

FCC/Canada Test Report (BT-LE)

Report No.: RF141008E03E-4

FCC ID: PPD-QCNFA435

IC: 4104A-QCNFA435

Test Model: QCNFA435

Received Date: Apr. 29, 2015

Test Date: May 05 to 06, 2015

Issued Date: May 12, 2015

Applicant: Qualcomm Atheros, Inc.

Address: 1700 Technology Drive, San Jose, CA 95110

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Hsin Chu Laboratory

Lab Address: No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin
Chu Hsien 307, Taiwan R.O.C.

Test Location (1): No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin
Chu Hsien 307, Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin
Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record	3
1 Certificate of Conformity.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	5
2.2 Modification Record	5
3 General Information.....	6
3.1 General Description of EUT (BT-LE).....	6
3.2 Description of Antenna	7
3.3 Description of Test Modes	8
3.3.1 Test Mode Applicability and Tested Channel Detail.....	9
3.4 Duty Cycle of Test Signal	10
3.5 Description of Support Units	10
3.5.1 Configuration of System under Test	10
3.6 General Description of Applied Standards	11
4 Test Types and Results	12
4.1 Conducted Output Power Measurement.....	12
4.1.1 Limits of Conducted Output Power Measurement	12
4.1.2 Test Setup.....	12
4.1.3 Test Instruments	12
4.1.4 Test Procedures.....	12
4.1.5 Deviation from Test Standard	12
4.1.6 EUT Operating Conditions.....	12
4.1.7 Test Results	13
4.2 Radiated Emission and Bandedge Measurement.....	14
4.2.1 Limits of Radiated Emission and Bandedge Measurement	14
4.2.2 Test Instruments	15
4.2.3 Test Procedures.....	16
4.2.4 Deviation from Test Standard	16
4.2.5 Test Setup.....	17
4.2.6 EUT Operating Conditions.....	17
4.2.7 Test Results	18
4.3 Conducted Emission Measurement	26
4.3.1 Limits of Conducted Emission Measurement	26
4.3.2 Test Instruments	26
4.3.3 Test Procedures.....	27
4.3.4 Deviation from Test Standard	27
4.3.5 Test Setup.....	27
4.3.6 EUT Operating Conditions.....	27
4.3.7 Test Results	28
5 Pictures of Test Arrangements.....	30
Appendix – Information on the Testing Laboratories	31

A D T

Release Control Record

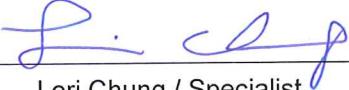
Issue No.	Description	Date Issued
RF141008E03E-4	Original release.	May 12, 2015

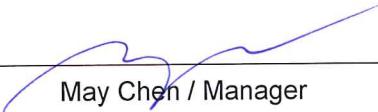
1 Certificate of Conformity

Product: Single Stream 802.11a/b/g/n/ac + BT 4.1 M.2 Type Card

Brand: Qualcomm Atheros

Test Model: QCNFA435


Sample Status: R&D SAMPLE


Applicant: Qualcomm Atheros, Inc.

Test Date: May 05 to 06, 2015

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)
ANSI C63.10: 2013 (For IC)
ANSI C63.10: 2009 (For FCC)
Canada RSS-210 Issue 8 (2010-12)
Canada RSS-Gen Issue 4 (2014-11)

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : , **Date:** May 12, 2015
Lori Chung / Specialist

Approved by : , **Date:** May 12, 2015
May Chen / Manager

2 Summary of Test Results

APPLIED STANDARD: 47 CFR FCC Part 15, Subpart C (SECTION 15.247) ;
 RSS-210 (Annex 8); RSS-Gen

STANDARD SECTION		Test Item	Result	Remarks
FCC Clause	RSS-Gen			
15.207	RSS-Gen 8.8	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -10.33dB at 0.19297MHz.
15.205 / 15.209 / 15.247(d)	RSS-210 A8.5	Radiated Emissions and Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -3.2dB at 322.82MHz.
15.247(b)	RSS-210 A8.4 (4)	Conducted power	Pass	Meet the requirement of limit.
15.203	-	Antenna Requirement	Pass	Antenna connector is IPEX not a standard connector.

NOTE:

1. If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.
2. This report is prepared for FCC class II permissive change / IC reassessment change. Only conducted emission / radiated emissions / Conducted power were presented in this test report.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.86 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.43 dB
Radiated Emissions above 1 GHz	1GHz ~ 6GHz	3.72 dB
	6GHz ~ 18GHz	4.00 dB
	18GHz ~ 40GHz	4.11 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-LE)

Product	Single Stream 802.11a/b/g/n/ac + BT 4.1 M.2 Type Card
Brand	Qualcomm Atheros
Test Model	QCNFA435
Series Model	NA
Status of EUT	R&D SAMPLE
Power Supply Rating	3.3Vdc form host equipment
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 1Mbps
Operating Frequency	2402MHz ~ 2480MHz
Number of Channel	40
Output Power	1.991mW
Antenna Type	See item 3.2
Antenna Connector	See item 3.2
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. This report is prepared for FCC class II permissive change / IC reassessment. The difference compared with the Report No.: RF141008E03-2 R1 design is as the following:
 - ◆ Shielding change. Shielding shape and z-height change.
2. According to above conditions, only conducted emission / radiated emissions / Maximum Peak Output Power need to be performed. And all data was verified to meet the requirements.
3. There are Bluetooth technology and WLAN technology used for the EUT.
4. The EUT support multiple function, therefore the WLAN OFDM will be cover BT OFDM (low power) scenario.
5. WLAN/BT coexistence mode:
 - ◆ 1x1 WLAN + BT:
 - 5GHz 802.11a/an (or 11ac) transmit concurrent with BT.
 - 2.4GHz: timely shared coexistence.
6. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Antenna

The antenna gain was declared by client; please refer to the following table:

Ant. No.	Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5GHz Cable Loss (dBi)	Connector Type	Cable Length (mm)
1	Main	WNC	81-EBJ15.005	PIFA	3.00	Band 1&2: 2.56	1.15	Band 1&2: 1.70	IPEX	300
						Band 3: 4.76		Band 3: 1.74		
						Band 4: 4.76		Band 4: 1.79		
	Aux	WNC	81-EBJ15.005	PIFA	3.62	Band 1&2: 3.08	1.15	Band 1&2: 1.70	IPEX	300
						Band 3: 3.31		Band 3: 1.74		
						Band 4: 2.42		Band 4: 1.79		
2	Main	WNC	81.ED415.001	PIFA	0.22	Band 1&2: 5.56	0.96	Band 1&2: 1.29	IPEX	300
						Band 3: 5.03		Band 3: 1.36		
						Band 4: 3.14		Band 4: 1.38		
	Aux	WNC	81.ED415.001	PIFA	1.48	Band 1&2: 5.17	0.96	Band 1&2: 1.29	IPEX	300
						Band 3: 5.34		Band 3: 1.36		
						Band 4: 2.93		Band 4: 1.38		

Note: 1. Above antenna gains of antenna are Total (H+V).

2. All of antenna can be application for WLAN and Bluetooth.

3. From the above antennas, Ant. No. 1 (Aux) was selected as representative antennas for the test.

3.3 Description of Test Modes

40 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.3.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE MODE	APPLICABLE TO				DESCRIPTION
	RE \geq 1G	RE $<$ 1G	PLC	APCM	
-	√	√	√	√	-

Where RE \geq 1G: Radiated Emission above 1GHz
 PLC: Power Line Conducted Emission
 RE $<$ 1G: Radiated Emission below 1GHz
 APCM: Antenna Port Conducted Measurement

Radiated Emission Test (Above 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
0 to 39	0, 19, 39	GFSK	1

Radiated Emission Test (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
0 to 39	39	GFSK	1

Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

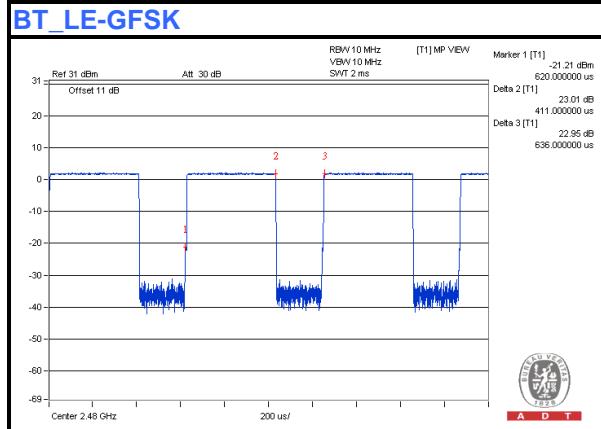
AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
0 to 39	39	GFSK	1

Antenna Port Conducted Measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
0 to 39	0, 19, 39	GFSK	1

TEST CONDITION:

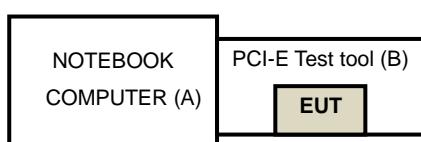

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
RE \geq 1G	22deg. C, 64%RH	120Vac, 60Hz	Gary Cheng
RE $<$ 1G	23deg. C, 68%RH	120Vac, 60Hz	Robert Cheng
PLC	25deg. C, 70%RH	120Vac, 60Hz	Mike Hsieh
APCM	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen

3.4 Duty Cycle of Test Signal

Duty cycle of test signal is < 98 %, duty factor shall be considered.

For BT_LE-GFSK:

Duty cycle = $0.411 \text{ ms} / 0.636 \text{ ms} = 0.646$, Duty factor = $10 * \log(1/0.646) = 1.9$


3.5 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID	Remark
A	NOTEBOOK COMPUTER	Lenovo	769	NA	QDS-BRCM1020	Supplied by Client
B	PCI-E Test tool	Qualcomm Atheros	4883428	6108H1D0423	NA	Supplied by Client

NOTE: All power cords of the above support units are non-shielded (1.8 m).

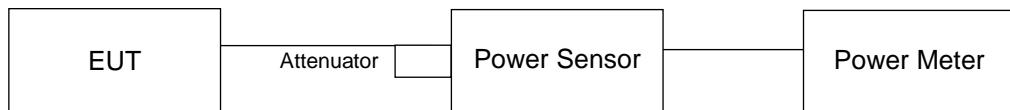
3.5.1 Configuration of System under Test

3.6 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)
558074 D01 DTS Meas Guidance v03r02
Canada RSS-210 Issue 8 (2010-12)
Canada RSS-Gen Issue 4 (2014-11)
ANSI C63.10-2013 (For IC)
ANSI C63.10-2009 (For FCC)

All test items have been performed and recorded as per the above standards.


4 Test Types and Results

4.1 Conducted Output Power Measurement

4.1.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.1.2 Test Setup

4.1.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Power Meter Anritsu	ML2495A	0824006	May 22, 2014	May 21, 2015
Power Sensor Anritsu	MA2411B	0738172	May 22, 2014	May 21, 2015

NOTE: 1. The test was performed in Oven room B.
2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
3. Tested Date: May 06, 2015

4.1.4 Test Procedures

The peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.1.5 Deviation from Test Standard

No deviation.

4.1.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.1.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	1.742	2.41	30	Pass
19	2440	1.932	2.86	30	Pass
39	2480	1.991	2.99	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	1.585	2.00
19	2440	1.750	2.43
39	2480	1.849	2.67

4.2 Radiated Emission and Bandedge Measurement

4.2.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
MXE EMI Receiver Agilent	N9038A	MY50010156	Aug. 11, 2014	Aug. 10, 2015
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-04	Nov. 12, 2014	Nov. 11, 2015
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Feb. 06, 2015	Feb. 05, 2016
RF Cable	NA	CHHCAB_001	Oct. 05, 2014	Oct. 04, 2015
Horn_Antenna AISI	AIH.8018	0000220091110	Feb. 06, 2015	Feb. 05, 2016
Pre-Amplifier Agilent	8449B	300801923	Oct. 28, 2014	Oct. 27, 2015
RF Cable	NA	131206 131213 131215 SNMY23685/4	Jan. 16, 2015	Jan. 15, 2016
Spectrum Analyzer R&S	FSV40	100964	July 05, 2014	July 04, 2015
Pre-Amplifier SPACEK LABS	SLKKa-48-6	9K16	Dec. 12, 2014	Dec. 11, 2015
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Feb. 05, 2015	Feb. 04, 2016
RF Cable	NA	329751/4 RF104-204	Dec. 11, 2014	Dec. 10, 2015
Software	ADT_Radiated _V8.7.07	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

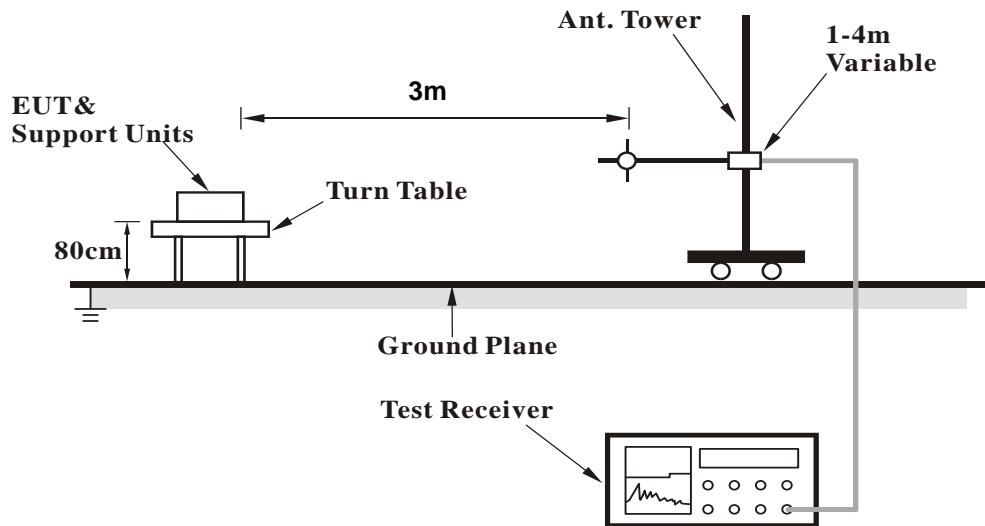
Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
3. The test was performed in 966 Chamber No. H.
4. The FCC Site Registration No. is 797305.
5. The CANADA Site Registration No. is IC 7450H-3.
6. Tested Date: May 06, 2015

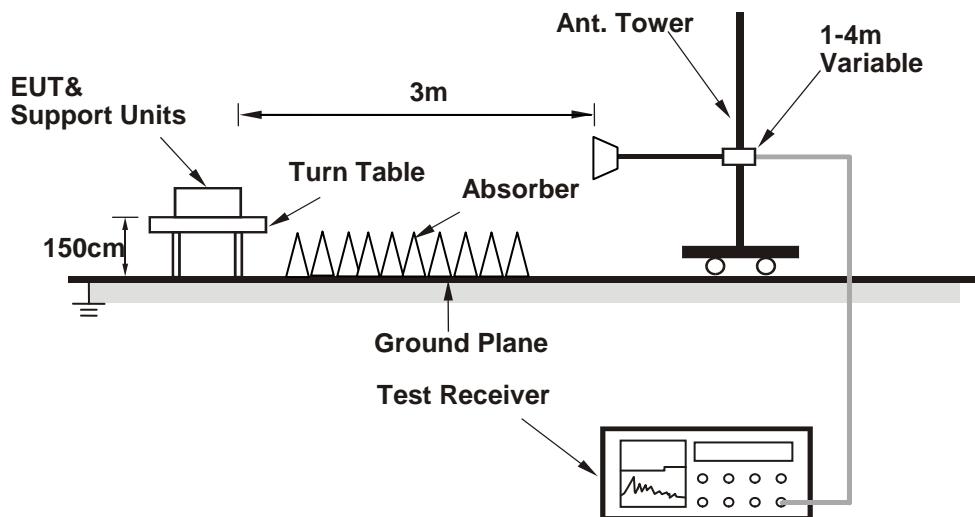
4.2.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


1. For emission measurements above 1 GHz, the EUT shall be placed at a height of 1.5 m above the ground at 3 meter chamber room for test
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor ($10 \log(1/\text{duty cycle})$).
5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle $\geq 98\%$) for Average detection (AV) at frequency above 1GHz.
6. All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard


For FCC only: Testing for radiated emissions above 1GHz was performed with the EUT elevated at 1.5m instead of 0.8m. 1.5m is the required height in ANSI C63.10:2013 as referenced by RSS-GEN issue 4. This test height has been permitted by FCC as discussed in FCC-TCB conference call in December 2014.

4.2.5 Test Setup

<Frequency Range below 1GHz>

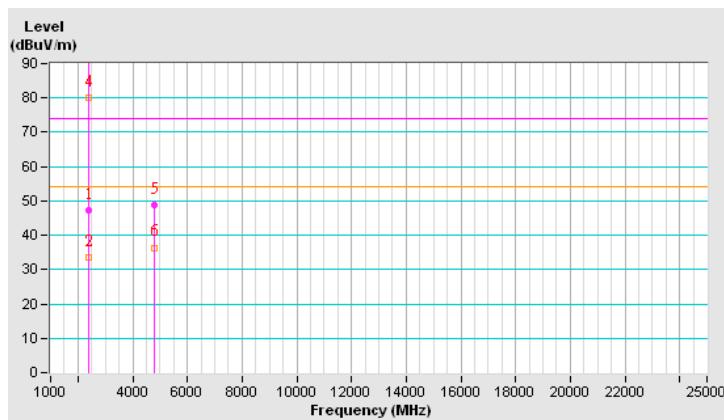
<Frequency Range above 1GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

1. Connect the EUT with the support unit A (Notebook Computer) which is placed on a testing table.
2. The communication partner run test program "QCA Radio Control Toolkit V3.0.33.0" to enable EUT under transmission/receiving condition continuously at specific channel frequency.

4.2.7 Test Results

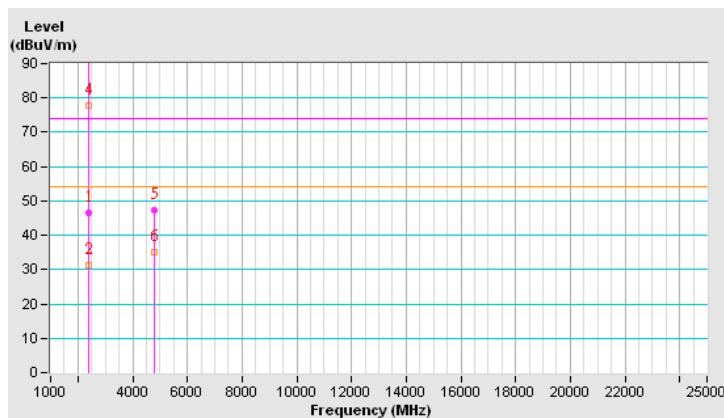

Above 1GHz Data:

CHANNEL	TX Channel 0	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz		Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	47.3 PK	74.0	-26.7	1.04 H	81	50.49	-3.19
2	2390.00	33.7 AV	54.0	-20.3	1.04 H	81	36.89	-3.19
3	*2402.00	93.9 PK			1.03 H	96	97.06	-3.16
4	*2402.00	80.1 AV			1.03 H	96	83.26	-3.16
5	4804.00	48.9 PK	74.0	-25.1	1.03 H	360	42.96	5.94
6	4804.00	36.4 AV	54.0	-17.6	1.03 H	360	30.46	5.94

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. " * ": Fundamental frequency.

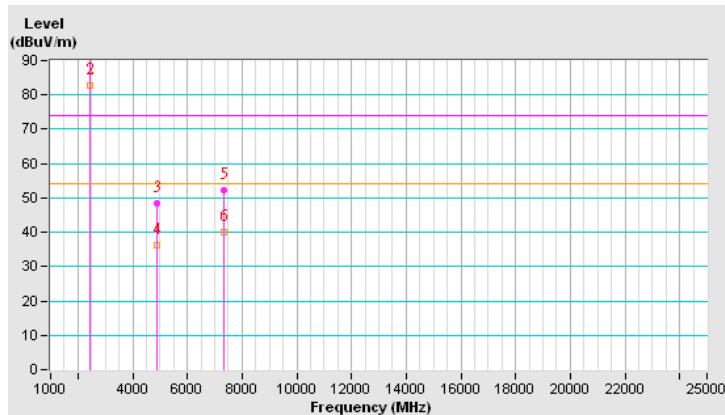


CHANNEL	TX Channel 0	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz		Average (AV)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	46.6 PK	74.0	-27.4	1.07 V	86	49.79	-3.19
2	2390.00	31.1 AV	54.0	-22.9	1.07 V	86	34.29	-3.19
3	*2402.00	92.7 PK			1.07 V	85	95.86	-3.16
4	*2402.00	77.9 AV			1.07 V	85	81.06	-3.16
5	4804.00	47.3 PK	74.0	-26.7	1.05 V	250	41.36	5.94
6	4804.00	35.0 AV	54.0	-19.0	1.05 V	250	29.06	5.94

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. " * ": Fundamental frequency.

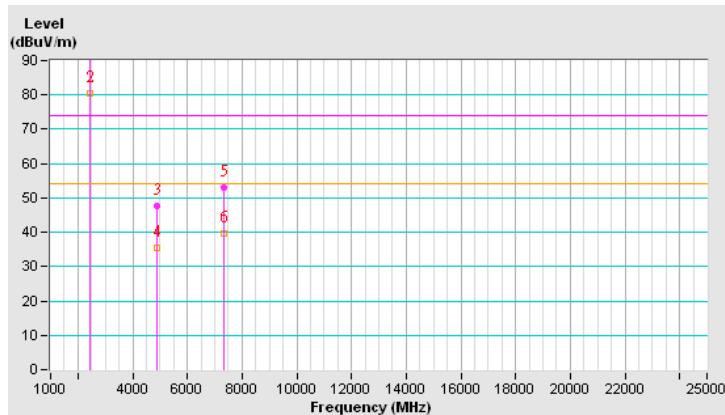


CHANNEL	TX Channel 19	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz		Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2440.00	94.9 PK			1.18 H	78	97.93	-3.03
2	*2440.00	82.8 AV			1.18 H	78	85.83	-3.03
3	4880.00	48.5 PK	74.0	-25.5	1.06 H	360	42.45	6.05
4	4880.00	36.1 AV	54.0	-17.9	1.06 H	360	30.05	6.05
5	7320.00	52.2 PK	74.0	-21.8	1.00 H	232	41.20	11.00
6	7320.00	39.9 AV	54.0	-14.1	1.00 H	232	28.90	11.00

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. " * ": Fundamental frequency.

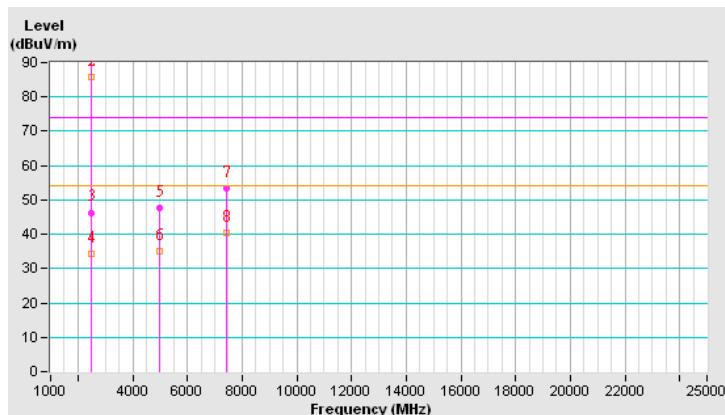


CHANNEL	TX Channel 19	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz		Average (AV)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2440.00	94.0 PK			1.03 V	77	97.03	-3.03
2	*2440.00	80.5 AV			1.03 V	77	83.53	-3.03
3	4880.00	47.5 PK	74.0	-26.5	1.00 V	227	41.45	6.05
4	4880.00	35.4 AV	54.0	-18.6	1.00 V	227	29.35	6.05
5	7320.00	53.1 PK	74.0	-20.9	1.10 V	285	42.10	11.00
6	7320.00	39.8 AV	54.0	-14.2	1.10 V	285	28.80	11.00

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. " * ": Fundamental frequency.

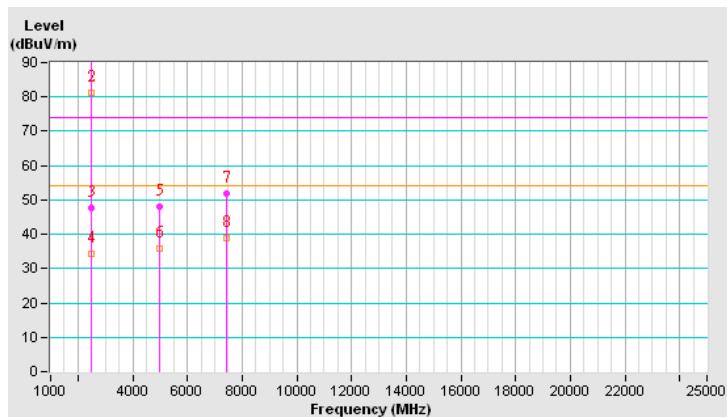


CHANNEL	TX Channel 39	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz		Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	96.8 PK			1.18 H	68	99.68	-2.88
2	*2480.00	85.8 AV			1.18 H	68	88.68	-2.88
3	2483.50	46.3 PK	74.0	-27.7	1.14 H	76	49.17	-2.87
4	2483.50	34.3 AV	54.0	-19.7	1.14 H	76	37.17	-2.87
5	4960.00	47.8 PK	74.0	-26.2	1.00 H	360	41.76	6.04
6	4960.00	35.1 AV	54.0	-18.9	1.00 H	360	29.06	6.04
7	7440.00	53.4 PK	74.0	-20.6	1.08 H	255	41.67	11.73
8	7440.00	40.4 AV	54.0	-13.6	1.08 H	255	28.67	11.73

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. " * ": Fundamental frequency.

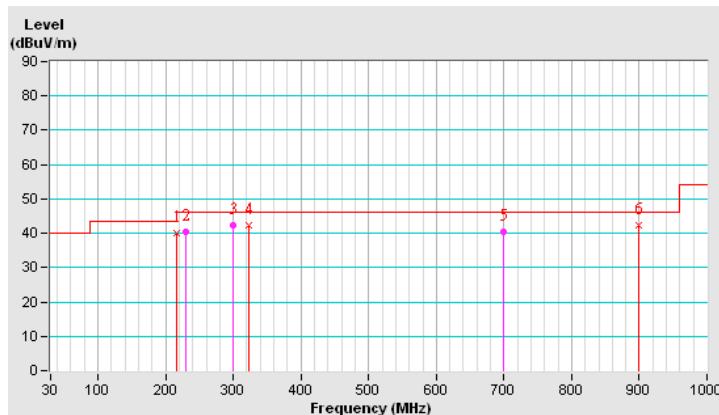


CHANNEL	TX Channel 39	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz		Average (AV)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	94.3 PK			1.03 V	52	97.18	-2.88
2	*2480.00	81.3 AV			1.03 V	52	84.18	-2.88
3	2483.50	47.8 PK	74.0	-26.2	1.09 V	68	50.67	-2.87
4	2483.50	34.2 AV	54.0	-19.8	1.09 V	68	37.07	-2.87
5	4960.00	47.9 PK	74.0	-26.1	1.00 V	201	41.86	6.04
6	4960.00	35.8 AV	54.0	-18.2	1.00 V	201	29.76	6.04
7	7440.00	52.0 PK	74.0	-22.0	1.00 V	297	40.27	11.73
8	7440.00	39.0 AV	54.0	-15.0	1.00 V	297	27.27	11.73

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value
5. " * ": Fundamental frequency.

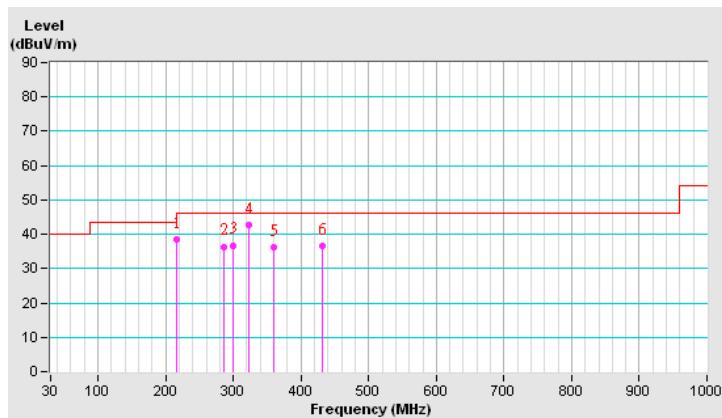

Below 1GHz Data:

CHANNEL	TX Channel 39	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	Below 1GHz		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	215.52	40.1 QP	43.5	-3.4	1.00 H	110	56.20	-16.08
2	230.02	40.4 QP	46.0	-5.6	1.00 H	244	55.73	-15.35
3	298.72	42.5 QP	46.0	-3.5	1.00 H	106	54.41	-11.95
4	322.59	42.4 QP	46.0	-3.6	1.10 H	120	53.38	-11.00
5	699.40	40.3 QP	46.0	-5.7	1.20 H	180	43.65	-3.37
6	899.38	42.3 QP	46.0	-3.7	1.20 H	150	42.11	0.17

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value



CHANNEL	TX Channel 39	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	Below 1GHz		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	215.78	38.4 QP	43.5	-5.1	1.00 V	210	54.49	-16.09
2	286.67	36.4 QP	46.0	-9.6	1.10 V	110	48.82	-12.42
3	298.72	36.8 QP	46.0	-9.2	1.00 V	208	48.73	-11.95
4	322.82	42.8 QP	46.0	-3.2	1.10 V	283	53.78	-11.00
5	359.78	36.2 QP	46.0	-9.8	1.10 V	100	46.61	-10.45
6	431.86	36.7 QP	46.0	-9.3	1.00 V	180	45.08	-8.40

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level – Limit value

4.3 Conducted Emission Measurement

4.3.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

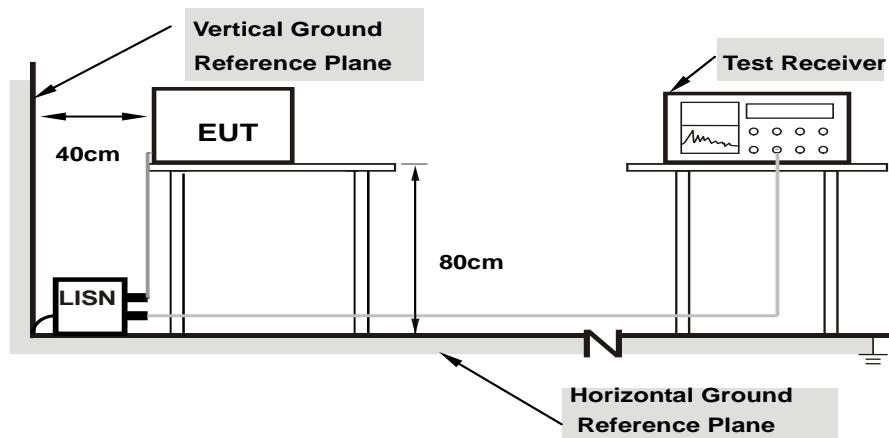
4.3.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCS 30	847124/029	Oct. 22, 2014	Oct. 21, 2015
Line-Impedance Stabilization Network (for EUT) SCHWARZBECK	NSLK-8127	8127-522	Sep. 15, 2014	Sep. 14, 2015
Line-Impedance Stabilization Network (for Peripheral) ROHDE & SCHWARZ	ENV216	100071	Nov. 10, 2014	Nov. 09, 2015
RF Cable (JYEBAO)	5D-FB	COCCAB-001	Mar. 09, 2015	Mar. 08, 2016
50 ohms Terminator	N/A	EMC-03	Sep. 22, 2014	Sep. 21, 2015
50 ohms Terminator	N/A	EMC-02	Sep. 30, 2014	Sep. 29, 2015
Software ADT	BV ADT_Cond_V7.3.7.3	NA	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in Shielded Room No. C.
3. The VCCI Con C Registration No. is C-3611.
4. Tested Date: May 05, 2015

4.3.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.3.4 Deviation from Test Standard

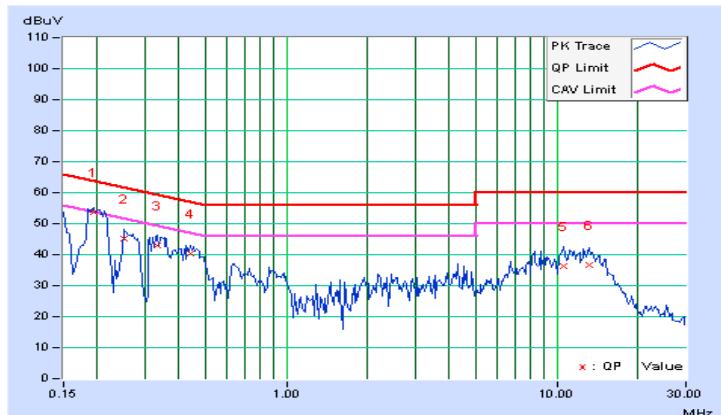
No deviation.

4.3.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.3.6 EUT Operating Conditions

Same as 4.2.6.

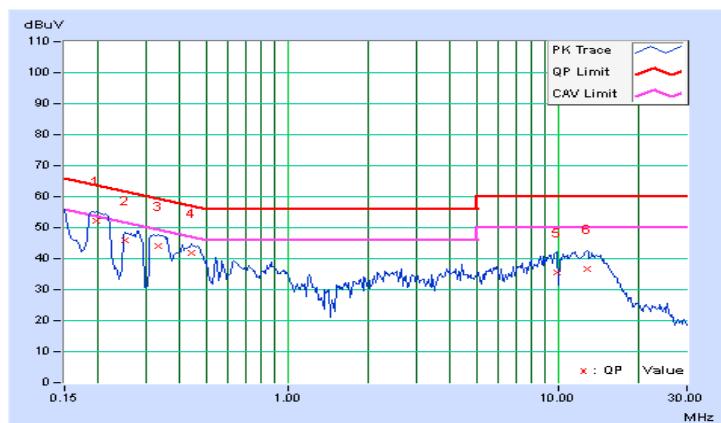

4.3.7 Test Results

Phase	Line (L)		Detector Function		Quasi-Peak (QP) / Average (AV)	
-------	----------	--	-------------------	--	--------------------------------	--

No	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin	
		Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
		[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.
1	0.19297	0.09	53.49	38.46	53.58	38.55	63.91	53.91	-10.33	-15.36
2	0.25156	0.09	45.12	28.93	45.21	29.02	61.71	51.71	-16.49	-22.68
3	0.33359	0.10	42.74	30.58	42.84	30.68	59.36	49.36	-16.52	-18.68
4	0.43906	0.10	40.28	26.65	40.38	26.75	57.08	47.08	-16.70	-20.33
5	10.56250	0.46	36.02	27.20	36.48	27.66	60.00	50.00	-23.52	-22.34
6	13.14063	0.53	36.09	28.12	36.62	28.65	60.00	50.00	-23.38	-21.35

REMARKS:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value.



Phase	Neutral (N)		Detector Function		Quasi-Peak (QP) / Average (AV)	
-------	-------------	--	-------------------	--	--------------------------------	--

No	Freq. [MHz]	Corr.	Reading Value		Emission Level		Limit		Margin	
		Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
		(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.19687	0.08	52.18	39.02	52.26	39.10	63.74	53.74	-11.48	-14.64
2	0.25156	0.09	45.96	30.75	46.05	30.84	61.71	51.71	-15.66	-20.87
3	0.33359	0.09	43.89	31.97	43.98	32.06	59.36	49.36	-15.38	-17.30
4	0.44297	0.10	41.75	28.46	41.85	28.56	57.01	47.01	-15.15	-18.44
5	9.96875	0.46	35.00	26.29	35.46	26.75	60.00	50.00	-24.54	-23.25
6	12.77344	0.54	36.19	28.20	36.73	28.74	60.00	50.00	-23.27	-21.26

REMARKS:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value.

A D T

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF Lab/Telecom Lab

Tel: 886-3-5935343
Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---