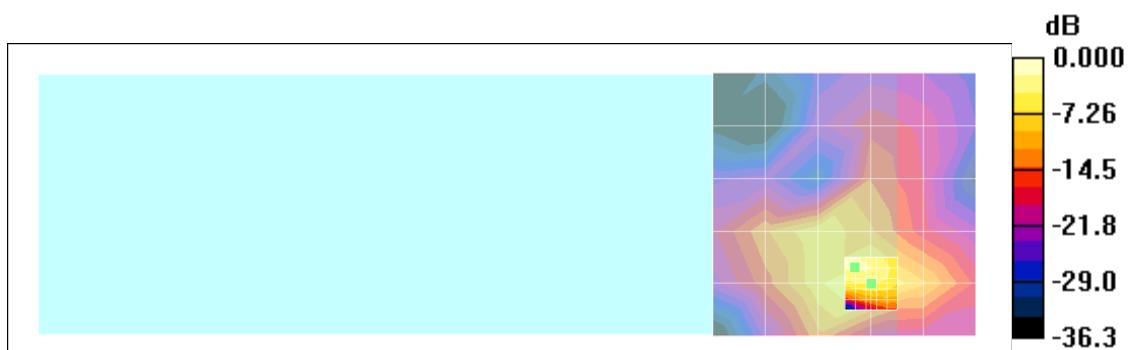

Plots of the Measurement scans are presented in Appendix A.

Frequency responses:




APPENDIX A: MEASUREMENT SCANS


Axial/Perpendicular, GSM850


Axial/Perpendicular, GSM1900

Radial/Longitudinal, GSM850

Radial/Longitudinal, GSM1900

Radial/Transversal, GSM850

Radial/Transversal, GSM1900

APPENDIX B: MEASUREMENT UNCERTAINTY

Measurement uncertainty budget is currently under evaluation.