

FCC Test Report (WLAN)

Report No.: RF150107E07H

FCC ID: PPD-QCNFA364AH

Test Model: QCNFA364A

Received Date: Aug. 18, 2015

Test Date: Oct. 01 to 05, 2015

Issued Date: Dec. 04, 2015

Applicant: Qualcomm Atheros, Inc.

Address: 1700 Technology Drive, San Jose, CA 95110

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan R.O.C.

Test Location (1): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin
Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record	3
1 Certificate of Conformity.....	4
2 Summary of Test Results.....	5
2.1 Measurement Uncertainty	5
2.2 Modification Record	5
3 General Information.....	6
3.1 General Description of EUT (WLAN)	6
3.2 Description of Antenna	9
3.3 Description of Test Modes	10
3.3.1 Test Mode Applicability and Tested Channel Detail.....	11
3.4 Duty Cycle of Test Signal	12
3.5 Description of Support Units	13
3.5.1 Configuration of System under Test	13
3.6 General Description of Applied Standards	14
4 Test Types and Results	15
4.1 Conducted Output Power Measurement.....	15
4.1.1 Limits of Conducted Output Power Measurement	15
4.1.2 Test Setup.....	15
4.1.3 Test Instruments	15
4.1.4 Test Procedures.....	15
4.1.5 Deviation from Test Standard	15
4.1.6 EUT Operating Conditions.....	15
4.1.7 Test Results	16
5 Pictures of Test Arrangements.....	19
6 Appendix A – Information on the Testing Laboratories.....	20
7 Appendix B – Radiated Emission Measurement	21
7.1.1 Limits of Radiated Emission Measurement.....	21
7.1.2 Test Instruments	22
7.1.3 Test Procedures.....	23
7.1.4 Deviation from Test Standard	23
7.1.5 Test Setup.....	24
7.1.6 EUT Operating Conditions.....	24
7.1.7 Test Results	25

A D T

Release Control Record

Issue No.	Description	Date Issued
RF150107E07H	Original release.	Dec. 04, 2015

1 Certificate of Conformity

Product: 802.11a/b/g/n/ac + BT 4.1 M.2 2230 Type Card

Brand: Qualcomm Atheros

Test Model: QCNFA364A

Sample Status: ENGINEERING SAMPLE


Applicant: Qualcomm Atheros, Inc.

Test Date: Oct. 01 to 05, 2015

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : , **Date:** Dec. 04, 2015
Lori Chung / Specialist

Approved by : , **Date:** Dec. 04, 2015
May Chen / Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)			
FCC Clause	Test Item	Result	Remarks
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -1.6dB at 2483.5MHz.
15.247(b)	Conducted power	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	Antenna connector is SMA RP plug not a standard connector.

NOTE: 1. For WLAN: The EUT was operating in 2400 ~ 2483.5MHz, 5.15~5.35GHz, 5.47~5.725GHz and 5.725~5.850GHz frequencies band. This report was recorded the RF parameters including 2400 ~ 2483.5MHz. For the 5.15~5.35GHz, 5.47~5.725GHz and 5.725~5.850GHz RF parameters was recorded in another test report.

2. This report is prepared for FCC Class II change. (Only radiated emissions / conducted power were presented in this test report).

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Radiated Emissions above 1 GHz	1GHz ~ 6GHz	5.37 dB
	6GHz ~ 18GHz	3.65 dB
	18GHz ~ 40GHz	3.88 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (WLAN)

Product	802.11a/b/g/n/ac + BT 4.1 M.2 2230 Type Card
Brand	Qualcomm Atheros
Test Model	QCNFA364A
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	3.3Vdc form host equipment
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT (20/40) mode in 2.4GHz
Modulation Technology	DSSS,OFDM
Transfer Rate	802.11b: up to 11Mbps 802.11a/g: up to 54Mbps 802.11n : up to 300Mbps 802.11ac: up to 866.7Mbps
Operating Frequency	For 15.407 5.18 ~ 5.24GHz, 5.26 ~ 5.32GHz, 5.50 ~ 5.72GHz, 5.745 ~ 5.825GHz For 15.247 2.412 ~ 2.472GHz
Number of Channel	For 15.407 25 for 802.11a, 802.11n (HT20), 802.11ac (VHT20) 12 for 802.11n (HT40), 802.11ac (VHT40) 6 for 802.11ac (VHT80) For 15.247 13 for 802.11b/g, 802.11n (HT20), VHT20 9 for 802.11n (HT40), VHT40
Output Power	For 15.407 802.11a: 133.52 mW 802.11ac (VHT20): 128.708mW 802.11ac (VHT40): 153.522mW 802.11ac (VHT80): 86.754mW For 15.247 802.11b: 306.647mW 802.11g: 508.783mW VHT20: 508.304mW VHT40: 432.554mW
Antenna Type	See item 3.2
Antenna Connector	See item 3.2
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. This report is prepared for FCC Class II change. The difference compared with the Report No.: RF150107E06B design is as the following:

◆ Add new antennas (Antenna Set 2) as following table:

Original																
Antenna Set 1																
Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5G Cable Loss (dBi)	Connector Type	Cable Length (mm)							
Chain (0)	WNC	81-EBJ15.005	PIFA	3.00	Band 1&2: 2.56	1.15	Band 1&2: 1.70	IPEX	300							
					Band 3: 4.76		Band 3: 1.74									
					Band 4: 4.76		Band 4: 1.79									
Chain (1)	WNC	81-EBJ15.005	PIFA	3.62	Band 1&2: 3.08	1.15	Band 1&2: 1.70	IPEX	300							
					Band 3: 3.31		Band 3: 1.74									
					Band 4: 2.42		Band 4: 1.79									
Newly																
Antenna Set 2																
Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5G Cable Loss (dBi)	Connector Type	Cable Length (mm)							
Chain (0)	INPAQ	DAM-I6-H-DB-800-10-17	Dipole	1.13	Band 1&2: 1.33	NA	NA	SMA RP Plug	900							
					Band 3: -0.63											
					Band 4: -0.97											
Chain (1)	INPAQ	DAM-I6-H-DB-800-10-17	Dipole	1.29	Band 1&2: 1.94	NA	NA	SMA RP Plug	900							
					Band 3: -0.49											
					Band 4: -0.93											

2. According to above conditions, only radiated emissions / Conducted power need to be performed. And all data was verified to meet the requirements.

3. In the original test report, the spurious emissions item was tested by the conducted method; only partial channels were tested by radiated method. So for new antenna source, only spurious emissions for radiated method need to be performed. And all data was verified to meet the requirements.

4. There are Bluetooth technology and WLAN technology used for the EUT.
5. The EUT incorporates a 2T2R function.

2.4GHz Band			
MODULATION MODE	DATA RATE (MCS)	TX & RX CONFIGURATION	
802.11b	1 ~ 11Mbps	2TX	2RX
802.11g	6 ~ 54Mbps	2TX	2RX
802.11n (HT20)	MCS 0~7	2TX	2RX
	MCS 8~15	2TX	2RX
802.11n (HT40)	MCS 0~7	2TX	2RX
	MCS 8~15	2TX	2RX
VHT20	MCS 0~8, NSS=1	2TX	2RX
	MCS 0~8, NSS=2	2TX	2RX
VHT40	MCS 0~9, NSS=1	2TX	2RX
	MCS 0~9, NSS=2	2TX	2RX
5GHz Band			
MODULATION MODE	DATA RATE (MCS)	TX & RX CONFIGURATION	
802.11a	6 ~ 54Mbps	2TX	2RX
802.11n (HT20)	MCS 0~7	2TX	2RX
	MCS 8~15	2TX	2RX
802.11n (HT40)	MCS 0~7	2TX	2RX
	MCS 8~15	2TX	2RX
802.11ac (VHT20)	MCS 0~8, NSS=1	2TX	2RX
	MCS 0~8, NSS=2	2TX	2RX
802.11ac (VHT40)	MCS 0~9, NSS=1	2TX	2RX
	MCS 0~9, NSS=2	2TX	2RX
802.11ac (VHT80)	MCS 0~9, NSS=1	2TX	2RX
	MCS 0~9, NSS=2	2TX	2RX

Note: The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz) and 802.11ac mode for 20MHz (40MHz), therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.3.1)

6. In original report, the EUT was pre-tested under the following modes:

Test Mode	Data rate
Mode A	400ns GI
Mode B	800ns GI

From the above modes, the worst case was found in **Mode B**. Therefore only the test data of the mode was recorded in this report.

7. WLAN/BT coexistence mode:

- ◆ 2x2 WLAN + BT:
 - 5GHz 802.11a/an (or 11ac) transmit concurrent with BT.
 - 2.4GHz: timely shared coexistence.

8. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Antenna

The antenna gain was declared by client; please refer to the following table:

Antenna Set 1									
Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5GHz Cable Loss (dBi)	Connector Type	Cable Length (mm)
Chain (0)	WNC	81-EBJ15.005	PIFA	3.00	Band 1&2: 2.56	1.15	Band 1&2: 1.70	IPEX	300
					Band 3: 4.76		Band 3: 1.74		
					Band 4: 4.76		Band 4: 1.79		
Chain (1)	WNC	81-EBJ15.005	PIFA	3.62	Band 1&2: 3.08	1.15	Band 1&2: 1.70	IPEX	300
					Band 3: 3.31		Band 3: 1.74		
					Band 4: 2.42		Band 4: 1.79		
Antenna Set 2									
Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5GHz Cable Loss (dBi)	Connector Type	Cable Length (mm)
Chain (0)	INPAQ	DAM-I6-H-DB-800-10-17	Dipole	1.13	Band 1&2: 1.33	NA	NA	SMA RP Plug	900
					Band 3: -0.63				
					Band 4: -0.97				
Chain (1)	INPAQ	DAM-I6-H-DB-800-10-17	Dipole	1.29	Band 1&2: 1.94	NA	NA	SMA RP Plug	900
					Band 3: -0.49				
					Band 4: -0.93				

3.3 Description of Test Modes

13 channels are provided for 802.11b, 802.11g and 802.11n (HT20), VHT20:

Channel	Frequency	Channel	Frequency
1	2412MHz	8	2447MHz
2	2417MHz	9	2452MHz
3	2422MHz	10	2457MHz
4	2427MHz	11	2462MHz
5	2432MHz	12	2467MHz
6	2437MHz	13	2472MHz
7	2442MHz		

9 channels are provided for 802.11n (HT40), VHT40:

Channel	Frequency	Channel	Frequency
3	2422MHz	8	2447MHz
4	2427MHz	9	2452MHz
5	2432MHz	10	2457MHz
6	2437MHz	11	2462MHz
7	2442MHz		

3.3.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE MODE	APPLICABLE TO		DESCRIPTION
	RE \geq 1G	APCM	
-	✓	✓	-

Where **RE \geq 1G:** Radiated Emission above 1GHz & Bandedge Measurement **APCM:** Antenna Port Conducted Measurement

Radiated Emission Test (Above 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	DATA RATE (Mbps)
VHT40	3 to 11	6	OFDM	13.5

Antenna Port Conducted Measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

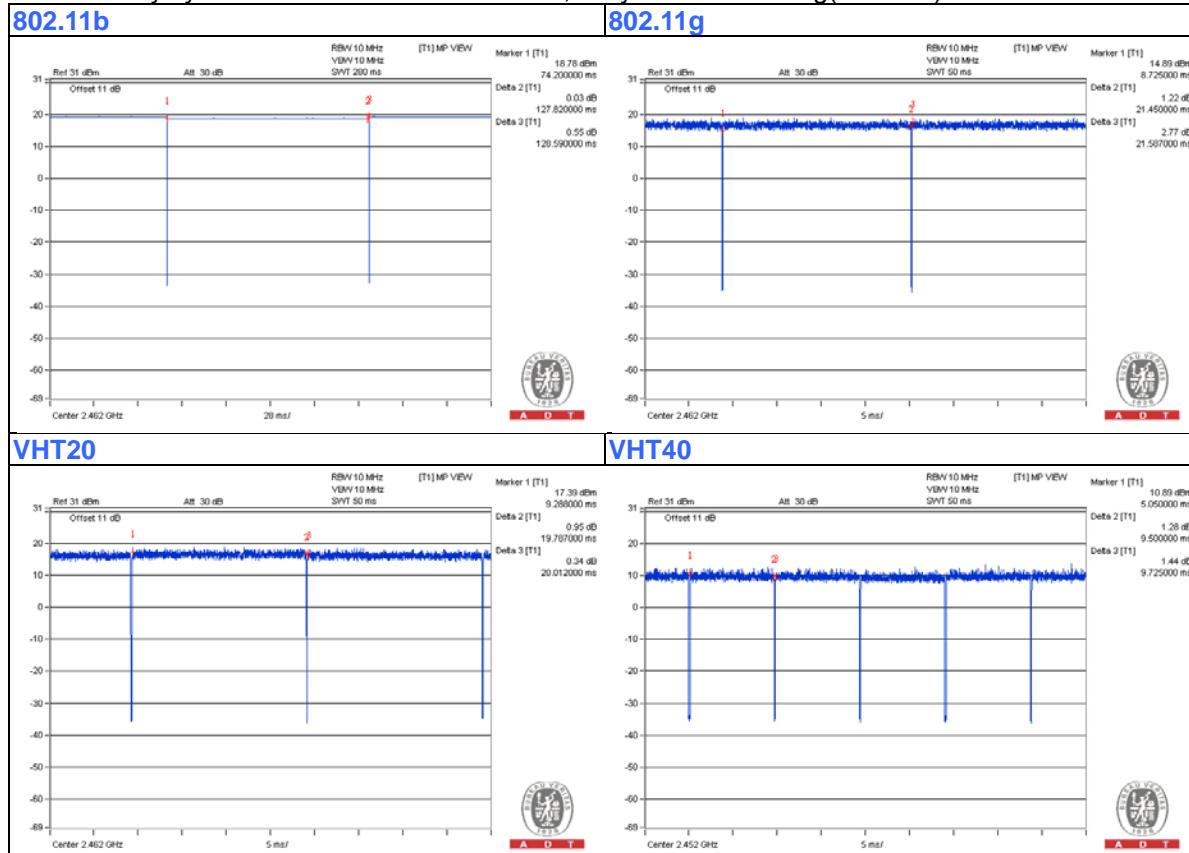
MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	DATA RATE (Mbps)
802.11b	1 to 13	1, 6, 11, 12, 13	DSSS	1
802.11g	1 to 13	1, 6, 11, 12, 13	OFDM	6
VHT20	1 to 13	1, 6, 11, 12, 13	OFDM	6.5
VHT40	3 to 11	3, 6, 9, 10, 11	OFDM	13.5

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE \geq 1G	25deg. C, 71%RH	120Vac, 60Hz	Alex Ku
APCM	25deg. C, 60%RH	120Vac, 60Hz	Andy Ho

3.4 Duty Cycle of Test Signal

If duty cycle of test signal is $\geq 98\%$, duty factor is not required.

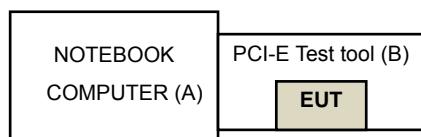

If duty cycle of test signal is $< 98\%$, duty factor shall be considered.

802.11b: Duty cycle = 127.82 ms/128.59 ms = 0.994

802.11g: Duty cycle = 21.45 ms/21.587 ms = 0.994

VHT20: Duty cycle = 19.787 ms/20.012 ms = 0.989

VHT40: Duty cycle = 9.5. ms/9.725 ms = 0.977, Duty factor = $10 * \log(1/0.977) = 0.1$


3.5 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID	Remark
A	NOTEBOOK COMPUTER	DELL	E5430	4YV4VY1	FCC DoC	Provided by Lab
B	PCI-E Test tool	Qualcomm Atheros	NA	NA	NA	Supplied by Client

NOTE: All power cords of the above support units are non-shielded (1.8 m).

3.5.1 Configuration of System under Test

3.6 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

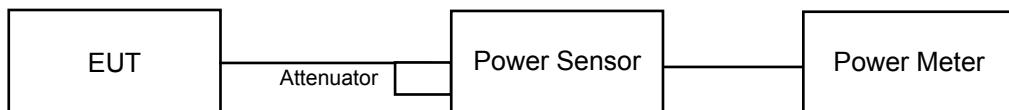
FCC Part 15, Subpart C (15.247)

558074 D01 DTS Meas Guidance v03r03

662911 D01 Multiple Transmitter Output v02r01

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.


4 Test Types and Results

4.1 Conducted Output Power Measurement

4.1.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.1.2 Test Setup

4.1.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Power Meter Anritsu	ML2495A	1014008	Apr. 28, 2015	Apr. 27, 2016
Power Sensor Anritsu	MA2411B	0917122	Apr. 28, 2015	Apr. 27, 2016

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. Tested date : Oct. 01, 2015

4.1.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.1.5 Deviation from Test Standard

No deviation.

4.1.6 EUT Operating Conditions

The software (QRCT Version3.0.33.0) provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.1.7 Test Results

FOR PEAK POWER
802.11b

Chan.	Chan. Freq. (MHz)	Peak Power (dBm)		Total Power (mW)	Total Power (dBm)	Limit (dBm)	Pass / Fail
		Chain 0	Chain 1				
1	2412	20.96	21.05	252.088	24.02	30	Pass
6	2437	21.62	22.08	306.647	24.87	30	Pass
11	2462	21.35	21.05	263.808	24.21	30	Pass
12	2467	20.45	20.11	213.482	23.29	30	Pass
13	2472	13.61	13.38	44.738	16.51	30	Pass

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 4.22 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

802.11g

Chan.	Chan. Freq. (MHz)	Peak Power (dBm)		Total Power (mW)	Total Power (dBm)	Limit (dBm)	Pass / Fail
		Chain 0	Chain 1				
1	2412	22.04	22.30	329.78	25.18	30	Pass
6	2437	24.04	24.07	508.783	27.07	30	Pass
11	2462	21.02	21.43	265.469	24.24	30	Pass
12	2467	18.19	18.55	137.531	21.38	30	Pass
13	2472	8.98	9.01	15.869	12.01	30	Pass

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 4.22 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

VHT20

Chan.	Chan. Freq. (MHz)	Peak Power (dBm)		Total Power (mW)	Total Power (dBm)	Limit (dBm)	Pass / Fail
		Chain 0	Chain 1				
1	2412	22.28	22.09	330.852	25.20	30	Pass
6	2437	23.96	24.14	508.304	27.06	30	Pass
11	2462	21.11	21.28	263.398	24.21	30	Pass
12	2467	18.03	18.46	133.679	21.26	30	Pass
13	2472	7.54	7.75	11.632	10.66	30	Pass

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 4.22 \text{dBi} < 6 \text{dBi}$, so the power limit shall not be reduced.

VHT40

Chan.	Chan. Freq. (MHz)	Peak Power (dBm)		Total Power (mW)	Total Power (dBm)	Limit (dBm)	Pass / Fail
		Chain 0	Chain 1				
3	2422	18.41	18.53	140.628	21.48	30	Pass
6	2437	23.32	23.38	432.554	26.36	30	Pass
9	2452	17.78	18.14	125.142	20.97	30	Pass
10	2457	17.81	18.05	124.221	20.94	30	Pass
11	2462	9.28	9.36	17.102	12.33	30	Pass

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 4.22\text{dBi} < 6\text{dBi}$, so the power limit shall not be reduced.

FOR AVERAGE POWER
802.11b

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)
		Chain 0	Chain 1		
1	2412	18.39	18.68	142.814	21.55
6	2437	18.73	19.05	154.998	21.90
11	2462	18.45	18.23	136.511	21.35
12	2467	17.52	17.64	114.570	20.59
13	2472	10.68	10.71	23.471	13.71

802.11g

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)
		Chain 0	Chain 1		
1	2412	15.49	15.83	73.682	18.67
6	2437	18.36	18.91	146.353	21.65
11	2462	14.26	14.93	57.786	17.62
12	2467	11.25	11.68	28.058	14.48
13	2472	2.44	2.48	3.524	5.47

VHT20

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)
		Chain 0	Chain 1		
1	2412	15.45	15.52	70.720	18.50
6	2437	18.11	18.91	142.518	21.54
11	2462	14.28	14.70	56.304	17.51
12	2467	11.79	12.18	31.621	15.00
13	2472	1.18	1.32	2.667	4.26

VHT40

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power (mW)	Total Power (dBm)
		Chain 0	Chain 1		
3	2422	11.52	11.83	29.432	14.69
6	2437	16.86	17.27	101.862	20.08
9	2452	10.58	11.02	24.076	13.82
10	2457	10.78	11.15	24.999	13.98
11	2462	2.15	2.43	3.391	5.30

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

6 Appendix A – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232

Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

7 Appendix B – Radiated Emission Measurement

7.1.1 Limits of Radiated Emission Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_uV/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

7.1.2 Test Instruments

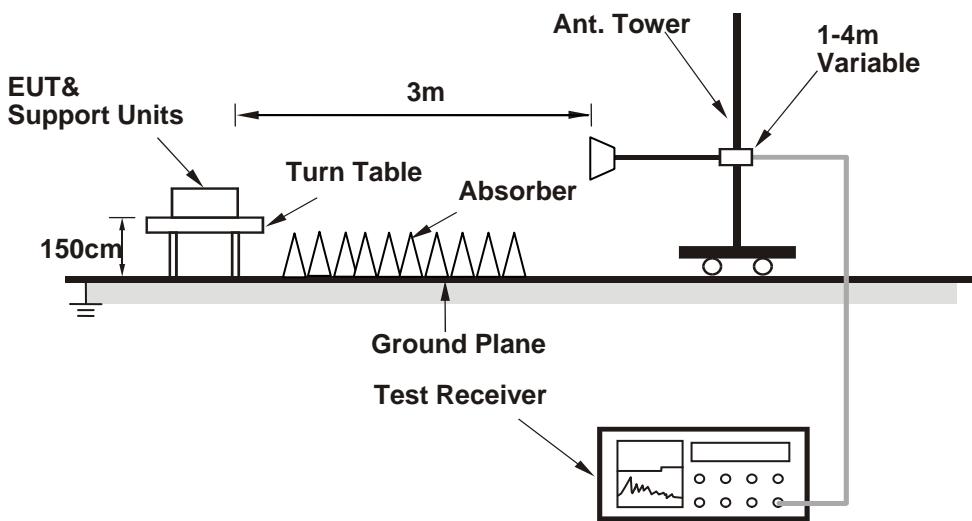
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver Agilent	N9038A	MY51210105	July 24, 2015	July 23, 2016
Horn_Antenna AISI	AIH.8018	0000320091110	Feb. 09, 2015	Feb. 08, 2016
Pre-Amplifier Agilent	8449B	3008A02578	June 23, 2015	June 22, 2016
RF Cable	NA	131205 131216 131217 SNMY23684/4	Jan. 16, 2015	Jan. 15, 2016
Spectrum Analyzer R&S	FSV40	100964	June 26, 2015	June 25, 2016
Pre-Amplifier SPACEK LABS	SLKKa-48-6	9K16	Dec. 12, 2014	Dec. 11, 2015
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Feb. 05, 2015	Feb. 04, 2016
RF Cable	NA	329751/4 RF104-204	Dec. 11, 2014	Dec. 10, 2015
Software	ADT_Radiated_V8.7.07	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in 966 Chamber No. G.
3. The FCC Site Registration No. is 966073.
4. The VCCI Site Registration No. is G-137.
5. The CANADA Site Registration No. is IC 7450H-2.
6. Tested Date: Oct. 05, 2015

7.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.


NOTE:

1. For emission measurements above 1 GHz, the EUT shall be placed at a height of 1.5 m above the ground at 3 meter chamber room for test
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor ($10 \log(1/\text{duty cycle})$).
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is $\geq 1/T$ (Duty cycle < 98%) or 10Hz (Duty cycle $\geq 98\%$) for Average detection (AV) at frequency above 1GHz.
5. All modes of operation were investigated and the worst-case emissions are reported.

7.1.4 Deviation from Test Standard

No deviation

7.1.5 Test Setup

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.1.6 EUT Operating Conditions

1. Connect the EUT with the support unit A (Notebook Computer) which is placed on a testing table.
2. The communication partner run test program “QRCT Version3.0.33.0” to enable EUT under transmission/receiving condition continuously at specific channel frequency.

7.1.7 Test Results

VHT40

CHANNEL	TX Channel 6	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz		Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2483.50	57.6 PK	74.0	-16.4	1.54 H	88	59.50	-1.90
2	2483.50	45.2 AV	54.0	-8.8	1.54 H	88	47.10	-1.90
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2483.50	72.3 PK	74.0	-1.7	1.64 V	284	74.20	-1.90
2	2483.50	52.4 AV	54.0	-1.6	1.64 V	284	54.30	-1.90

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value

--- END ---