

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE Std 1528-2003

(Class II Permissive Change)

SAR EVALUATION REPORT

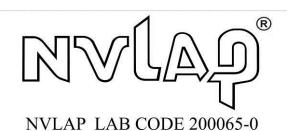
For

1X1 802.11b/g/n - BT Combo PCle Minicard (Tested inside of Toshiba Tablet PC, Model WT200)

Model: AR5B225 FCC ID: PPD-AR5B225

Report Number: 12U14370-1A

Issue Date: 4/19/2012


Prepared for

Qualcomm Atheros, Inc 1700 Technology Drive San Jose, CA 95110, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

> TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	4/12/2012	Initial Issue	
Α	4/19/2012	Clarified antenna description in 7.1	Dave Weaver

Table of Contents

1.	Αt	testation of Test Results	5
2.	Te	est Methodology	6
3.	Fa	acilities and Accreditation	6
4.	Ca	alibration and Uncertainty	7
4	l. 1.	Measuring Instrument Calibration	
4	1.2.	Measurement Uncertainty	7
5.	M	easurement System Description and Setup	8
6.	S	AR Measurement Procedures	9
6	5.1.	Normal SAR Measurement Procedure	9
6	5.2.	Volume Scan Procedures	10
7.	De	evice Under Test	11
7	7.1.	Band and Air Interfaces	11
7	7.2.	Simultaneous Transmission	11
8.	Sı	ummary of Test Configurations	12
9.	RI	F Output Power Verification	13
g).1.	WiFi (802.11bgn)	13
g	0.2.	Bluetooth	13
10.		Tissue Dielectric Properties	14
1	0.1	. Composition of Ingredients for the Tissue Material used in the SAR Tests	15
1	0.2	Tissue Dielectric Parameter Check Results	15
11.		System Performance Check	16
1	1.1		
1	1.2	Reference SAR values for System Performance Check	16
1	1.3	S. System Performance Check Results	16
12.		SAR Test Results	17
1	2.1	. WiFi (802.11bgn)	17
13.		Summary of Highest SAR Values	18
1	3.1		
14.		Simultaneous Transmission SAR Analysis	21
15.		Appendixes	22

Report No.: 12U14370-1A FCC ID: PPD-AR5B225

15	15.1. System Performance Check Plots		22
15	5.2.	SAR Test Plots for WiFi (802.11bgn)	
15	5.3.	Calibration Certificate for E-Field Probe EX3DV3 - SN 3531	22
15	5.4.	Calibration Certificate for E-Field Probe EX3DV4 - SN 3772	22
15	5.5.	Calibration Certificate for D2450V2 - SN 748	22
16.	Но	st Device Photos	23
17.	An	tenna Location and Separation Distances	24
18. Setup Photos		2!	

1. Attestation of Test Results

Applicant	Toshiba Corporation					
DUT description	1X1 802.11b/g/n -	BT Combo PCIe Minicard				
	(Tested inside of	Toshiba Tablet PC, Model WT200)				
Model	AR5B225					
Test device is	An identical prototy	уре				
Device category	Portable device					
Exposure category	General Population	n/Uncontrolled Exposure				
Date tested	4/4/2012 & 4/11/2012					
FCC Rule Parts	Freq. Range Highest 1-g SAR Limit					
15.247	2412-2462 MHz Body: 1.37 W/kg (Edge 3 at 45° w/ 0 mm distance) 1.6 W/kg					
	Applicable Standards Test Results					
FCC OET Bulletin 65 S	upplement C 01-01	, IEEE Std 1528:2003	Pass			

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Tested By:

Dave Weaver Staff Engineer

Compliance Certification Services (UL CCS)

Chakrit Thammanavarat

SAR Engineer

Compliance Certification Services (UL CCS)

2. Test Methodology

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE Std 1528-2003, and the following KDB Procedures.

- o 447498 D01 Mobile Portable RF Exposure v04
- o 248227 D01 SAR meas for 802 11abg v01r02
- 616217 D03 SAR Supp Note and Netbook Laptop v01

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

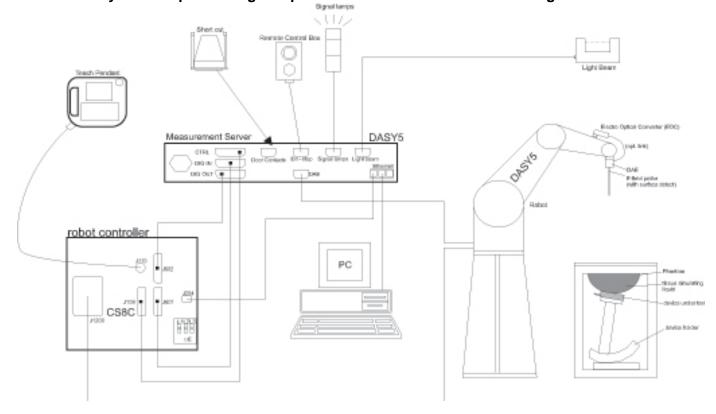
4. Calibration and Uncertainty

4.1. Measuring Instrument Calibration

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Engineers	Manufactura	T /NA - de l	Opriol No.	Cal. Due date		
Name of Equipment	Manufacturer	Type/Model	Model Serial No.		DD	Year
Dielectronic Probe kit	HP	85070C	N/A		N/	'A
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	2	22	2013
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012
E-Field Probe	SPEAG	EX3DV3	3531	12	19	2012
E-Field Probe	SPEAG	EX3DV4	3772	2	16	2013
Thermometer	ERTCO	639-1S	1718	7	19	2012
Data Acquisition Electronics	SPEAG	DAE4	1259	2	13	2013
Data Acquisition Electronics	SPEAG	DAE4	1239	10	18	2012
System Validation Dipole	SPEAG	D2450V2	748	2	7	2013
Power Meter	HP	437B	3125U16345	5	13	2012
Power Sensor	HP	8481A	2702A60780	5	13	2012
Amplifier	MITEQ	4D00400600-50-30P	1620606	N/A		'A
Directional coupler	Werlatone	C8060-102	2141		N/	'A

4.2. Measurement Uncertainty


Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram								
Component	Error, %	Distribution	Divisor	Sensitivity	U (Xi), %			
Measurement System								
Probe Calibration (k=1)	6.00	Normal	1	1	6.00			
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47			
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94			
Boundary Effect	0.90	Rectangular	1.732	1	0.52			
Probe Linearity	3.45	Rectangular	1.732	1	1.99			
System Detection Limits	1.00	Rectangular	1.732	1	0.58			
Readout Electronics	0.30	Normal	1	1	0.30			
Response Time	0.80	Rectangular	1.732	1	0.46			
Integration Time	2.60	Rectangular	1.732	1	1.50			
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73			
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73			
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23			
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67			
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58			
Test Sample Related								
Test Sample Positioning	2.90	Normal	1	1	2.90			
Device Holder Uncertainty	3.60	Normal	1	1	3.60			
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89			
Phantom and Tissue Parameters								
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31			
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85			
Liquid Conductivity - measurement	1.53	Normal	1	0.64	0.98			
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73			
Liquid Permittivity - measurement uncertainty	-1.91	Normal	1	0.6	-1.15			
		Combined	Standard Unce	ertainty Uc(y) =	9.86			
Expanded Uncertainty U	J, Coverage Fac	ctor = 2, > 95 %	Confidence =	19.71	%			

Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence =

1.56 dB

5. Measurement System Description and Setup

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- Data acquisition electronics (DAE) which performs the signal amplification, multiplexing, AD-conversion, offset
 measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard
 or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6. SAR Measurement Procedures

6.1. Normal SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $\geq 7x7x9$ (above 4.5 GHz) or 5x5x7 (below 3 GHz) points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

6.2. Volume Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $\geq 7x7x9$ (above 4.5 GHz) or 5x5x7 (below 3 GHz) points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Volume Scan

Volume Scans are used to assess peak SAR and averaged SAR measurements in largely extended 3-dimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location.

Step 5: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

7. Device Under Test

1X1 802.11b/g/n - BT Combo PCIe Minicard (Tested inside of Toshiba Tablet PC, Model WT200)					
Normal operation	 Bottom Face (Rear) Edge - One fixed display orientation supporting operation in the landscape configuration 				
Device Dimensions (mm)	175x270x14.6 (LxWxH)				

7.1. Band and Air Interfaces

Tx Frequency Bands	- 802.11b/g/n: 2412 - 2462 MHz, HT20 and HT40
	- Bluetooth: 2402 - 2480 MHz
	Note: There are two antennas – main and aux. Wi-Fi only transmits on the main antenna. BT only transmits on the Aux antenna.

7.2. Simultaneous Transmission

Simultaneous transmission	WiFi 2.4 GHz can transmit simultaneously with BT
Assessment for SAR evaluation for Simultaneous transmission	As Bluetooth's maximum average power is 17 mW [<60/f _(GHz) mW], standalone SAR is not required. Therefore, Wi-Fi and Bluetooth simultaneous transmission SAR evaluation is not required.

8. Summary of Test Configurations

The following test configurations are based on KDB 447498 4) b) Tablet Mode

Refer to section 17 for antenna location and separation distance.

Test Configuration	Antenna-to- edge/surface	SAR Required	Note
Rear	10.9 mm	Yes	
Edge 1	166.89 mm	No	This is not the most conservative antenna-to-user distance at edge mode as per KDB 447498 4) b) ii) (2)
Edge 2	149 mm	No	This is not the most conservative antenna-to-user distance at edge mode as per KDB 447498 4) b) ii) (2)
Edge 3	1.6 mm	Yes	
Edge 4	82.64 mm	No	This is not the most conservative antenna-to-user distance at edge mode as per KDB 447498 4) b) ii) (2)

9. RF Output Power Verification

9.1. WiFi (802.11bgn)

Required Test Channels per KDB 248227 D01

Mode	Pand	GHz	Channal	"Default Test Channels"		
iviode	Band	GHZ	Channel	802.11b	802.11g	
	2.4 GHz	2.412	1#	$\sqrt{}$	∇	
802.11b/g		2.437	6	$\sqrt{}$	∇	
		2.462	11 [#]	V	∇	

Notes:

Output power table

Mode	Channel #	Freq. (MHz)	Target Power	Measured Power
			(dBm)	(dBm)
	1	2412	18.2	18.2
802.11b	6	2437	18.2	18.3
	11	2462	18.0	18.0
	1	2412	14.3	14.4
	2	2417		18.1
802.11g	6	2437	18.1	18.3
	10	2457		18.1
	11	2462	12.9	13.0
802.11n	1	2412	13.4	13.5
(HT20)	6	2437	16.1	16.1
(11120)	11	2462	12.0	12.0
802.11n	3	2422	10.9	11.0
(HT40)	6	2437	13.2	13.3
(11140)	9	2452	10.0	10.0

Note(s):

Original target power is from EMC report RF991126E02. Refer to the original report (FCC ID: PPD-AR5B225) for Average Power information as documented in the original filing dated 2/17/2011.

9.2. Bluetooth

Maximum output power: 17 mW (Refer to FCC ID: PPD-AR5B225, date of grant: 02/17/2011)

Note(s):

Stand-alone SAR is not required as the output power is less than 25 mW(60/f_(GHz))

 $[\]sqrt{\ }$ = "default test channels"

^{∇ =} possible 802.11g channels with maximum average output ¼ dB ≥ the "default test channels"

^{# =} when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

10. Tissue Dielectric Properties

IEEE Std 1528-2003 Table 2

Target Frequency (MHz)	Head				
rarget i requericy (ivii iz)	$\varepsilon_{ m r}$	σ (S/m)			
300	45.3	0.87			
450	43.5	0.87			
835	41.5	0.90			
900	41.5	0.97			
1450	40.5	1.20			
1800 – 2000	40.0	1.40			
2450	39.2	1.80			
2600	39.0	1.96			
3000	38.5	2.40			

FCC OET Bulletin 65 Supplement C 01-01

Target Frequency (MHz)	He	ead	Bod	ly
rarget Frequency (MH2)	ε _r	σ (S/m)	ϵ_{r}	σ (S/m)
150	52.3	0.76	61.9	0.8
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.9	55.2	0.97
900	41.5	0.97	55	1.05
915	41.5	0.98	55	1.06
1450	40.5	1.2	54	1.3
1610	40.3	1.29	53.8	1.4
1800 – 2000	40	1.4	53.3	1.52
2450	39.2	1.8	52.7	1.95
3000	38.5	2.4	52	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

10.1. Composition of Ingredients for the Tissue Material used in the SAR Tests

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)								
(% by weight)	45	50	83	35	9	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride
Water: De-ionized, 16 MΩ+ resistivity

Sugar: 98+% Pure Sucrose HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

10.2. Tissue Dielectric Parameter Check Results

Tissue dielectric parameters measured at the low, middle and high frequency of each operating frequency range of the test device.

Date	Freq. (MHz)		Liqu	iid Parameters	Measured	Target	Delta (%)	Limit ±(%)
04/04/2012	Body 2450	e'	51.9726	Relative Permittivity (ε_r):	51.97	52.70	-1.38	5
	Body 2430	e"	14.3317	Conductivity (σ):	1.95	1.95	0.12	5
	Body 2410	e'	52.0518	Relative Permittivity (ε_r):	52.05	52.76	-1.34	5
	B00y 2410	e"	14.1609	Conductivity (σ):	1.90	1.91	-0.52	5
	Body 2435	e'	52.0111	Relative Permittivity (ε_r):	52.01	52.73	-1.36	5
	Douy 2433	e"	14.2739	Conductivity (σ):	1.93	1.93	0.08	5
	Body 2475	e'	51.8834	Relative Permittivity (ε_r):	51.88	52.67	-1.49	5
		e"	14.4207	Conductivity (σ):	1.98	1.99	-0.03	5
	Body 2450	e'	51.7824	Relative Permittivity (ε_r):	51.78	52.70	-1.74	5
		e"	14.5326	Conductivity (σ):	1.98	1.95	1.53	5
	Body 2410	e'	51.9233	Relative Permittivity (ε_r):	51.92	52.76	-1.58	5
04/11/2012		e"	14.3732	Conductivity (σ):	1.93	1.91	0.97	5
04/11/2012	Body 2435	e'	51.8448	Relative Permittivity (ε_r):	51.84	52.73	-1.67	5
	Douy 2433	e"	14.4773	Conductivity (σ):	1.96	1.93	1.50	5
	Body 2475	e'	51.6651	Relative Permittivity (ε_r):	51.67	52.67	-1.91	5
	Dody 2473	e"	14.6193	Conductivity (σ):	2.01	1.99	1.35	5

11. System Performance Check

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

11.1. System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
 center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

11.2. Reference SAR values for System Performance Check

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dinale	System Dipole Serial No. Cal. Date Freq. (MHz)		Eroa (MUz)	SAR Measured (mW/g)				
System Dipole			rieq. (IVITZ)	1g/10g	Head	Body		
D2450V2	7/0	2/7/12	2450	1g	53.6	50.8		
D2430V2	748		2430	10g	24.8	23.6		

11.3. System Performance Check Results

Date Tested	System	Dipole	T.S.	SAR Me	easured	Target	Delta (%)	Tolerance	
Date Tested	Type	Serial No.	Liquid	(Normalize	ed to 1 W)	(Ref. Value)	Della (70)	(%)	
4/4/2012	D2450V2	748	Body	1g	50.4	50.8	-0.79	±10	
4/4/2012	D2450 V Z	740	Бойу	10g	23.6	23.6	0.00	±ΙΟ	
4/11/2012	D2450V2	748	Rody	1g	51.5	50.8	1.38	±10	
4/11/2012 D2450	D2430V2	740	Body	10g	23.6	23.6	0.00	±10	

12. SAR Test Results

12.1. WiFi (802.11bgn)

Test Reduction Consideration

SAR is not required for 802.11g/n (HT20/HT40) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels as per KDB 248227.

Body SAR

Toot Docition	est Position Mode		Ch #.	Freq.	Avg Pwr	SAR (mW/g)	Note
Test Position	iviode	(mm)	OII#.	(MHz)	(dBm)	1-g	10-g	Note
			1	2412	18.2	0.815	0.374	
Rear	802.11b	0	6	2437	18.3	0.867	0.392	
			11	2462	18.0	1.07	0.478	
			1	2412	18.2			2
Edge 1	802.11b	0	6	2437	18.3			2
			11	2462	18.0			2
			1	2412	18.2			2
Edge 2	802.11b	0	6	2437	18.3			2
			11	2462	18.0			2
			1	2412	18.2	1.05	0.434	
Edge 3 @ 45°	802.11b	0	6	2437	18.3	1.34	0.555	
			11	2462	18.0	1.37	0.562	
			1	2412	18.2	0.886	0.360	
Edge 3	802.11b	0	6	2437	18.3	1.07	0.428	
			11	2462	18.0	1.28	0.499	
			1	2412	18.2			2
Edge 4	802.11b	0	6	2437	18.3			2
_			11	2462	18.0			2

Note(s):

For frequency bands with an operating range of < 100 MHz, when the SAR for the highest output power channel within is ≤ 0.8 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)

^{2.} SAR is not required due to antenna-to-edge's distance is greater than 2.5 cm.

13. Summary of Highest SAR Values

The test configuration for each body exposure condition (head, body and Hotspot) is dependent on the applicable voice or data modes, and antenna selected.

Technology/Band	Test configuration	Mode	Separation distance (mm)	Highest 1g SAR (W/kg)
Wi-Fi 2.4 GHz	Body: Edge 3 @ 45°	802.11b, 1 Mbps	0	1.37

13.1. SAR Plots (From Summary of Highest SAR Values)

Test Laboratory: UL CCS SAR Lab A Date: 4/12/2012

WiFi 2.4GHz

Frequency: 2462 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.996$ mho/m; $\epsilon_r = 51.724$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Electronics: DAE4 Sn1239; Calibrated: 10/18/2011
- Probe: EX3DV4 SN3772; ConvF(6.65, 6.65, 6.65); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

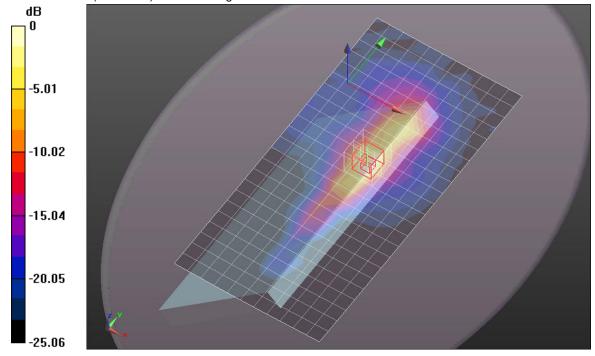
Edge 3 @ 45°/802.11b_Ant A_ch 11/Area Scan (12x24x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 3.006 mW/g

Edge 3 @ 45°/802.11b_Ant A_ch 11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm


Reference Value = 37.082 V/m; Power Drift = 0.08 dB

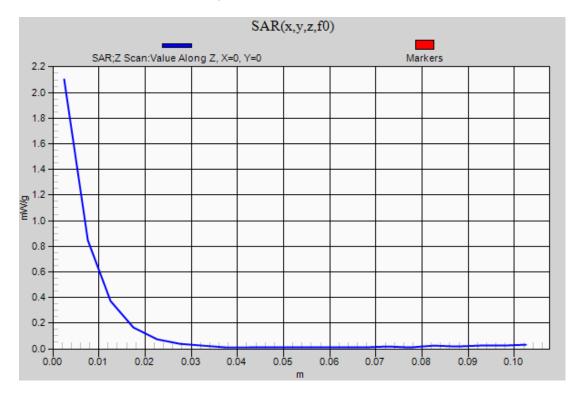
Peak SAR (extrapolated) = 3.4920

SAR(1 g) = 1.37 mW/g; SAR(10 g) = 0.562 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.195 mW/g

0 dB = 2.190 mW/g = 6.81 dB mW/g


Test Laboratory: UL CCS SAR Lab A Date: 4/12/2012

WiFi 2.4GHz

Frequency: 2462 MHz; Duty Cycle: 1:1

Edge 3 @ 45°/802.11b_Ant A_ch 11/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.101 mW/g

14. Simultaneous Transmission SAR Analysis

As Bluetooth's max average power is 17 mW [<60/f(GHz) mW] standalone SAR is not required. Therefore, WiFi and Bluetooth simultaneous transmission SAR evaluation is not required.

15. Appendixes

Refer to the separated files for the following appendixes.

- 15.1. System Performance Check Plots
- 15.2. SAR Test Plots for WiFi (802.11bgn)
- 15.3. Calibration Certificate for E-Field Probe EX3DV3 SN 3531
- 15.4. Calibration Certificate for E-Field Probe EX3DV4 SN 3772
- 15.5. Calibration Certificate for D2450V2 SN 748