

SAR EVALUATION REPORT

CLASS II PERMISSIVE CHANGE

FCC 47 CFR § 2.1093 IEEE Std. 1528-2013

For 802.11a/b/g/n/ac + BT 4.1 M.2 2230 Type Card

FCC ID: PPD-QCNFA344AH Model Name: QCNFA344A

Report Number: 4789114486-SAR-344-2

Issue Date: September 23, 2019

Prepared for Qualcomm Atheros, Inc. 1700 Technology Drive, San Jose, CA 95110

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Report No.: 4789114486-SAR-344-2 Issue Date: September 23, 2019

Revision History

Rev.	Date	Revisions	Revised By
V1.0	August 25, 2019	Initial Issue	\
V1.1	September 23, 2019	Updated report in accordance with TCB feedback	Jacky Jiang

Table of Contents

1.	Attestation of Test Results	5
2.	Test Specification, Methods and Procedures	6
3.	Facilities and Accreditation	7
4.	SAR Measurement System & Test Equipment	8
4.1.	. SAR Measurement System	8
4.2.	. SAR Scan Procedures	9
4.3.	. Test Equipment	11
5.	Measurement Uncertainty	13
6.	Device Under Test (DUT) Information	14
6.1.	. DUT Description	14
6.2.	. Wireless Technology	14
7.	SAR Test Configuration	15
8.	Conducted Output Power Measurement and tune-up tolerance	16
8.1.	. Power measurement result of 2.4GHz Wi-Fi for Main ANT	
8.2.	. Power measurement result of 2.4GHz Wi-Fi for Aux ANT	17
8.3.	. Power measurement result of 5GHz Wi-Fi for Main ANT	17
8.4.	. Power measurement result of 5GHz Wi-Fi for Aux ANT	20
8.5.	. Power measurement result of 5GHz Wi-Fi for MIMO	23
8.6.	Power measurement result BT	26
9.	RF Exposure Conditions	27
10.	Dielectric Property Measurements & System Check	28
10.	1. Dielectric Property Measurements	28
10.2	2. System Check	30
11.	Measured and Reported (Scaled) SAR Results	32
11.	1. SAR Test Results of 2.4G Wi-Fi with ICT antenna platform	34
11.2	2. SAR Test Results of 2.4G Wi-Fi with SPD antenna platform	34
11.3	3. SAR Test Results of 5G Wi-Fi with ICT antenna platform	35
11.4	4. SAR Test Results of 5G Wi-Fi with SPD antenna platform	37
12.	Simultaneous Transmission SAR Analysis	
12.	1. Estimated SAR	39
	Page 3 of 40	

12.2.	Simultaneous Transmission calculation	39
Appendi	xes	40
478911	14486-SAR-344-2_App A Photo	40
478911	14486-SAR-344-2_App B System Check Plots	40
478911	14486-SAR-344-2_App C Highest Test Plots	40
<i>4</i> 7891	14486-SAR-344-2 Ann D Cal Certificates	40

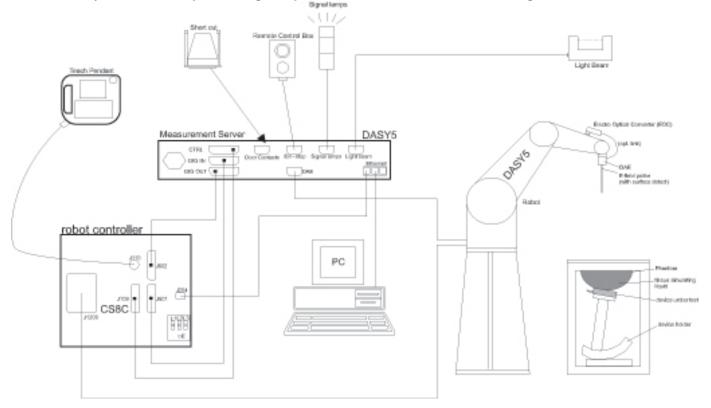
Report No.: 4789114486-SAR-344-2 1. Attestation of Test Results

Applicant Name	Qualcomm Atheros, Inc.	Qualcomm Atheros, Inc.				
Address	1700 Technology Drive, San Jose, CA 95110					
Manufacturer	Qualcomm Atheros, Inc.					
Address	1700 Technology Drive, Sai	n Jose, (CA 95110			
EUT Name	802.11a/b/g/n/ac + BT 4.1 N	Л.2 2230	Type Card			
Model Name	QCNFA344A					
Sample Status	Normal					
Brand	Qualcomm Atheros					
Host Equipment	Laptop PC					
Band Name	Lenovo					
Host Model	Lenovo IdeaPad S540-13API					
Sample Received Date	July 30, 2019					
Date of Tested	August 7, 2019 to August 15, 2019					
FCC 47 CFR § 2.1093 Applicable Standards IEEE Std. 1528-2013 KDB publication						
SAR Limits (W/Kg)						
Exposure Category	Peak spatial-average(1g of	tissue)		ds, wrists, ankles, etc.) g of tissue)		
General population / Uncontrolled exposure	1.6			4		
The Highest Reported SAR (W/kg)						
RF Exposure Conditions		Equip	ment Class			
Ki Exposure Conditions	DTS		U-NII	DSS		
Body (1-g)	0.767		1.152	\		
Simultaneous Transmission (1-g)			1.219			
Test Results			Pass			
Tested By:	Reviewed By: Approved By:					
James Um	Shemples Spephenbur					
James Qin	Shawn Wen		Stephen Guo			
Engineer Project Associate	Laboratory Leader		Laboratory Mana	ager		

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with IEEE Std. 1528-2013, the following FCC Published RF exposure KDB procedures:

- 248227 D01 802.11 Wi-Fi SAR
- o 447498 D01 General RF Exposure Guidance
- o 690783 D01 SAR Listings on Grants
- 865664 D01 SAR measurement 100 MHz to 6 GHz
- o 865664 D02 RF Exposure Reporting
- o 616217 D04 SAR for laptop and tablets


3. Facilities and Accreditation

Test Location	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Address	Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Recognized No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules
Accreditation	IC(Company No.: 21320)
Certificate	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793.
	Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B, the VCCI registration No. is C-20012 and T-20011
Description	All measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 v01r04 SAR Measurement 100 MHz to 6 GHz

	≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution x or y dimension of the test dimeasurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 v01r04 SAR Measurement 100 MHz to 6 GHz

			≤3 GHz	> 3 GHz	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$	
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$	
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		≤ 1.5·Δz	z _{Zoom} (n-1)	
Minimum zoom scan volume x, y, z		≥ 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be greater than the step size in Z-direction.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: 4789114486-SAR-344-2

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

	Name of equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
×	ENA Network Analyzer	Keysight	E5080A	MY55100583	December 10, 2019
\boxtimes	Dielectric Assessment Kit	SPEAG	SM DAK 040 SA	1155	NCR
\boxtimes	DC power supply	Keysight	E36103A	MY55350020	December 10, 2019
\boxtimes	Signal Generator	Rohde & Schwarz	SME06	837633\001	December 10, 2019
\boxtimes	BI-Directional Coupler	WERLATONE	C8060-102	3423	December 10, 2019
×	Peak and Average Power Sensor	Keysight	E9323A	MY55440013	December 10, 2019
×	Peak and Average Power Sensor	Keysight	E9323A	MY55420006	December 10, 2019
×	Dual Channel PK Power Meter	Keysight	N1912A	MY55416024	December 10, 2019
×	Amplifier	CORAD TECHNOLOGY LTD	AMF-4D-00400600- 50-30P	1983561	NCR
	Base Station Simulator	Rohde & Schwarz	CMW500	155523	December 10, 2019
\boxtimes	Dosimetric E-Field Probe	SPEAG	EX3DV4	7383	December 19, 2019
\boxtimes	Data Acquisition Electronic	SPEAG	DAE3	427	December 11, 2019
	Dipole Kit 750 MHz	SPEAG	D750V3	1153	December 6, 2021
	Dipole Kit 835 MHz	SPEAG	D835V2	4d206	December 5, 2021
	Dipole Kit 900 MHz	SPEAG	D900V2	1d190	December 5, 2021
	Dipole Kit 1800 MHz	SPEAG	D1800V2	2d212	December 6, 2021
	Dipole Kit 1900 MHz	SPEAG	D1900V2	5d212	December 7, 2021
	Dipole Kit 2300 MHz	SPEAG	D2300V2	1065	December 4, 2021
\boxtimes	Dipole Kit 2450 MHz	SPEAG	D2450V2	977	December 4, 2021
	Dipole Kit 2600 MHz	SPEAG	D2600V2	1117	December 7, 2021
\boxtimes	Dipole Kit 5 GHz	SPEAG	D5GHzV2	1231	December 14, 2021
	Software	SPEAG	DASY52	N/A	NCR
	Twin Phantom	SPEAG	SAM V5.0	1805	NCR
\boxtimes	ELI Phantom	SPEAG	ELI V5.0	1235	NCR
\boxtimes	Thermometer	Control Company	4242	150709653	December 6, 2019
\boxtimes	Hygrometer	\	GX-138	\	September 5, 2019

Report No.: 4789114486-SAR-344-2 Issue Date: September 23, 2019

Note:

- As per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three-year extended calibration interval. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
 - a) There is no physical damage on the dipole;
 - b) System check with specific dipole is within 10% of calibrated value;
 - c) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement.
 - d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the previous measurement.
- 2) Dielectric assessment kit is calibrated against air, distilled water and a shorting block performed before measuring liquid parameters.
- 3) NCR is short for "No Calibration Requirement".

Report No.: 4789114486-SAR-344-2 Issue Date: September 23, 2019

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std. 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

6. Device Under Test (DUT) Information

6.1. DUT Description

Tł	The DUT is a wireless module with IEEE 802.11a/b/g/n/ac, and BT radio.				
DI	DUT Dimension Overall (Length x Width x Height): 30 mm x 22 mm x 3 mm				
Н	ost Dimension	Overall (Length x Width x Height): 280 mm x 207 mm x 20 mm			

The host antenna is designed for a lower peak gain in the intentional transmit frequency bands and therefore radiated performance in the intentional frequency bands and the spurious emissions out of bands are expected to be lower than that measured in the original modular approval.

6.2. Wireless Technology

Wireless technology	Frequency band
Wi-Fi	2.4 GHz
Wi-Fi	5 GHz
BT	2.4 GHz

Report No.: 4789114486-SAR-344-2 Issue Date: September 23, 2019

7. SAR Test Configuration

As per KDB 616217 D04, when antennas are incorporated in the keyboard section of a laptop computer, SAR is required for the bottom surface of the keyboard. Provided tablet use conditions are not supported by the laptop computer, SAR tests for bystander exposure from the edges of the keyboard and display screen of laptop computers are generally not required.

8. Conducted Output Power Measurement and tune-up tolerance

General note:

1) As per KDB 447498 sec.4.1.d) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

8.1. Power measurement result of 2.4GHz Wi-Fi for Main ANT.

Mode	Channel	Frequency (MHz)	Data Rate	Average Power (dBm)	Tune-up Limit (dBm)	SAR Test	Duty Cycle (%)
	1	2412		18.34	18.5		
	6	2437		20.50	20.5		
802.11b	11	2462	1Mbps	20.49	20.5	Required	99.00
	12	2467		12.18	12.5	-	
	13	2472		11.21	11.5		
	1	2412	6Mbps	NMR	15.5	Excluded	\
	6	2437		NMR	19.5		
802.11g	11	2462		NMR	18.0		
	12	2467		NMR	3.0		
	13	2472		NMR	3.0		
	1	2412	MCS0	NMR	14.5		
000 115	6	2437		NMR	19.5		
802.11n- HT20	11	2462		NMR	16.0	Excluded	\
11120	12	2467		NMR	2.0]	
	13	2472		NMR	2.0		
	3	2422		NMR	13.0		
000.115	6	2437		NMR	18.5		
802.11n- HT40	9	2452	MCS0	NMR	11.0	Excluded	\
11140	10	2457		NMR	2.5		
	11	2462		NMR	2.5		

Note:

- 1) NMR is short for "No measurement requirement".
- 2) The duty cycle data is come from report No.: RF150107E06B.

8.3. Power measurement result of 2.4GHz Wi-Fi for Aux ANT.

Mode	Channel	Frequency (MHz)	Data Rate	Average Power (dBm)	Tune-up Limit (dBm)	SAR Test	Duty Cycle (%)
	1	2412		18.43	18.5		
	6	2437		20.46	20.5	Required	99.00
802.11b	11	2462	1Mbps	20.43	20.5		
	12	2467		12.09	12.5		
	13	2472		11.10	11.5		
	1	2412		NMR	15.5		
	6	2437		NMR	19.5	Excluded	\
0802.11g	11	2462	6Mbps	NMR	18.0		
	12	2467		NMR	3.0		
	13	2472		NMR	3.0		
	1	2412		NMR	14.5		
000 44.5	6	2437		NMR	19.5	Excluded	\
802.11n- HT20	11	2462	MCS0	NMR	16.0		
11120	12	2467		NMR	2.0		
	13	2472		NMR	2.0		
	3	2422		NMR	13.0		
000.44=	6	2437		NMR	18.5	Excluded	\
802.11n- HT40	9	2452	MCS0	NMR	11.0		
11140	10	2457		NMR	2.5		
	11	2462		NMR	2.5		

Note:

- 1) NMR is short for "No measurement requirement".
- 2) The duty cycle data is come from report No.: RF150107E06B.

8.4. Power measurement result of 5GHz Wi-Fi for Main ANT.

Band	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-up Limit (dBm)	SAR Test	Duty Cycle (%)
		36	5180		NMR	11.5		
	802.11a	40	5200	6Mbps	NMR	15.0	Excluded	\
	002.11d	44	5220	Olvibps	NMR	15.0	Excluded	`
		48	5240		NMR	15.0		
		36	5180		NMR	11.5		
	802.11n-HT20	40	5200	MCS0	NMR	15.0	Excluded	,
	002.1111-1120	44	5220	MCSU	NMR	15.0	Excluded	\
U-NII-1		48	5240		NMR	15.0		
	802.11n-HT40	38	5190	MCS0	NMR	8.5	Excluded	,
	602.1111 - 1140	46	5230	MCSU	NMR	14.0	Excluded	`
		36	5180		NMR	11.5		
	802.11ac-	40	5200	MCS0	NMR	15.0	Evaludad	\
	VHT20	44	5220	IVICSU	NMR	15.0	Excluded	`
		48	5240		NMR	15.0		
	802.11ac-	38	5190	MCS0	NMR	8.0	Excluded	\

Page 17 of 40

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

FORM NO: 10-SL-F0036

	VHT40	46	5230		NMR	14.0		
	802.11ac- VHT80	42	5210	MCS0	NMR	5.5	Excluded	\
		52	5260		14.61	15.0		
	000 44-	56	5280	CMIs as a	15.00	15.0	Danisa	00.0
	802.11a	60	5300	6Mbps	14.98	15.0	Required	99.0
		64	5320		11.88	12.0		
		52	5260		NMR	15.0		
	000 44 - UT00	56	5280	MOOO	NMR	15.0		,
	802.11n-HT20	60	5300	MCS0	NMR	15.0	Excluded	\
		64	5320		NMR	12.0		
U-NII-2A	000 44 - LIT40	54	5270	MOOO	NMR	14.0	C l l l	,
U-INII-ZA	802.11n-HT40	62	5310	MCS0	NMR	9.0	Excluded	\
		52	5260		NMR	15.0		
	802.11ac-	56	5280		NMR	15.0	1	
	VHT20	60	5300	MCS0	NMR	15.0	Excluded	\
		64	5320		NMR	12.0		
	802.11ac-	54	5270		NMR	14.0		,
	VHT40	62	5310	MCS0	NMR	9.5	Excluded	\
	802.11ac- VHT80	58	5290	MCS0	NMR	6.5	Excluded	\
		100	5500		13.47	13.5		
		104	5520		13.91	14.0		
		108 5540 112 5560 13.72 13.45	14.0					
		112	5560		13.45	14.0		
		116	5580		13.57	14.0		
	000.44	120	5600	ONAL	13.78	14.0		00.0
	802.11a	124	5620	6Mbps	13.92	14.0	Required	99.0
		128	5640		13.96	14.0		
		132	5660		13.97	14.0		
		136	5680		14.00	14.0		
		140	5700		12.43	13.0		
		144	5720		12.99	13.0		
		100	5500		NMR	13.5		
		104	5520		NMR	14.0		
U-NII-2C		108	5540		NMR	14.0		
		112	5560		NMR	14.0		
		116	5580		NMR	14.0		
	000 44 14	120	5600		NMR	14.0	1	,
	802.11n-HT20	124	5620	MCS0	NMR	14.0	Excluded	\
		128	5640		NMR	14.0		
		132	5660	1	NMR	14.0	1	
		136	5680		NMR	14.0		
		140	5700	1	NMR	12.0	1	
		144	5720	1	NMR	12.0	1	
		102	5510		NMR	11.0		
		110	5550		NMR	13.0	†	i \
	802.11n-HT40	118	5590	MCS0	NMR	13.0	Excluded	
		126	5630	1	NMR	13.0		•
		134	5670	1	NMR	13.0	 	
		154	0070	1	1 111111	1 .5.5	1	

Page 18 of 40

		142	5710		NMR	13.0		
		100	5500		NMR	13.5		
		104	5520		NMR	14.0	1	
		108	5540]	NMR	14.0	1	
		112	5560]	NMR	14.0	1	
		116	5580]	NMR	14.0	1	
	802.11ac-	120	5600	MCCO	NMR	14.0		,
	VHT20	124	5620	MCS0	NMR	14.0	Excluded	\
		128	5640]	NMR	14.0]	
		132	5660]	NMR	14.0]	
		136	5680]	NMR	14.0]	
		140	5700]	NMR	12.0	1	
		144	5720]	NMR	12.0	1	
		102	5510		NMR	11.0		
		110	5550]	NMR	13.0	1	
	802.11ac-	118	5590	MCCO	NMR	13.0		\
	VHT40	126	5630	MCS0	NMR	13.0	Excluded	\
		134	5670]	NMR	13.0	1	
		142	5710]	NMR	13.0	1	
	000.44	106	5530		NMR	8.0		
	802.11ac- VHT80	122	5610	MCS0	NMR	11.0	Excluded	\
	VH100	138	5690]	NMR	12.0	1	
		149	5745		15.00	15.0		
		153	5765]	16.34	16.5	1	
	802.11a	157	5785	6Mbps	16.50	16.5	Required	99.0
		161	5805]	16.35	16.5	1	
		165	5825]	16.47	16.5	1	
		149	5745		NMR	15.0		
		153	5765]	NMR	16.5	1	
	802.11n-HT20	157	5785	MCS0	NMR	16.5	Excluded	\
		161	5805]	NMR	16.5]	
		165	5825]	NMR	16.5	1	
U-NII-3	000 44m LIT40	151	5755	MCCO	NMR	11.5	Cyclydod	1
	802.11n-HT40	159	5795	MCS0	NMR	16.0	Excluded	\
		149	5745		NMR	14.5		
	000 44	153	5765		NMR	16.5		
	802.11ac-	157	5785	MCS0	NMR	16.5	Excluded	\
	VHT20	161	5805		NMR	16.5		
		165	5825]	NMR	16.5]	
	802.11ac-	151	5755	MCCO	NMR	11.5	Evoluded	\
	VHT40	159	5795	MCS0	NMR	16.0	Excluded	d k
	802.11ac- VHT80	155	5775	MCS0	NMR	10.0	Excluded	\

Note:

1) NMR is short for "No measurement requirement".

2) The duty cycle data is come from report No.: RF150107E06B-1.

8.5. Power measurement result of 5GHz Wi-Fi for Aux ANT.

Band	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-up Limit (dBm)	SAR Test	Duty Cycle (%)
	802.11a	36 40 44 48	5180 5200 5220 5240	- 6Mbps	NMR NMR NMR NMR	11.5 15.0 15.0 15.0		\
	802.11n-HT20	36 40 44 48	5180 5200 5220	MCS0	NMR NMR NMR	11.5 15.0 15.0	Excluded	\
U-NII-1	802.11n-HT40	38 46	5240 5190 5230	MCS0	NMR NMR NMR	15.0 8.5 14.0	Excluded	\
	802.11ac- VHT20	36 40 44 48	5180 5200 5220 5240	MCS0	NMR NMR NMR NMR	11.5 15.0 15.0 15.0	Excluded	\
	802.11ac- VHT40	38 46	5190 5230	MCS0	NMR NMR	8.0 14.0	Excluded	\
	802.11ac- VHT80	42	5210	MCS0	NMR	5.5	Excluded	\
	802.11a	52 56 60	5260 5280 5300	- 6Mbps	15.00 14.67 14.59	15.0 15.0 15.0	Excluded	99.0
	802.11n-HT20	64 52 56 60	5320 5260 5280 5300	MCS0	11.95 NMR NMR NMR	12.0 15.0 15.0 15.0	Excluded	\
U-NII-2A	802.11n-HT40	64 54 62	5320 5270 5310	MCS0	NMR NMR NMR	12.0 14.0 9.0	Excluded	\
	802.11ac- VHT20	52 56 60 64	5260 5280 5300 5320	MCS0	NMR NMR NMR NMR	15.0 15.0 15.0 12.0	Excluded	\
	802.11ac- VHT40	54 62	5270 5310	MCS0	NMR NMR	14.0	Excluded	\
	802.11ac- VHT80	58	5290	MCS0	NMR	6.5	Excluded	\
U-NII-2C	802.11a	100 104 108 112 116 120	5500 5520 5540 5560 5580 5600	6Mbps	13.38 13.06 12.66 12.47 13.20 12.83	13.5 14.0 14.0 14.0 14.0 14.0	Excluded	99.0
		124 128 132	5620 5640 5660	ne 20 of 40	13.23 13.66 13.61	14.0 14.0 14.0		

Page 20 of 40

		136	5680		14.00	14.0		
		140	5700		12.79	13.0		
		144	5720		12.91	13.0		
		100	5500		NMR	13.5		
		104	5520		NMR	14.0		
		108	5540		NMR	14.0		
		112	5560		NMR	14.0		
		116	5580		NMR	14.0		
		120	5600	1	NMR	14.0	1	
	802.11n-HT20	124	5620	MCS0	NMR	14.0	Excluded	\
		128	5640		NMR	14.0		
		132	5660		NMR	14.0		
		136	5680		NMR	14.0	_	
		140	5700	1	NMR	12.0		
		144	5720		NMR	12.0	_	
		102	5510		NMR	11.0		
		110	5550	-	NMR	13.0	-	
		118	5590		NMR	13.0	1	
	802.11n-HT40	126	5630	MCS0	NMR	13.0	Excluded	\
		134	5670		NMR	13.0		
		142	5710	_	NMR	13.0	_	
		100	5500		NMR	13.5		
		104	5520	_	NMR	14.0	_	
							_	
		108	5540		NMR	14.0	-	
		112	5560		NMR	14.0		
	222.11	116	5580		NMR	14.0	_	
	802.11ac-	120	5600	MCS0	NMR	14.0	Excluded	\
	VHT20	124	5620		NMR	14.0	_	
		128	5640		NMR	14.0	_	
		132	5660		NMR	14.0	_	
		136	5680		NMR	14.0	_	
		140	5700	_	NMR	12.0		
		144	5720		NMR	12.0		
		102	5510		NMR	11.0	_	
		110	5550		NMR	13.0	_	
	802.11ac-	118	5590	MCS0	NMR	13.0	Excluded	\
	VHT40	126	5630	_	NMR	13.0		•
		134	5670	_	NMR	13.0	_	
		142	5710		NMR	13.0		
	802.11ac-	106	5530		NMR	8.0		
	VHT80	122	5610	MCS0	NMR	11.0	Excluded	\
		138	5690		NMR	12.0		
		149	5745		15.00	15.0	_	
		153	5765		16.41	16.5	_	
	802.11a	157	5785	6Mbps	16.50	16.5	Required	99.0
U-NII-3		161	5805		16.45		<u> </u>	
0-1111-3		165	5825		16.46	16.5		
		149	5745		NMR	15.0		
	802.11n-HT20	153	5765	MCS0	NMR	16.5	Excluded	\
		157	5785		NMR	16.5		
				ge 21 of 40		•		

Page 21 of 40

1		i	•		-		
	161	5805		NMR	16.5		
	165	5825		NMR	16.5		
802.11n-HT40	151	5755	MCS0	NMR	11.5	Excluded	\
002.1111-11140	159	5795	IVICSU	NMR	16.0	Excluded	\
	149	5745		NMR	14.5		
000 44 = =	153	5765		NMR	16.5		
802.11ac- VHT20	157	5785	MCS0	NMR	16.5	Excluded	\
V11120	161	5805		NMR	16.5		
	165	5825		NMR	16.5		
802.11ac-	151	5755	MCS0	NMR	11.5	Excluded	\
VHT40	159	5795	IVICSU	NMR	16.0	Excluded	\
802.11ac- VHT80	155	5775	MCS0	NMR	10.0	Excluded	\

Note:

- 1) NMR is short for "No measurement requirement".
- 2) The duty cycle data is come from report No.: RF150107E06B-1.

8.6. Power measurement result of 5GHz Wi-Fi for MIMO.

Band	Mode	Channel	Fre. (MHz)	Data Rate	Average Power of Main ANT (dBm)	Average Power of Aux ANT (dBm)	SUM (dBm)	Tune- up Limit (dBm)	SAR Test	Duty Cycle (%)
	802.11a	36 40 44	5180 5200 5220	6Mbps	NMR NMR NMR	NMR NMR NMR	\ \	14.50 18.00 18.00	Excluded	\
	802.11n-	48 36 40	5240 5180 5200	MOOO	NMR NMR NMR	NMR NMR NMR	\ \	18.00 14.50 18.00		,
	HT20	44 48	5220 5240	MCS0	NMR NMR	NMR NMR	\	18.00 18.00	Excluded	\
U-NII-1	802.11n- HT40	38 46 36	5190 5230 5180	MCS0	NMR NMR NMR	NMR NMR NMR	\	11.50 17.00 14.50	Excluded	\
	802.11ac- VHT20	40 44 48	5200 5220 5240	MCS0	NMR NMR NMR	NMR NMR NMR	\	18.00 18.00 18.00	Excluded	\
	802.11ac- VHT40	38 46	5190 5230	MCS0	NMR NMR	NMR NMR	\	11.00	Excluded	\
	802.11ac- VHT80	42	5210	MCS0	NMR	NMR	NMR \ 8		Excluded	\
	802.11a	52 56 60 64	5260 5280 5300 5320	6Mbps	NMR NMR NMR	NMR NMR NMR	\	18.00 18.00 18.00 15.00	Required	\
	802.11n- HT20	52 56 60	5260 5280 5300	MCS0	NMR NMR NMR	NMR NMR NMR	\ \	18.00 18.00 18.00	Excluded	\
U-NII-2A	802.11n- HT40	64 54 62	5320 5270 5310	MCS0	NMR NMR NMR	NMR NMR NMR	\	15.00 17.00 12.00	Excluded	\
	802.11ac- VHT20	52 56 60 64	5260 5280 5300 5320	MCS0	NMR NMR NMR	NMR NMR NMR	\ \	18.00 18.00 18.00 15.00	Excluded	\
	802.11ac- VHT40	54 62	5270 5310	MCS0	NMR NMR	NMR NMR	\	17.00 12.50	Excluded	\
	802.11ac- VHT80	58	5290	MCS0	NMR	NMR	\	9.50	Excluded	\
U-NII-2C	802.11a	100 104 108 112 116	5500 5520 5540 5560 5580	- 6Mbps	NMR NMR NMR NMR	NMR NMR NMR NMR	\ \ \ \	16.50 17.00 17.00 17.00 17.00	Required	\
		120 124 128	5600 5620 5640		NMR NMR NMR	NMR NMR NMR	\	17.00 17.00 17.00		

Page 23 of 40

136		1 1		l					1		
140 5700 NMR NMR			132	5660		NMR	NMR	\	17.00		
144 5720		<u> </u>						\			
100 5500 104 5520 108 5540 112 5560 116 5580 116 5580 128 5660 136 5680 140 5700 144 5720 126 5560 116 5580 110 5550 110 5550 124 5560 124 5620 124 5620 124 5620 126 5680 136 5680 140 5700 144 5720 126 5630 127 5660 136 5680 136 5680 134 5670 142 5700 144 5720 108 5540 110 5550 110 5550 110 5550 124 5620 128 5640 132 5660 136 5680 140 5700 144 5720 124 5620 128 5640 132 5660 136 5680 140 5700 144 5720 124 5620 136 5680 140 5700 144 5720 124 5620 136 5680 140 5700 144 5720 124 5620 136 5680 140 5700 144 5720 124 5620 136 5680 140 5700 144 5720 124 5620 136 5680 140 5700 144 5720 124 5620 136 5680 140 5700 144 5720 122 5610 144 5720 144 5740 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144								\			
104 5520 108 5540 112 5560 116 5580 116 5580 116 5580 120 5600 124 5620 128 5640 132 5660 136 5680 140 5700 144 5720 110 5550 142 5710 142 5710 142 5720 128 5640 128 5640 128 5640 133 5670 144 5720 144			144				NMR	\			
108		<u> </u>	100	5500				\	16.50		
NMR		<u> </u>	104				NMR	\	17.00		
Name		<u> </u>	108	5540		NMR	NMR	\	17.00		
R02.11n-			112	5560		NMR	NMR	\	17.00		
HT20			116	5580		NMR	NMR	\	17.00		
H120		802.11n-	120	5600	MCSO	NMR	NMR	\	17.00	Evoluded	\
132 5660 136 5680 136 5680 136 5680 144 5720 144 5720 102 5510 102 5550 1034 5670 144 5720 108 5560 142 5710 144 5720 144 5720 144 5720 144 5720 144 5720 144 5720 144 5720 144 5720 144 5620 142 5660 132 5660 132 5660 132 5660 136 5680 144 5720 144 5720 144 5720 144 5720 144 5720 144 5720 144 5720 144 5720 144 5720 144 5720 144 5670 144 5720 144 5720 144 5670 144 5720 144 5670 144 5720 144 5670 144 5720 144 5670 144 5720 144 5670 145		HT20	124	5620	IVICSO	NMR	NMR	\	17.00	LXCIUGEG	`
136 5680 140 5700 144 5720 102 5510 105 5500 134 5670 104 5520 108 5540 108 5560 104 5520 108 5560 116 5580 140 5700 142 5670 122 5610 132 5660 136 5680 140 5700 144 5720 144 5720 144 5700 145 5710 140 5700 140			128	5640		NMR	NMR	\	17.00		
140 5700			132	5660		NMR	NMR	\	17.00		
144 5720			136	5680		NMR	NMR	\	17.00		
NMR			140	5700		NMR	NMR	\	15.00		
NMR			144	5720		NMR	NMR	\	15.00		
NMR			102	5510		NMR	NMR	\	14.00		
NMR						NMR		\	16.00		
HT40		802.11n-			14000			\			
134 5670		l –			MCS0			\		Excluded	\
142 5710							NMR	\			
NMR								\			
NMR								\			
108 5540 112 5560 116 5580 116 5580 120 5660 124 5560 128 5640 132 5660 136 5680 140 5700 144 5720 110 5550 110 126 5630 134 5670 142 5710 142 5710 142 5710 138 5690 142 5745 153 5765 165 5825 165 5825 16.47 16.46 19.48 19.50 16.47 16.46 19.48 19.50 19.50 19.50 19.50 19.50 16.47 16.46 19.48 19.50 19.50 19.50 19.50 19.50 16.47 16.46 19.48 19.50 19.50 19.50 19.50 19.50 16.47 16.46 19.48 19.50 19.50 19.50 19.50 19.50 16.47 16.46 19.48 19.50 19.50 19.50 19.50 19.50 16.47 16.46 19.48 19.50 19.50 19.50 10.50 19.50 10.50 10.50 19.50 10.50 10.50 19.50 10.50								\			
112 5560 116 5580 120 5600 124 5620 124 5620 132 5660 132 5660 140 5700 144 5720 144 5720 144 5560 142 5710 142 5710 142 5710 142 5710 143 5660 142 5710 143 5660 142 5710 144 5720 144					_			\			
NMR							,				
NMR								,			
VHT20		802 11ac-						,			
128 5640 132 5660 132 5660 136 5680 140 5700 144 5720 110 5550 110 5550 126 5630 134 5670 142 5710 142 5710 142 5710 142 5710 138 5690 138 5690 138 5690 153 5765 16.45 19.41 19.50 19		l –			MCS0			`\		Excluded	\
132 5660 136 5680 140 5700 144 5720 102 5510 110 5550 110 5550 110 126 5630 142 5710 142 5710 142 5710 142 5710 138 5690 148 5690 149 5745 161 5805 165 5825 802.11a-								\			
136 5680 NMR NMR \ 17.00 NMR NMR \ 15.00 NMR NMR \ 15.00 NMR NMR NMR \ 15.00 NMR NMR NMR \ 15.00 NMR NMR NMR \ 16.00 NMR NMR NMR NMR \ 16.00 NMR NMR NMR NMR \ 16.00 NMR NMR NMR NMR NMR \ 16.00 NMR NMR		 						\			
140 5700 NMR NMR \ 15.00 NMR NMR \ 15.00 NMR NMR		 						\			
144 5720 NMR NMR \ 15.00 NMR NMR \ 16.00 NMR NMR \ 16.00 NMR NMR NMR \ 16.00 NMR		 						\			
NMR		 						,			
NMR NMR \ 16.00 NMR NMR \ 16.00 NMR NMR								,			
NMR NMR								\			
VHT40		002 11						\			
134 5670 NMR NMR \ 16.00 NMR NMR \ 16.00 NMR NMR \ 16.00 NMR NMR \ 11.00 NMR NMR \ 11.00 NMR NMR \ 14.00 NMR NMR \ 15.00 NMR NMR \ 15.00 NMR NMR \ 15.00 NMR NMR \ 15.00 NMR NMR \ 16.41 19.39 19.50 NMR NMR		I L			MCS0			\		Excluded	\
142 5710 NMR NMR \ 16.00 NMR NMR \ 11.00 NMR NMR \ 11.00 NMR NMR NMR \ 11.00 NMR NMR NMR \ 15.00 NMR N		VIII40						\			
NMR NMR								\			
NMR NMR		 						\			
VHT80 122 5610 MCS0 NMR NMR NMR \ 14.00 Excluded \ 14.00 NMR NMR NMR \ 15.00 14.98 18.00		802.11ac-			MOSO			\		Evoluded	١
U-NII-3 149 5745 5765 6Mbps 15.00 14.98 18.00 <t< td=""><td></td><td></td><td></td><td></td><td>IVICSU</td><td></td><td></td><td>\</td><td></td><td>⊏xciuded</td><td>\</td></t<>					IVICSU			\		⊏xciuded	\
U-NII-3 153 5765 6Mbps 16.34 16.41 19.39 19.50 Required 99.0 U-NII-3 161 5805 16.35 16.45 19.41 19.50 Pequired 99.0 802.11n- HT20 149 5745 MCS0 NMR NMR NMR NMR NMR Excluded \hdots								10.00			
U-NII-3 802.11a 157 5785 6Mbps 16.47 16.50 19.50 19.50 Required 99.0 161 5805 165 5825 16.47 16.46 19.41 19.50 Required 99.0 802.11n- HT20 149 5745 153 MCS0 NMR NMR NMR \ 18.0 19.5 Excluded \											
U-NII-3 161 5805 16.35 16.45 19.41 19.50 802.11n- HT20 149 5745 MCS0 NMR NMR \ 18.0 Excluded \		00044			CNAL					Damilio	00.0
165 5825 16.47 16.46 19.48 19.50	11.111.0	802.11a			bivibps					Required	99.0
802.11n- HT20 153 5765 MCS0 NMR NMR \ 18.0 Excluded \	U-NII-3										
HT20 153 5765 MCS0 NMR NMR \ 19.5 Excluded \								19.48			
H120 153 5/65 NMR NMR \ 19.5					MCS0			\		Excluded	\
Page 24 of 40		H120	153	5765			NMR	\	19.5		

Page 24 of 40

Report No.: 4	4789114486-9	SAR-344-2
---------------	--------------	-----------

		157	5785		NMR	NMR	\	19.5		
		161	5805		NMR	NMR	\	19.5		
		165	5825		NMR	NMR	\	19.5		
	802.11n-	151	5755	MCS0	NMR	NMR	\	14.5	Excluded	\
	HT40	159	5795	IVICSU	NMR	NMR	\	19.0	Excluded	\
		149	5745		NMR	NMR	\	17.5		
	000 1100	153	5765		NMR	NMR	\	19.5		
	802.11ac- VHT20	157	5785	MCS0	NMR	NMR	\	19.5	Excluded	\
	V11120	161	5805		NMR	NMR	\	19.5		
		165	5825		NMR	NMR	\	19.5		
	802.11ac-	151	5755	MCS0	NMR	NMR	\	14.5	Excluded	\
	VHT40	159	5795	MCSU	NMR	NMR	\	19.0	Excluded	`
	802.11ac- VHT80	155	5775	MCS0	NMR	NMR	\	13.0	Excluded	\

Note:

- 1) NMR is short for "No measurement requirement".
- 2) The duty cycle data is come from report No.: RF150107E06B-1.

8.7. Power measurement result BT

Band	Mode	Antonno	Average	Conducted Po	wer (dBm)	Tung up
Danu	Mode	Antenna	0CH	39CH	78CH	Tune-up
	DH5	Aux	NMR	NMR	NMR	7.0
2.4G	2DH5	Aux	NMR	NMR	NMR	7.0
	3DH5	Aux	NMR	NMR	NMR	7.0

Band	Mode	Antenna	Average	Conducted Po	Tune-up	
Danu	Mode	Antenna	0CH	19CH	39CH	Turie-up
2.4G	BLE	Aux	NMR	NMR	NMR	4.5

Note:

1) NMR is short for "No measurement requirement".

Report No.: 4789114486-SAR-344-2 Issue Date: September 23, 2019

9. RF Exposure Conditions

The antenna location diagram inside the device can be found in App A.

Per FCC KDB 447498D01:

1. The 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for product specific 10-g SAR, where:

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

- 2. The SAR exclusion threshold for distances >50mm is defined by the following equation, as illustrated in KDB 447498 D01 Appendix B:
- a) at 100 MHz to 1500 MHz

[Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm)·(f(MHz)/150)] mW b) at > 1500 MHz and ≤ 6 GHz

[Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm)·10] mW

3. The test separation distances required for a device to demonstrate SAR or MPE compliance must be sufficiently conservative to support the operational separation distances required by the device and its antennas and radiating structures. For devices such as tablets and transmitters embedded in keyboard sections of laptop computers that are typically used in close proximity to users, the test separation distance is determined by the smallest distance between the outer surface of the device and the user. For larger devices, as the antenna operational separation distance increases to where the SAR characteristics of the device and its antennas are not directly influenced by the user, such as antennas along the top and upper side edges of laptop computer displays or opposite and adjacent edges of tablets, the test separation distance is normally determined by the closest separation between the antenna and the user.

For BT 1-q SAR

Mode	Frequency	Power (dBm)	Power (mW)	Separation Distance (mm)	Calculated Result	Threshold	SAR Test
ВТ	2480	7	5.01	5.00	1.6	3.0	Excluded

Note:

1) Because the calculated result is less than the threshold, so SAR evaluation for BT 1-g SAR is not required.

10. Dielectric Property Measurements & System Check

10.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 v01r04 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	H	lead	Bi	ody
rarget Frequency (MIDZ)	e _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013
Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

		Liquid Parameters			Deviation(%)		1	Temp.		
Liquid	Freq.	Measured		Target		Deviat	1011(/0)	Limit (%)	(°C)	Test Date
		€r	σ	€r	σ	€r	σ	(70)	()	
	2360	40.23	1.67	39.36	1.72	2.21	-3.02			August 7, 2019
Head 2450	2450	40.13	1.78	39.20	1.80	2.37	-1.22	±5	23.1	
	2540	39.67	1.88	39.09	1.90	1.48	-0.95			
	5160	36.07	4.71	36.03	4.61	0.11	2.13			August 13, 2019
Head 5250	5250	35.93	4.84	35.93	4.71	0.00	2.82	±5	22.1	
	5340	35.74	4.93	35.83	4.80	-0.25	2.77			
	5500	36.66	5.15	35.64	4.96	2.86	3.79			
Head 5600	5600	36.34	5.19	35.53	5.07	2.28	2.31	±5	22.5	August 14, 2019
	5700	36.36	5.25	35.41	5.17	2.68	1.51			
	5660	36.70	5.26	35.46	5.13	3.50	2.53			
Head 5750	5750	36.33	5.44	35.36	5.22	2.74	4.18	±5 22.7		August 15, 2019
	5840	35.87	5.43	35.27	5.30	1.70	2.49			

10.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10mm (above 1GHZ) and 15mm (below 1GHz) from dipole
 center to the simulating liquid surface.
- For area scan, standard grid spacing for head measurements is 15 mm in x- and y- dimension(≤2GHz), 12 mm in x- and y-dimension(2-4 GHz) and 10mm in x- and y- dimension(4-6GHz).
- For zoom scan, Δ x_{zoom} , Δ $y_{zoom} \le 2GHz \le 8mm$, $2-4GHz \le 5mm$ and 4-6 $GHz \le 4mm$; Δ $z_{zoom} \le 3GHz \le 5mm$, 3-4 $GHz \le 4mm$ and $4-6GHz \le 2mm$.
- Distance between probe sensors and phantom surface was set to 3 mm except for 5 GHz band. For 5GHz band, Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was set to 100 mW or 250 mW depend on the certificate of the dipoles.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test

frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

T.S. Liquid		Measure	Target	Delta	Limit	Temp.		
		Zoom Scan (W/Kg)	Normalize to 1W (W/Kg)	(Ref. value)	(%)	(%)	(℃)	Test Date
Head 2450	1-g	13.700	54.80	53.70	2.05	±10	23.1	August 7, 2019
Fleau 2450	10-g	6.350	25.40	25.00	1.60	±10	23.1	August 1, 2019
Head 5250	1-g	7.750	77.50	78.60	-1.40	±10	22.1	August 13, 2019
Head 5250	10-g	2.270	22.70	22.50	0.89	ΞIU	22.1	August 13, 2019
Hood ECOO	1-g	8.430	84.30	81.20	3.82	.10	22 F	August 14, 2010
Head 5600	10-g	2.400	24.00	23.40	2.56	±10	22.5	August 14, 2019
Llood 5750	1-g	8.300	83.00	80.00	3.75	±10	22.7	August 15, 2019
Head 5750	10-g	2.410	24.10	22.80	5.70	±10	22.1	August 15, 2019

11. Measured and Reported (Scaled) SAR Results

As per KDB 447498 sec.4.1.e), When SAR or MPE is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported.

Scaled SAR calculation formula:

Scaled SAR = Tune-up in mW / Conducted power in mW * Duty cycle (if available) * SAR value

SAR Test Reduction criteria are as follows:

KDB 447498 D01 General RF Exposure Guidance:

- A) Per KDB447498 D01 v06, all SAR measurement results are scaled to the maximum tune-up tolerance limit to demonstrate SAR compliance.
- B) Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz.

Per KDB865664 D01 v01r04:

For each frequency band, repeated SAR measurement is required only when the measured SAR is \geq 0.8W/Kg; if the deviation among the repeated measurement is \leq 20%, and the measured SAR <1.45W/Kg, only one repeated measurement is required.

Per KDB 248227 D01 v02r02:

For Wi-Fi SAR testing, a communication link is set up with the testing software for Wi-Fi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. The RF signal utilized in SAR measurement has 100% duty cycle and its crest factor is 1. The test procedures in KDB 248227 D01 v02r02 are applied. (Refer to KDB 248227D01 v02r02 for more details)

Initial Test Position Procedure

For exposure condition with multiple test position, such as handsets operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for <u>initial test position</u> can be applied. Using the transmission mode determined by the DSSS procedure or <u>initial test configuration</u>, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the <u>initial test position</u> is ≤ 0.4 W/kg, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test position are measured. For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions /configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

Initial Test Configuration Procedure

An <u>initial test configuration</u> is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2 of KDB 248227D01

Page 32 of 40

Report No.: 4789114486-SAR-344-2 Issue Date: September 23, 2019

v02r02). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the <u>initial test position</u> procedure is applied to minimize the number of test positions required for SAR measurement using the <u>initial test configuration</u> transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the <u>initial test configuration</u>. When the reported SAR of the <u>initial test configuration</u> is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

Sub Test Configuration Procedure

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the <u>initial test configuration</u> are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. When the highest reported SAR for the <u>initial test configuration</u>, according to the <u>initial test position</u> or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to <u>initial test configuration</u> specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

Note:

 The same procedure is applied to extremity SAR evaluation, and the corresponding limitation is 2.5 times of 1-g SAR.

11.1. SAR Test Results of 2.4G Wi-Fi with ICT antenna platform

Test Position	Test Mode	Channel/ Frequency	Power (dBm)				Duty Cycle	Scaled (W/Kg)		
		rrequericy	Tune-up	Meas.	1-g (W/Kg)	Drift	(%)	(W/Kg)		
	Main ANT.									
Bottom surface	802.11b	6/2437	20.50	20.50	0.725	0.17	99.00	0.732		
Aux ANT.										
Bottom surface	802.11b	6/2437	20.50	20.46	0.752	0.11	99.00	0.767		

OFDM mode SAR evaluation exclusion analysis for 1-g SAR for Aux ANT

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR Test
802.11b	20.5	112.20	0.767	\	\
802.11g	19.5	89.13	\	0.609	Excluded
802.11n HT20	19.5	89.13	\	0.609	Excluded
802.11n HT40	18.5	70.79	\	0.484	Excluded

Note:

1) The highest reported SAR for DSSS adjusted by the ratio of OFDM 802.11g/n to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, so SAR evaluation for 802.11g/n is not required.

11.2. SAR Test Results of 2.4G Wi-Fi with SPD antenna platform

Test Position	Test Mode	Channel/ Frequency	Power (dBm)		Measured SAR Value	Power Drift	Duty Cycle	Scaled (W/Kg)		
		Trequency	Tune-up	Meas.	1-g (W/Kg)	Dilli	(%)	(W/Kg)		
	Main ANT.									
Bottom surface	802.11b	6/2437	20.50	20.50	0.703	0.14	99.00	0.710		
Aux ANT.										
Bottom surface	802.11b	6/2437	20.50	20.46	0.647	0.15	99.00	0.660		

OFDM mode SAR evaluation exclusion analysis for 1-g SAR for aix ANT

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR Test
802.11b	20.5	112.20	0.710	\	\
802.11g	19.5	89.13	\	0.564	Excluded
802.11n HT20	19.5	89.13	\	0.564	Excluded
802.11n HT40	18.5	70.79	\	0.448	Excluded

Note:

1) The highest reported SAR for DSSS adjusted by the ratio of OFDM 802.11g/n to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, so SAR evaluation for 802.11g/n is not required.

11.3. SAR Test Results of 5G Wi-Fi with ICT antenna platform

Test Position	Test Mode	Channel/	Pow (dBr	~ -	Measured SAR Value	Power Drift	Duty Cycle	Scaled			
		Frequency	Tune-up	Meas.	1-g (W/Kg)	Dilit	(%)	(W/Kg)			
			Main AN	T.							
U-NII-2A											
Bottom surface	802.11a	52/5260	15.0	14.61	0.759	0.17	99.0	0.839			
Bottom surface	802.11a	56/5280	15.0	15.00	0.631	0.15	99.0	0.637			
			U-NII-20	2							
Bottom surface	802.11a	136/5680	14.0	14.00	0.680	0.13	99.0	0.687			
			U-NII-3	3							
Bottom surface	802.11a	157/5785	16.5	16.50	1.060	0.14	99.0	1.071			
Bottom surface	802.11a	165/5825	16.5	16.47	0.982	0.08	99.0	0.999			
	Repeat	ed test at wors	st measured	SAR co	nfiguration ab	ove					
Bottom surface	802.11a	157/5785	16.5	16.50	1.000	0.17	99.0	1.010			
			Aux AN	Γ							
			U-NII-2	4							
Bottom surface	802.11a	52/5260	15.0	15.00	0.777	0.11	99.0	0.785			
			U-NII-20	3							
Bottom surface	802.11a	136/5680	14.0	14.00	0.643	0.16	99.0	0.649			
	U-NII-3										
Bottom surface	802.11a	157/5785	16.5	16.50	0.947	-0.15	99.0	0.957			
Bottom surface	802.11a	165/5825	16.5	16.46	0.784	0.14	99.0	0.799			
	Repeat	ed test at wors	st measured	SAR co	nfiguration ab	ove					
Bottom surface	802.11a	157/5785	16.5	16.50	0.913	-0.11	99.0	0.922			

Subsequent test configuration SAR evaluation exclusion analysis for 1-g SAR for SISO mode (U-NII-2A)

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR Test
802.11a	16.5	44.67	0.839	\	\
802.11n HT20	16.5	44.67	\	0.839	Excluded
802.11n HT40	14	25.12	\	0.472	Excluded
802.11ac VHT20	16.5	44.67	\	0.839	Excluded
802.11ac VHT40	14	25.12	\	0.472	Excluded
802.11ac VHT80	6.5	4.47	\	0.084	Excluded

Note:

1) The 802.11a mode is selected as Initial Test Configuration for SAR test according to the specified maximum output power. As the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

Subsequent test configuration SAR evaluation exclusion analysis for 1-g SAR for SISO mode (U-NII-2C)

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR Test
802.11a	14	25.12	0.687	\	\

Page 35 of 40

802.11n HT20	14	25.12	\	0.687	Excluded
802.11n HT40	13	19.95	\	0.546	Excluded
802.11ac VHT20	14	25.12	\	0.687	Excluded
802.11ac VHT40	13	19.95	\	0.546	Excluded
802.11ac VHT80	12	15.85	\	0.433	Excluded

Note:

1) The 802.11a mode is selected as Initial Test Configuration for SAR test according to the specified maximum output power. As the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

Subsequent test configuration SAR evaluation exclusion analysis for 1-g SAR for SISO mode (U-NII-3)

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR Test
802.11a	16.5	44.67	1.071	\	\
802.11n HT20	16.5	44.67	\	1.071	Excluded
802.11n HT40	16	39.81	\	0.955	Excluded
802.11ac VHT20	16.5	44.67	\	1.071	Excluded
802.11ac VHT40	16	39.81	\	0.955	Excluded
802.11ac VHT80	10	10.00	1	0.240	Excluded

Note:

1) The 802.11a mode is selected as Initial Test Configuration for SAR test according to the specified maximum output power. As the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

11.4. SAR Test Results of 5G Wi-Fi with SPD antenna platform

Test Position	Test Mode	Channel/ Frequency	Pow (dBr	•-	Measured SAR Value	Power Drift	Duty Cycle	Scaled (W/Kg)		
		Trequency	Tune-up	Meas.	1-g (W/Kg)	Dille	(%)	(Wing)		
Main ANT.										
U-NII-2A										
Bottom surface	802.11a	52/5260	15.0	14.61	0.638	0.05	99.0	0.705		
			U-NII-20							
Bottom surface	802.11a	136/5680	14.0	14.00	0.670	0.13	99.0	0.677		
			U-NII-3	3						
Bottom surface	802.11a	157/5785	16.5	16.50	1.110	0.19	99.0	1.121		
Bottom surface	802.11a	165/5825	16.5	16.47	1.020	-0.05	99.0	1.037		
	Repeat	ed test at wors	st measured	SAR co	nfiguration ab	ove				
Bottom surface	802.11a	157/5785	16.5	16.50	1.030	-0.18	99.0	1.040		
			Aux AN	Γ						
			U-NII-2	A						
Bottom surface	802.11a	52/5260	15.0	15.00	1.140	-0.12	99.0	1.152		
Bottom surface	802.11a	56/5280	15.0	14.67	0.977	0.14	99.0	1.065		
	Repeat	ed test at wors	st measured	SAR co	nfiguration ab	ove				
Bottom surface	802.11a	52/5260	16.5	16.50	1.040	0.03	99.0	1.051		
			U-NII-20	C						
Bottom surface	802.11a	136/5680	14.0	14.00	1.020	0.18	99.0	1.030		
Bottom surface	802.11a	144/5720	13.0	12.91	1.070	0.13	99.0	1.103		
	Repeat	ed test at wors	st measured	SAR co	nfiguration ab	ove				
Bottom surface	802.11a	144/5720	14.0	13.91	0.961	0.15	99.0	0.991		
U-NII-3										
Bottom surface	802.11a	157/5785	16.5	16.50	0.981	0.16	99.0	0.991		
Bottom surface	802.11a	165/5825	16.5	16.46	0.838	0.19	99.0	0.854		
	Repeated test at worst measured SAR configuration above									
Bottom surface	802.11a	157/5785	16.5	16.50	0.999	0.13	99.0	1.009		

Subsequent test configuration SAR evaluation exclusion analysis for 1-g SAR for SISO mode (U-NII-2A)

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR Test
802.11a	16.5	44.67	1.152	\	\
802.11n HT20	16.5	44.67	\	1.152	Excluded
802.11n HT40	14	25.12	\	0.648	Excluded
802.11ac VHT20	16.5	44.67	\	1.152	Excluded
802.11ac VHT40	14	25.12	\	0.648	Excluded
802.11ac VHT80	6.5	4.47	\	0.115	Excluded

Note:

1) The 802.11a mode is selected as Initial Test Configuration for SAR test according to the specified maximum output power. As the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

Subsequent test configuration SAR evaluation exclusion analysis for 1-g SAR for SISO mode (U-NII-2C)

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR Test
802.11a	14	25.12	1.103	\	\
802.11n HT20	14	25.12	\	1.103	Excluded
802.11n HT40	13	19.95	\	0.876	Excluded
802.11ac VHT20	14	25.12	\	1.103	Excluded
802.11ac VHT40	13	19.95	\	0.876	Excluded
802.11ac VHT80	12	15.85	\	0.696	Excluded

Note:

1) The 802.11a mode is selected as Initial Test Configuration for SAR test according to the specified maximum output power. As the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

Subsequent test configuration SAR evaluation exclusion analysis for 1-g SAR for SISO mode (U-NII-3)

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR Test
802.11a	16.5	44.67	1.121	\	\
802.11n HT20	16.5	44.67	\	1.121	Excluded
802.11n HT40	16	39.81	\	0.999	Excluded
802.11ac VHT20	16.5	44.67	\	1.121	Excluded
802.11ac VHT40	16	39.81	\	0.999	Excluded
802.11ac VHT80	10	10.00	\	0.251	Excluded

Note:

1) The 802.11a mode is selected as Initial Test Configuration for SAR test according to the specified maximum output power. As the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

Page 38 of 40

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

FORM NO: 10-SL-F0036

Report No.: 4789114486-SAR-344-2 Issue Date: September 23, 2019

12. Simultaneous Transmission SAR Analysis

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.

Depend on the description of coexistence mode on the module certification report, the Wi-Fi and BT can transmit simultaneously, but 2.4G and 5G can't transmit an the same time.

12.1. Estimated SAR

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

- 1) (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]. $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances \leq 50 mm, where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.
- 2) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distance is > 50 mm.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied.

Estimated 1-g SAR of BT

Position	Frequency (GHz)	Power (dBm)	Power (mW)	Separation Distance (mm)	Estimated 1-g SAR (W/Kg)
Bottom surface	0.248	7.00	5.01	5	0.067

12.2. Simultaneous Transmission calculation WLAN and BT antenna.

	1	2	3					
Exposure Position	2.4G WLAN ANT(Main+Aux)	5G WLAN ANT(Main+Aux)	Bluetooth ANT (Aux)	1+3 Summed	2+3 Summed			
	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg) (W/kg)		1g SAR(W/kg)			
ICT antenna platform								
Bottom Surface	0.767	1.071	0.067	0.834	1.138			
SPD antenna platform								
Bottom Surface	0.710	1.152	0.067	0.777	1.219			

Note:

- 1) For 2.4G and 5G SAR was evaluated for SISO mode. The SAR distributions in MIMO mode were verified and the hot spots were sufficiently separated such that the two chains can be treated independently (See APP C highest SAR plots on page 5 and page 9). So the highest SAR value across both chains in SISO mode represents the SAR value for MIMO mode.
- 2) Because the maximum SUM 1-g SAR ≤ 1.6 W/Kg, so the SPLSR analysis is not required.

Page 39 of 40

Appendixes

Refer to separated files for the following appendixes.

4789114486-SAR-344-2_App A Photo

4789114486-SAR-344-2_App B System Check Plots

4789114486-SAR-344-2_App C Highest Test Plots

4789114486-SAR-344-2_App D Cal. Certificates

-----End of Report-----