

# Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart E (UNII Devices) and Industry Canada RSS 210 Issue 4 (LELAN Devices) on the Atheros Communications Model: AR5BAP-00030

FCC ID: PPD-AR5BAP-00030

GRANTEE: **Atheros Communications** 

529 Almanor

Sunnyvale, CA 94085

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: October 19, 2001

FINAL TEST DATE: October 11 and October 18, 2001

**AUTHORIZED SIGNATORY:** 

Mark Briggs

Director of Engineering

Mark Brig

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

Test Report
Report Date: October 19, 2001

## **DECLARATIONS OF COMPLIANCE**

Equipment Name and Model:

AR5BAP-00030

Manufacturer:

Atheros Communications 529 Almanor Sunnyvale, CA 94085

Tested to applicable standards:

RSS-210, Issue 4, December 2000 (Low Power License-Exempt Radiocommunication Devices)

FCC Part 15 Subpart E (UNII Devices)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 **SV2** Dated August 8, 2001 Departmental Acknowledgement Number: IC2845 **SV4** Dated August 20, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 4); and that the equipment performed in accordance with the data submitted in this report.

Signature

Name Mark Briggs

Title Director of Engineering

Company Elliott Laboratories Inc. Address 684 W. Maude Ave

Sunnyvale, CA 94086

Mark Briggs

USA

Date: October 19, 2001

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R 45129 Page 2 of 18 Pages

# TABLE OF CONTENTS

| COVER PAGE                                   |    |
|----------------------------------------------|----|
| DECLARATIONS OF COMPLIANCE                   | 2  |
| TABLE OF CONTENTS                            | 3  |
| SCOPE                                        | 5  |
| OBJECTIVE                                    | 5  |
| SUMMARY OF RESULTS                           | 6  |
| MEASUREMENT UNCERTAINTIES                    | 7  |
| EQUIPMENT UNDER TEST (EUT) DETAILS           |    |
| GENERAL                                      | 8  |
| ANTENNA                                      |    |
| ENCLOSURE                                    |    |
| MODIFICATIONS                                |    |
| SUPPORT EQUIPMENT                            |    |
| EUT INTERFACE PORTS                          |    |
| EUT OPERATION                                | 9  |
| ANTENNA REQUIREMENTS                         | 9  |
| TEST SITE                                    | 10 |
| GENERAL INFORMATION                          | 10 |
| CONDUCTED EMISSIONS CONSIDERATIONS           |    |
| RADIATED EMISSIONS CONSIDERATIONS            |    |
| MEASUREMENT INSTRUMENTATION                  | 11 |
| RECEIVER SYSTEM                              | 11 |
| INSTRUMENT CONTROL COMPUTER                  |    |
| LINE IMPEDANCE STABILIZATION NETWORK (LISN)  |    |
| POWER METER                                  |    |
| FILTERS/ATTENUATORS                          |    |
| ANTENNAS                                     | 12 |
| ANTENNA MAST AND EQUIPMENT TURNTABLE         |    |
| INSTRUMENT CALIBRATION                       |    |
| TEST PROCEDURES                              | 13 |
| EUT AND CABLE PLACEMENT                      | 13 |
| CONDUCTED EMISSIONS                          |    |
| RADIATED EMISSIONS                           | 13 |
| CONDUCTED EMISSIONS FROM ANTENNA PORT        | 14 |
| SPECIFICATION LIMITS AND SAMPLE CALCULATIONS | 14 |
| FCC 15.407 (A) OUTPUT POWER LIMITS           | 15 |
| RS-210 6.2.2(Q1) OUTPUT POWER LIMITS         |    |
| SPURIOUS RADIATED EMISSIONS LIMITS           |    |
| AC POWER PORT CONDUCTED EMISSIONS LIMITS     |    |
| SAMPLE CALCULATIONS - CONDUCTED EMISSIONS    |    |
| SAMPLE CALCULATIONS - RADIATED EMISSIONS     |    |

# TABLE OF CONTENTS (Continued)

| APPENDIX 1: Test Equipment Calibration Data                                 | 1  |
|-----------------------------------------------------------------------------|----|
| APPENDIX 1: Test Equipment Calibration DataAPPENDIX 2: Test Data Log Sheets | 2  |
| APPENDIX 3: Test Configuration Photographs                                  | 3  |
| APPENDIX 4: Proposed FCC ID Label & Label Location                          |    |
| APPENDIX 5: Detailed Photographs of                                         |    |
| Atheros Communications Model AR5BAP-00030Construction                       | 5  |
| APPENDIX 6: Operator's Manual for                                           | 6  |
| Atheros Communications Model AR5BAP-00030                                   | 6  |
| APPENDIX 7: Block Diagram of                                                | 7  |
| Atheros Communications Model AR5BAP-00030                                   |    |
| APPENDIX 8: Schematic Diagrams for                                          | 8  |
| Atheros Communications Model AR5BAP-00030                                   |    |
| APPENDIX 9: Theory of Operation for                                         | 9  |
| Atheros Communications Model AR5BAP-00030                                   |    |
| APPENDIX 10: Advertising Literature                                         | 10 |
| APPENDIX 11: RF Exposure Information                                        | 11 |

### **SCOPE**

An electromagnetic emissions test has been performed on the Atheros Communications model AR5BAP-00030 pursuant to Subpart E of Part 15 of FCC Rules for Unlicensed National Information Infrastructure (UNII) devices and RSS-210 Issue 4 for licence-exempt local area network (LELAN) devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Atheros Communications model AR5BAP-00030 and therefore apply only to the tested sample. The sample was selected and prepared by Eric Dukatz of Atheros Communications.

#### **OBJECTIVE**

The primary objective of the manufacturer is compliance with Subpart E of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

File: R 45129 Page 5 of 18 Pages

## **SUMMARY OF RESULTS**

The test data below represents the highest recorded measurements with respect to the FCC Part 15 Subpart E and RSS 210 limits. Unless stated otherwise, the complete data can be found in the Tests Data Sheets (Exhibit 2) submitted with this report.

| FCC Part 15                                                                                                                 | RSS 210           | Description                               | Comments                             | Result |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------|--------------------------------------|--------|
| Section Section Commitments Section Section Section Commitments Result  Operation in the 5.15 – 5.25 GHz Band (Normal Mode) |                   |                                           |                                      |        |
| Operation in ti                                                                                                             | le 5.15 – 5.25 Gn |                                           | T                                    | 1      |
| 15.407 (d)                                                                                                                  |                   | Maximum Antenna<br>Gain /Integral Antenna | 6 dBi Integral                       | Pass   |
| 15.407(e)                                                                                                                   |                   | Indoor operation only                     | Refer to user's manual in Exhibit 7  | Pass   |
| 15.407(a) (1)                                                                                                               | 6.2.2 q1 (i)      | Bandwidth                                 | 25.83 MHz (26-dB), 17.33 MHz (20-dB) | N/A    |
| 15.407(a) (1)                                                                                                               | 6.2.2 q1 (i)      | Output Power                              | 13.9 dBm                             | Pass   |
| 15.407(a) (1))                                                                                                              | 6.2.2 q1 (i)      | Power Spectral<br>Density                 | -1.4 dBm/MHz                         | Pass   |
| Operation in th                                                                                                             | ne 5.25 – 5.35 GH | Iz Band (Normal Mode)                     | I                                    |        |
| - F                                                                                                                         |                   | Maximum Antenna<br>Gain                   | 6 dBi Integral                       | Pass   |
| 15.407(a) (2)                                                                                                               | 6.2.2 q1 (ii)     | Bandwidth                                 | 32.67 MHz (26-dB), 18.3 MHz (20-dB)  | N/A    |
| 15.407(a) (2)                                                                                                               | 6.2.2 q1 (ii)     | Output Power                              | 21.1 dBm                             | Pass   |
| 15.407(a) (2))                                                                                                              | 6.2.2 q1 (ii)     | Power Spectral<br>Density                 | 6.1 dBm/MHz                          | Pass   |
| Operation in th                                                                                                             | e 5.15 – 5.25 GH  | Iz Band (Turbo Mode)                      |                                      |        |
| 15.407 (d)                                                                                                                  |                   | Maximum Antenna<br>Gain /Integral Antenna | 6 dBi Integral                       | Pass   |
| 15.407(e)                                                                                                                   |                   | Indoor operation only                     | Refer to user's manual in Exhibit 7  | Pass   |
| 15.407(a) (1)                                                                                                               | 6.2.2 q1 (i)      | Bandwidth                                 | 43.8 MHz (26-dB), 33.17 MHz (20-dB)  | N/A    |
| 15.407(a) (1)                                                                                                               | 6.2.2 q1 (i)      | Output Power                              | 16 dBm                               | Pass   |
| 15.407(a) (1))                                                                                                              | 6.2.2 q1 (i)      | Power Spectral<br>Density                 | -1.6 dBm / MHz                       | Pass   |
| Operation in th                                                                                                             | ne 5.25 – 5.35 GH | Iz Band (Turbo Mode)                      |                                      |        |
|                                                                                                                             |                   | Maximum Antenna<br>Gain                   | 6 dBi Integral                       | Pass   |
| 15.407(a) (2)                                                                                                               | 6.2.2 q1 (ii)     | Bandwidth                                 | 54.7 MHz (26-dB), 33.17 MHz (20-dB)  | N/A    |
| 15.407(a) (2)                                                                                                               | 6.2.2 q1 (ii)     | Output Power                              | 21.2 dBm                             | Pass   |
| 15.407(a) (2))                                                                                                              | 6.2.2 q1 (ii)     | Power Spectral<br>Density                 | 3.8 dBm/MHz                          | Pass   |
| Spurious Emissions (All Modes)                                                                                              |                   |                                           |                                      |        |
| 15.407(b) (5) /<br>15.209                                                                                                   | 6.2.2 q1 (ii)     | Spurious Emissions<br>below 1GHz          | -4.2 dB @ 67.92MHz                   | Pass   |
| 15.407(b) (2)                                                                                                               | 6.2.2 q1 (ii)     | Spurious Emissions above 1GHz             | -0.6 dB @ 10,538 MHz                 | Pass   |

File: R 45129 Page 6 of 18 Pages

| FCC Part 15<br>Section | RSS 210<br>Section | Description                                                                      | Comments                                                                                                                                                                                                                                                  | Result |
|------------------------|--------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Other Require          | ements (Both Mo    | des)                                                                             |                                                                                                                                                                                                                                                           | •      |
| -                      | 6.2.2 q(iv)(a)     | Digital Modulation                                                               | Digital Modulation is used, refer<br>to the "Theory of Operations" in<br>exhibit 8 for a detailed<br>explanation.                                                                                                                                         | Pass   |
|                        | 6.2.2 q(iv)(b)     | Peak Spectral Density                                                            | 15.6 dBm/MHz in Normal mode                                                                                                                                                                                                                               | Pass   |
| 15.407(a)(6)           |                    | Peak Excursion Ratio                                                             | Less than 13dB                                                                                                                                                                                                                                            | Pass   |
|                        | 6.2.2 q(iv)(c)     | Channel Selection                                                                | The device was tested on the following channels in turbo mode: 9, 13 and 17. The device was tested on the following channels in normal mode: 6, 14 and 20. These channels represent the lowest, center and highest frequencies of operation in each mode. | N/A    |
| 15.407 (c)             | 6.2.2 q(iv)(d)     | Automatic Discontinuation of Operation in the absence of information to transmit | Operation is discontinued in the absence of information to transmit, refer to the "Theory of Operations" in exhibit 9 for a detailed explanation.                                                                                                         | Pass   |
| 15.407 (g)             | 6.2.2 q(iv)(e)     | Frequency Stability                                                              | Frequency stability is =/-20ppm. Refer to the "Theory of Operations" (exhibit 9) for a detailed analysis.                                                                                                                                                 | Pass   |
|                        | 6.2.2 q(iv)(g)     | User Manual information                                                          | All relevant statements have been included in the user's manuals. Refer to Exhibit 6 for details                                                                                                                                                          | N/A    |
| 15.407 (f)             | 6.2.2 q(iv)(g)     | RF Exposure<br>Requirements                                                      | Refer to MPE Calculations<br>(Exhibit 11)                                                                                                                                                                                                                 | Pass   |
| 15.407(b) /<br>15.207  | 6.6                | AC Conducted<br>Emissions                                                        | -13dB @ 0.694MHz                                                                                                                                                                                                                                          | Pass   |

### **MEASUREMENT UNCERTAINTIES**

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

| Measurement Type    | Frequency Range (MHz) | Calculated Uncertainty (dB) |
|---------------------|-----------------------|-----------------------------|
| Conducted Emissions | 0.15 to 30            | + 2.4                       |
| Radiated Emissions  | 30 to 1000            | ± 3.2                       |

File: R 45129 Page 7 of 18 Pages

## **EQUIPMENT UNDER TEST (EUT) DETAILS**

### GENERAL

The Atheros Communications model AR5BAP-00030 is a UNII radio, which is designed to provide LAN access.

Normally, the EUT would be wall-mounted during operation. The EUT was treated as tabletop equipment during testing to simulate the end user environment. The electrical rating of the EUT is 120 V, 60 Hz, 3 Amps.

The sample was received on October 11, 2001 and tested on October 11 and October 18, 2001. The EUT consisted of the following component(s):

| Manufacturer/Model/Description               | Serial Number |
|----------------------------------------------|---------------|
| Atheros Communications AR5BAP-00030 Wireless | 143           |
| LAN Access Point                             |               |
| Atheros Communications AR5BAP-00030 Wireless | 144           |
| LAN Access Point                             |               |

### ANTENNA

The EUT uses an integral antenna with a gain of 6 dBi.

### **ENCLOSURE**

The EUT enclosure is primarily constructed with a plated steel shield inside a plastic enclosure. It measures approximately 17 cm wide by 20 cm deep by 7 cm high.

### **MODIFICATIONS**

The EUT required the following modifications during testing in order to comply with the specifications for radiated emissions below 1GHz:

A 2.5" x 2.25" piece of Echosorb material ARC DD-10214 was added to the top cover of the EUT above the micro-controller and SDRAM

File: R 45129 Page 8 of 18 Pages

# Test Report Report Date: October 19, 2001

## SUPPORT EQUIPMENT

The following equipment was used as local support equipment when testing antenna port emissions, radiated emissions above 1GHz and for measuring the output power:

| Manufacturer | Model    | Description  | Serial Number | FCC ID |
|--------------|----------|--------------|---------------|--------|
| IBM          | 2647-8BU | Laptop       | 78-RUPN5      | DoC    |
| Boonton      | 4531     | Power Meter  | 100201        | N/A    |
| Boonton      | 57318    | Power Sensor | 2110          | N/A    |

The following equipment was used as remote support equipment when testing conducted and radiated emissions below 1GHz:

| Manufacturer | Model    | Description | Serial Number  | FCC ID |
|--------------|----------|-------------|----------------|--------|
| IBM          | Thinkpad | Laptop      | 78-RVPN5 10/02 | DoC    |
| Netgear      | DS108    | Hub         | DS18J18380052  | DoC    |

#### **EUT INTERFACE PORTS**

The I/O cabling configuration during emissions testing was as follows:

|          |               | Cable(s)    |                        |            |
|----------|---------------|-------------|------------------------|------------|
| Port     | Connected To  | Description | Shielded or Unshielded | Length (m) |
| Ethernet | Laptop (Hub*) | RJ-45       | Unshielded             | 30         |

<sup>\*</sup> The hub was used between the EUT and the laptop for radiated and conducted emissions tests below 1GHz.

### **EUT OPERATION**

The radio was transmitting at full power on the specified channel with a duty cycle of 99% (maximum allowed). The EUT was tested in both normal mode (channel bandwidth of approximately 30 MHz) and turbo mode (channel bandwidth of approximately 60 MHz).

"Normal Mode" allows data rates of up to 54 Mb/s. The device was, therefore, tested in Normal mode at the data rate that produced the highest output power for normal mode (6 Mb/s).

"Turbo Mode" allows data rates of up to 72Mb/s. At data rates higher than 12Mb/s the PA gain is reduced to improve signal fidelity. The device was, therefore, tested in turbo mode at the data rate that produced the highest output power for turbo mode (12Mb/s).

### **ANTENNA REQUIREMENTS**

As the device is intended to operate in the 15.15 - 15.25 GHz band an integral antenna as detailed in 15.407 (d) and RSS-210 6.2.2(q1) (i) is required. The antenna for the device is an integral antenna with a gain of 6 dBi.

File: R 45129 Page 9 of 18 Pages

### TEST SITE

#### GENERAL INFORMATION

Final test measurements were taken on October 11, October 15 and October 18, 2001 at the Elliott Laboratories Open Area Test Sites #2 & #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 4 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

#### CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions' testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

### RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

File: R 45129 Page 10 of 18 Pages

Test Report
Report Date: October 19, 2001

## **MEASUREMENT INSTRUMENTATION**

#### RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

#### INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

### LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R 45129 Page 11 of 18 Pages

### **POWER METER**

Both a spectrum analyzer and a power meter are used for all direct output power measurements from transmitters.

#### FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

#### **ANTENNAS**

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

#### ANTENNA MAST AND FOUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

#### INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R 45129 Page 12 of 18 Pages

### TEST PROCEDURES

### **EUT AND CABLE PLACEMENT**

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

### **CONDUCTED EMISSIONS**

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

#### RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission, is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions, which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

File: R 45129 Page 13 of 18 Pages

### CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

### SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

$$E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \quad \text{microvolts per meter}$$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

File: R 45129 Page 14 of 18 Pages

### FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

| Operating<br>Frequency<br>(MHz) | Output Power     | Power Spectral Density |
|---------------------------------|------------------|------------------------|
| 5150 - 5250                     | 50mW (17 dBm)    | 4 dBm/MHz              |
| 5250 - 5350                     | 250 mW (24 dBm)  | 11 dBm/MHz             |
| 5725 – 5825                     | 1 Watts (30 dBm) | 17 dBm/MHz             |

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

### RS-210 6.2.2(q1) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

| Operating Frequency (MHz) | Output Power     | Power Spectral Density |
|---------------------------|------------------|------------------------|
| 5150 - 5250               | 200mW (23 dBm)   | 10 dBm/MHz             |
| 5250 - 5350               | 250 mW (24 dBm)  | 11 dBm/MHz             |
| 5725 – 5825               | 1 Watts (30 dBm) | 17 dBm/MHz             |

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

File: R 45129 Page 15 of 18 Pages

### SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

| Frequency<br>Range<br>(MHz) | Limit<br>(uV/m @ 3m) | Limit<br>(dBuV/m @ 3m) |
|-----------------------------|----------------------|------------------------|
| 30 to 88                    | 100                  | 40                     |
| 88 to 216                   | 150                  | 43.5                   |
| 216 to 960                  | 200                  | 46.0                   |
| Above 960                   | 500                  | 54.0                   |

The table below shows the limits for unwanted (spurious) emissions outside of the restricted band.

| Operating Frequency (MHz) | EIRP<br>Limit<br>(dBm) | Equivalent Field Strength At 3m (dBuV/m) |
|---------------------------|------------------------|------------------------------------------|
| 5150 - 5250               | -27 dBm                | 68.3 dBuV/m                              |
| 5250 - 5350               | -27 dBm                | 68.3 dBuV/m                              |
| 5725 – 5825               | -27 dBm (note 1)       | 68.3 dBuV/m                              |
|                           | -17 dBm (note 2)       | 78.3 dBuV/m                              |

Note 1: Applies to spurious signals separated by more than 10 MHz from the allocated band. Note 2: Applies to spurious signals within 10 MHz of the allocated band.

### AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205 and Industry Canada RSS-210 section 6.6.

| Frequency<br>Range | Limit | Limit  |
|--------------------|-------|--------|
| (MHz)              | (uV)  | (dBuV) |
| 0.450 to 30.000    | 250   | 48     |

File: R 45129 Page 16 of 18 Pages

### SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r$  = Receiver Reading in dBuV

B = Broadband Correction Factor\*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

\* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

File: R 45129 Page 17 of 18 Pages

### SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 $F_d$  = Distance Factor in dB

 $D_m = Measurement Distance in meters$ 

 $D_S$  = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 $R_r$  = Receiver Reading in dBuV/m

 $F_d$  = Distance Factor in dB

 $R_C$  = Corrected Reading in dBuV/m

 $L_s$  = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R 45129 Page 18 of 18 Pages

# APPENDIX 1: Test Equipment Calibration Data

1 Page

File: R45129 Appendix Page 1 of 11

## Antenna Conducted and Radiated Emissions, 12-Oct-01 09:02 PM

Engineer: jmartinez

| Manufacturer    | Description                       | Model #         | Assett # | Cal interval | Last Calibrated | Cal Due  |
|-----------------|-----------------------------------|-----------------|----------|--------------|-----------------|----------|
| Hewlett Packard | High Pass filter, 8.2GHz          | P/N 84300-80039 | 1156     | 12           | 3/27/01         | 3/27/02  |
| EMCO            | Horn Antenna, D. Ridge 1-18GHz    | 3115            | 868      | 12           | 10/26/00        | 10/26/01 |
| Hewlett Packard | Microwave Preamplifier, 1-26.5GHz | 8449B           | 870      | 12           | 1/11/01         | 1/11/02  |
| Hewlett Packard | Spectrum Analyzer 9KHz - 26GHz    | 8563E           | 284      | 12           | 2/22/01         | 2/22/02  |

Antenna Conducted Emissions, 18-Oct-01 12:42 PM

Engineer: jmartinez

| <u>Manufacturer</u> | <u>Description</u>                             | Model # | Assett # | Cal interval | Last Calibrated | Cal Due |
|---------------------|------------------------------------------------|---------|----------|--------------|-----------------|---------|
| Hewlett Packard     | Microwave EMI test system (SA40, 30Hz - 40GHz) | 84125C  | 1149     | 12           | 2/5/01          | 2/5/02  |

# APPENDIX 2: Test Data Log Sheets

## **ELECTROMAGNETIC EMISSIONS**

**TEST LOG SHEETS** 

AND

**MEASUREMENT DATA** 

T 45008 62 Pages

File: R45129 Appendix Page 2 of 11

| Elliott EMC Test Data |                            |               |             |  |
|-----------------------|----------------------------|---------------|-------------|--|
| Client:               | Atheros Communications     | Job Number:   | J44997      |  |
| Model:                | AR5BAP-00030               | T-Log Number: | T45008      |  |
|                       |                            | Proj Eng:     | Mark Briggs |  |
| Contact:              | Eric Dukatz                |               |             |  |
| Emissions Spec:       | FCC 15 Sub. B & E, RSS-210 | Class:        | В           |  |
| Immunity Spec:        | -                          | Environment:  | -           |  |

For The

# **Atheros Communications**

Model

AR5BAP-00030



| Client:         | Atheros Communications     | Job Number:   | J44997      |
|-----------------|----------------------------|---------------|-------------|
| Model:          | AR5BAP-00030               | T-Log Number: | T45008      |
|                 |                            | Proj Eng:     | Mark Briggs |
| Contact:        | Eric Dukatz                |               |             |
| Emissions Spec: | FCC 15 Sub. B & E, RSS-210 | Class:        | В           |
| Immunity Spec:  | -                          | Environment:  | -           |

## **EUT INFORMATION**

## **General Description**

The EUT is a 802.11A Wireless LAN access point. Normally, the EUT would be wall-mounted during operation. The EUT was treated as table-top equipment during testing to simulate the end user environment. The electrical rating of the EUT is 120 V, 60 Hz, 3 Amps.

**Equipment Under Test** 

| Manufacturer              | Model        | Description                   | Serial Number | FCC ID |
|---------------------------|--------------|-------------------------------|---------------|--------|
| Atheros<br>Communications | AR5BAP-00030 | Wirelesss LAN Access<br>Point | 143           | -      |
| Atheros<br>Communications | AR5BAP-00030 | Wirelesss LAN Access<br>Point | 144           | -      |

### **Antenna**

The EUT uses an integral antenna with a gain of 6 dBi.

## **EUT Enclosure**

The EUT enclosure is primarily constructed of plastic. It measures approximately 17 cm wide by 13 cm deep by 11 cm high (with antennas vertical).

**Modification History** 

| Mod. # Test Date |   | Date                    | Modification |                                                      |  |  |
|------------------|---|-------------------------|--------------|------------------------------------------------------|--|--|
|                  | 1 | Radiated Emissions (30- | 10/15/2001   | Added Echosorb material ARC DD-10214 to top cover of |  |  |
|                  |   | 1000 MHz)               |              | EUT,covering microcontroller and SDRAM               |  |  |
|                  |   |                         |              |                                                      |  |  |

| CT | 711 | •    |
|----|-----|------|
|    | ΨH  | iott |
|    | 71  | IOLL |
| -  |     | 4000 |

| Client:         | Client: Atheros Communications Job Number: J44997 |              | J44997      |
|-----------------|---------------------------------------------------|--------------|-------------|
| Model:          | el: AR5BAP-00030 T-Log Number: T45008             |              | T45008      |
|                 |                                                   | Proj Eng:    | Mark Briggs |
| Contact:        | Eric Dukatz                                       |              |             |
| Emissions Spec: | FCC 15 Sub. B & E, RSS-210                        | Class:       | В           |
| Immunity Spec:  | -                                                 | Environment: | -           |

# **Test Configuration #1**

## **Local Support Equipment**

| Manufacturer | Model | Description | Serial Number | FCC ID |  |
|--------------|-------|-------------|---------------|--------|--|
| none         |       |             |               |        |  |

## **Remote Support Equipment**

| Manufacturer | Model    | Description | Serial Number  | FCC ID |
|--------------|----------|-------------|----------------|--------|
| IBM          | Thinkpad | Laptop      | 78-RVPN5 10/02 | DoC    |
| Netgear      | DS108    | Hub         | DS18J18380052  | DoC    |

## **Interface Ports**

|                |              | Cable(s)                              |            |    |  |
|----------------|--------------|---------------------------------------|------------|----|--|
| Port           | Connected To | Description Shielded or Unshielded Le |            |    |  |
| DC power input | transformer  | 2-wire                                | Unshielded | 1  |  |
| RJ 45          | Hub          | CAT 5                                 | Unshielded | 30 |  |

Note: The serial port was not connected as the manufacturer stated that this is for configuration purpose and therefore would not normally be connected.

# **EUT Operation During Emissions (Digital Device and Radio Testing)**

Serial Number 144 was used with the Tx 99.SCR set at 5.26GHz. The EUT was in transmit mode, powered via external 3.3V DC input. The EUT contained internal shield over RF section plus larger shield covering entire PCB.



| Client:         | Atheros Communications     | Job Number:   | J44997      |
|-----------------|----------------------------|---------------|-------------|
| Model:          | AR5BAP-00030               | T-Log Number: | T45008      |
|                 |                            | Proj Eng:     | Mark Briggs |
| Contact:        | Eric Dukatz                |               |             |
| Emissions Spec: | FCC 15 Sub. B & E, RSS-210 | Class:        | В           |
| Immunity Spec:  | -                          | Environment:  | -           |

# **Test Configuration #2**

## **Local Support Equipment**

| Manufacturer | Model    | Description  | Serial Number   | FCC ID |
|--------------|----------|--------------|-----------------|--------|
| Manufacturei | Model    | Description  | Serial Nullibei | FCC ID |
| IBM          | 2647-8BU | Laptop       | 78-RUPN5        | DoC    |
| Boonton      | 4531     | Power Meter  | 100201          | N/A    |
| Boonton      | 57318    | Power Sensor | 2110            | N/A    |

### **Remote Support Equipment**

| Manufacturer | Model | Description | Serial Number | FCC ID |  |
|--------------|-------|-------------|---------------|--------|--|
| None         |       |             |               |        |  |

## **Interface Ports**

|          |              | Cable(s)                                  |  |    |  |
|----------|--------------|-------------------------------------------|--|----|--|
| Port     | Connected To | Description Shielded or Unshielded Length |  |    |  |
| Ethernet | Laptop       | RJ-45 Unshielded                          |  | 30 |  |
| Serial   | Laptop       | RS-232 Shielded 1                         |  |    |  |

## **EUT Operation During Emissions Testing (Radio)**

The radio was transmitting at full power on the specified channel with a duty cycle of 99% (maximum allowed). The EUT was tested in both normal mode (channel bandwidth of approximately 30 MHz) and turbo mode (channel bandwidth of approximately 60 MHz).

"Normal Mode" allows data rates of up to 54 Mb/s. The device was, therefore, tested in normal mode at the data rate that produced the highest output power for normal mode (6 Mb/s).

"Turbo Mode" allows data rates of up to 72Mb/s. At data rates higher than 12Mb/s the PA gain is reduced to improve signal fidelity. The device was, therefore, tested in turbo mode at the data rate that produced the highest output power in that mode (12Mb/s).

| Elliott EMC |                            |               | IC Test Data |
|-------------|----------------------------|---------------|--------------|
| Client:     | Atheros Communications     | Job Number:   | J44997       |
| Model:      | AR5BAP-00030               | T-Log Number: | T45008       |
|             |                            | Proj Eng:     | Mark Briggs  |
| Contact:    | Eric Dukatz                |               |              |
| Spec:       | FCC 15 Sub. B & E, RSS-210 | Class:        | В            |

# FCC Part 15 Subpart E Tests - NORMAL MODE

## **Test Specifics**

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

| Date of Test:         | 10/11/20001 | Config. Used: 2                |
|-----------------------|-------------|--------------------------------|
| Test Engineer:        | Jmartinez   | Config Change: None            |
| <b>Test Location:</b> | SVOATS# 4   | Host Unit Voltage 120Vac, 60Hz |

## **General Test Configuration**

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 16°C

Rel. Humidity: 42%

Summary of Results: Normal Mode

| Run # | Test Performed                               | Limit              | Result | Comments                                   |
|-------|----------------------------------------------|--------------------|--------|--------------------------------------------|
| 1     | Output Power                                 | 15.407(a) (1), (2) | Pass   | 13.9dBm /21.1dBm                           |
| 2     | Power Spectral Density (PSD)                 | 15.407(a) (1), (2) | Pass   | -1.4 / 6.1 dBm/MHz                         |
| 3     | 26dB Bandwidth                               | 15.407             | Pass   | > 20 MHz                                   |
| 3     | 20 dB Bandwidth                              | RSS 210            | Pass   | Used 26 dB BW                              |
| 4     | Peak Excursion Envelope                      | 15.407(a) (6)      | Pass   | Peak to average<br>excursion < 13dB        |
| 5     | Antenna Conducted - Out of<br>Band Spurious  | 15.407(b)          | Pass   | All emissions below the<br>27dBm/MHz limit |
| 6     | RE, 1000 - 40000 MHz -<br>Spurious Emissions | 15.407(b)(6)       | Pass   | -1.3dB@10520MHz<br>(EUT@ 5.26GHz)          |

| <b>Elliott</b> |                            | EMC Test Data |             |
|----------------|----------------------------|---------------|-------------|
| Client:        | Atheros Communications     | Job Number:   | J44997      |
| Model:         | AR5BAP-00030               | T-Log Number: | T45008      |
|                |                            | Proj Eng:     | Mark Briggs |
| Contact:       | Eric Dukatz                |               |             |
| Spec:          | FCC 15 Sub. B & E, RSS-210 | Class:        | В           |

# Modifications Made During Testing:

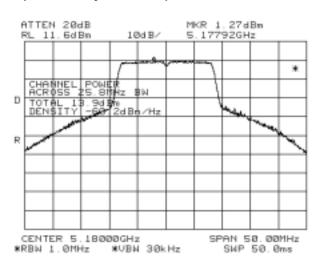
No modifications were made to the EUT during testing

# **Deviations From The Standard**

No deviations were made from the requirements of the standard.

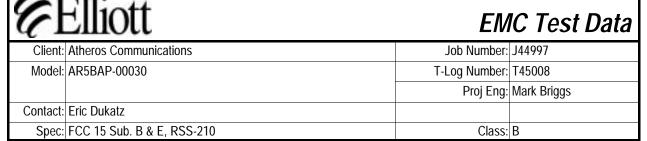
Run #1: Output Power; S/N: 144

Antenna Gain: 6 dBi

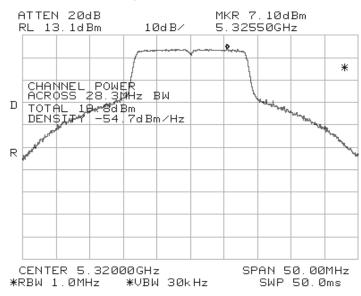

| Channel | Frequency (MHz) | 26-dB<br>Signal BW | Output Power (dBm) | FCC Limit (dBm) (note 3) | Comments |
|---------|-----------------|--------------------|--------------------|--------------------------|----------|
| Low     | 5180            | 25.83              | 13.9               | 17.0                     | Note 2   |
| LOW     | 5180            | 25.83              | 13.9               | 17.0                     | Note 1   |
| Mid     | 5260            | 32.67              | 18.1               | 24.0                     | Note 2   |
| IVIIU   | 5260            | 32.67              | 21.1               | 24.0                     | Note 1   |
| High    | 5320            | 28.25              | 17.2               | 24.0                     | Note 2   |
| High    | 5320            | 28.25              | 19.8               | 24.0                     | Note 1   |

| Note 1: | Measured using spectrum analyzer's power measurement function (RBW = 1MHz, VBW = 30kHz)                         |
|---------|-----------------------------------------------------------------------------------------------------------------|
| Note 2: | Measured using a Boonton Power Meter with a peak power sensor in average mode                                   |
| Note 3: | RSS 210 limit is 23dBm in the 5.15 to 5.25 GHz band, 6dB higher than the FCC limit. This limit is based on the  |
| Note 3: | emission bandwidth and operating frequency.                                                                     |
| Note 4. | RSS 210 limit is 24dBm in the 5.25 to 5.35 GHz band, same as the FCC limit. This limit is based on the emission |
| Note 4: | bandwidth and operating frequency.                                                                              |
| Note 5: | Nominal power levels listed in the runs below are based on measuremnt with the power meter                      |





| Client:  | Atheros Communications     | Job Number:   | J44997      |
|----------|----------------------------|---------------|-------------|
| Model:   | AR5BAP-00030               | T-Log Number: | T45008      |
|          |                            | Proj Eng:     | Mark Briggs |
| Contact: | Eric Dukatz                |               |             |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В           |

## Spectrum Analyzer channel power @ 5.18 GHz




### Spectrum Analyzer channel power @ 5.26 GHz



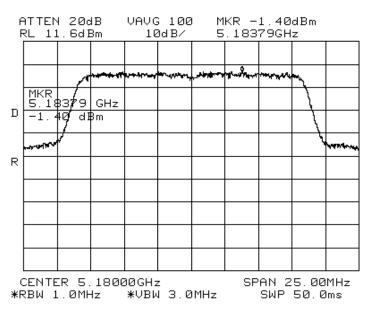


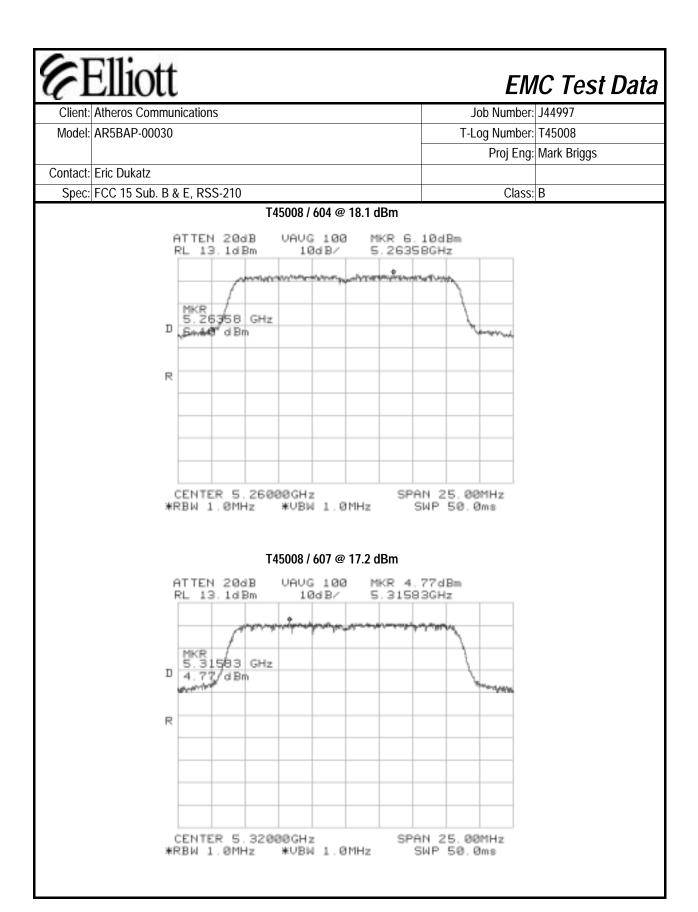
## Spectrum Analyzer channel power @ 5.32 GHz



| <b>Elliott</b> EMC Test Data   |           |                    |                |               |           |            |             |        |
|--------------------------------|-----------|--------------------|----------------|---------------|-----------|------------|-------------|--------|
|                                |           | Communications     |                |               | Jo        | ob Number: | J44997      |        |
| Model:                         | AR5BAP-   | 00030              |                |               | T-Lo      | og Number: | T45008      |        |
|                                |           |                    |                |               |           | Proj Eng:  | Mark Briggs |        |
| Contact:                       | Eric Duka | tz                 |                |               |           |            |             |        |
| Spec:                          | FCC 15 S  | ub. B & E, RSS-210 |                |               |           | Class:     | В           |        |
| Run #2: Power Spectral Density |           |                    |                |               |           |            |             |        |
| Antenna Gain: 6 dBi            |           |                    |                |               |           |            |             |        |
| ı                              |           |                    |                |               |           |            |             |        |
|                                | Channel   | Frequency (MHz)    | Power Spectral | FCC Limit (dB | m) note 2 | Graph F    | Reference   |        |
|                                | Low       | 5180               | -1.40          | 4.0           |           | T45008/60  | 2           | Note 1 |

|                                                                                                   | LOW                                                                                                     | 5180 | -1.40 | 4.0  | 145008/602 | Note 1 |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|-------|------|------------|--------|--|
|                                                                                                   | Mid                                                                                                     | 5260 | 6.1   | 11.0 | T45008/604 | Note 1 |  |
|                                                                                                   | High                                                                                                    | 5320 | 4.8   | 11.0 | T45008/607 | Note 1 |  |
|                                                                                                   |                                                                                                         |      |       |      |            |        |  |
| The above measurements were made using RBW = 1MHz, VBW = 1MHz, video averaging on. To demonstrate |                                                                                                         |      |       |      |            |        |  |
|                                                                                                   | compliance with PSS 210, the neak PSD was also measured using PRW- VRW-1MHz, video averaging off during |      |       |      |            |        |  |


compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off during the peak excursion measurements (run #4). As per RSS 210 requirements, the peak PSD of **7.9 dBm** in the 5.15 to 5.25 GHz band did not exceed the maximum permitted average PSD of 10dBm by more than 6dB. Similarly, in the 5.25-5.35GHz band, the peak power sepctral density of 15.6dBm did not exceed the maximum permitted average PSD of 11dBm by more than 6dB. No restriction is placed on the output power or average PSD with respect to RSS 210.


Note 2: RSS 210 limit is 10dBm/MHz in the 5.15 to 5.25 GHz band, 6dB higher than the FCC limit.

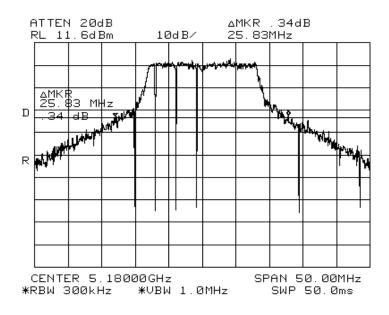
Note 1:

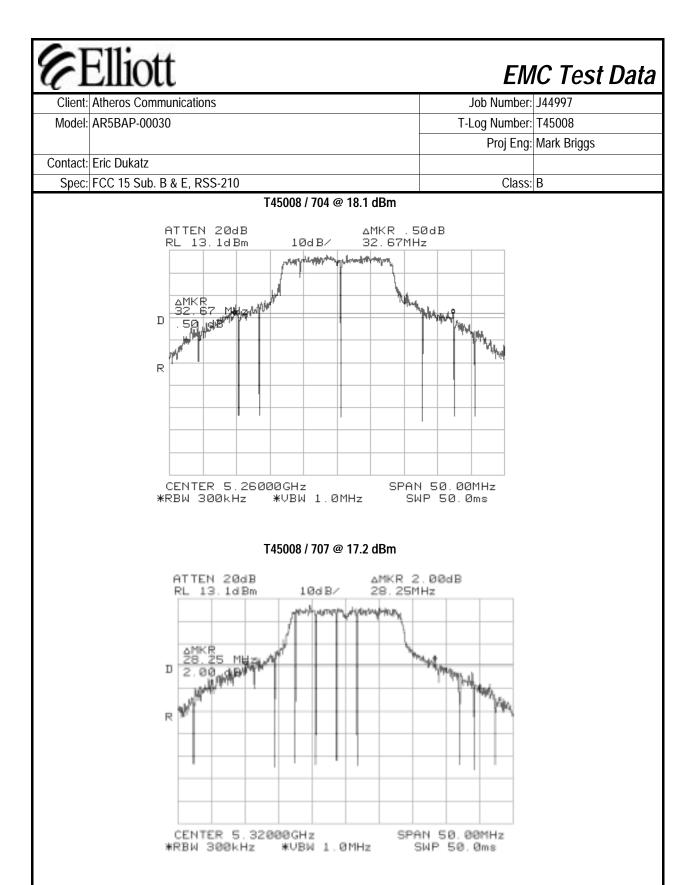
### Plots Showing Power Spectral Density (RBW = 1MHz, VBW = 1 MHz, video averaging ON)

### T45008 / 602 @ 13.9 dBm






| (F)      | Elliott                    | EMC Test Data |             |  |
|----------|----------------------------|---------------|-------------|--|
| Client:  | Atheros Communications     | Job Number:   | J44997      |  |
| Model:   | AR5BAP-00030               | T-Log Number: | T45008      |  |
|          |                            | Proj Eng:     | Mark Briggs |  |
| Contact: | Eric Dukatz                |               |             |  |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В           |  |


## Run #3: Signal Bandwidth

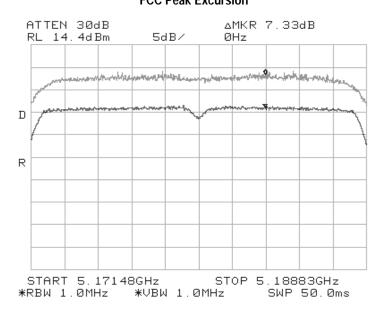
| Channel | Frequency (IVIHZ) | Resolution<br>Bandwidth | 26 dB Signal Bandwidth<br>(MHz) | 20 dB Signal<br>Bandwidth (MHz) | Graph reference # |
|---------|-------------------|-------------------------|---------------------------------|---------------------------------|-------------------|
| Low     | 5180              | 300 kHz                 | 25.83                           | 17.33                           | T45008/702        |
| Mid     | 5260              | 300 kHz                 | 32.67                           | 18.3                            | T45008/704        |
| High    | 5320              | 300 kHz                 | 28.25                           | 18.58                           | T45008/707        |

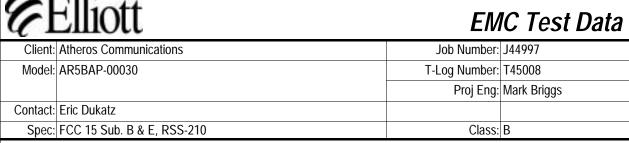
## **Plots Showing Signal Bandwidth**

### T45008 / 702 @ 13.9 dBm

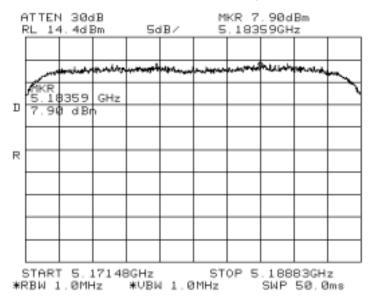


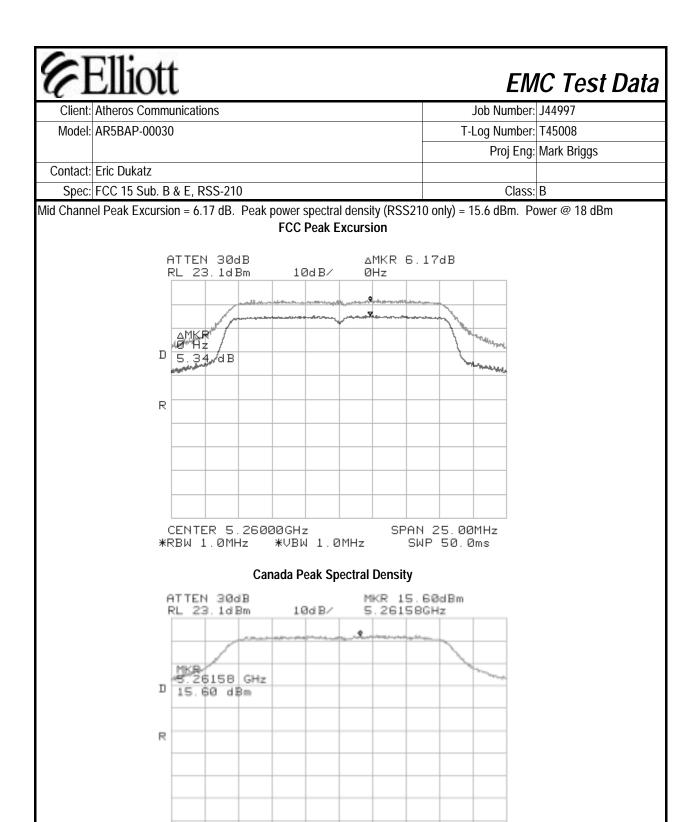



|          | Elliott                    | EMC Test Data |             |  |
|----------|----------------------------|---------------|-------------|--|
| Client:  | Atheros Communications     | Job Number:   | J44997      |  |
| Model:   | AR5BAP-00030               | T-Log Number: | T45008      |  |
|          |                            | Proj Eng:     | Mark Briggs |  |
| Contact: | Eric Dukatz                |               |             |  |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В           |  |


### Run #4: Peak Excursion Measurement

### **Plots Showing Peak Excursion**


Trace A: RBW = VBW = 1MHz
Trace B: RBW = 1 MHz, VBW = 30kHz


Low Channel Peak Excursion = 7.33 dB. Peak power spectral density (RSS210 only) = 7.90 dBm. Power @ 13.9 dBm FCC Peak Excursion





## **Canada Peak Spectral Density**

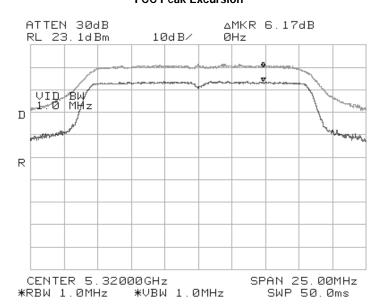




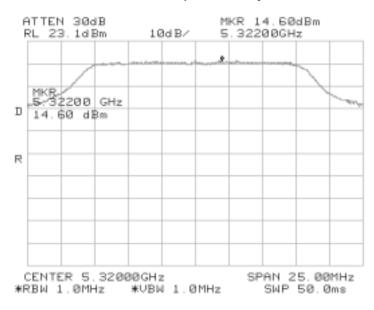
SPAN 25.00MHz

SWP 50.0ms

CENTER 5.26000GHz


\*RBW 1.0MHz \*VBW 1.0MHz




# EMC Test Data

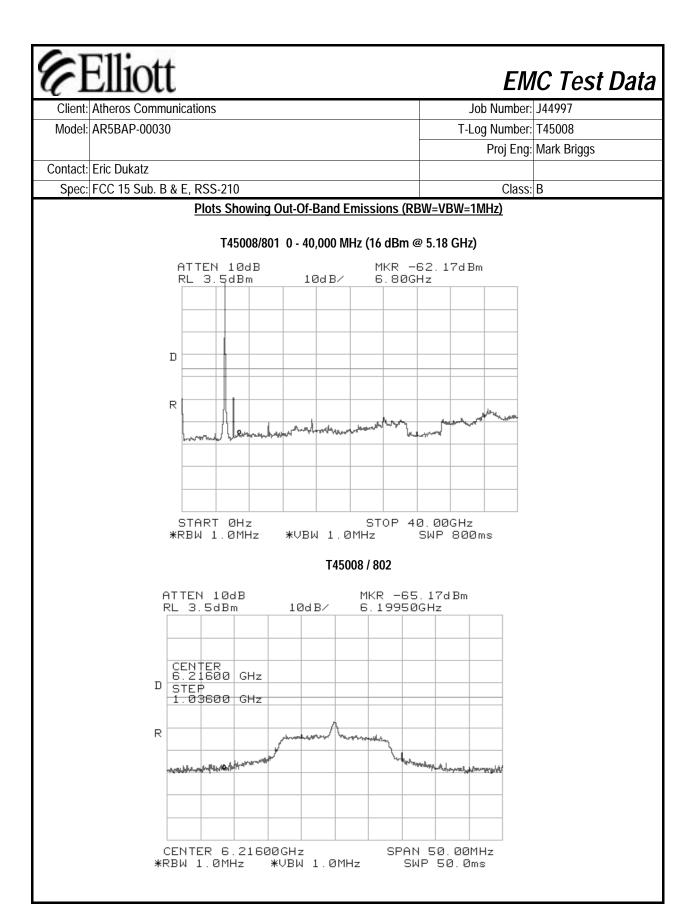
| _        |                            |               |             |
|----------|----------------------------|---------------|-------------|
| Client:  | Atheros Communications     | Job Number:   | J44997      |
| Model:   | AR5BAP-00030               | T-Log Number: | T45008      |
|          |                            | Proj Eng:     | Mark Briggs |
| Contact: | Eric Dukatz                |               |             |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В           |

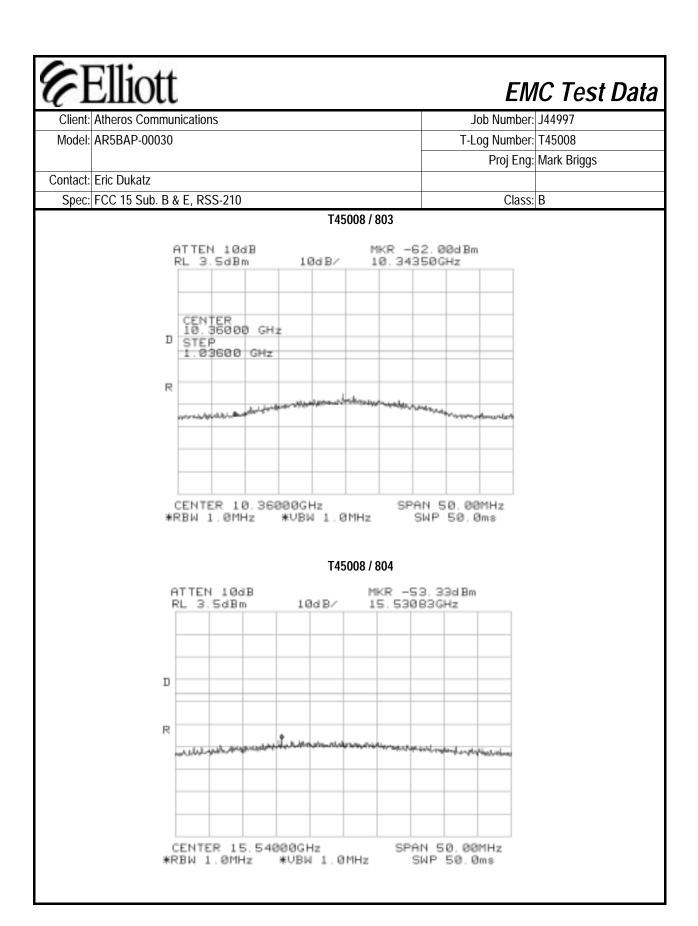
High Channel Peak Excursion = 6.17 dB. Peak power spectral density (RSS210 only) = 14.6 dBm. Power @ 17.2 dBm FCC Peak Excursion

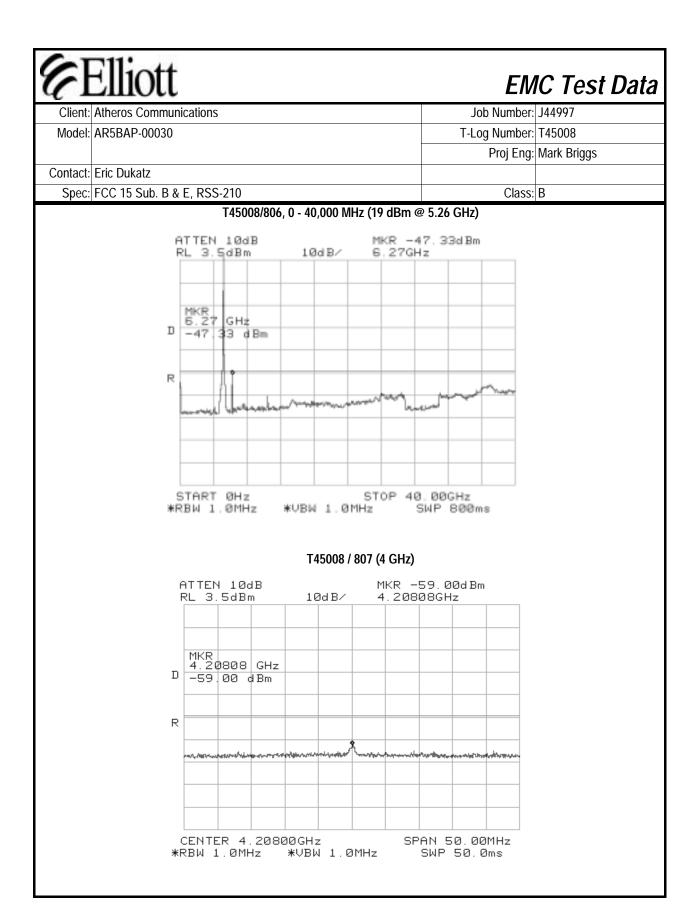


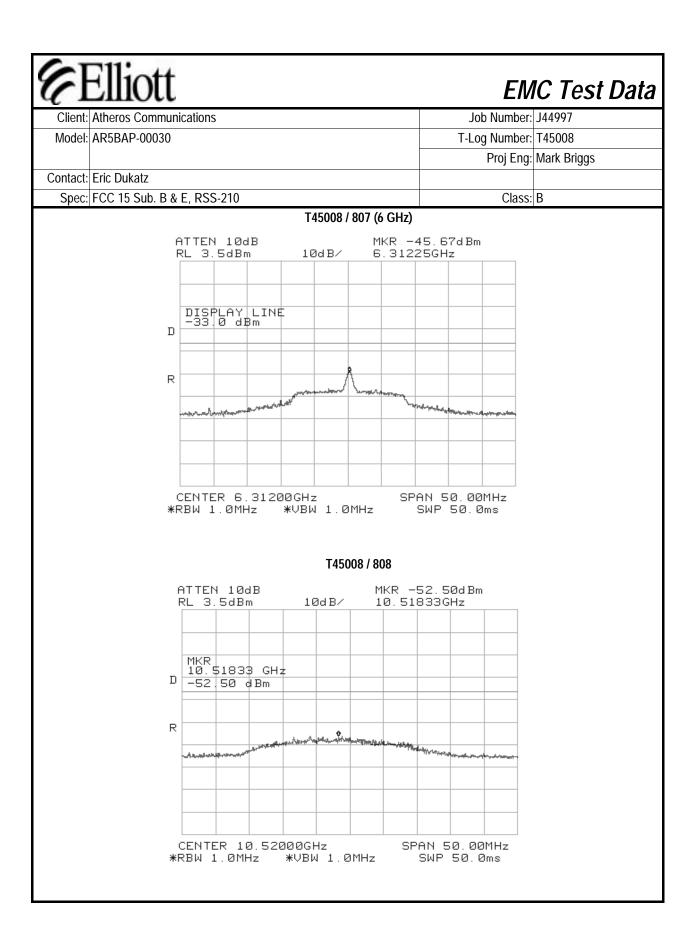
## **Canada Peak Spectral Density**

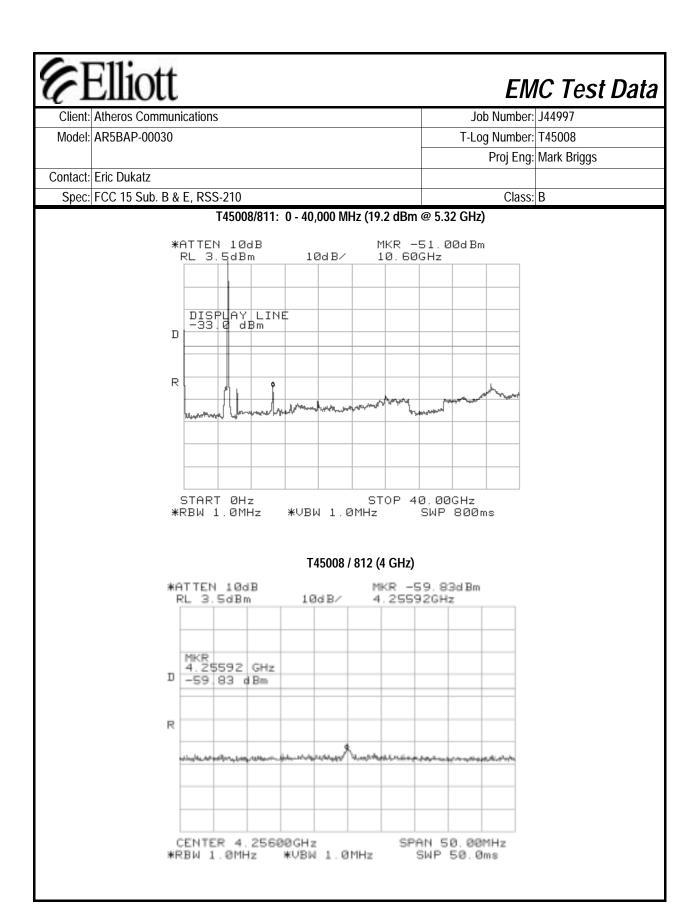


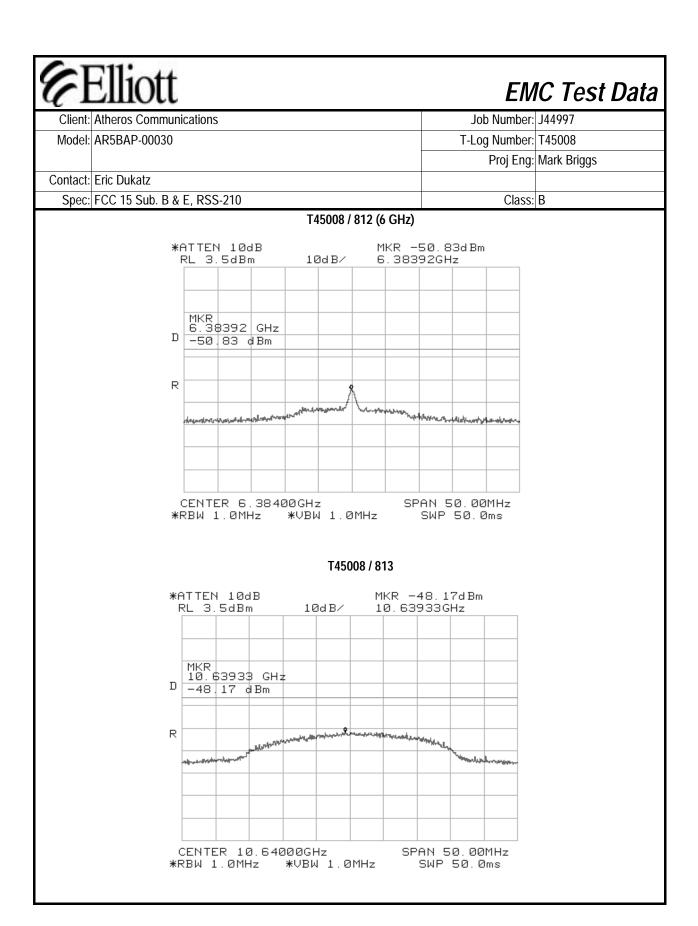

| (F)      | Elliott                    | EM            | IC Test Data |
|----------|----------------------------|---------------|--------------|
| Client:  | Atheros Communications     | Job Number:   | J44997       |
| Model:   | AR5BAP-00030               | T-Log Number: | T45008       |
|          |                            | Proj Eng:     | Mark Briggs  |
| Contact: | Eric Dukatz                |               |              |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В            |

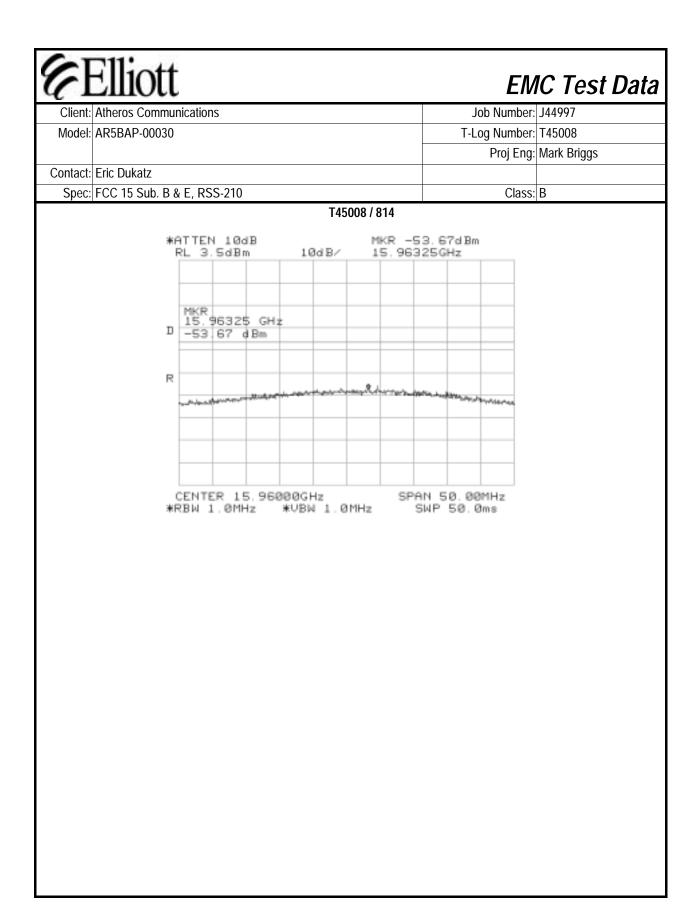

# Run #5: Out Of Band Spurious Emissions - Antenna Conducted


The antenna gain of the radios integral antenna is 6 dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not


| Channel | Frequency (MHz) | Frequency Range  | Highest Spurious Signal         | Graph reference # |
|---------|-----------------|------------------|---------------------------------|-------------------|
|         |                 | 30 - 1000 MHz    | Note 4                          | T45008/801        |
|         |                 | 1 to 7 GHz       | 6216 (Note 3)                   | T45008/801 & 802  |
| Low     | 5180            | 7 to 10 GHz      | 10359 (Note 3)                  | T45008/801 & 803  |
|         |                 | 10 GHz to 20 GHz | 15539 (Note 1)                  | T45008/801 & 804  |
|         |                 | 20 GHz to 40 GHz | None                            | T45008/801        |
|         |                 | 30 - 1000 MHz    | Note 4                          | T45008/806        |
| 201     | 5260            | 1 to 7 GHz       | 4208 (Note 1),<br>6312 (Note 3) | T45008/806 & 807  |
| Mid     |                 | 7 to 10 GHz      | 10520 (Note 3)                  | T45008/806 & 808  |
|         |                 | 10 GHz to 20 GHz | None                            | T45008/806        |
|         |                 | 20 GHz to 40 GHz | None                            | T45008/806        |
|         |                 | 30 - 1000 MHz    | Note 4                          | T45008/811        |
|         | 5000            | 1 to 7 GHz       | 4255 (note 1),<br>6383 (Note 3) | T45008/811 & 812  |
| High    | 5320            | 7 to 10 GHz      | 10640 (Note 1)                  | T45008/811 & 813  |
|         |                 | 10 GHz to 20 GHz | 15960 (Note 1)                  | T45008/811 & 814  |
|         |                 | 20 GHz to 40 GHz | None                            | T45008/811        |


| Note 1: | Signal is in a restricted band. Refer to run #6 for field strength measurements.                                      |
|---------|-----------------------------------------------------------------------------------------------------------------------|
| NOTE I. | J J                                                                                                                   |
| Note 2: | Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is not significantly lower than -27dBm |
| Note 2. | field strength measurements were made (refer to run #6).                                                              |
| Note 3: | Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is significantly lower than -27dBm no  |
| Note 3: | field strength measurements required.                                                                                 |
| Note 4: | All spurious signals in this frequency band measured during digital device radiated emissions test.                   |









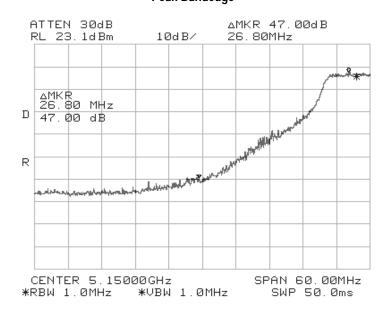


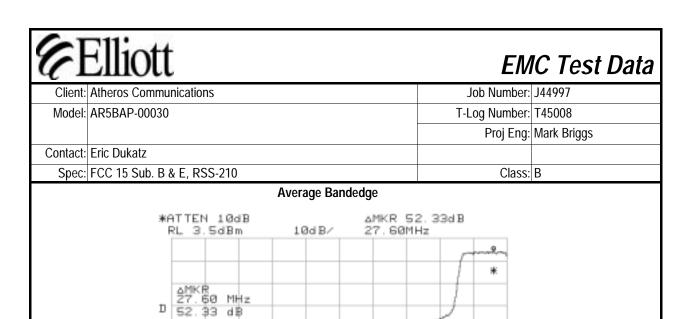



|         | Elliott                |
|---------|------------------------|
| Client: | Atheros Communications |
| Model:  | AR5BAP-00030           |

# EMC Test Data

| Client:  | Atheros Communications     | Job Number:   | J44997      |
|----------|----------------------------|---------------|-------------|
| Model:   | AR5BAP-00030               | T-Log Number: | T45008      |
|          |                            | Proj Eng:     | Mark Briggs |
| Contact: | Eric Dukatz                |               |             |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В           |


# Band Edge Measurements:


For signals in the restricted bands immediately above and below the 5.15 to 5.35 GHz allocated band a measurement was

Plots Showing Out-Of-Band Emissions (Peak RBW=VBW=1MHz; Average RBW = 1MHz, VBW = 10Hz)

## 5.15 GHz band edge, EUT operating on the lowest channel. Power = 13.9 dBm

The highest signal within 50 MHz of the 5.15 GHz band was -47 dBc (Peak) / -52.33 dBc (Average) Peak Bandedge





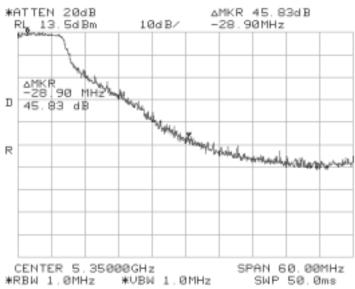
# 5.35 GHz band edge EUT operating on the highest channel. Power = 17.2 dBm

CENTER 5.15000GHz

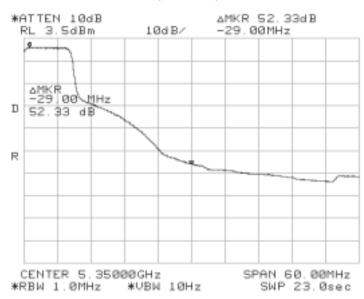
\*RBW 1.0MHz

D

R


The highest signal in the 5.35 to 5.46 GHz band was -45.83 dBc (Peak) / -52.33 dBc (Average)





\*UBW 10Hz

SPAN 60.00MHz

SWP 23.0sec







| Model: A               | Atheros Co<br>AR5BAP-0           | ommunic   | rations        | -              |                       |                     |            |              | IC Test Data                |
|------------------------|----------------------------------|-----------|----------------|----------------|-----------------------|---------------------|------------|--------------|-----------------------------|
| Contact:               | AR5BAP-0                         |           | Jaliulis       |                |                       |                     | Jr         | ob Number:   | J44997                      |
|                        | AR5BAP-00030                     |           |                |                |                       |                     | T-L        | og Number:   | T45008                      |
|                        |                                  |           |                |                |                       | ļ                   |            | Proj Eng:    | Mark Briggs                 |
|                        | Eric Dukat                       | Z         |                |                |                       |                     |            |              |                             |
| Spec:                  | Spec: FCC 15 Sub. B & E, RSS-210 |           |                |                |                       |                     |            | Class:       | B                           |
|                        | nissions fro                     | om 30 - 1 | 1000 MHz w     |                | red while per         |                     |            |              | of the digital device. Refe |
|                        | Limit for                        | r emissic | ns in restric  | cted bands:    |                       | n (Average)         | 74dBuV/ı   | m (Peak)     |                             |
| Limit                  | for emission                     | ns outs'  | ide of restric | cted bands:    | EIRP < -2             | 7dBm/MHz            | (68dB      | uV/m)        |                             |
| dBm @ 532<br>Frequency | Level                            | Pol       |                | / 15.407       | Detector<br>Dk/OD/Ava | Azimuth             |            | Comments     |                             |
|                        | dBμV/m                           | v/h       | Limit          | Margin         | Pk/QP/Avg             | degrees             | meters     |              |                             |
| 5180.0                 | 113.8                            | V         | '              |                | Pk                    | 336                 |            | RBW = VB\    |                             |
| 5180.0                 | 103.4                            | V .       |                | <u> </u>       | Avg                   | 336                 |            |              | Hz, VBW = 10Hz              |
| 5180.0                 | 102.6                            | h         | -              | -              | Pk                    | 310                 |            | RBW = VB\    |                             |
| 5180.0                 | 93.1                             | h         | <u> </u>       | <u> </u>       | Avg                   | 310                 |            |              | Hz, VBW = 10Hz              |
| 5320.0                 | 115.3                            | V         | <del>- '</del> | <u> </u>       | Pk                    | 310                 |            | RBW = VB     |                             |
| 5320.0                 | 104.2                            | V         | <del></del>    |                | Avg                   | 310                 |            |              | Hz, VBW = 10Hz              |
| 5320.0                 | 104.4                            | h         | <del></del>    | <del>-</del> - | Pk                    | 311                 |            | RBW = VB     |                             |
|                        |                                  |           |                |                |                       | 311<br>5180 MHz, 17 | 7.2 dBm @  | 5320 MHz.    | Hz, VBW = 10Hz              |
| Frequency              |                                  | Pol       |                | / 15.407       | Detector              | Azimuth             | J          | Comments     |                             |
|                        | dBμV/m                           | v/h       | Limit          | Ŭ              | Pk/QP/Avg             | degrees             | meters     |              |                             |
| 5150.0                 | 66.8                             | V         | 74.0           | -7.3           | Pk                    |                     |            | Note 1       |                             |
| 5150.0                 | 51.1                             | V         | 54.0           | -2.9           | Avg                   |                     |            | Note 1       |                             |
| 5350.0                 | 69.5                             | V         | 74.0           | -4.5           | Pk                    |                     |            | Note 2       | _                           |
| 5350.0                 | 51.9                             | V         | 54.0           | -2.1           | Avg                   |                     |            | Note 2       |                             |
| Note 1:                | EUT opera                        | ating on  | the lowest of  | channel ava    | ilable in the         | 5.15 - 5.25 M       | Hz band. § | Signal level | calculated using the        |
|                        | EUT opera                        |           |                |                |                       |                     |            |              |                             |

| Client:           | Ellic<br>Atheros C               |                | cations      |                                |              |             | J             | ob Number: | J44997                 |
|-------------------|----------------------------------|----------------|--------------|--------------------------------|--------------|-------------|---------------|------------|------------------------|
| Model:            | AR5BAP-0                         | 00030          |              |                                |              |             | T-Le          | og Number: | T45008                 |
|                   |                                  |                |              |                                |              |             |               | Proj Eng:  | Mark Briggs            |
| Contact:          | Eric Dukat                       | Z              |              |                                |              |             |               |            |                        |
| Spec:             | Spec: FCC 15 Sub. B & E, RSS-210 |                |              |                                |              |             |               | Class:     | В                      |
|                   |                                  |                | s Emission   |                                |              | - 44        | in.           |            |                        |
| requency          | Level                            | nnel Av<br>Pol |              | <b>v Chann</b> ei,<br>/ 15.407 | Detector     | ower @ 16 d | IBM<br>Height | Comments   |                        |
| MHz               | dBμV/m                           | v/h            | Limit        | Margin                         | Pk/QP/Avg    | degrees     | meters        | Comments   |                        |
| 10360.0           | 60.3                             | h              | 68.3         | -8.0                           | Pk           | 100         |               | Note 4     |                        |
| 10360.0           | 58.6                             | V              | 68.3         | -9.7                           | Pk           | 100         |               | Note 4     |                        |
| 15540.0           | 42.7                             | V              | 54.0         | -11.3                          | Avg          | 134         |               | Note 2     |                        |
| 15540.0           | 39.7                             | h              | 54.0         | -14.3                          | Avg          | 239         | 1.3           | Note 2     |                        |
| 15540.0           | 56.7                             | V              | 74.0         | -17.3                          | Pk           | 134         | 1.3           | Note 2     |                        |
| 15540.0           | 52.9                             | h              | 74.0         | -21.1                          | Pk           | 239         | 1.3           | Note 2     |                        |
| 6216.0            | 46.5                             | V              | 68.3         | -21.8                          | Note 3       |             |               | Note 4; No | ise Floor measurement  |
|                   |                                  | •              |              | _                              | lz) Power @  |             |               | I          |                        |
| 10520.0           | 67.0                             | V              | 68.3         | -1.3                           | Pk           | 333         |               | Note 4     |                        |
| 10520.0           | 65.3<br>41.3                     | <u>h</u>       | 68.3         | -3.0                           | Pk           | 10          |               | Note 4     | ion Floor Managerament |
| 4208.0<br>6312.0  | 50.8                             | V              | 54.0<br>68.3 | -12.7<br>-17.5                 | Pk<br>Note 3 | 285<br>63   |               | Note 4 & 5 | ise Floor Measurement  |
| 6312.0            | 41.7                             | h              | 68.3         | -26.6                          | Note 3       | 196         |               | Note 4 & 5 |                        |
|                   |                                  |                |              |                                |              | Power @ 17. |               | Note Tu o  |                        |
| 10640.0           | 47.8                             | V              | 54.0         | -6.2                           | Avg          | 330         |               | Note 2     |                        |
| 15960.0           | 46.1                             | h              | 54.0         | -7.9                           | Avg          | 16          | 1.5           | Note 2     |                        |
| 10640.0           | 45.9                             | h              | 54.0         | -8.1                           | Avg          | 300         | 1.4           | Note 2     |                        |
| 10640.0           | 63.1                             | V              | 74.0         | -11.0                          | Pk           | 330         |               | Note 2     |                        |
| 15960.0           | 42.7                             | V              | 54.0         | -11.3                          | Avg          | 145         |               | Note 2     |                        |
| 10640.0           | 60.6                             | h              | 74.0         | -13.4                          | Pk           | 300         |               | Note 2     |                        |
| 4255.9            |                                  | V              | 54.0         | -14.0                          | Pk           | 285         |               |            | ise Floor Measurement  |
| 15960.0           |                                  | h              | 74.0         | -15.3                          | Pk           | 16          |               | Note 2     |                        |
| 15960.0<br>6383.0 | 55.2<br>45.6                     | V              | 74.0<br>68.3 | -18.8<br>-22.7                 | Pk<br>Note 3 | 145<br>350  |               | Note 2     | ise Floor Measurement  |

See following page for test notes...

|                                               | Elliott  Atheros Communications                                                                                                                                                                                                                                                                                                                       | Job Number: J44997                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Model:                                        | : AR5BAP-00030                                                                                                                                                                                                                                                                                                                                        | T-Log Number: T45008                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                       | Proj Eng: Mark Briggs                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Contact:                                      | : Eric Dukatz                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Spec:                                         | : FCC 15 Sub. B & E, RSS-210                                                                                                                                                                                                                                                                                                                          | Class: B                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| test note                                     | es for run 6b                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Note 1:                                       | For emissions falling in the restricted bands detail                                                                                                                                                                                                                                                                                                  | ed in 15.205 the general limits of 15.209 apply. For all other                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| vote 1:                                       | emissions the limit is EIRP < -27dBm (equivalent                                                                                                                                                                                                                                                                                                      | to a field strength at 3m of 68dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Note 2:                                       | Signal is in a restricted band                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                       | and Video BW: 1 MHz, Restricted Band Average Measureme                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Note 3:                                       |                                                                                                                                                                                                                                                                                                                                                       | ther measurements, RBW = 1MHz and VBW = 3MHz, video                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Note 4:                                       | averaging on (100 samples).                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| VUIC 4.                                       |                                                                                                                                                                                                                                                                                                                                                       | Signal does not fall in a restricted band.  This measurement was made using a resolution handwidth of 2 kHz The instrumentation noise floor was too high t                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                                               | This measurement was made using a resolution bandwidth of 3 kHz The instrumentation noise floor was too high to allow measurements with RBW = 1MHz because a preamplifier could not be used (with the EUT operating the                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                                               | ŭ .                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                               | allow measurements with RBW = 1MHz because                                                                                                                                                                                                                                                                                                            | a preamplifier could not be used (with the EUT operating the                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Note 5:                                       | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and                                                                                                                                                                                                                                                        | a preamplifier could not be used (with the EUT operating the at there is no low pass filter with sufficient shape factor to reje                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Note 5:                                       | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spu                                                                                                                                                                                                   | a preamplifier could not be used (with the EUT operating the the there is no low pass filter with sufficient shape factor to rejeuroius signal). The signal was a narrowband signal (as verified                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Note 5:                                       | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) an                                                                                                                                                      | a preamplifier could not be used (with the EUT operating the at there is no low pass filter with sufficient shape factor to rejections signal). The signal was a narrowband signal (as verified d so the amplitude (peak/average) in a 3kHz bandwidth would                                                                                                                                                                                                                |  |  |  |  |  |  |
| Note 5:                                       | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) an                                                                                                                                                      | a preamplifier could not be used (with the EUT operating the the there is no low pass filter with sufficient shape factor to rejeuroius signal). The signal was a narrowband signal (as verified                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Note 5:                                       | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please ref                                                                                                    | a preamplifier could not be used (with the EUT operating the at there is no low pass filter with sufficient shape factor to rejections signal). The signal was a narrowband signal (as verified d so the amplitude (peak/average) in a 3kHz bandwidth would                                                                                                                                                                                                                |  |  |  |  |  |  |
| Note 5:                                       | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please ref                                                                                                    | a preamplifier could not be used (with the EUT operating the at there is no low pass filter with sufficient shape factor to rejections signal). The signal was a narrowband signal (as verified d so the amplitude (peak/average) in a 3kHz bandwidth would                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                               | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please refithe average limit.                                                                                 | a preamplifier could not be used (with the EUT operating the there is no low pass filter with sufficient shape factor to rejeuroius signal). The signal was a narrowband signal (as verified d so the amplitude (peak/average) in a 3kHz bandwidth would fer to the plot below). The peak reading has been compared whether the plot below is the peak reading has been compared whether the plot below.                                                                   |  |  |  |  |  |  |
|                                               | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please refitted average limit.                                                                                | a preamplifier could not be used (with the EUT operating the there is no low pass filter with sufficient shape factor to rejection rejection to the signal. The signal was a narrowband signal (as verified do so the amplitude (peak/average) in a 3kHz bandwidth would fer to the plot below). The peak reading has been compared to the plot below. The peak reading has been compared to the plot below.  ACTV DET: PEAK OP AVG MEAS DET: PEAK OP AVG MKR 4.232037 GHz |  |  |  |  |  |  |
| 140                                           | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please refit the average limit.                                                                               | a preamplifier could not be used (with the EUT operating the distribution that there is no low pass filter with sufficient shape factor to rejection rejection of the signal was a narrowband signal (as verified distribution to so the amplitude (peak/average) in a 3kHz bandwidth would fer to the plot below). The peak reading has been compared where the plot below of the peak reading has been compared where the plot below.                                    |  |  |  |  |  |  |
|                                               | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please refite average limit.  IF BANDWIDTH 3.0 kHz                                                            | a preamplifier could not be used (with the EUT operating the there is no low pass filter with sufficient shape factor to rejection rejection to the signal. The signal was a narrowband signal (as verified do so the amplitude (peak/average) in a 3kHz bandwidth would fer to the plot below). The peak reading has been compared to the plot below. The peak reading has been compared to the plot below.  ACTV DET: PEAK OP AVG MEAS DET: PEAK OP AVG MKR 4.232037 GHz |  |  |  |  |  |  |
| / <i>pp</i><br>L06<br>5<br>d8/                | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please refit the average limit.  IF BANDWIDTH 3.0 kHz  REF 67.5 dBpV/m  : : : : : : : : : : : : : : : : : : : | a preamplifier could not be used (with the EUT operating the there is no low pass filter with sufficient shape factor to rejection rejection to the signal. The signal was a narrowband signal (as verified do so the amplitude (peak/average) in a 3kHz bandwidth would fer to the plot below). The peak reading has been compared to the plot below. The peak reading has been compared to the plot below.  ACTV DET: PEAK OP AVG MEAS DET: PEAK OP AVG MKR 4.232037 GHz |  |  |  |  |  |  |
| / <i>p</i> /<br>L06<br>5<br>dB/<br>#AT        | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please refit the average limit.  IF BANDWIDTH 3.0 kHz  REF 67.5 dBpV/m  : : : : : : : : : : : : : : : : : : : | a preamplifier could not be used (with the EUT operating the there is no low pass filter with sufficient shape factor to rejection rejection to the signal. The signal was a narrowband signal (as verified do so the amplitude (peak/average) in a 3kHz bandwidth would fer to the plot below). The peak reading has been compared to the plot below. The peak reading has been compared to the plot below.  ACTV DET: PEAK OP AVG MEAS DET: PEAK OP AVG MKR 4.232037 GHz |  |  |  |  |  |  |
| / <i>/</i> //<br>L06<br>5<br>dB/<br>#AT       | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please related average limit.  IF BANDWIDTH 3.0 kHz  REF 67.5 dBµV/m                                          | a preamplifier could not be used (with the EUT operating the there is no low pass filter with sufficient shape factor to rejection rejection to the signal. The signal was a narrowband signal (as verified do so the amplitude (peak/average) in a 3kHz bandwidth would fer to the plot below). The peak reading has been compared to the plot below. The peak reading has been compared to the plot below.  ACTV DET: PEAK OP AVG MEAS DET: PEAK OP AVG MKR 4.232037 GHz |  |  |  |  |  |  |
| / <i>p</i> /<br>L06<br>5<br>dB/<br>#AT        | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please related average limit.  IF BANDWIDTH 3.0 kHz  REF 67.5 dBµV/m                                          | a preamplifier could not be used (with the EUT operating the there is no low pass filter with sufficient shape factor to rejection rejection to the signal. The signal was a narrowband signal (as verified do so the amplitude (peak/average) in a 3kHz bandwidth would fer to the plot below). The peak reading has been compared to the plot below. The peak reading has been compared to the plot below.  ACTV DET: PEAK OP AVG MEAS DET: PEAK OP AVG MKR 4.232037 GHz |  |  |  |  |  |  |
| /2/<br>L06<br>5 B /<br>#AT<br>Ø d             | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please refithe average limit.  IF BANDWIDTH 3.0 kHz  REF 67.5 dBµV/m                                          | a preamplifier could not be used (with the EUT operating the there is no low pass filter with sufficient shape factor to rejection rejection to the signal. The signal was a narrowband signal (as verified do so the amplitude (peak/average) in a 3kHz bandwidth would fer to the plot below). The peak reading has been compared to the plot below. The peak reading has been compared to the plot below.  ACTV DET: PEAK OP AVG MEAS DET: PEAK OP AVG MKR 4.232037 GHz |  |  |  |  |  |  |
| / <i>p</i> /<br>L06<br>5<br>dB/<br>#AT<br>Ø d | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please refithe average limit.  IF BANDWIDTH 3.0 kHz  REF 67.5 dBµV/m  NBBEC                                   | a preamplifier could not be used (with the EUT operating the there is no low pass filter with sufficient shape factor to rejection rejection to the signal. The signal was a narrowband signal (as verified do so the amplitude (peak/average) in a 3kHz bandwidth would fer to the plot below). The peak reading has been compared to the plot below. The peak reading has been compared to the plot below.  ACTV DET: PEAK OP AVG MEAS DET: PEAK OP AVG MKR 4.232037 GHz |  |  |  |  |  |  |
| LOG<br>5<br>dB/<br>#AT<br>Ø d<br>VA<br>SC     | allow measurements with RBW = 1MHz because intentional signal would overload the amplifier and the intentionally trasmitted signal but pass the spuduring the conducted antenna measurements) and the same as that in a 1MHz bandwidth (please refithe average limit.  IF BANDWIDTH 3.0 kHz  REF 67.5 dBµV/m  NBBEC                                   | a preamplifier could not be used (with the EUT operating the there is no low pass filter with sufficient shape factor to rejection rejection to the signal. The signal was a narrowband signal (as verified do so the amplitude (peak/average) in a 3kHz bandwidth would fer to the plot below). The peak reading has been compared to the plot below. The peak reading has been compared to the plot below.  ACTV DET: PEAK OP AVG MEAS DET: PEAK OP AVG MKR 4.232037 GHz |  |  |  |  |  |  |

Plot showing LO signal at 4GHz measured using RBW = 1MHz and RBW = 3kHz. Amplitude of the signal does not

Page 30 of 62

|          | Elliott                    | EMC Test Data |             |  |
|----------|----------------------------|---------------|-------------|--|
| Client:  | Atheros Communications     | Job Number:   | J44997      |  |
| Model:   | AR5BAP-00030               | T-Log Number: | T45008      |  |
|          |                            | Proj Eng:     | Mark Briggs |  |
| Contact: | Eric Dukatz                |               |             |  |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В           |  |

# FCC Part 15 Subpart E Tests - TURBO MODE

# **Test Specifics**

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

| Date of Test:  | 10/11/20001 | Config. Used: 2                 |
|----------------|-------------|---------------------------------|
| Test Engineer: | Jmartinez   | Config Change: None             |
| Test Location: | SVOATS# 4   | Host Unit Voltage 120Vac, 60 Hz |

# **General Test Configuration**

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

**Ambient Conditions:** Temperature: 16°C Rel. Humidity: 42%

**Summary of Results: Turbo Mode** 

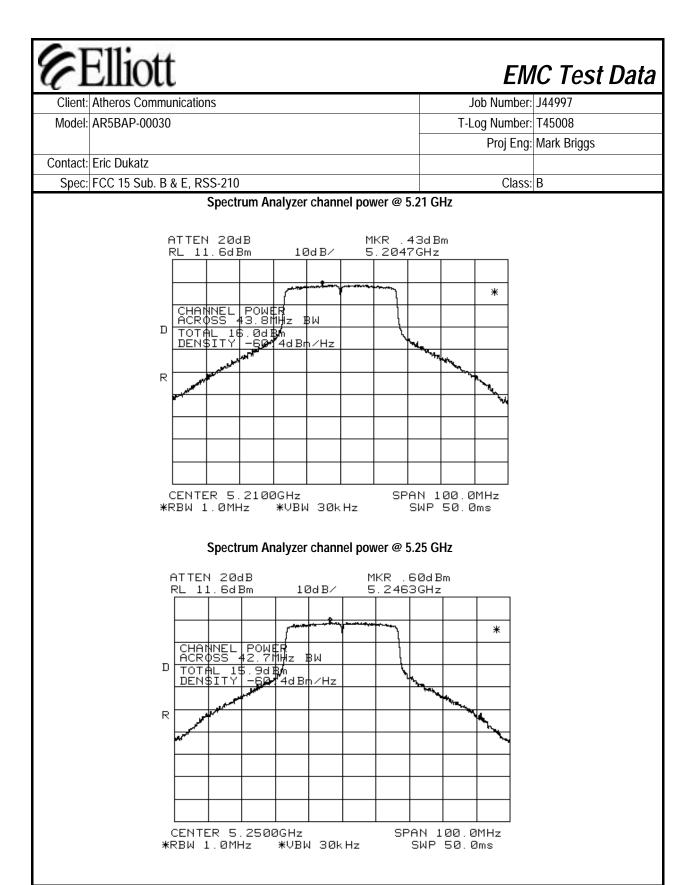
#### Run# Test Performed Result Comments Limit Output Power 15.407(a) (1), (2) 16dBm / 21.2dBm Pass 1 2 Power Spectral Density (PSD) 15.407(a) (1), (2) 3.8dBm Pass 26dB Bandwidth 3 15.407 >42 MHz Pass 3 20 dB Bandwidth **RSS 210** Pass 33.2MHz Peak to average 4 Peak Excursion Envelope 15.407(a) (6) **Pass** excursion < 13dB Antenna Conducted - Out of All emissions below the 5 15.407(b) Pass **Band Spurious** 27dBm/MHz limit RE, 1000 - 40000 MHz -6 15.407(b)(6) Pass -.6dB @ 10.538 GHz **Spurious Emissions**

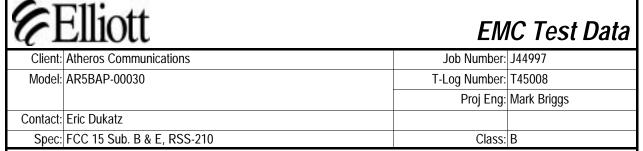
| (F)      | Elliott                    | EM            | IC Test Data |
|----------|----------------------------|---------------|--------------|
| Client:  | Atheros Communications     | Job Number:   | J44997       |
| Model:   | AR5BAP-00030               | T-Log Number: | T45008       |
|          |                            | Proj Eng:     | Mark Briggs  |
| Contact: | Eric Dukatz                |               |              |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В            |

# Modifications Made During Testing:

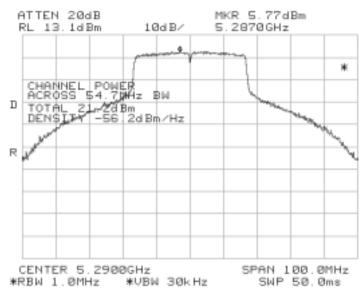
No modifications were made to the EUT during testing

# **Deviations From The Standard**


No deviations were made from the requirements of the standard.


Run #1: Output Power; S/N: 144

Antenna Gain: 6 dBi


| Channel | Frequency (MHz) | 26-dB<br>Signal BW | Output Power (dBm) | FCC Limit (dBm) (note 3) | Comments |
|---------|-----------------|--------------------|--------------------|--------------------------|----------|
| Low     | 5210            | 43.8               | 14.1               | 17.0                     | Note 2   |
|         | 5210            | 43.8               | 16.0               | 17.0                     | Note 1   |
| Mid     | 5250            | 42.7               | 14.0               | 17.0                     | Note 2   |
|         | 5250            | 42.7               | 15.9               | 17.0                     | Note 1   |
| High    | 5290            | 54.7               | 18.0               | 24.0                     | Note 2   |
|         | 5290            | 54.7               | 21.2               | 24.0                     | Note 1   |

| Note 1: | Measured using spectrum analyzer's power measurement function (RBW = 1MHz, VBW = 30kHz)                         |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Note 2: | Measured using a Boonton Power Meter with a peak power sensor in average mode                                   |  |  |  |  |
| Note 3: | RSS 210 limit is 23dBm in the 5.15 to 5.25 GHz band, 6dB higher than the FCC limit. This limit is based on the  |  |  |  |  |
| Note 3: | emission bandwidth and operating frequency.                                                                     |  |  |  |  |
| Note 4: | RSS 210 limit is 24dBm in the 5.25 to 5.35 GHz band, same as the FCC limit. This limit is based on the emission |  |  |  |  |
| Note 4: | bandwidth and operating frequency.                                                                              |  |  |  |  |
| Note 5: | Nominal power levels listed in the runs below are based on measuremnt with the power meter                      |  |  |  |  |



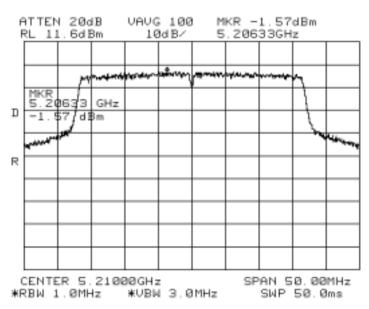


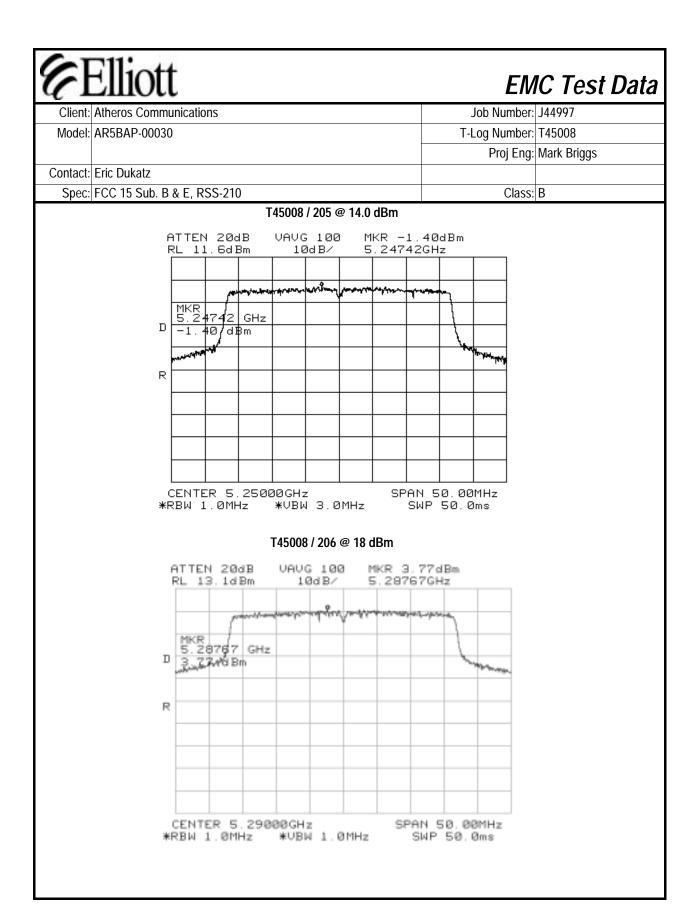
# Spectrum Analyzer channel power @ 5.29 GHz



| 6         | Ellio     | ott                 |                |                    | EN            | IC Tes      | t Data |
|-----------|-----------|---------------------|----------------|--------------------|---------------|-------------|--------|
| Client:   | Atheros C | Communications      |                |                    | Job Number:   | J44997      |        |
| Model:    | AR5BAP-   | 00030               |                |                    | T-Log Number: | T45008      |        |
|           |           |                     |                |                    | Proj Eng:     | Mark Briggs |        |
| Contact:  | Eric Duka | tz                  |                |                    |               |             |        |
| Spec:     | FCC 15 S  | Sub. B & E, RSS-210 |                |                    | Class:        | В           |        |
| Run #2: P | ower Spec | ctral Density       |                |                    |               |             |        |
|           | Antenr    | na Gain: 6          | dBi            |                    |               |             |        |
|           | Channel   | Frequency (MHz)     | Power Spectral | FCC Limit (dBm) no | ote 2 Graph I | Reference   |        |
|           | Low       | 5210                | -1.6           | 4.0                | T45008/20     | 3           | Note 1 |
|           | Mid       | 5250                | -1.4           | 4.0                | T45008/20     | 5           | Note 1 |
|           | High      | 5290                | 3.8            | 11.0               | T45008/20     | 6           | Note 1 |

The above measurements were made using RBW = 1MHz, VBW = 1MHz, video averaging on. To demonstrate compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off during Note 1: the peak excursion measurements (run #4). The peak PSD of 12.93 dBm did not exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band) by more than 6dB so no restriction is placed on the output power or average PSD with respect to RSS 210.


Note 1


Note 2: RSS 210 limit is 10dBm/MHz in the 5.15 to 5.25 GHz band, 6dB higher than the FCC limit.

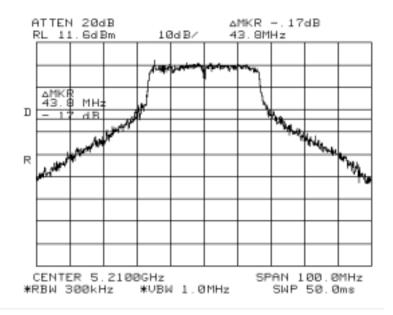
High

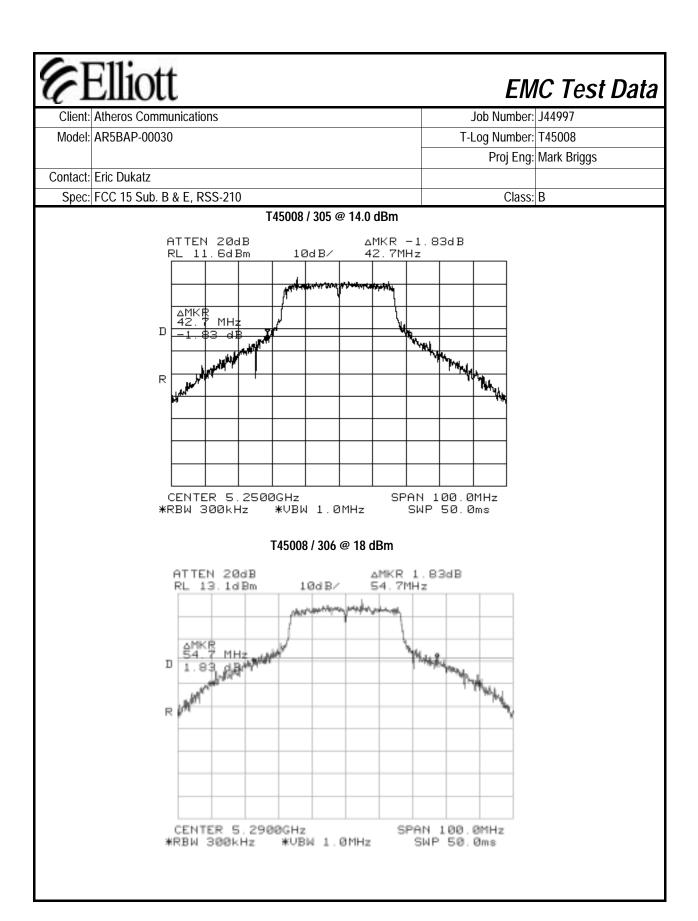
# Plots Showing Power Spectral Density (RBW = 1MHz, VBW = 1 MHz, video averaging ON)

### T45008 / 203 @ 14.1 dBm






|          | Elliott                    | EMC Test Data |             |  |
|----------|----------------------------|---------------|-------------|--|
| Client:  | Atheros Communications     | Job Number:   | J44997      |  |
| Model:   | AR5BAP-00030               | T-Log Number: | T45008      |  |
|          |                            | Proj Eng:     | Mark Briggs |  |
| Contact: | Eric Dukatz                |               |             |  |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В           |  |


# Run #3: Signal Bandwidth

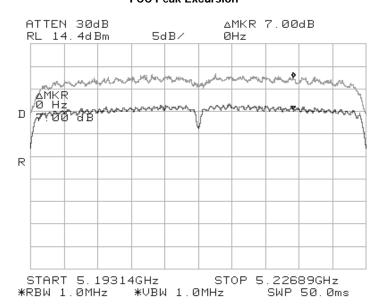
| Channel | Frequency (MHz) | Resolution<br>Bandwidth | 26 dB Signal Bandwidth<br>(MHz) | 20 dB Signal<br>Bandwidth (MHz) | Graph reference # |
|---------|-----------------|-------------------------|---------------------------------|---------------------------------|-------------------|
| Low     | 5210            | 300 kHz                 | 43.8                            | 33.17                           | T45008/303        |
| Mid     | 5250            | 300 kHz                 | 42.7                            | 33.17                           | T45008/305        |
| High    | 5290            | 300 kHz                 | 54.7                            | 33.17                           | T45008/306        |

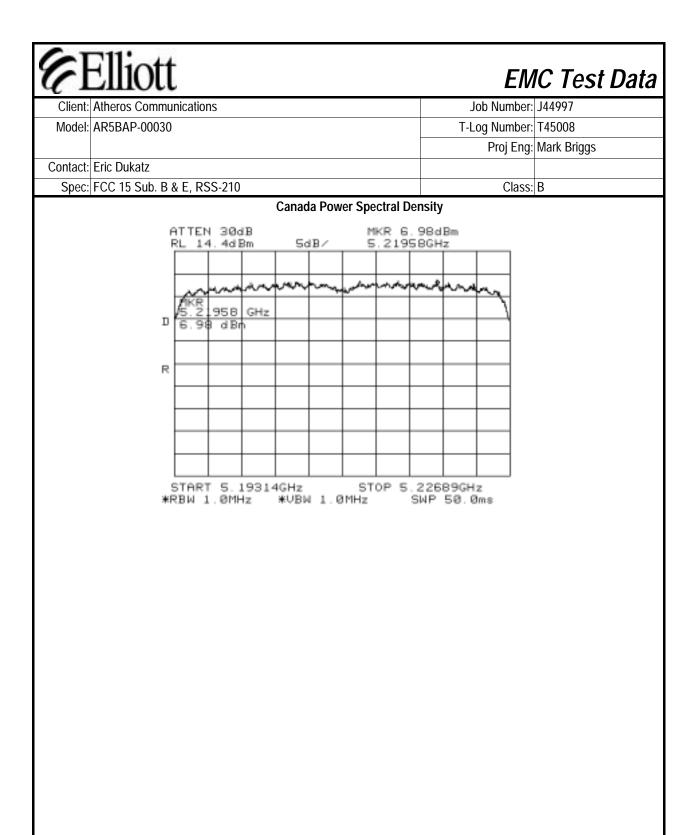
## **Plots Showing Signal Bandwidth**

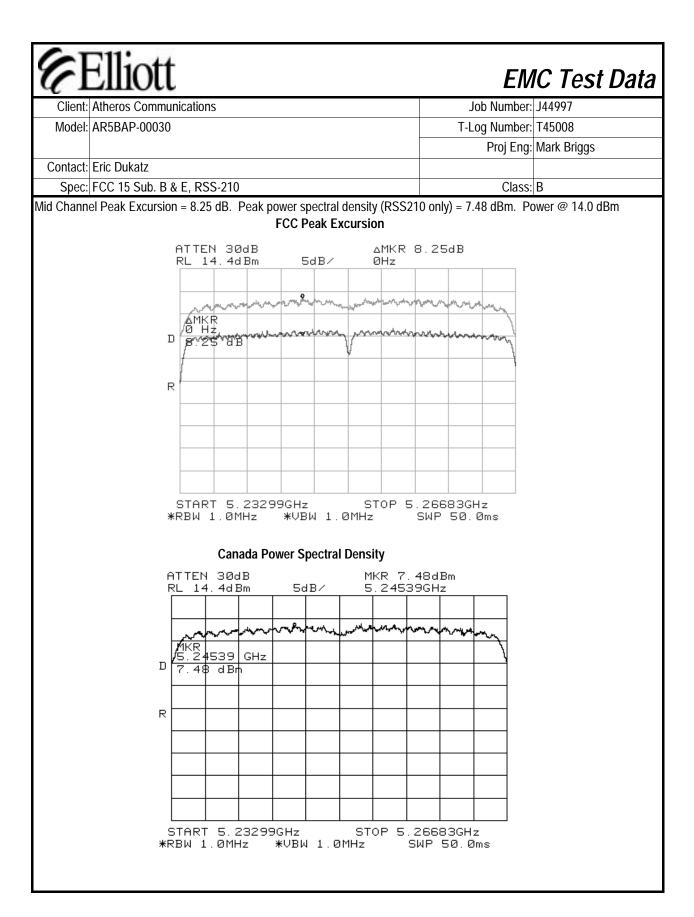
### T45008 / 303 @ 14.1 dBm






| (F)      | Elliott                    | EM            | IC Test Data |
|----------|----------------------------|---------------|--------------|
| Client:  | Atheros Communications     | Job Number:   | J44997       |
| Model:   | AR5BAP-00030               | T-Log Number: | T45008       |
|          |                            | Proj Eng:     | Mark Briggs  |
| Contact: | Eric Dukatz                |               |              |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В            |


## Run #4: Peak Excursion Measurement

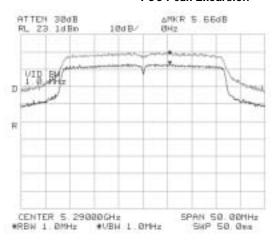

### **Plots Showing Peak Excursion**

Trace A: RBW = VBW = 1MHz Trace B: RBW = 1 MHz, VBW = 30kHz

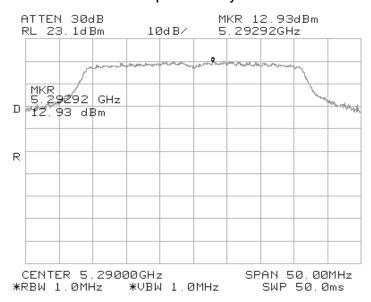
Low Channel Peak Excursion = 7.0 dB. Peak power spectral density (RSS210 only) = 6.98 dBm. Power @ 14.1 dBm FCC Peak Excursion











# EMC Test Data

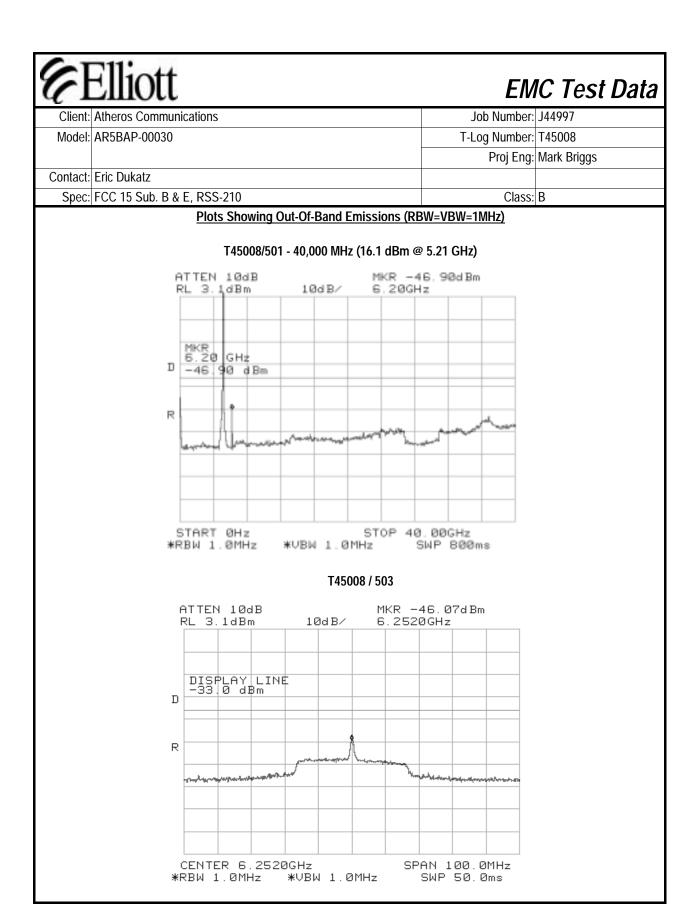
| Client:  | Atheros Communications     | Job Number:   | J44997      |
|----------|----------------------------|---------------|-------------|
| Model:   | AR5BAP-00030               | T-Log Number: | T45008      |
|          |                            | Proj Eng:     | Mark Briggs |
| Contact: | Eric Dukatz                |               |             |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В           |

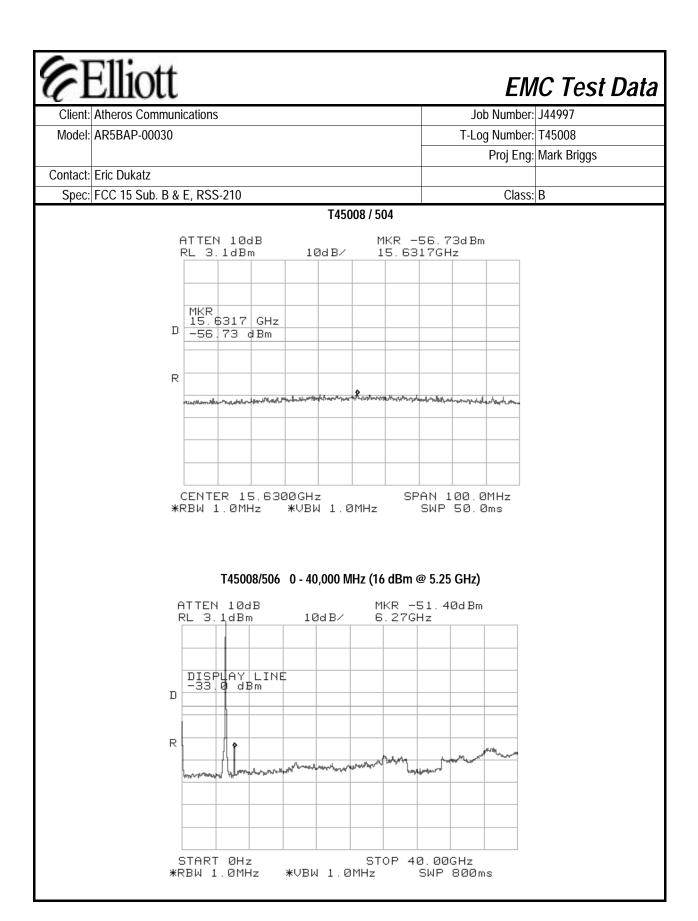
High Channel Peak Excursion = 5.66 dB. Peak power spectral density (RSS210 only) = 12.93 dBm. Power @ 18 dBm FCC Peak Excursion

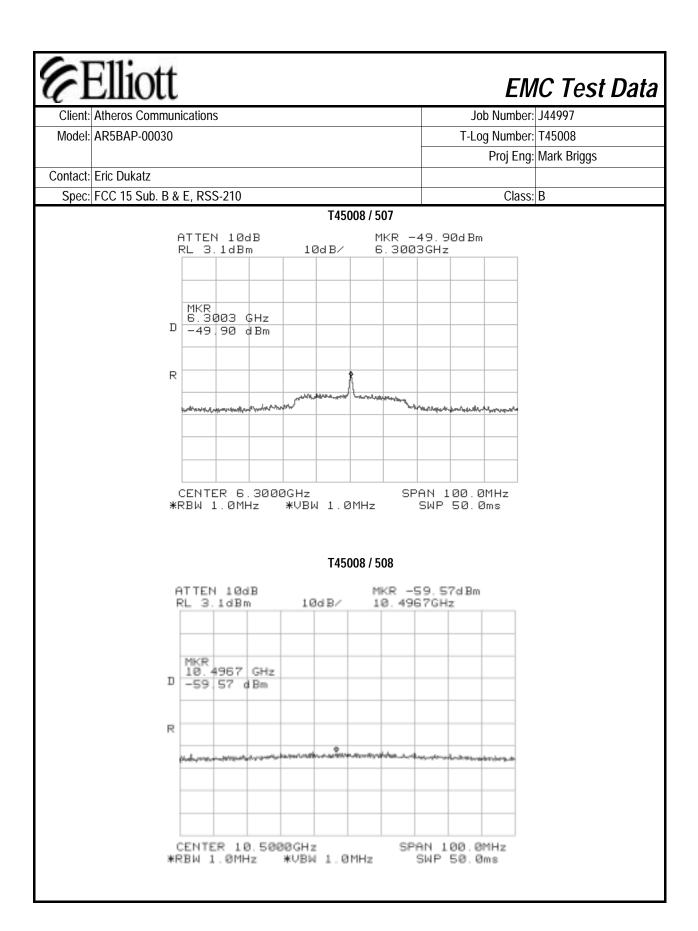


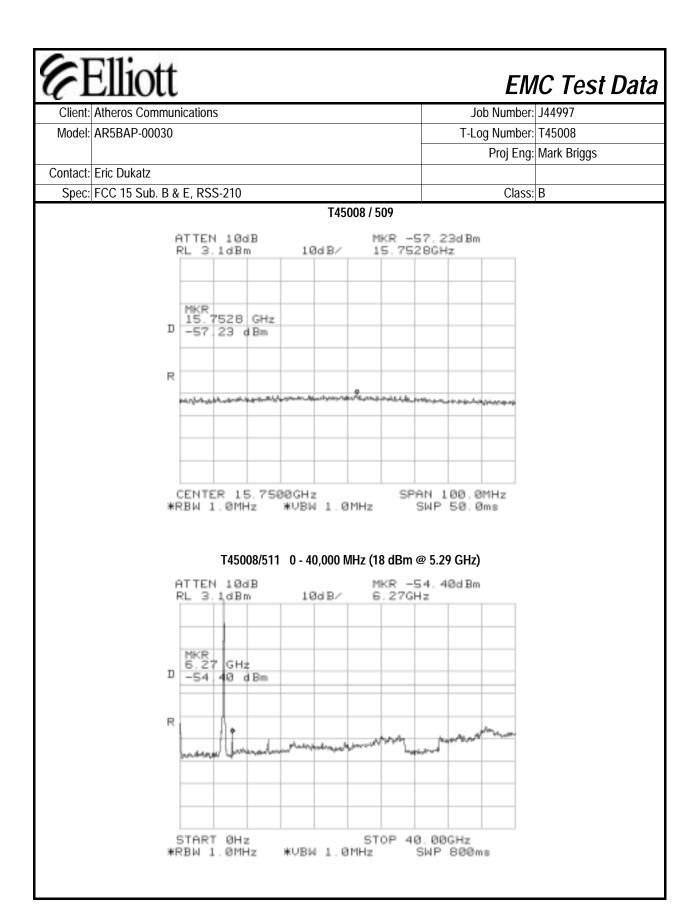
### **Canada Power Spectral Density**

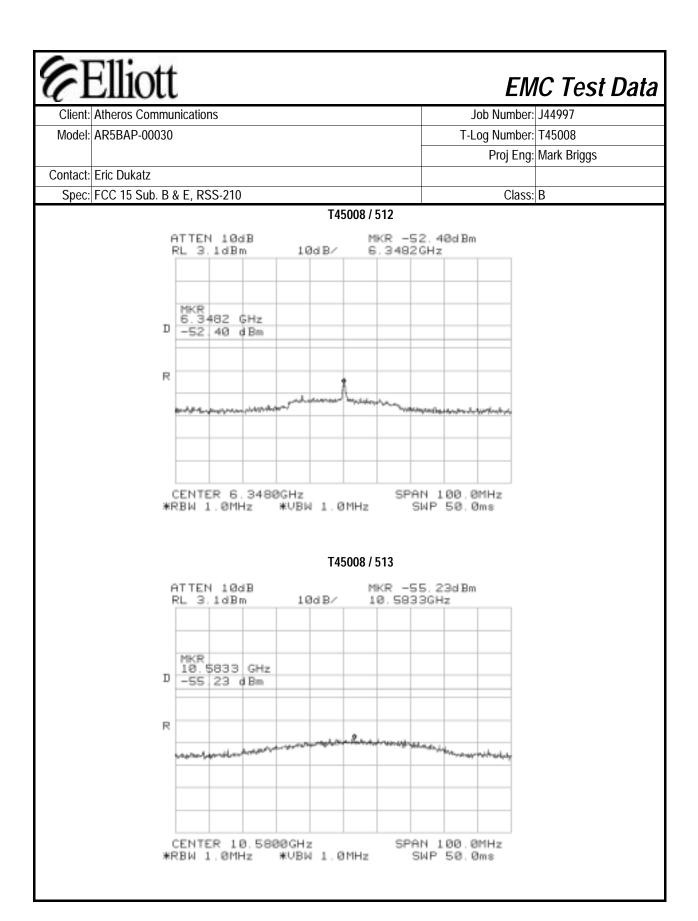


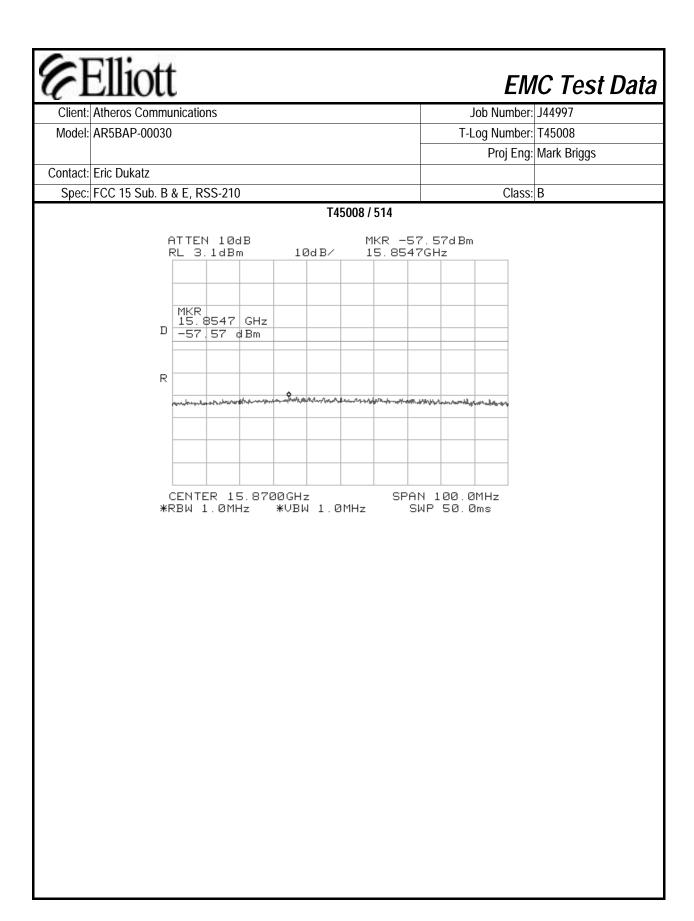

| 6        | Elliott                    | EMC Test Data |             |  |
|----------|----------------------------|---------------|-------------|--|
| Client:  | Atheros Communications     | Job Number:   | J44997      |  |
| Model:   | AR5BAP-00030               | T-Log Number: | T45008      |  |
|          |                            | Proj Eng:     | Mark Briggs |  |
| Contact: | Eric Dukatz                |               |             |  |
| Snace    | FCC 15 Sub. B & F. DSS_210 | Class.        | R           |  |


# Run #5: Out Of Band Spurious Emissions - Antenna Conducted


The antenna gain of the radios integral antenna is 6dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not


| Channel | Frequency (MHz) | Frequency Range  | Highest Spurious Signal | Graph reference # |
|---------|-----------------|------------------|-------------------------|-------------------|
|         |                 | 30 - 1000 MHz    | Note 4                  | T45008/501        |
|         |                 | 1 to 5.15 GHz    | None                    | T45008/501        |
| Low     | 5210            | 5.25 to 10 GHz   | 6252 (Note 3)           | T45008/501 & 503  |
|         |                 | 10 GHz to 20 GHz | 15629 (Note 1)          | T45008/501 & 504  |
|         |                 | 20 GHz to 40 GHz | None                    | T45008/501        |
|         | 5250            | 30 - 1000 MHz    | Note 4                  | T45008/506        |
|         |                 | 1 to 7 GHz       | 6230 (Note 3)           | T45008/506 & 507  |
| Mid     |                 | 7 to 10 GHz      | 10500 (Note 3)          | T45008/506 & 508  |
|         |                 | 10 GHz to 20 GHz | 15750 (Note 1)          | T45008/506 & 509  |
|         |                 | 20 GHz to 40 GHz | None                    | T45008/506        |
|         |                 | 30 - 1000 MHz    | Note 4                  | T45008/511        |
| High    | 5290            | 1 to 7 GHz       | 6348.2 (Note 3)         | T45008/511 & 512  |
|         |                 | 7 to 10 GHz      | 10583 (Note 3)          | T45008/511 & 513  |
|         |                 | 10 GHz to 20 GHz | 15854 (Note 1)          | T45008/511 & 514  |
|         |                 | 20 GHz to 40 GHz | None                    | T45008/511        |


| Note 1: | Signal is in a restricted band. Refer to run #6 for field strength measurements.                                     |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| NI-L- O | Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is significantly lower than -27dBm no |  |  |  |
| Note 2: | field strength measurements required.                                                                                |  |  |  |
| Note 3: | Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than -   |  |  |  |
|         | 27dBm field strength measurements were made (refer to run #6)                                                        |  |  |  |
| Note 4: | All spurious signals in this frequency band measured during digital device radiated emissions test.                  |  |  |  |
|         |                                                                                                                      |  |  |  |













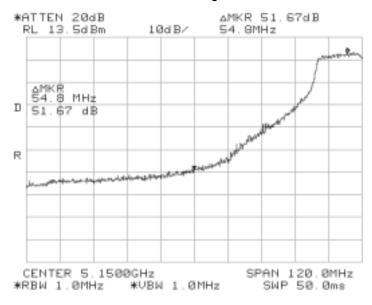

| <b>Elliott</b> |                        | EMC Test Data |             |  |
|----------------|------------------------|---------------|-------------|--|
| Client:        | Atheros Communications | Job Number:   | J44997      |  |
| Model:         | AR5BAP-00030           | T-Log Number: | T45008      |  |
|                |                        | Proj Eng:     | Mark Briggs |  |
| Contact:       | Eric Dukatz            |               |             |  |

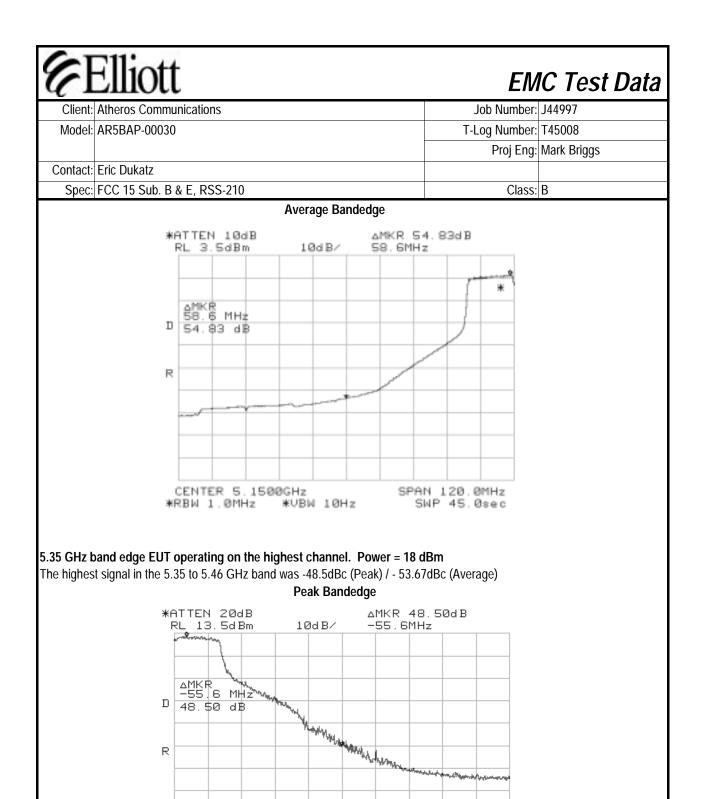
Class: B

# Band Edge Measurements:

Spec: FCC 15 Sub. B & E, RSS-210

C- T-111


For signals in the restricted bands immediately above and below the 5.15 to 5.35 GHz allocated band a measurement was

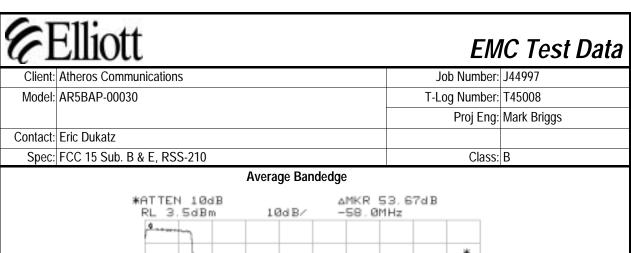

## Plots Showing Out-Of-Band Emissions (Peak RBW=VBW=1MHz; Average RBW = 1MHz, VBW = 10Hz)

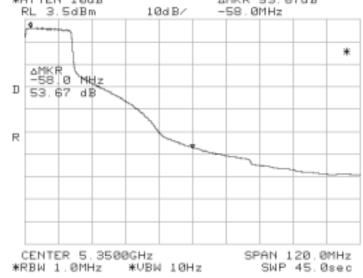
# 5.15 GHz band edge, EUT operating on the lowest channel. Power = 14 dBm

The highest signal within 50 MHz of the 5.15 GHz band was -51.67 dBc (Peak) / -54.83 dBc (Average)

# Peak Bandedge





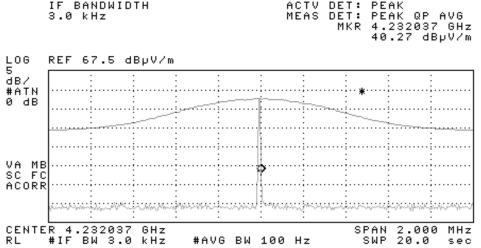


\*VBW 1.0MHz

SPAN 120.0MHz SWP 50.0ms

CENTER 5.3500GHz

\*RBW 1.0MHz






|                 | Ellic<br>Atheros Co |           | cations                               |                     |                                |                  |                  | <b>EN</b> ob Number: | 144007                         |
|-----------------|---------------------|-----------|---------------------------------------|---------------------|--------------------------------|------------------|------------------|----------------------|--------------------------------|
|                 | AR5BAP-0            |           | 20110112                              |                     |                                |                  |                  |                      |                                |
| Modei.          | AKSBAP-U            | 10030     |                                       |                     |                                | -                | I-LU             | og Number:           |                                |
| Cantact         | Eric Dukat          |           |                                       |                     |                                |                  |                  | Proj Eriy:           | Mark Briggs                    |
|                 |                     |           | E, RSS-210                            |                     |                                |                  |                  | Class                | D                              |
|                 | 1                   |           |                                       |                     | 0000 MUz                       |                  |                  | Class:               | В                              |
|                 |                     | -         | s <b>Emission</b> s<br>1000 MHz w     |                     |                                | rforming emis    | ssions meas      | surements o          | of the digital device. Re      |
|                 | I imit for          | r emissic | ons in restric                        | cted bands:         | 54dBuV/n                       | n (Average)      | 74dBuV/          | m (Peak)             | 1                              |
| Limit           |                     |           | ide of restric                        |                     |                                | 7dBm/MHz         |                  | BuV/m)               |                                |
|                 | -                   | -         | -                                     | -                   |                                |                  |                  | · ·                  | ı                              |
|                 | •                   | measur    | ements (to                            | calculate t         | the band edg                   | ge field stren   | ıgths):Pow       | er= 16.1 dE          | 3m @ 5210MHz, 18.0             |
| IBm @ 52        |                     | Pol       | 15 200                                | / 15.407            | Detector                       | Azimuth          | Loight           | Comments             |                                |
| requency<br>MHz | dBµV/m              | v/h       | 15.209 /<br>Limit                     | / 15.40 /<br>Margin | Pk/QP/Avg                      | degrees          | Height<br>meters | Comments             |                                |
| 5210.0          |                     | V/11<br>V |                                       | - Iviaiyiii         | Pk/QP/Avg<br>Pk                | 336              |                  | RBW = VB             | W = 1 MH7                      |
| 5210.0          |                     | V         | _                                     | <u> </u>            | Avg                            | 336              |                  |                      | Hz, VBW = 10Hz                 |
| 5210.0          |                     | h         | -                                     | -                   | Pk                             | 310              |                  | RBW = VB             |                                |
| 5210.0          |                     | h         | -                                     | -                   | Avg                            | 310              |                  |                      | Hz, VBW = 10Hz                 |
| 5290.0          |                     | ٧         |                                       |                     | Pk                             | 310              |                  | RBW = VB             |                                |
| 5290.0          |                     | V         | -                                     | -                   | Avg                            | 310              |                  |                      | Hz, VBW = 10Hz                 |
| 5290.0          |                     | h         | -                                     | -                   | Pk                             | 311              |                  | RBW = VB             |                                |
| 5290.0          | 94.8                | h         | -                                     | <u> </u>            | Avg                            | 311              | 2.2              | RBW = 1M             | Hz, VBW = 10Hz                 |
| Pand Edge       | o Eiold Str         | anath C   | alaulations                           | · Dowor- 1          | 14 1 dDm @                     | 5210MHz, 18      | 0 4Dm @          | E200 MU7             |                                |
| requency        |                     | Pol       |                                       | / 15.407            | Detector                       | Azimuth          | Height           | Comments             |                                |
| MHz             | dBμV/m              | v/h       | Limit                                 | Margin              | Pk/QP/Avg                      |                  | meters           | Comments             |                                |
| 5150.0          |                     | V         | 74.0                                  | -12.8               | Avg                            | uogi coo         |                  | Note 1               |                                |
| 5150.0          |                     | V         | 54.0                                  | -6.3                | Pk                             |                  | ·                | Note 1               |                                |
| 5350.0          |                     | ٧         | 74.0                                  | -6.8                | Avg                            |                  |                  | Note 2               |                                |
| 5350.0          |                     | V         | 54.0                                  | -2.1                | Pk                             |                  |                  | Note 2               |                                |
|                 |                     |           |                                       |                     |                                |                  |                  |                      |                                |
|                 |                     | •         |                                       |                     |                                |                  |                  | •                    | calculated using the           |
| Note 1:         |                     |           |                                       |                     | -                              |                  | -                | e) applied to        | o the highest peak and         |
|                 |                     |           | -                                     |                     |                                | ntal signal leve |                  |                      |                                |
|                 |                     |           |                                       |                     |                                |                  |                  |                      | culated using the relationship |
| I-1- O.         |                     |           |                                       |                     | eak and -53.6<br>Imental signa |                  | erage) appi      | ied to the n         | ighest peak and avera          |
| Note 2:         | Lield ofrome        | -11       | · · · · · · · · · · · · · · · · · · · |                     |                                |                  |                  |                      |                                |

| Client:   | Atheros C | ommuni    | cations    |            |           |              | J      | ob Number: | J44997                |
|-----------|-----------|-----------|------------|------------|-----------|--------------|--------|------------|-----------------------|
| Model:    | AR5BAP-   | 00030     |            |            |           |              | T-Lo   | og Number: | T45008                |
|           |           |           |            |            |           |              |        | Proj Eng:  | Mark Briggs           |
| Contact:  | Eric Duka | tz        |            |            |           |              |        |            |                       |
| Spec:     | FCC 15 S  | ub. B &   | E, RSS-210 |            |           |              |        | Class:     | В                     |
| •         |           |           | s Emission |            | 0000 MHz  |              |        |            | l                     |
|           |           | •         |            |            |           | Power = 16.1 | dBm    |            |                       |
| Frequency | Level     | Pol       | 15.209     | / 15.407   | Detector  | Azimuth      | Height | Comments   |                       |
| MHz       | dBμV/m    | v/h       | Limit      | Margin     | Pk/QP/Avg | degrees      | meters |            |                       |
| 15630.0   | 50.0      | V         | 54.0       | -4.0       | Avg       | 167          | 1.3    | Note 2; No | ise Floor measurement |
| 15630.0   | 49.0      | h         | 54.0       | -5.0       | Avg       | 135          |        |            | ise Floor measurement |
| 6252.0    | 58.9      | ٧         | 68.3       | -9.4       | Note 3    | 7            |        | Note 4 & 5 |                       |
| 15630.0   |           | V         | 74.0       | -9.7       | Pk        | 167          | 1.3    | Note 2; No | ise Floor measurement |
| 15630.0   |           | h         | 74.0       | -12.1      | Pk        | 135          | 1.4    | Note 2; No | ise Floor measurement |
|           |           | nnel (Mic | ddle Chann | el 5.25 GH | z);       | 16.0 dBm     |        |            |                       |
| 15750.0   |           | h         | 54.0       | -6.9       | Avg       | 0            |        | Note 2     |                       |
| 15750.0   |           | V         | 54.0       | -7.3       | Avg       | 320          |        | Note 2     |                       |
| 10500.0   |           | V         | 68.3       | -8.2       | Note 3    | 98           |        | Note 4     |                       |
| 10500.0   |           | h         | 68.3       | -9.2       | Note 3    | 262          |        | Note 4     |                       |
| 15750.0   |           | V         | 74.0       | -13.7      | Pk        | 320          |        | Note 2     |                       |
| 15750.0   |           | h         | 74.0       | -14.5      | Pk        | 0            |        | Note 2     |                       |
| 6230.0    |           | V         | 68.3       | -16.8      | Note 3    | 7            |        | Note 4 & 5 |                       |
|           |           |           |            |            |           | Power= 18.0  |        |            |                       |
| 10538.0   |           | ٧         | 54.0       | -0.6       | Avg       | 356          |        | Note 2     |                       |
| 10538.0   |           | h         | 54.0       | -2.8       | Avg       | 36           |        | Note 2     |                       |
| 10538.0   |           | V         | 74.0       | -6.0       | Pk        | 356          |        | Note 2     |                       |
| 10538.0   |           | h         | 74.0       | -9.1       | Pk        | 36           |        | Note 2     |                       |
| 6348.0    |           | V         | 68.3       | -16.2      | Note 3    | 358          |        | Note 4 & 5 |                       |
| 6348.0    | 44.4      | h         | 68.3       | -24.0      | Note 3    | 358          | 1.3    | Note 4 & 5 |                       |

See following page for test notes...

|           | Atheros Communications                                                                                                                                                                                                                                                                                                                                                                                    | Job Numb                                                                                                               | er: J44997                                                                                          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Model:    | AR5BAP-00030                                                                                                                                                                                                                                                                                                                                                                                              | T-Log Numb                                                                                                             | er: T45008                                                                                          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                           | Proj Er                                                                                                                | ng: Mark Briggs                                                                                     |
| Contact:  | Eric Dukatz                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                     |
| Spec:     | FCC 15 Sub. B & E, RSS-210                                                                                                                                                                                                                                                                                                                                                                                | Cla                                                                                                                    | ss: B                                                                                               |
| test note | es for run 6b                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                     |
| Note 1:   | For emissions falling in the restricted bands detailed in 15.20 emissions the limit is EIRP < -27dBm (equivalent to a field str                                                                                                                                                                                                                                                                           |                                                                                                                        |                                                                                                     |
| Note 2:   | Signal is in a restricted band                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                        |                                                                                                     |
| Note 3:   | Resolution Bw: 1MHz and Video Bw: 10 Hz. All other measu averaging on (100 samples).                                                                                                                                                                                                                                                                                                                      | rements, RBW = 1MHz ar                                                                                                 | d VBW = 3MHz, video                                                                                 |
| Note 4:   | Signal does not fall in a restricted band.                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                                                     |
|           | U U                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |                                                                                                     |
| Note 5:   | This measurement was made using a resolution bandwidth o allow measurements with RBW = 1MHz because a preamplification intentional signal would overload the amplifier and there is not the intentionally trasmitted signal but pass the spuroius signal during the conducted antenna measurements) and so the amount the same as that in a 1MHz bandwidth (please refer to the please the average limit. | ier could not be used (with<br>low pass filter with suffic<br>I). The signal was a narrou<br>plitude (peak/average) in | the EUT operating the ent shape factor to reject when signal (as verified a 3kHz bandwidth would be |



Plot showing LO signal at 4GHz measured using RBW = 1MHz and RBW = 3kHz. Amplitude of the signal does not

| 6        | Elliott                    | EM            | IC Test Data |
|----------|----------------------------|---------------|--------------|
| Client:  | Atheros Communications     | Job Number:   | J44997       |
| Model:   | AR5BAP-00030               | T-Log Number: | T45008       |
|          |                            | Proj Eng:     | Mark Briggs  |
| Contact: | Eric Dukatz                |               |              |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В            |

## **Conducted Emissions - Power Ports**

# **Test Specifics**

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 10/15/2001 Config. Used: #1
Test Engineer: Marissa Faustino Config Change: N/A
Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

# **General Test Configuration**

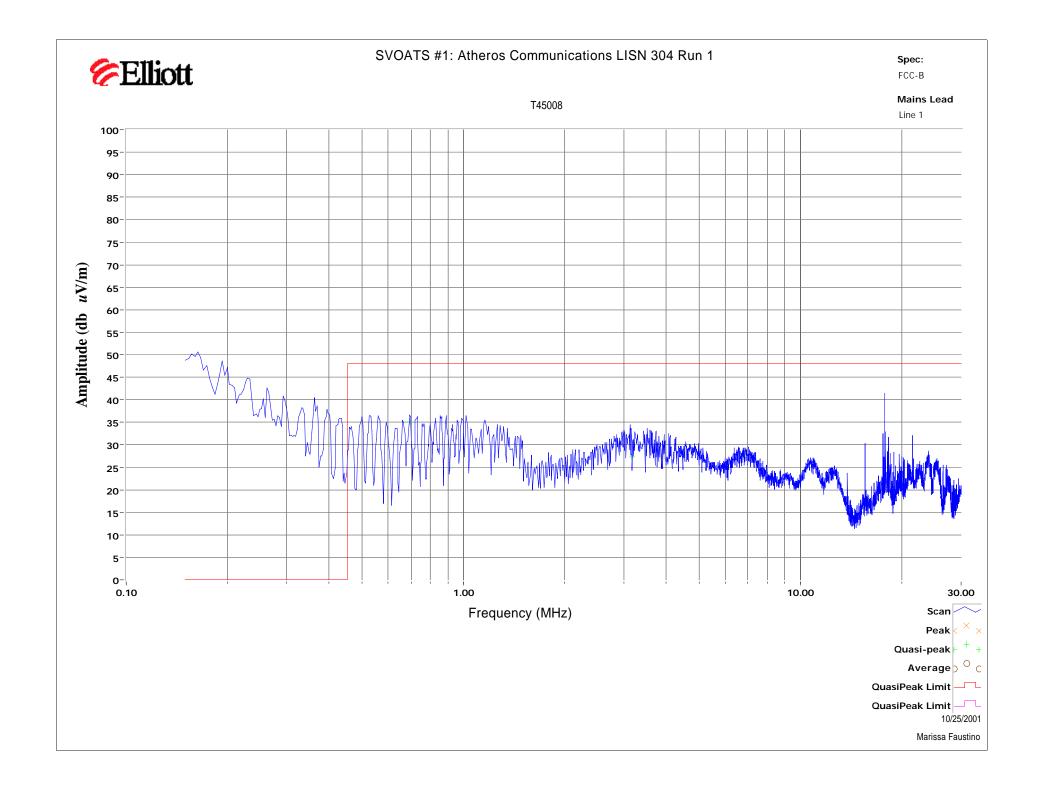
For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. Remote support equipment was located approximately 30 meters away from the test area, with all I/O connections routed overhead.

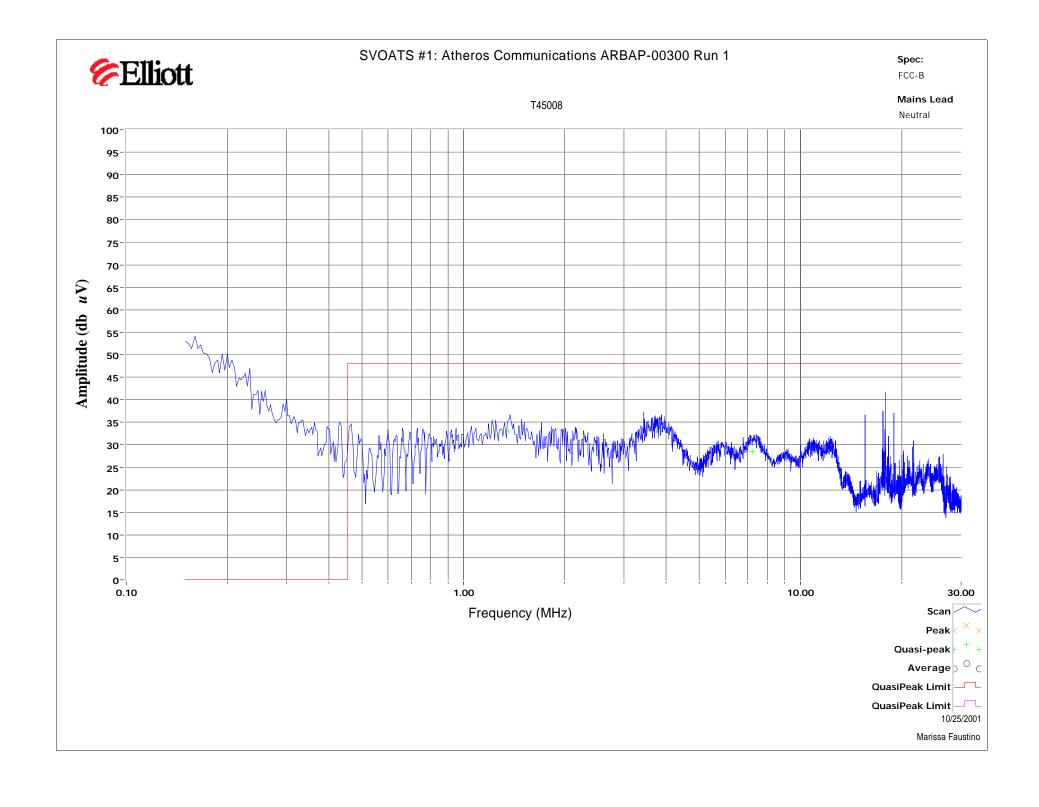
Ambient Conditions: Temperature: 29°C

Rel. Humidity: 24%

## Summary of Results

| Run # | Test Performed         | Limit | Result | Margin          |
|-------|------------------------|-------|--------|-----------------|
| 1     | CE, AC Power 120V/60Hz | FCC B | Pass   | -13dB @ .694MHz |


## Modifications Made During Testing:


No modifications were made to the EUT during testing

## **Deviations From The Standard**

No deviations were made from the requirements of the standard.

| ι -            | Elli          | υll               |           |                 |          |               | <b>E</b> IV   | IC Test Da  |
|----------------|---------------|-------------------|-----------|-----------------|----------|---------------|---------------|-------------|
| Client:        | Atheros (     | Communic          | ations    |                 |          |               | Job Number:   | J44997      |
| Model:         | AR5BAP        | -00030            |           |                 |          |               | T-Log Number: | T45008      |
|                |               |                   |           |                 |          |               | Proj Eng:     | Mark Briggs |
| Contact:       | Eric Duka     | atz               |           |                 |          |               |               |             |
| Spec:          | FCC 15 S      | Sub. B & E        | , RSS-210 |                 |          |               | Class:        | В           |
|                |               |                   |           |                 |          |               |               |             |
|                |               |                   |           |                 |          | 120 V / 60 Hz | <u>!</u>      |             |
| equency<br>MHz | Level<br>dBµV | Interface<br>Port | Limit     | C B             | QP/Ave   | Comments      |               |             |
| 0.6940         | 35.0          | Line 1            | 48.0      | Margin<br>-13.0 | QP/Ave   |               |               |             |
| 1.3606         | 33.0          | Neutral           | 48.0      | -15.0           | QP       |               |               |             |
| 3.8658         | 32.8          | Neutral           | 48.0      | -15.0           | QP<br>QP |               |               |             |
| 7.1907         | 28.5          | Neutral           | 48.0      | -19.5           | QP       |               |               |             |
| 3.1748         | 27.2          | Line 1            | 48.0      | -20.8           | QP       |               |               |             |
| 6.8451         | 27.0          | Line 1            | 48.0      | -21.0           | QP       |               |               |             |
|                |               |                   |           |                 |          |               |               |             |
|                |               |                   |           |                 |          |               |               |             |





| 6        | Elliott                    | EM            | IC Test Data |
|----------|----------------------------|---------------|--------------|
| Client:  | Atheros Communications     | Job Number:   | J44997       |
| Model:   | AR5BAP-00030               | T-Log Number: | T45008       |
|          |                            | Proj Eng:     | Mark Briggs  |
| Contact: | Eric Dukatz                |               |              |
| Spec:    | FCC 15 Sub. B & E, RSS-210 | Class:        | В            |

## **Radiated Emissions**

## **Test Specifics**

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 10/15/2001 Config. Used: #1
Test Engineer: Marissa Faustino Config Change: -

Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

### General Test Configuration

The EUT was located on the turntable for radiated emissions testing. Remote support equipment was located approximately 30 meters from the test area with all I/O connections routed overhead.

On the OATS, the measurement antenna was located 3 meters from the EUT for the measurement range 30 - 1000 MHz. Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 29°C

Rel. Humidity: 24%

### Summary of Results

| Run # | Test Performed                        | Limit | Result | Margin            |
|-------|---------------------------------------|-------|--------|-------------------|
| 1     | RE, Preliminary Scan 30 -<br>1000 MHz | FCC B | Eval   | -4.2dB @ 67.92MHz |
| 2     | RE, 30 - 1000MHz -                    | FCC B | Pass   | -4.2dB @ 67.92MHz |
|       | Maximized Emissions                   |       |        |                   |

## Modifications Made During Testing:

The following modifications were made to the EUT during testing in order to comply with the requirements of the standard:

1)Added Echosorb material ARC DD-10214 to top cover of EUT, covering microcontroller and SDRAM

#### Deviations From The Standard

No deviations were made from the requirements of the standard.

| C Test Data                                       |            |        |         |           |             |             |           |            | 6          |
|---------------------------------------------------|------------|--------|---------|-----------|-------------|-------------|-----------|------------|------------|
| J44997                                            | ob Number: | J      |         |           |             | cations     | ommunio   | Atheros Co | Client:    |
| T45008                                            | og Number: | T-L    |         |           |             |             | 00030     | AR5BAP-0   | Model:     |
| Mark Briggs                                       | Proj Eng:  |        |         |           |             |             |           |            |            |
|                                                   |            |        |         |           |             |             | Z         | Eric Dukat | Contact:   |
| В                                                 | Class:     |        |         |           |             | E, RSS-210  | ub. B & I | FCC 15 St  | Spec:      |
|                                                   |            |        |         | ) MHz     | ns. 30-1000 | ed Emission | Radiate   | eliminary  | Run #1: Pi |
|                                                   | Comments   | Height | Azimuth | Detector  | Spec        | Spec        | Pol       | Level      | Frequency  |
|                                                   |            | meters | degrees | Pk/QP/Avg | Margin      | Limit       | v/h       | dBμV/m     | MHz        |
|                                                   |            | 1.0    | 0       | QP        | -4.1        | 40.0        | V         | 35.9       | 67.920     |
|                                                   |            | 1.0    | 0       | QP        | -4.4        | 40.0        | V         | 35.6       | 54.430     |
|                                                   |            | 1.0    | 0       | QP        | -5.4        | 40.0        | V         | 34.6       | 44.338     |
| l) reading 41.8 dBuV/m before<br>installing Mod 1 | 288 MHz (F | 1.0    | 179     | QΡ        | -5.7        | 46.0        | Н         | 40.3       | 287.997    |
| l) reading 37.8 dBuV/m before<br>installing Mod 1 | 672 MHz (H | 1.0    | 266     | QP        | -7.0        | 46.0        | Н         | 39.0       | 672.000    |
| ) reading 47.7dBuV/m before installing Mod 1      | 480 MHz(F  | 1.0    | 47      | QP        | -7.3        | 46.0        | Н         | 38.7       | 479.885    |
| (v) with mod 1 installed                          | 288 MHz    | 1.9    | 33      | QΡ        | -7.4        | 46.0        | V         | 38.6       | 287.997    |
|                                                   |            | 1.0    | 358     | QP        | -8.2        | 46.0        | Н         | 37.8       | 672.000    |
| /) reading 44 dBuV/m before installing Mod 1      | 672 MHz(\  | 1.0    | 299     | QP        | -9.5        | 46.0        | V         | 36.5       | 672.000    |
|                                                   |            | 1.3    | 308     | QP        | -10.4       | 46.0        | Н         | 35.6       | 256.060    |
| reading 44.5 dBuV/m before installing Mod 1       | 480 MHz(v  | 1.0    | 299     | QP        | -10.9       | 46.0        | V         | 35.1       | 479.885    |
|                                                   |            | 1.0    | 222     | QP        | -11.8       | 46.0        | Н         | 34.2       | 383.994    |
|                                                   |            | 1.0    | 218     | QP        | -12.1       | 43.5        | V         | 31.4       | 148.100    |
|                                                   |            | 1.0    | 71      | QP        | -12.8       | 40.0        | V         | 27.2       | 30.640     |
|                                                   |            | 1.0    | 0       | QP        | -14.1       | 40.0        | V         | 25.9       | 32.020     |
|                                                   |            | 1.0    | 303     | QP        | -14.6       | 46.0        | Н         | 31.4       | 257.720    |
|                                                   |            | 1.0    | 158     | QP        | -14.6       | 46.0        | Н         | 31.4       | 265.020    |
|                                                   |            | 1.9    | 144     | QP        | -14.7       | 46.0        | Н         | 31.3       | 267.016    |
|                                                   | ļ          | 1.5    | 0       | QP        | -14.8       | 46.0        | Н         | 31.2       | 263.014    |
|                                                   |            | 1.0    | 258     | QP        | -16.0       | 43.5        | V         | 27.5       | 209.990    |
|                                                   |            | 1.0    | 116     | QP        | -16.5       | 46.0        | V         | 29.5       | 256.013    |
|                                                   | ļ          | 1.0    | 257     | QP        | -16.5       | 43.5        | V         | 27.0       | 142.990    |
|                                                   | ļ          | 1.0    | 279     | QP        | -17.3       | 46.0        | V         | 28.7       | 249.930    |
|                                                   |            | 1.0    | 281     | QP        | -17.5       | 43.5        | V         | 26.0       | 136.990    |
|                                                   | ļ          | 1.0    | 110     | QP        | -17.6       | 40.0        | V         | 22.4       | 80.940     |
|                                                   |            | 1.0    | 338     | QP        | -18.1       | 46.0        | V         | 27.9       | 383.994    |
|                                                   | ļ          | 1.0    | 0       | QP        | -18.5       | 46.0        | V         | 27.5       | 297.019    |
|                                                   | ļ          | 1.2    | 359     | QP        | -18.5       | 46.0        | Н         | 27.5       | 288.980    |
|                                                   |            | 1.8    | 0       | QP        | -19.7       | 46.0        | Н         | 26.3       | 254.020    |

|                     | Atheros C               | ommunic | rations    |        |           |         |            | Job Number: | C Test Da   |
|---------------------|-------------------------|---------|------------|--------|-----------|---------|------------|-------------|-------------|
| Model: AR5BAP-00030 |                         |         |            |        |           |         |            |             |             |
| MOGOL ARODAL FOODS  |                         |         |            |        |           | I-L     | og Number: |             |             |
| 011                 | Eria Dulcai             |         |            |        |           |         |            | Proj Eng:   | Mark Briggs |
|                     | Eric Dukat              |         | - DCC 210  |        |           |         |            | Olasa       | D           |
|                     |                         |         | E, RSS-210 |        |           |         |            | Class:      | В           |
|                     | aximized<br>after Mod 1 |         | IS From Ru | ın#ı   |           |         |            |             |             |
| equency             |                         | Pol     | Spec       | Spec   | Detector  | Azimuth | Height     | Comments    |             |
| MHz                 | dBμV/m                  | v/h     | Limit      | Margin | Pk/QP/Avg | degrees | meters     | Commonto    |             |
| 67.920              |                         | V       | 40.0       | -4.1   | QP        | 0       | 1.0        |             |             |
| 54.430              | 35.6                    | V       | 40.0       | -4.4   | QP        | 0       | 1.0        |             |             |
| 287.997             | 41.6                    | Н       | 46.0       | -4.4   | QP        | 179     | 1.0        |             |             |
| 44.338              |                         | V       | 40.0       | -5.4   | QP        | 0       | 1.0        |             |             |
| 479.885             |                         | Н       | 46.0       | -6.0   | QP        | 47      | 1.0        |             |             |
| 572.000             | 39.0                    | Н       | 46.0       | -7.0   | QP        | 266     | 1.0        |             |             |
|                     |                         |         |            |        |           |         |            |             |             |
|                     |                         |         |            |        |           |         |            |             |             |

# APPENDIX 3: Test Configuration Photographs

2 Pages

File: R45129 Appendix Page 3 of 11

# APPENDIX 4: Proposed FCC ID Label & Label Location

1 Page

Appendix Page 4 of 11 File: R45129

# APPENDIX 5: Detailed Photographs of Atheros Communications Model AR5BAP-00030Construction

6 Pages

File: R45129 Appendix Page 5 of 11

# APPENDIX 6: Operator's Manual for Atheros Communications Model AR5BAP-00030

22 Pages

File: R45129 Appendix Page 6 of 11

# APPENDIX 7: Block Diagram of Atheros Communications Model AR5BAP-00030

1 Page

File: R45129 Appendix Page 7 of 11

# APPENDIX 8: Schematic Diagrams for Atheros Communications Model AR5BAP-00030

12 Pages

File: R45129 Appendix Page 8 of 11

# APPENDIX 9: Theory of Operation for Atheros Communications Model AR5BAP-00030

8 Pages

File: R45129 Appendix Page 9 of 11

# APPENDIX 10: Advertising Literature

None Available At This Time

File: R45129 Appendix Page 10 of 11

# APPENDIX 11: RF Exposure Information

MPE Calculation

File: R45129 Appendix Page 11 of 11