

FCC Test Report (WLAN)

Report No.: RF150107E07H-1

FCC ID: PPD-QCNFA364AH

Test Model: QCNFA364A

Received Date: Feb. 09, 2015

Test Date: Feb. 09, 2015 & Oct. 01 to 05, 2015

Issued Date: Dec. 04, 2015

Applicant: Qualcomm Atheros, Inc.

Address: 1700 Technology Drive, San Jose, CA 95110

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan R.O.C.

Test Location (1): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin
Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record	3
1 Certificate of Conformity.....	4
2 Summary of Test Results.....	5
2.1 Measurement Uncertainty	5
2.2 Modification Record	5
3 General Information.....	6
3.1 General Description of EUT (WLAN)	6
3.2 Description of Antenna	9
3.3 Description of Test Modes	10
3.3.1 Test Mode Applicability and Tested Channel Detail.....	12
3.4 Duty Cycle of Test Signal	14
3.5 Description of Support Units	15
3.5.1 Configuration of System under Test	15
3.6 General Description of Applied Standard	16
4 Test Types and Results	17
4.1 Transmit Power Measurement	17
4.1.1 Limits of Transmit Power Measurement	17
4.1.2 Test Setup.....	17
4.1.3 Test Instruments	18
4.1.4 Test Procedures.....	19
4.1.5 Deviation from Test Standard	19
4.1.6 EUT Operating Conditions.....	19
4.1.7 Test Results	20
5 Pictures of Test Arrangements.....	44
6 Appendix A – Information on the Testing Laboratories.....	45
7 Appendix B – Radiated Emission Measurement	46
7.1.1 Limits of Radiated Emission Measurement	46
7.1.2 Test Instruments	47
7.1.3 Test Procedures.....	48
7.1.4 Deviation from Test Standard	48
7.1.5 Test Setup.....	49
7.1.6 EUT Operating Conditions.....	49
7.1.7 Test Results	50

A D T

Release Control Record

Issue No.	Description	Date Issued
RF150107E07H-1	Original release.	Dec. 04, 2015

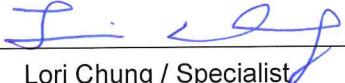
1 Certificate of Conformity

Product: 802.11a/b/g/n/ac + BT 4.1 M.2 2230 Type Card

Brand: Qualcomm Atheros

Test Model: QCNFA364A

Sample Status: ENGINEERING SAMPLE


Applicant: Qualcomm Atheros, Inc.

Test Date: Feb. 09, 2015 & Oct. 01 to 05, 2015

Standard: 47 CFR FCC Part 15, Subpart E (Section 15.407)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : , **Date:** Dec. 04, 2015
Lori Chung / Specialist

Approved by : , **Date:** Dec. 04, 2015
May Chen / Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (SECTION 15.407)			
FCC Clause	Test Item	Result	Remarks
15.407(b) (1/2/3/4/6)	Radiated Emissions & Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -2.2dB at 5470.00MHz.
15.407(a)(1/2 /3)	Max Average Transmit Power	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	Antenna connector is SMA RP plug not a standard connector.

NOTE: 1. For WLAN: The EUT was operating in 2.4 ~ 2.4835GHz, 5.15~5.35GHz, 5.47~5.725GHz and 5.725~5.850GHz frequencies band. This report was recorded the RF parameters including 5.15~5.35GHz, 5.47~5.725GHz and 5.725~5.850GHz. For the 2.4 ~ 2.4835GHz RF parameters was recorded in another test report.

2. This report is prepared for FCC Class II change. (Only radiated emissions / Max Average Transmit Power were presented in this test report).

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Radiated Emissions above 1 GHz	1GHz ~ 6GHz	5.37 dB
	6GHz ~ 18GHz	3.65 dB
	18GHz ~ 40GHz	3.88 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (WLAN)

Product	802.11a/b/g/n/ac + BT 4.1 M.2 2230 Type Card
Brand	Qualcomm Atheros
Test Model	QCNFA364A
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	3.3Vdc form host equipment
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT (20/40) mode in 2.4GHz
Modulation Technology	DSSS,OFDM
Transfer Rate	802.11b: up to 11Mbps 802.11a/g: up to 54Mbps 802.11n : up to 300Mbps 802.11ac: up to 866.7Mbps
Operating Frequency	For 15.407 5.18 ~ 5.24GHz, 5.26 ~ 5.32GHz, 5.50 ~ 5.72GHz, 5.745 ~ 5.825GHz For 15.247 2.412 ~ 2.472GHz
Number of Channel	For 15.407 25 for 802.11a, 802.11n (HT20), 802.11ac (VHT20) 12 for 802.11n (HT40), 802.11ac (VHT40) 6 for 802.11ac (VHT80) For 15.247 13 for 802.11b/g, 802.11n (HT20), VHT20 9 for 802.11n (HT40), VHT40
Output Power	For 15.407 802.11a: 133.52mW 802.11ac (VHT20): 128.708mW 802.11ac (VHT40): 153.522mW 802.11ac (VHT80): 86.754mW For 15.247 802.11b: 306.647mW 802.11g: 508.783mW VHT20: 508.304mW VHT40: 432.554mW
Antenna Type	See item 3.2
Antenna Connector	See item 3.2
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. This report is prepared for FCC Class II change. The difference compared with the Report No.: RF150107E06B-1 & RF150107E06F-1 design is as the following:

◆ Add new antennas (Antenna Set 2) as following table:

Original									
Antenna Set 1									
Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5G Cable Loss (dBi)	Connector Type	Cable Length (mm)
Chain (0)	WNC	81-EBJ15.005	PIFA	3.00	Band 1&2: 2.56	1.15	Band 1&2: 1.70	IPEX	300
					Band 3: 4.76		Band 3: 1.74		
					Band 4: 4.76		Band 4: 1.79		
Chain (1)	WNC	81-EBJ15.005	PIFA	3.62	Band 1&2: 3.08	1.15	Band 1&2: 1.70	IPEX	300
					Band 3: 3.31		Band 3: 1.74		
					Band 4: 2.42		Band 4: 1.79		

Newly									
Antenna Set 2									
Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5G Cable Loss (dBi)	Connector Type	Cable Length (mm)
Chain (0)	INPAQ	DAM-I6-H-DB-800-10-17	Dipole	1.13	Band 1&2: 1.33	NA	NA	SMA RP Plug	900
					Band 3: -0.63				
					Band 4: -0.97				
Chain (1)	INPAQ	DAM-I6-H-DB-800-10-17	Dipole	1.29	Band 1&2: 1.94	NA	NA	SMA RP Plug	900
					Band 3: -0.49				
					Band 4: -0.93				

- According to above conditions, only radiated emissions / Conducted power need to be performed. And all data was verified to meet the requirements.
- In the original test report, the spurious emissions item was tested by the conducted method; only partial channels were tested by radiated method. So for new antenna source, only spurious emissions for radiated method need to be performed. And all data was verified to meet the requirements.

4. There are Bluetooth technology and WLAN technology used for the EUT.
5. The EUT incorporates a 2T2R function.

2.4GHz Band			
MODULATION MODE	DATA RATE (MCS)	TX & RX CONFIGURATION	
802.11b	1 ~ 11Mbps	2TX	2RX
802.11g	6 ~ 54Mbps	2TX	2RX
802.11n (HT20)	MCS 0~7	2TX	2RX
	MCS 8~15	2TX	2RX
802.11n (HT40)	MCS 0~7	2TX	2RX
	MCS 8~15	2TX	2RX
VHT20	MCS 0~8, NSS=1	2TX	2RX
	MCS 0~8, NSS=2	2TX	2RX
VHT40	MCS 0~9, NSS=1	2TX	2RX
	MCS 0~9, NSS=2	2TX	2RX
5GHz Band			
MODULATION MODE	DATA RATE (MCS)	TX & RX CONFIGURATION	
802.11a	6 ~ 54Mbps	2TX	2RX
802.11n (HT20)	MCS 0~7	2TX	2RX
	MCS 8~15	2TX	2RX
802.11n (HT40)	MCS 0~7	2TX	2RX
	MCS 8~15	2TX	2RX
802.11ac (VHT20)	MCS 0~8, NSS=1	2TX	2RX
	MCS 0~8, NSS=2	2TX	2RX
802.11ac (VHT40)	MCS 0~9, NSS=1	2TX	2RX
	MCS 0~9, NSS=2	2TX	2RX
802.11ac (VHT80)	MCS 0~9, NSS=1	2TX	2RX
	MCS 0~9, NSS=2	2TX	2RX

Note: The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz) and 802.11ac mode for 20MHz (40MHz), therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.3.1)

6. In original report, the EUT was pre-tested under the following modes:

Test Mode	Data rate
Mode A	400ns GI
Mode B	800ns GI

From the above modes, the worst case was found in **Mode B**. Therefore only the test data of the mode was recorded in this report.

7. WLAN/BT coexistence mode:

- ◆ 2x2 WLAN + BT:
 - 5GHz 802.11a/an (or 11ac) transmit concurrent with BT.
 - 2.4GHz: timely shared coexistence.

8. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Antenna

The antenna gain was declared by client; please refer to the following table:

Antenna Set 1									
Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5GHz Cable Loss (dBi)	Connector Type	Cable Length (mm)
Chain (0)	WNC	81-EBJ15.005	PIFA	3.00	Band 1&2: 2.56	1.15	Band 1&2: 1.70	IPEX	300
					Band 3: 4.76		Band 3: 1.74		
					Band 4: 4.76		Band 4: 1.79		
Chain (1)	WNC	81-EBJ15.005	PIFA	3.62	Band 1&2: 3.08	1.15	Band 1&2: 1.70	IPEX	300
					Band 3: 3.31		Band 3: 1.74		
					Band 4: 2.42		Band 4: 1.79		
Antenna Set 2									
Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5GHz Cable Loss (dBi)	Connector Type	Cable Length (mm)
Chain (0)	INPAQ	DAM-I6-H-DB-800-10-17	Dipole	1.13	Band 1&2: 1.33	NA	NA	SMA RP Plug	900
					Band 3: -0.63				
					Band 4: -0.97				
Chain (1)	INPAQ	DAM-I6-H-DB-800-10-17	Dipole	1.29	Band 1&2: 1.94	NA	NA	SMA RP Plug	900
					Band 3: -0.49				
					Band 4: -0.93				

3.3 Description of Test Modes

FOR 5180 ~ 5240MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency
42	5210MHz

FOR 5260 ~ 5320MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
52	5260 MHz	60	5300 MHz
56	5280 MHz	64	5320 MHz

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
54	5270 MHz	62	5310 MHz

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency
58	5290MHz

FOR 5500 ~ 5720MHz

12 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
100	5500 MHz	124	5620 MHz
104	5520 MHz	128	5640 MHz
108	5540 MHz	132	5660 MHz
112	5560 MHz	136	5680 MHz
116	5580 MHz	140	5700 MHz
120	5600 MHz	144	5720 MHz

6 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
102	5510 MHz	126	5630 MHz
110	5550 MHz	134	5670 MHz
118	5590 MHz	142	5710 MHz

3 channels are provided for 802.11ac (VHT80):

Channel	Frequency	Channel	Frequency
106	5530MHz	138	5690 MHz
122	5610 MHz		

Note : The listed channels in the DFS band (5250~5350MHz and 5470~5725MHz) are passive scan only.

FOR 5745 ~ 5825MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
149	5745MHz	161	5805MHz
153	5765MHz	165	5825MHz
157	5785MHz		

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
151	5755MHz	159	5795MHz

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency
155	5775MHz

3.3.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE MODE	APPLICABLE TO		DESCRIPTION
	RE≥1G	APCM	
-	√	√	-

Where RE≥1G: Radiated Emission above 1GHz **APCM:** Antenna Port Conducted Measurement

Radiated Emission Test (Above 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	DATA RATE (Mbps)
802.11ac (VHT40)	5500-5720	102 to 142	102	OFDM	13.5
802.11ac (VHT80)		106 to 138	106	OFDM	29.3
802.11ac (VHT40)	5745-5825	151 to 159	151, 159	OFDM	13.5
802.11ac (VHT80)		155	155	OFDM	29.3

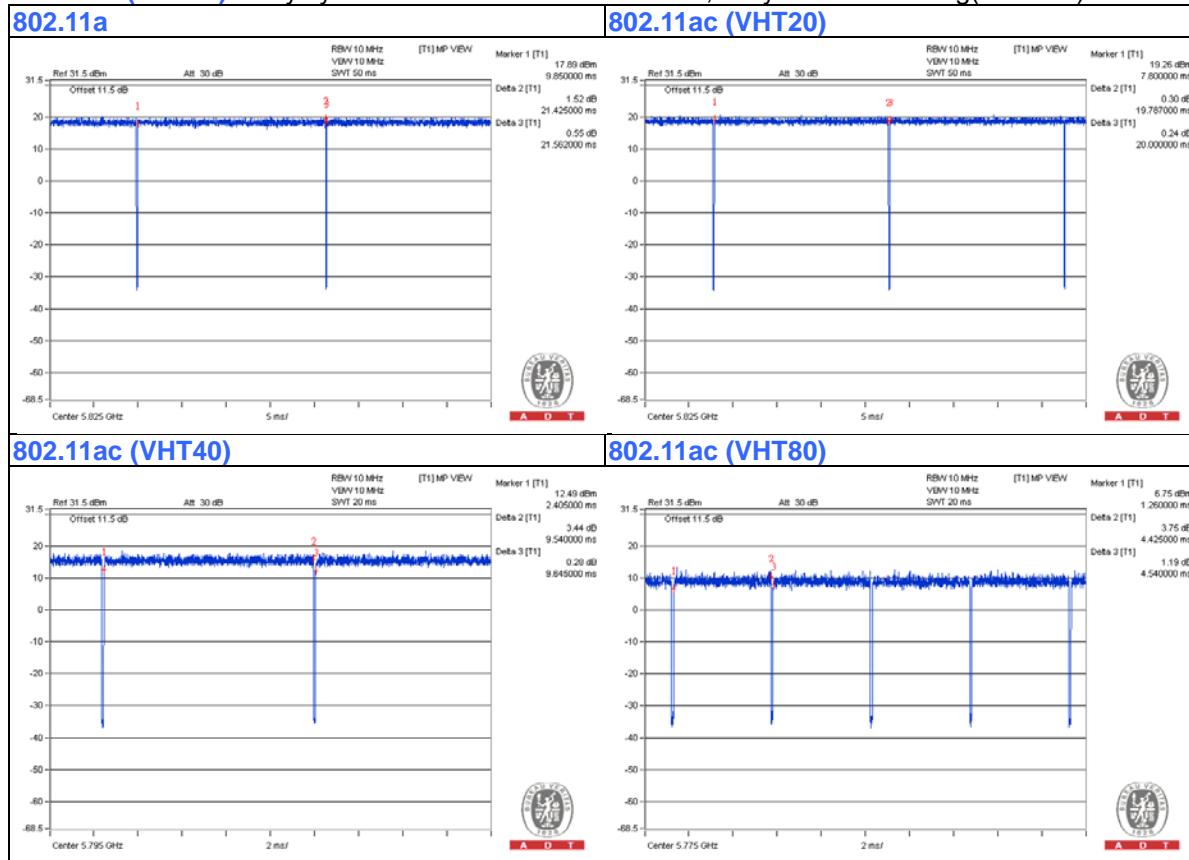
Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	DATA RATE (Mbps)
802.11a	5180-5240	36 to 48	36, 40, 48	OFDM	6
802.11ac (VHT20)		36 to 48	36, 40, 48	OFDM	6.5
802.11ac (VHT40)		38 to 46	38, 46	OFDM	13.5
802.11ac (VHT80)		42	42	OFDM	29.3
802.11a	5260-5320	52 to 64	52, 60, 64	OFDM	6
802.11ac (VHT20)		52 to 64	52, 60, 64	OFDM	6.5
802.11ac (VHT40)		54 to 62	54, 62	OFDM	13.5
802.11ac (VHT80)		58	58	OFDM	29.3
802.11a	5500-5720	100 to 144	100, 120, 140, 144	OFDM	6
802.11ac (VHT20)		100 to 144	100, 120, 140, 144	OFDM	6.5
802.11ac (VHT40)		102 to 142	102, 118, 134, 142	OFDM	13.5
802.11ac (VHT80)		106 to 138	106, 122, 138	OFDM	29.3
802.11a	5745-5825	149 to 165	149, 157, 165	OFDM	6
802.11ac (VHT20)		149 to 165	149, 157, 165	OFDM	6.5
802.11ac (VHT40)		151 to 159	151, 159	OFDM	13.5
802.11ac (VHT80)		155	155	OFDM	29.3

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE \geq 1G	25deg. C, 71%RH	120Vac, 60Hz	Alex Ku
APCM	25deg. C, 60%RH	120Vac, 60Hz	Andy Ho

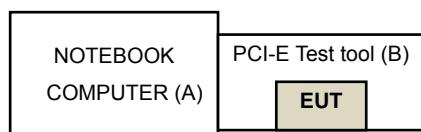

3.4 Duty Cycle of Test Signal

802.11a: Duty cycle = 21.425 ms/21.562 ms = 0.994

802.11ac (VHT20): Duty cycle = 19.787 ms/20 ms = 0.989

802.11ac (VHT40): Duty cycle = 9.54 ms/9.645 ms = 0.989

802.11ac (VHT80): Duty cycle = 4.425 ms/4.54 ms = 0.975, Duty factor = $10 * \log(1/0.975) = 0.11$


3.5 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID	Remark
A	NOTEBOOK COMPUTER	DELL	E5430	4YV4VY1	FCC DoC	Provided by Lab
B	PCI-E Test tool	Qualcomm Atheros	NA	NA	NA	Supplied by Client

NOTE: All power cords of the above support units are non-shielded (1.8 m).

3.5.1 Configuration of System under Test

3.6 General Description of Applied Standard

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart E (15.407)
789033 D02 General UNII Test Procedure New Rules v01
662911 D01 Multiple Transmitter Output v02r01
ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

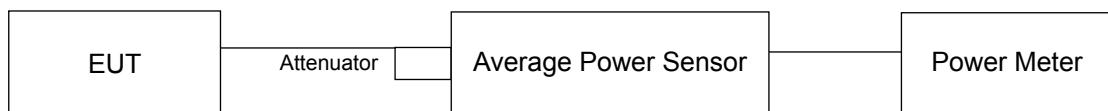
4 Test Types and Results

4.1 Transmit Power Measurement

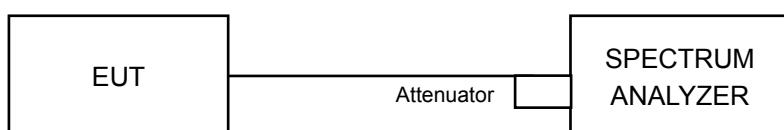
4.1.1 Limits of Transmit Power Measurement

Operation Band	EUT Category		LIMIT
U-NII-1	Outdoor Access Point		1 Watt (30 dBm) (Max. e.i.r.p \leq 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon)
	Fixed point-to-point Access Point		1 Watt (30 dBm)
	Indoor Access Point		1 Watt (30 dBm)
	<input checked="" type="checkbox"/>	Mobile and Portable client device	250mW (24 dBm)
U-NII-2A	<input checked="" type="checkbox"/>		250mW (24 dBm) or 11 dBm+10 log B*
U-NII-2C	<input checked="" type="checkbox"/>		250mW (24 dBm) or 11 dBm+10 log B*
U-NII-3	<input checked="" type="checkbox"/>		1 Watt (30 dBm)

Note: *B is the 26 dB emission bandwidth in megahertz


4.1.2 Test Setup

FOR POWER OUTPUT MEASUREMENT


For channel straddling 5725MHz:

For other channels:

FOR 26dB OCCUPIED BANDWIDTH

4.1.3 Test Instruments

FOR POWER OUTPUT MEASUREMENT
For channel straddling 5725MHz:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER R&S	FSP40	100060	May 08, 2015	May 07, 2016

NOTE:

1. The test was performed in Oven room 2.
2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
3. Tested Date: Oct. 05, 2015

For other channels:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Power meter Anritsu	ML2495A	1014008	Apr. 28, 2015	Apr. 27, 2016
Power sensor Anritsu	MA2411B	0917122	Apr. 28, 2015	Apr. 27, 2016

NOTE:

1. The test was performed in Oven room 2.
2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
3. Tested Date: Oct. 05, 2015

FOR 26dB OCCUPIED BANDWIDTH

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER R&S	FSP40	100060	May 08, 2014	May 07, 2015

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. Tested date :Feb. 09, 2015

4.1.4 Test Procedures

FOR AVERAGE POWER MEASUREMENT

For channel straddling 5725MHz:

802.11ac (VHT80)

Method SA-2

1. Set span to encompass the emission bandwidth (EBW) of the signal.
2. Set RBW = 1MHz.
3. Set the VBW $\geq 3 \times$ RBW.
4. Number of points in sweep ≥ 2 Span / RBW.
5. Sweep time = auto.
6. Detector = RMS.
7. Trace average at least 100 traces in power averaging mode
8. Compute power by integrating the spectrum across the 26 dB EBW of the signal.
9. Duty factor need added to measured value (duty cycle < 98 percent).

Other Modulation mode

Method SA-1

1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
2. Set RBW = 1MHz.
3. Set the VBW $\geq 3 \times$ RBW.
4. Number of points in sweep ≥ 2 Span / RBW.
5. Sweep time = auto.
6. Set trigger to free run (duty cycle ≥ 98 percent)
7. Detector = RMS.
8. Trace average at least 100 traces in power averaging mode
9. Compute power by integrating the spectrum across the 26 dB EBW of the signal.

For other channels:

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

FOR 26dB OCCUPIED BANDWIDTH

1. Set RBW = approximately 1% of the emission bandwidth.
2. Set the VBW $>$ RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.1.5 Deviation from Test Standard

No deviation.

4.1.6 EUT Operating Conditions

The software (QRCT Version3.0.33.0) provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.1.7 Test Results

802.11a

POWER OUTPUT

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)	Limit (dBm)	Pass / Fail
		Chain 0	Chain 1				
36	5180	17.35	16.98	104.213	20.18	24	Pass
40	5200	17.34	16.98	104.088	20.17	24	Pass
48	5240	17.38	16.80	102.565	20.11	24	Pass
52	5260	17.05	16.88	99.452	19.98	24	Pass
60	5300	16.89	16.87	97.506	19.89	24	Pass
64	5320	15.66	15.15	69.547	18.42	23.90	Pass
100	5500	14.98	14.84	61.956	17.92	23.84	Pass
120	5600	16.81	16.67	94.425	19.75	23.92	Pass
140	5700	14.60	14.39	56.319	17.51	23.88	Pass
*144 (UNII-2c Band)	5720	12.92	12.54	37.535	15.74	23.02	Pass
*144 (UNII-3 Band)	5720	5.22	5.31	6.723	8.28	30	Pass
149	5745	14.85	15.05	62.538	17.96	30	Pass
157	5785	18.21	18.28	133.52	21.26	30	Pass
165	5825	17.68	18.32	126.534	21.02	30	Pass

NOTE: 1. 5150~5250MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 4.65 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

2. 5250~5350MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 4.65 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

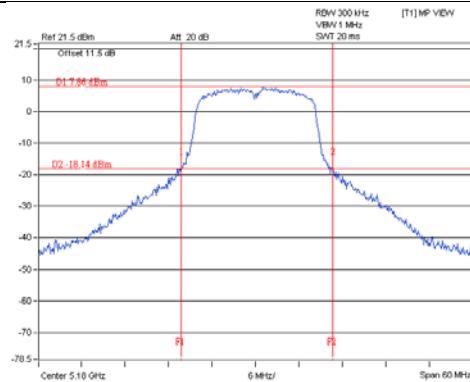
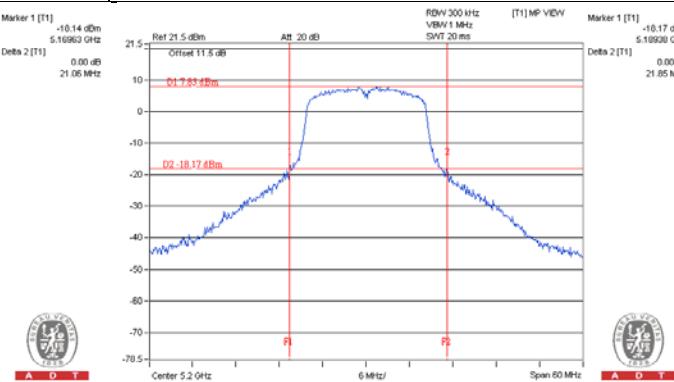
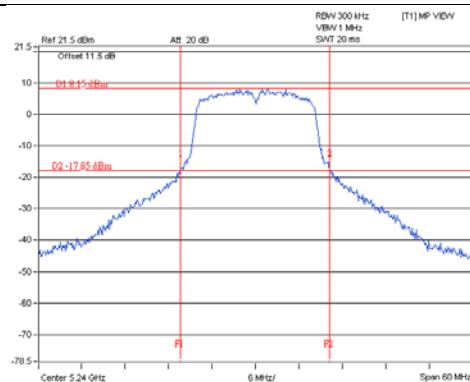
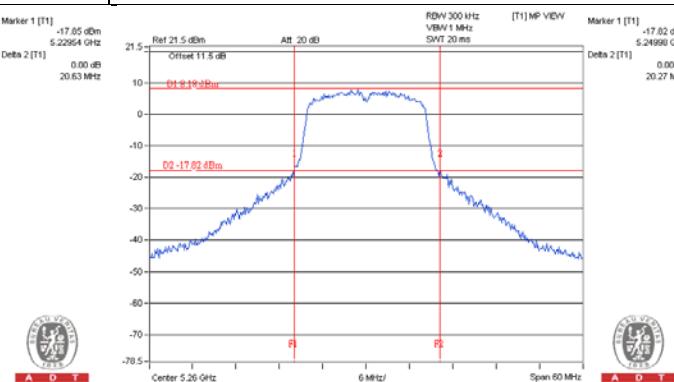
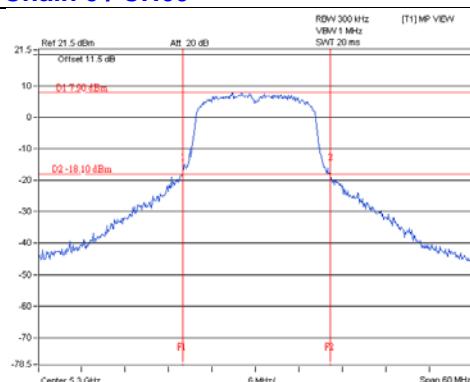
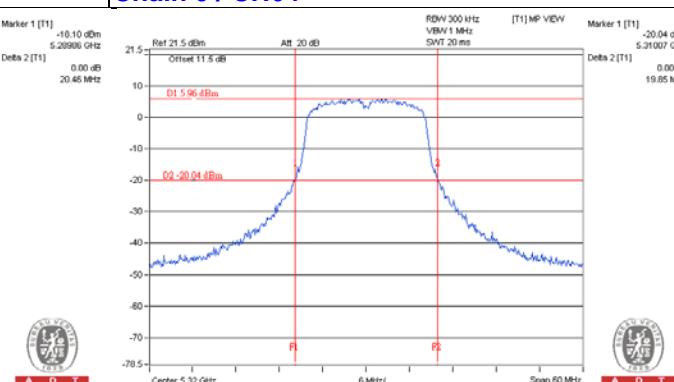
3. 5470~5725MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 2.45 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

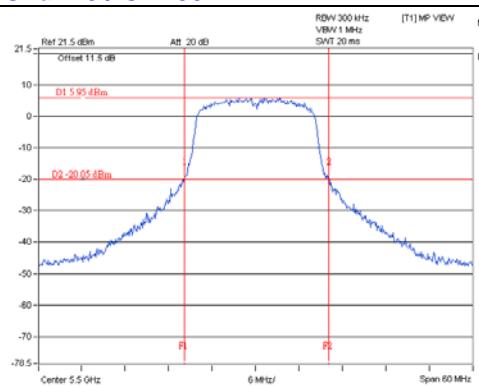
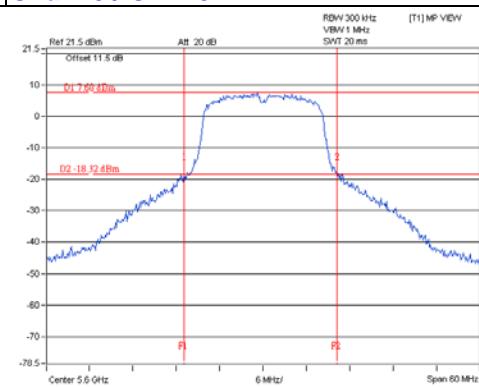
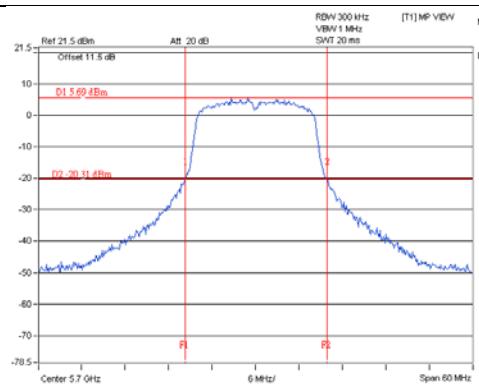
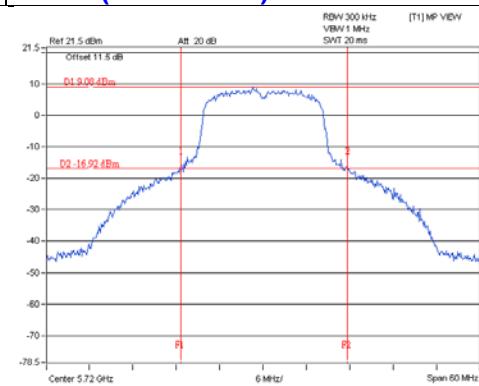
4. 5725~5850MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 2.06 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

* Test was performed in accordance with Measurement follow FCC KDB 789033 UNII test procedure Method SA-1 and use spectrum analyzer test.

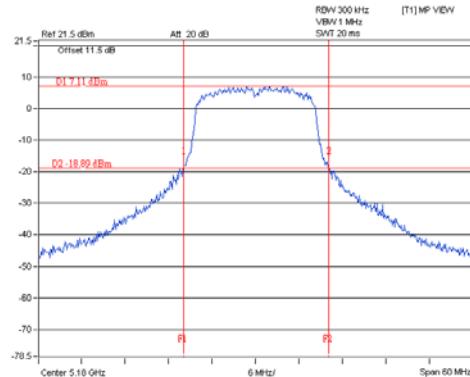
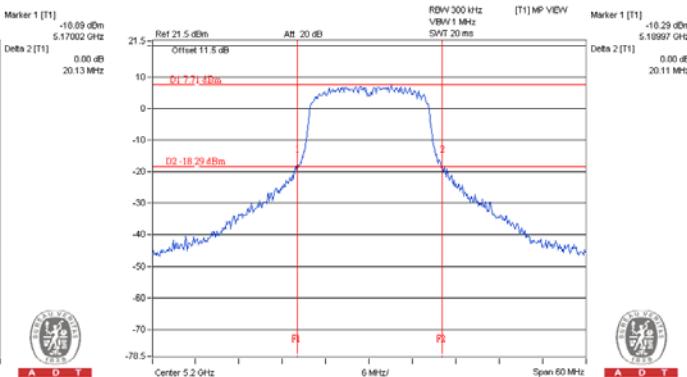
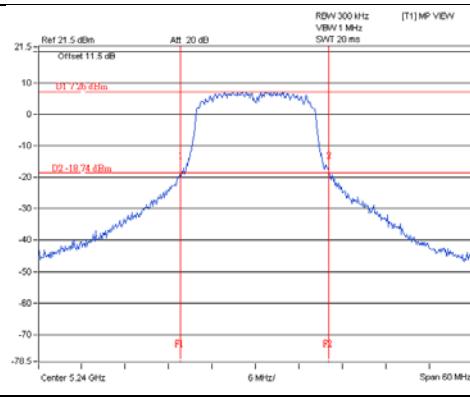
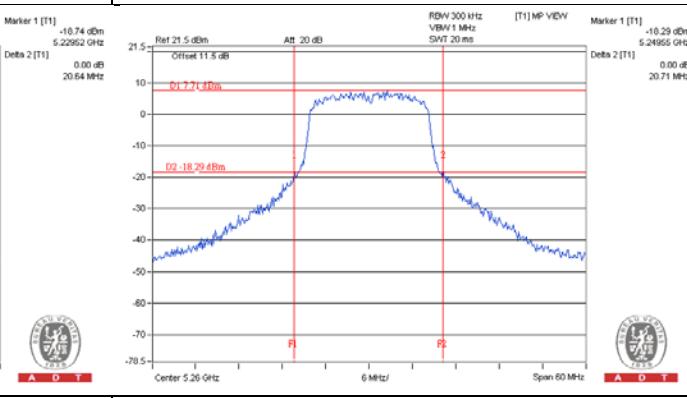
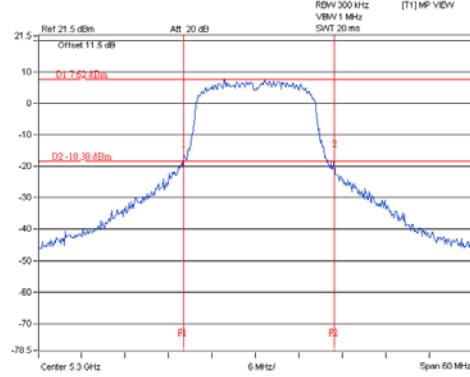
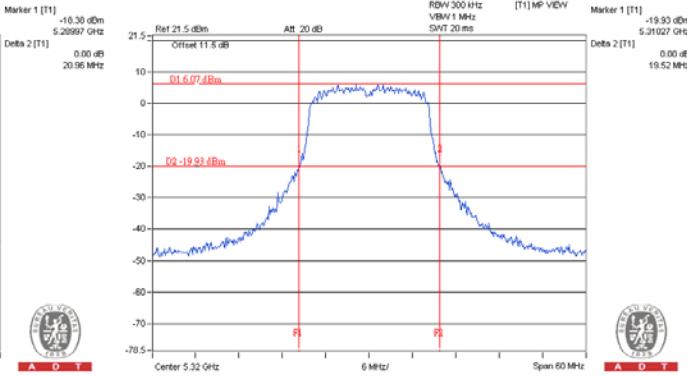
The Total Power for the straddle channel:

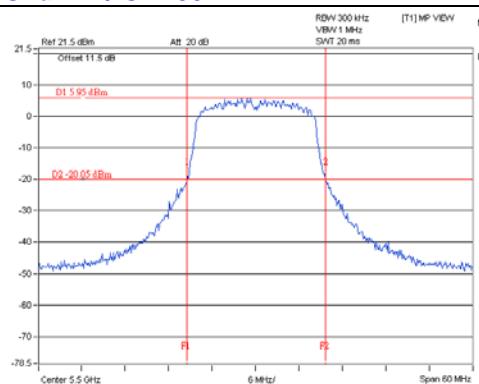
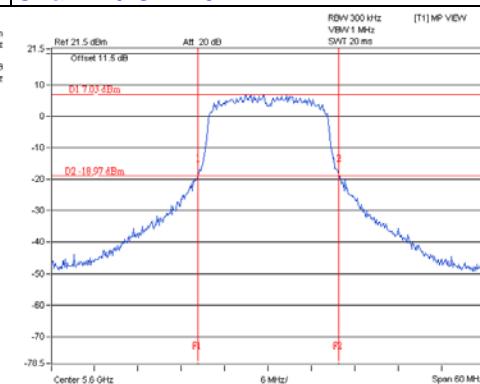
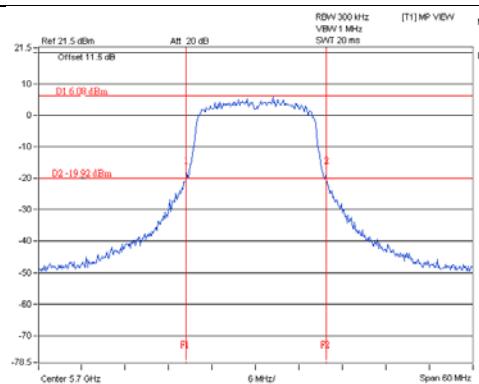
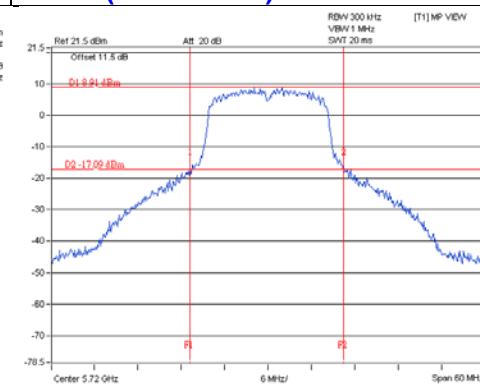
Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
*144	5720	44.258	16.46







Note: The total power was calculated through formula and record the value for reference only.





26dB OCCUPIED BANDWIDTH

Channel	Frequency (MHz)	26dBc Bandwidth (MHz)	
		Chain 0	Chain 1
36	5180	21.06	20.13
40	5200	21.85	20.11
48	5240	20.63	20.64
52	5260	20.27	20.71
60	5300	20.46	20.96
64	5320	19.85	19.52
100	5500	20.05	19.25
120	5600	21.33	19.60
140	5700	19.69	19.43
144 (UNII-2c Band)	5720	16.49	15.93







Note: For U-NII-2A, U-NII-2C Band output power limitation is determined based on 26dBc bandwidth





Power Limit = $11\text{dBm} + 10\log B < \text{U-NII-2A, U-NII-2C}$			
Channel Number	Freq.(MHz)	Min. B(MHz)	Determined Conducted Limit (dBm)
52	5260	20.27	24.06 > 24
60	5300	20.46	24.1 > 24
64	5320	19.52	23.9 < 24
100	5500	19.25	23.84 < 24
120	5600	19.60	23.92 < 24
140	5700	19.43	23.88 < 24
144 (UNII-2c Band)	5720	15.93	23.02 < 24

Chain 0 / CH36

Chain 0 / CH40

Chain 0 / CH48

Chain 0 / CH52

Chain 0 / CH60

Chain 0 / CH64

Chain 0 / CH100

Chain 0 / CH120

Chain 0 / CH140

Chain 0 / CH144 (UNII-2c Band) / Chain 0 / CH144 (UNII-3 Band)

NOTE:

For CH144 (UNII-2c Band) = 5725MHz - Marker 1

Chain 1 / CH36

Chain 1 / CH40

Chain 1 / CH48

Chain 1 / CH52

Chain 1 / CH60

Chain 1 / CH64

Chain 1 / CH100

Chain 1 / CH120

Chain 1 / CH140

Chain 1 / CH144 (UNII-2c Band) / Chain 1 / CH144 (UNII-3 Band)

NOTE:

For CH144 (UNII-2c Band) = 5725MHz - Marker 1

For Reference only – Power meter value

The power value was measured by power meter with average sensor.

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)
		Chain 0	Chain 1		
144	5720	17.90	17.70	120.544	20.81

Note: The total power was calculated through formula and record the value for reference only.

802.11ac (VHT20)
POWER OUTPUT

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)	Limit (dBm)	Pass / Fail
		Chain 0	Chain 1				
36	5180	17.38	16.98	104.59	20.19	24	Pass
40	5200	17.60	16.91	106.635	20.28	24	Pass
48	5240	17.66	17.29	111.925	20.49	24	Pass
52	5260	17.68	17.18	110.854	20.45	24	Pass
60	5300	17.41	17.52	111.575	20.48	24	Pass
64	5320	15.60	14.90	67.211	18.27	24	Pass
100	5500	15.42	15.45	69.909	18.45	24	Pass
120	5600	17.20	17.10	103.767	20.16	24	Pass
140	5700	14.96	13.85	55.599	17.45	24	Pass
*144 (UNII-2c Band)	5720	12.50	12.30	34.765	15.41	23.01	Pass
*144 (UNII-3 Band)	5720	5.63	5.40	7.123	8.53	30	Pass
149	5745	15.48	15.49	70.718	18.50	30	Pass
157	5785	17.64	18.49	128.708	21.10	30	Pass
165	5825	16.81	17.96	110.49	20.43	30	Pass

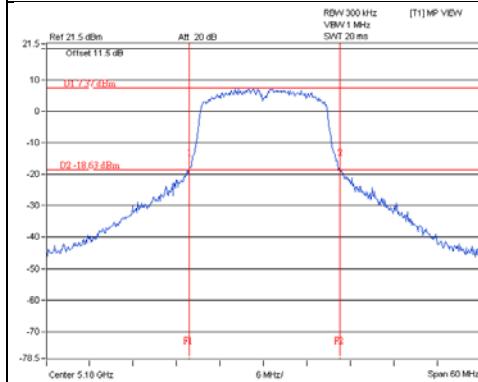
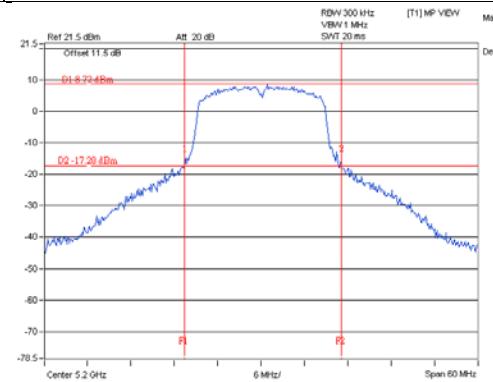
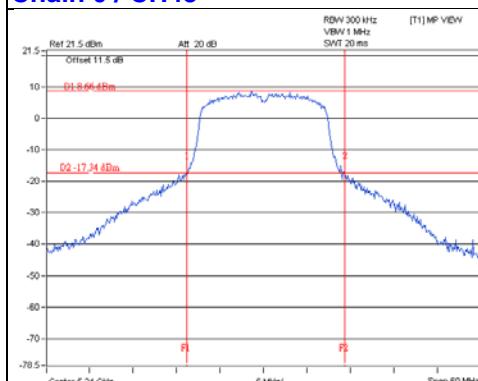
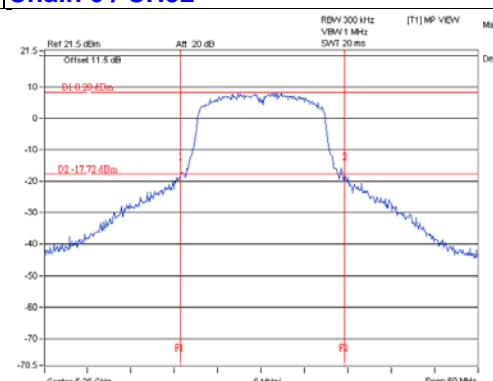
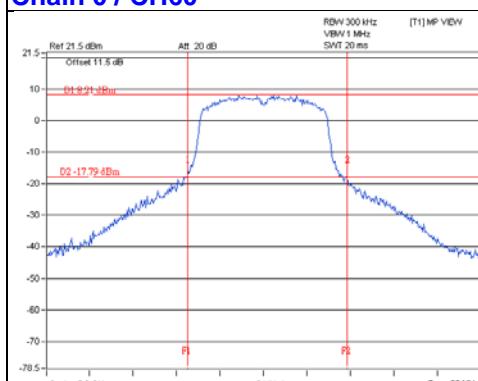
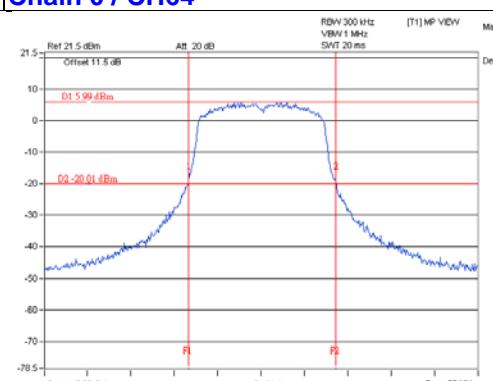
NOTE:

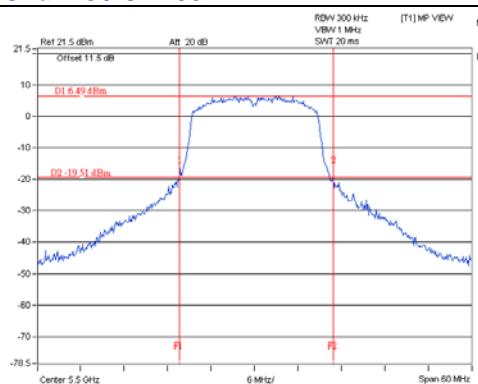
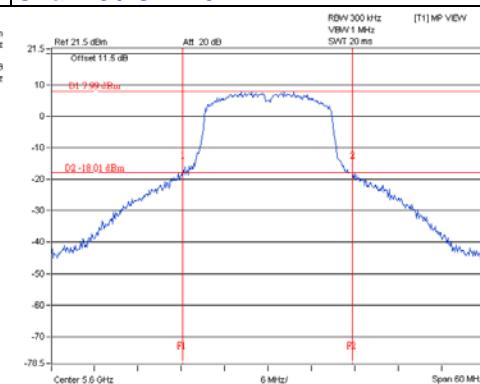
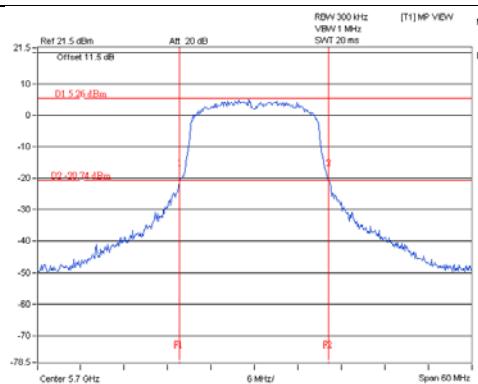
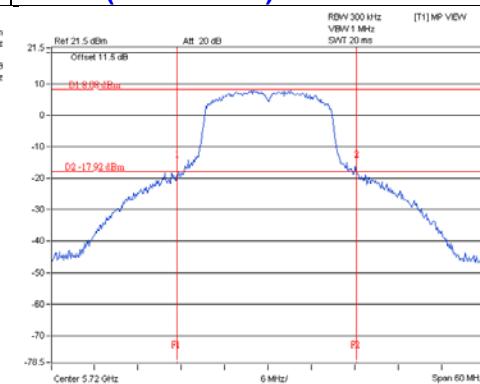
1. 5150~5250MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 4.65 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.
2. 5250~5350MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 4.65 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.
3. 5470~5725MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 2.45 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.
4. 5725~5850MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 2.06 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

* Test was performed in accordance with Measurement follow FCC KDB 789033 UNII test procedure Method SA-1 and use spectrum analyzer test.

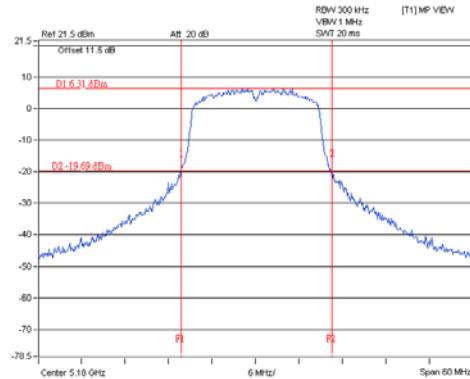
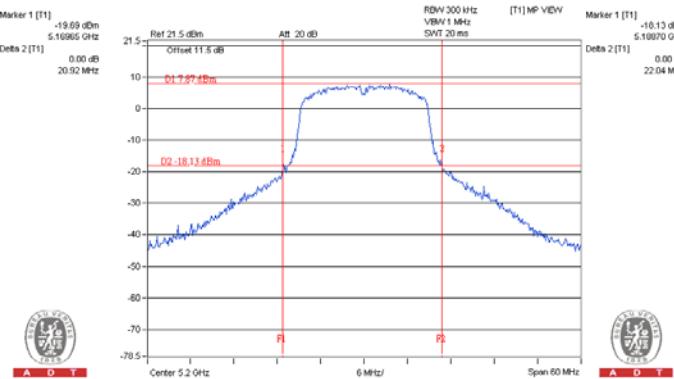
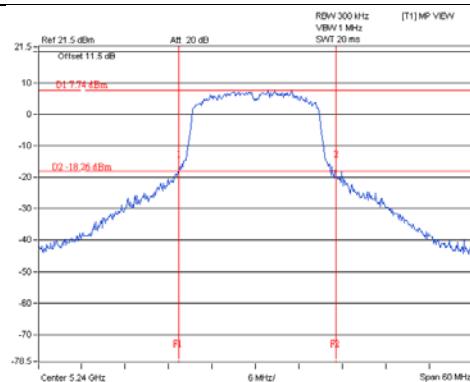
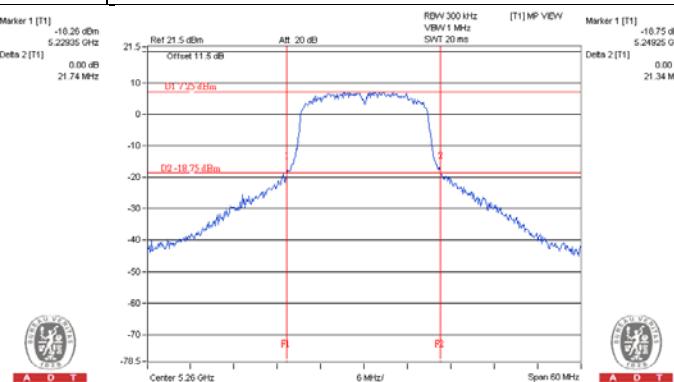
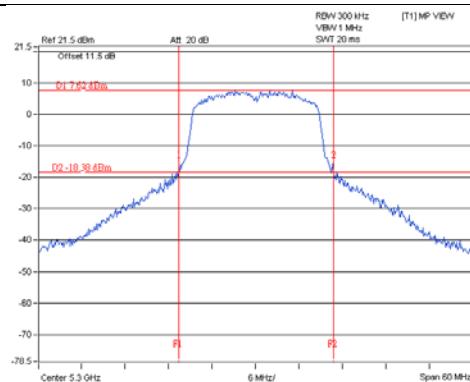
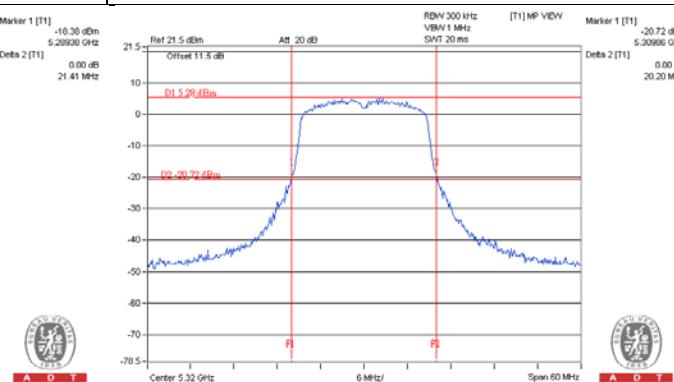
The Total Power for the straddle channel:

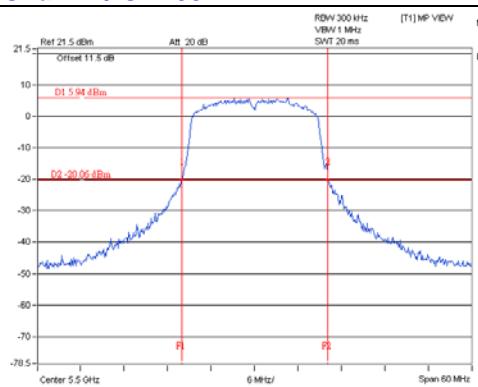
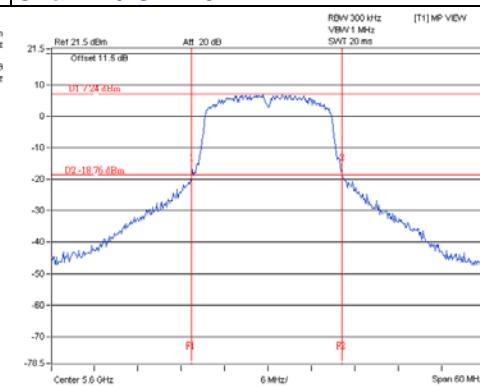
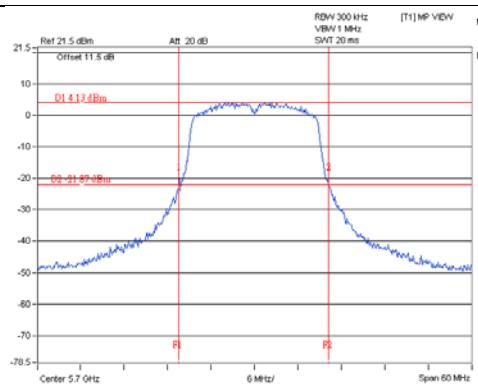
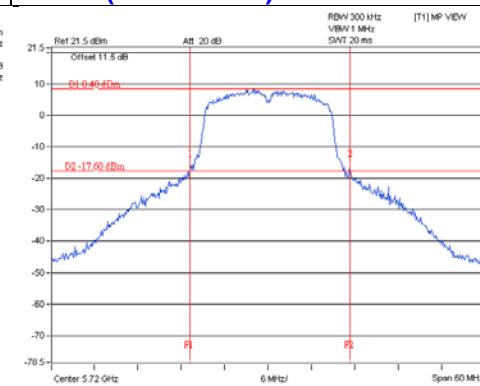
Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
*144	5720	41.888	16.22







Note: The total power was calculated through formula and record the value for reference only.





26dB OCCUPIED BANDWIDTH

Channel	Frequency (MHz)	26dBc Bandwidth (MHz)	
		Chain 0	Chain 1
36	5180	20.98	20.92
40	5200	21.77	22.04
48	5240	21.90	21.74
52	5260	22.72	21.34
60	5300	22.08	21.41
64	5320	20.51	20.20
100	5500	21.34	20.30
120	5600	23.58	20.85
140	5700	20.61	20.71
144 (UNII-2c Band)	5720	17.73	15.90







Note: For U-NII-2A, U-NII-2C Band output power limitation is determined based on 26dBc bandwidth





Power Limit = $11\text{dBm} + 10\log B < \text{U-NII-2A, U-NII-2C}$			
Channel Number	Freq.(MHz)	Min. B(MHz)	Determined Conducted Limit (dBm)
52	5260	21.34	24.29 > 24
60	5300	21.41	24.3 > 24
64	5320	20.20	24.05 > 24
100	5500	20.30	24.07 > 24
120	5600	20.85	24.19 > 24
140	5700	20.61	24.14 > 24
144 (UNII-2c Band)	5720	15.90	23.01 < 24

Chain 0 / CH36

Chain 0 / CH40

Chain 0 / CH48

Chain 0 / CH52

Chain 0 / CH60

Chain 0 / CH64

Chain 0 / CH100

Chain 0 / CH120

Chain 0 / CH140

Chain 0 / CH144 (UNII-2c Band) / Chain 0 / CH144 (UNII-3 Band)

NOTE:

For CH144 (UNII-2c Band) = 5725MHz - Marker 1

Chain 1 / CH36

Chain 1 / CH40

Chain 1 / CH48

Chain 1 / CH52

Chain 1 / CH60

Chain 1 / CH64

Chain 1 / CH100

Chain 1 / CH120

Chain 1 / CH140

Chain 1 / CH144 (UNII-2c Band) / Chain 1 / CH144 (UNII-3 Band)

NOTE:

For CH144 (UNII-2c Band) = 5725MHz - Marker 1

For Reference only – Power meter value

The power value was measured by power meter with average sensor.

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)
		Chain 0	Chain 1		
144	5720	17.69	17.58	116.029	20.65

Note: The total power was calculated through formula and record the value for reference only.

802.11ac (VHT40)
POWER OUTPUT

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)	Limit (dBm)	Pass / Fail
		Chain 0	Chain 1				
38	5190	13.96	12.98	44.75	16.51	24	Pass
46	5230	17.19	16.54	97.442	19.89	24	Pass
54	5270	17.08	16.84	99.356	19.97	24	Pass
62	5310	15.20	14.84	63.592	18.03	24	Pass
102	5510	14.84	15.48	65.797	18.18	24	Pass
118	5590	17.25	17.15	104.968	20.21	24	Pass
134	5670	17.32	16.98	103.839	20.16	24	Pass
*142 (UNII-2c Band)	5710	13.00	12.83	39.14	15.93	24	Pass
*142 (UNII-3 Band)	5710	1.24	-0.10	2.3077	3.63	30	Pass
151	5755	12.38	12.40	34.676	15.40	30	Pass
159	5795	18.74	18.96	153.522	21.86	30	Pass

NOTE: 1. 5150~5250MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 4.65 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

2. 5250~5350MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 4.65 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

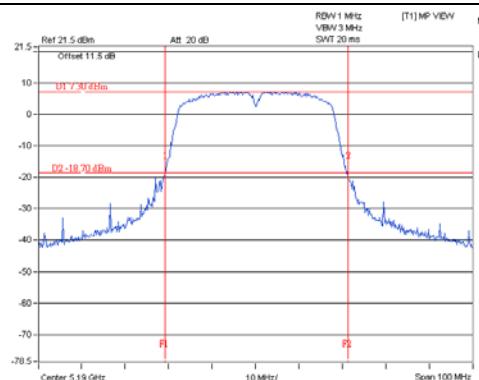
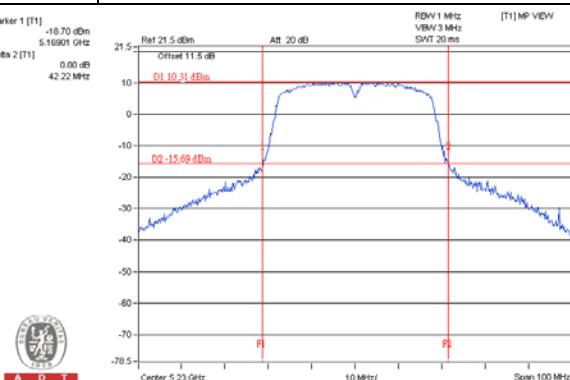
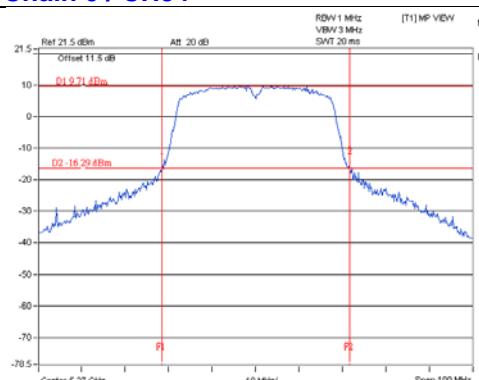
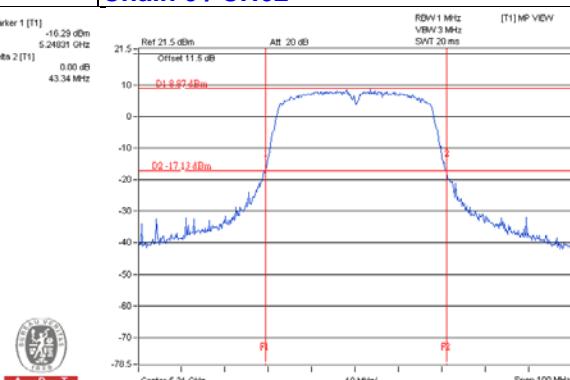
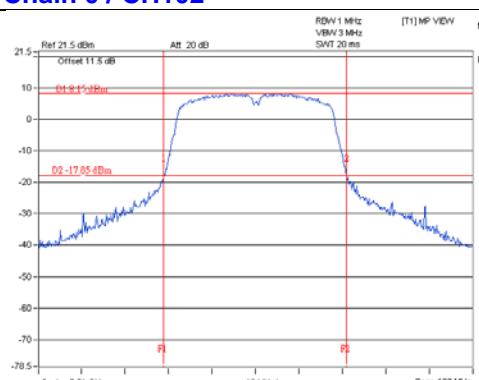
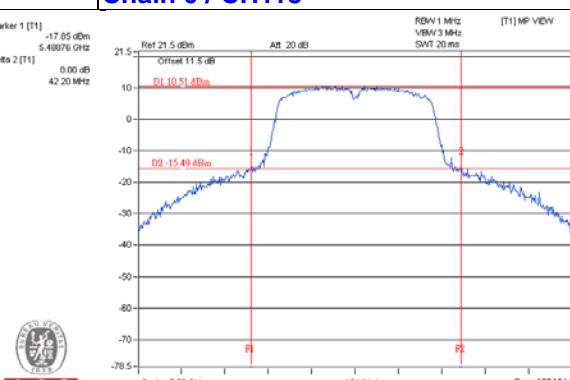
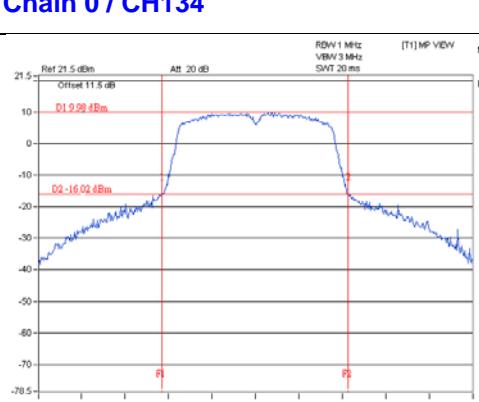
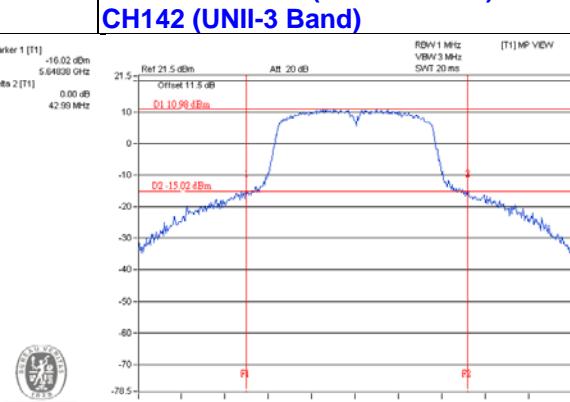
3. 5470~5725MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 2.45 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

4. 5725~5850MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 2.06 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

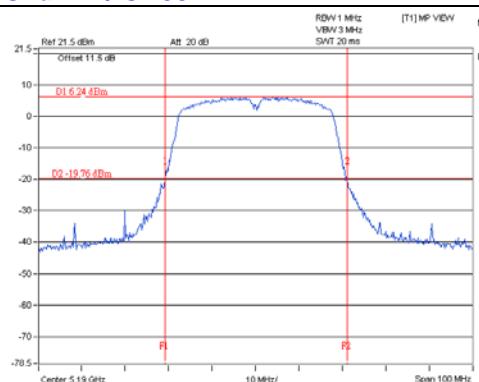
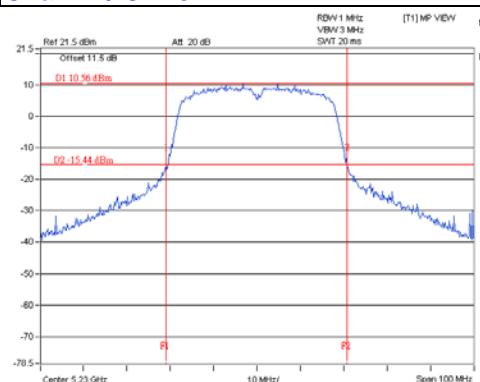
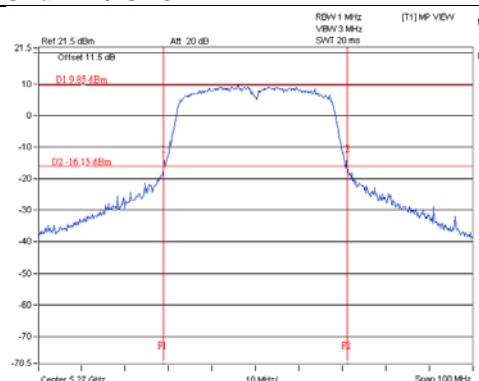
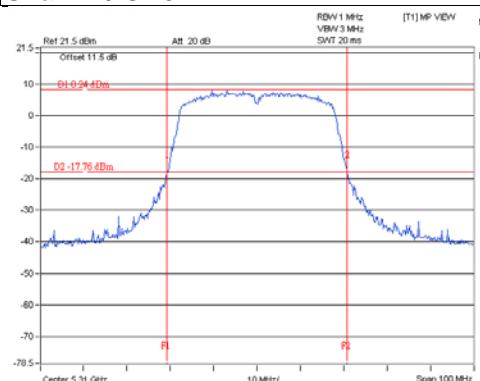
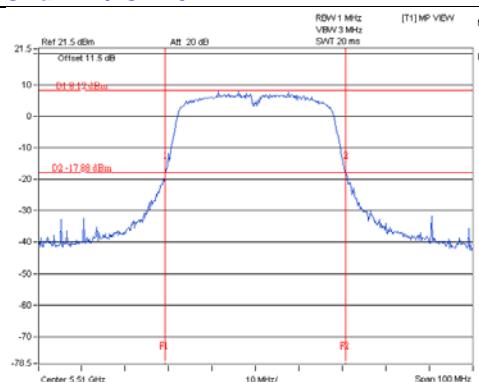
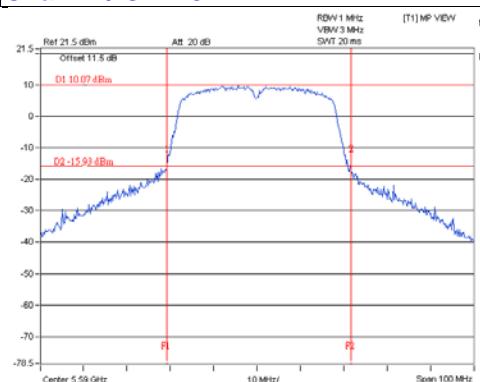
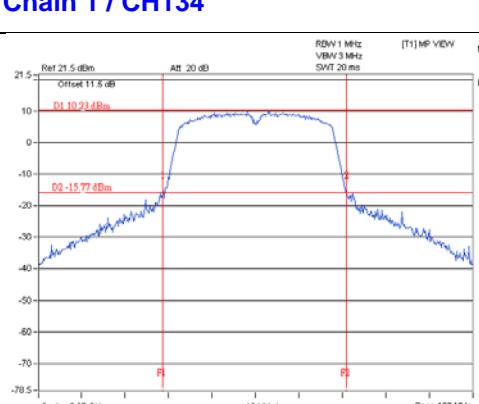
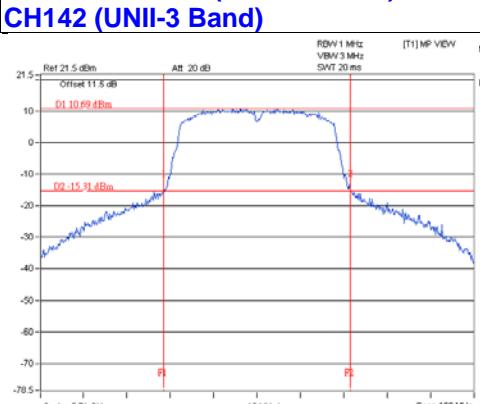
* Test was performed in accordance with Measurement follow FCC KDB 789033 UNII test procedure Method SA-1 and use spectrum analyzer test.

The Total Power for the straddle channel:

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
*142	5710	41.4477	16.18









Note: The total power was calculated through formula and record the value for reference only.

26dB OCCUPIED BANDWIDTH









Channel	Frequency (MHz)	26dBc Bandwidth (MHz)	
		Chain 0	Chain 1
38	5190	42.22	42.05
46	5230	43.06	42.01
54	5270	43.34	42.44
62	5310	42.02	41.70
102	5510	42.20	41.64
118	5590	48.56	42.60
134	5670	42.99	42.37
142 (UNII-2c Band)	5710	40.20	36.74

Note: For U-NII-2A, U-NII-2C Band output power limitation is determined based on 26dBc bandwidth

Power Limit = 11dBm + 10logB < U-NII-2A, U-NII-2C >			
Channel Number	Freq.(MHz)	Min. B(MHz)	Determined Conducted Limit (dBm)
54	5270	42.44	27.27 > 24
62	5310	41.70	27.2 > 24
102	5510	41.64	27.19 > 24
110	5550	42.60	27.29 > 24
134	5670	42.37	27.27 > 24
142 (UNII-2c Band)	5710	36.74	26.65 > 24

Chain 0 / CH38

Chain 0 / CH46

Chain 0 / CH54

Chain 0 / CH62

Chain 0 / CH102

Chain 0 / CH118

Chain 0 / CH134

Chain 0 / CH142 (UNII-2c Band) / Chain 0 / CH142 (UNII-3 Band)

NOTE:

For CH142 (UNII-2c Band) = 5725MHz - Marker 1

Chain 1 / CH38

Chain 1 / CH46

Chain 1 / CH54

Chain 1 / CH62

Chain 1 / CH102

Chain 1 / CH118

Chain 1 / CH134

Chain 1 / CH142 (UNII-2c Band) / Chain 1 / CH142 (UNII-3 Band)

NOTE:

For CH142 (UNII-2c Band) = 5725MHz - Marker 1

For Reference only – Power meter value

The power value was measured by power meter with average sensor.

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)
		Chain 0	Chain 1		
142	5710	17.89	17.51	117.882	20.71

Note: The total power was calculated through formula and record the value for reference only.

802.11ac (VHT80)

POWER OUTPUT

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)	Limit (dBm)	Pass / Fail
		Chain 0	Chain 1				
42	5210	13.82	12.83	43.286	16.36	24	Pass
58	5290	12.38	11.81	32.469	15.11	24	Pass
106	5530	12.60	12.31	35.219	15.47	24	Pass
122	5610	16.52	16.22	86.754	19.38	24	Pass
*138 (UNII-2c Band)	5690	11.23	10.43	24.938	13.97	24	Pass
*138 (UNII-3 Band)	5690	-5.51	-6.14	0.5378	-2.69	30	Pass
155	5775	12.08	11.90	31.632	15.00	30	Pass

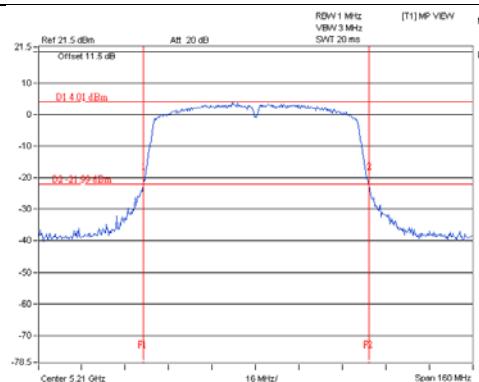
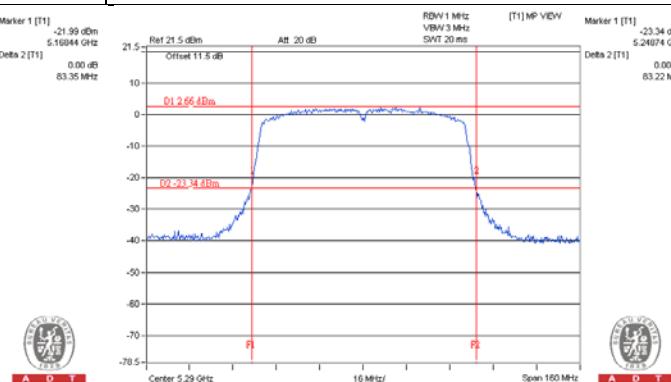
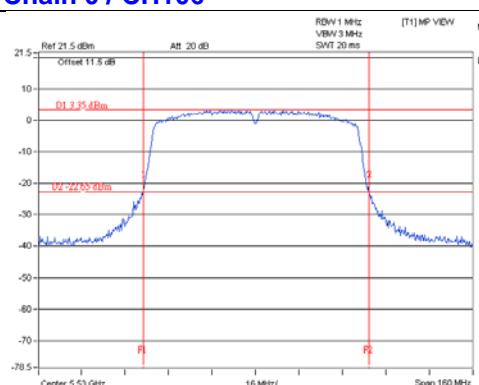
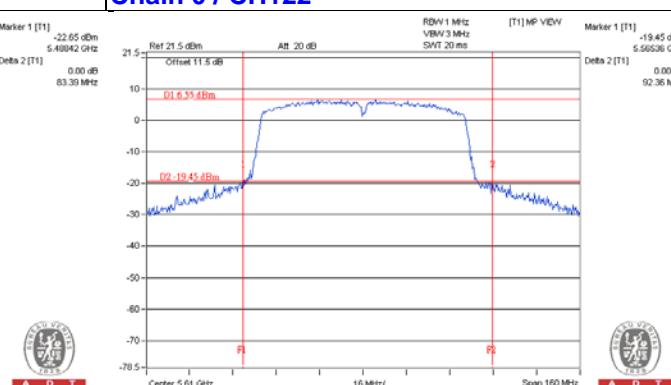
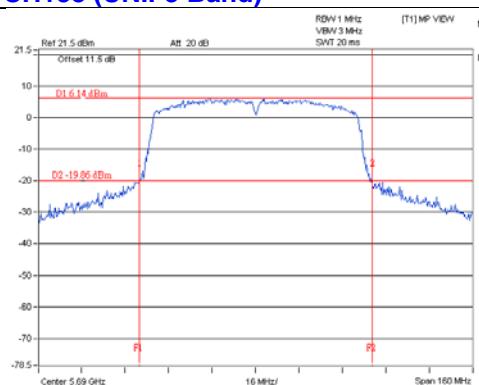
NOTE:

1. 5150~5250MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 4.65 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.
2. 5250~5350MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 4.65 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.
3. 5470~5725MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 2.45 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.
4. 5725~5850MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 2.06 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

* Test was performed in accordance with Measurement follow FCC KDB 789033 UNII test procedure Method SA-2 and use spectrum analyzer test.

The Total Power for the straddle channel:

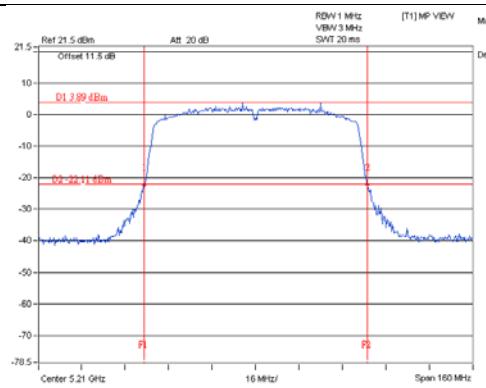
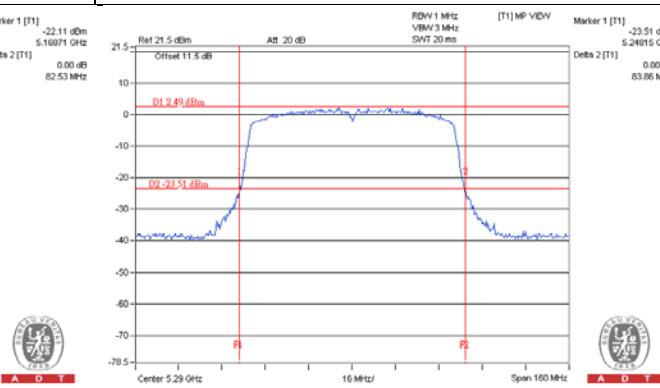
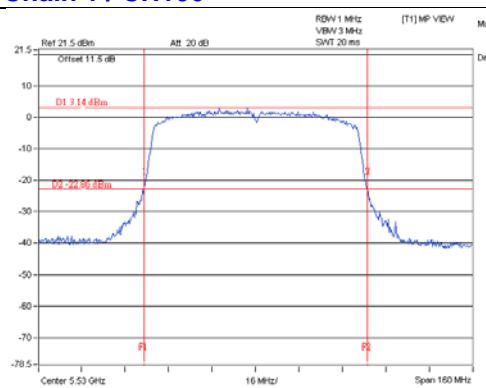
Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
*138	5690	25.4758	14.06






Note: The total power was calculated through formula and record the value for reference only.

26dB OCCUPIED BANDWIDTH

Channel	Frequency (MHz)	26dBc Bandwidth (MHz)	
		Chain 0	Chain 1
42	5210	83.35	82.53
58	5290	83.22	83.86
106	5530	83.39	82.55
122	5610	92.36	83.58
138 (UNII-2c Band)	5690	77.98	76.93

Note: For U-NII-2A, U-NII-2C Band output power limitation is determined based on 26dBc bandwidth


Power Limit = $11\text{dBm} + 10\log B < \text{U-NII-2A, U-NII-2C} >$			
Channel Number	Freq.(MHz)	Min. B(MHz)	Determined Conducted Limit (dBm)
58	5290	83.22	30.2 > 24
106	5530	82.55	30.16 > 24
122	5610	83.58	30.22 > 24
138 (UNII-2c Band)	5690	76.93	29.86 > 24

Chain 0 / CH42

Chain 0 / CH58

Chain 0 / CH106

Chain 0 / CH122

Chain 0 / CH138 (UNII-2c Band) / Chain 0 / CH138 (UNII-3 Band)

A D T

NOTE:

For CH138 (UNII-2c Band) = 5725MHz - Marker 1

Chain 1 / CH42

Chain 1 / CH58

Chain 1 / CH106

Chain 1 / CH122

Chain 1 / CH138 (UNII-2c Band) / Chain 1 / CH138 (UNII-3 Band)

A D T

NOTE:

For CH138 (UNII-2c Band) = 5725MHz - Marker 1

For Reference only – Power meter value

The power value was measured by power meter with average sensor.

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)
		Chain 0	Chain 1		
142	5710	16.22	15.81	79.986	19.03

Note: The total power was calculated through formula and record the value for reference only.

A D T

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

6 Appendix A – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

7 Appendix B – Radiated Emission Measurement

7.1.1 Limits of Radiated Emission Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_uV/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

7.1.2 Test Instruments

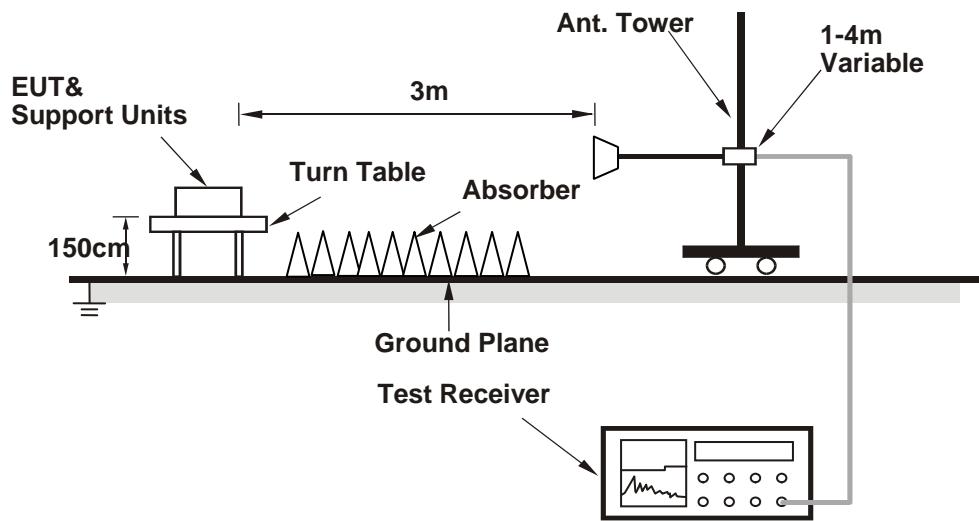
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver Agilent	N9038A	MY51210105	July 24, 2015	July 23, 2016
Horn_Antenna AISI	AIH.8018	0000320091110	Feb. 09, 2015	Feb. 08, 2016
Pre-Amplifier Agilent	8449B	3008A02578	June 23, 2015	June 22, 2016
RF Cable	NA	131205 131216 131217 SNMY23684/4	Jan. 16, 2015	Jan. 15, 2016
Spectrum Analyzer R&S	FSV40	100964	June 26, 2015	June 25, 2016
Pre-Amplifier SPACEK LABS	SLKKa-48-6	9K16	Dec. 12, 2014	Dec. 11, 2015
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Feb. 05, 2015	Feb. 04, 2016
RF Cable	NA	329751/4 RF104-204	Dec. 11, 2014	Dec. 10, 2015
Software	ADT_Radiat ed_V8.7.07	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in 966 Chamber No. G.
3. The FCC Site Registration No. is 966073.
4. The VCCI Site Registration No. is G-137.
5. The CANADA Site Registration No. is IC 7450H-2.
6. Tested Date: Oct. 05, 2015

7.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.


NOTE:

1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor ($10 \log(1/\text{duty cycle})$).
3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is $\geq 1/T$ (Duty cycle < 98%) or 10Hz (Duty cycle $\geq 98\%$) for Average detection (AV) at frequency above 1GHz.
4. All modes of operation were investigated and the worst-case emissions are reported.

7.1.4 Deviation from Test Standard

No deviation

7.1.5 Test Setup

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.1.6 EUT Operating Conditions

1. Connect the EUT with the support unit A (Notebook Computer) which is placed on a testing table.
2. The communication partner run test program “QRCT Version3.0.33.0” to enable EUT under transmission/receiving condition continuously at specific channel frequency.

7.1.7 Test Results

802.11ac (VHT40)

CHANNEL	TX Channel 102	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5470.00	61.3 PK	74.0	-12.7	1.13 H	81	52.80	8.50
2	#5470.00	46.7 AV	54.0	-7.3	1.13 H	81	38.20	8.50
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5470.00	65.7 PK	74.0	-8.3	1.70 V	191	57.20	8.50
2	#5470.00	51.5 AV	54.0	-2.5	1.70 V	191	43.00	8.50

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. " # ": The radiated frequency is out of the restricted band.

CHANNEL	TX Channel 151	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5708.00	59.4 PK	68.2	-8.8	1.34 H	88	50.30	9.10

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5708.00	65.9 PK	68.2	-2.3	1.64 V	360	56.80	9.10

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. " # ": The radiated frequency is out of the restricted band.

CHANNEL	TX Channel 159	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5860.00	57.6 PK	74.0	-16.4	1.01 H	73	48.30	9.30
2	#5860.00	45.1 AV	54.0	-8.9	1.01 H	73	35.80	9.30

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5860.00	65.7 PK	74.0	-8.3	1.02 V	88	56.40	9.30
2	#5860.00	50.5 AV	54.0	-3.5	1.02 V	88	41.20	9.30

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. " # ": The radiated frequency is out of the restricted band.

802.11ac (VHT80)

CHANNEL	TX Channel 106	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5470.00	59.1 PK	74.0	-14.9	1.07 H	100	50.60	8.50
2	#5470.00	46.8 AV	54.0	-7.2	1.07 H	100	38.30	8.50
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5470.00	65.1 PK	74.0	-8.9	1.02 V	102	56.60	8.50
2	#5470.00	51.8 AV	54.0	-2.2	1.02 V	102	43.30	8.50

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. " # ": The radiated frequency is out of the restricted band.

CHANNEL	TX Channel 155	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5702.00	58.7 PK	68.2	-9.5	1.03 H	134	49.60	9.10
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5702.00	65.7 PK	68.2	-2.5	1.16 V	106	56.60	9.10

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. " # ": The radiated frequency is out of the restricted band.

--- END ---