

FCC PART 15.247 **TEST REPORT**

For

ShenZhen Rapoo Technology Co., Ltd.

22, Jinxiu Road East, Pingshan District, Shenzhen, China

FCC ID: PP26610

Report Type: **Product Type:**

Dual-mode Optical Mouse Original Report

leon then **Test Engineer:** Leon Chen

Report Number: R1DG121023004-00B

Report Date: 2012-10-31

Jerry Zhang

Reviewed By: EMC Engineer

Bay Area Compliance Laboratories Corp. (Dongguan) **Test Laboratory:**

No.69 Pulongcun, Puxinhu Industrial Zone,

Jerry Zhang

Tangxia, Dongguan, Guangdong, China Tel: +86-769-8685888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS	6
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.247 (i) & §1.1307 (b) (1) & §2.1093- RF EXPOSURE	8
Applicable Standard	
FCC §15.203 - ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	
Antenna Connector Construction	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSION	10
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	10
EUT SETUP	10
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (1) - CHANNEL SEPARATION TEST	16
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	16
TEST DATA	
FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING	19
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS TEST DATA	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	24

Report No.: R1DG121023004-00B

Bay Area Compliance Laboratories Corp. (Dongguan)

APPLICABLE STANDARD	24
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	31
APPLICABLE STANDARD	31
TEST PROCEDURE	31
TEST EQUIPMENT LIST AND DETAILS	31
TEST DATA	31
FCC §15.247(d) - BAND EDGE TESTING	34
APPLICABLE STANDARD	34
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
Tron Dana	

Report No.: R1DG121023004-00B

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *ShenZhen Rapoo Technology Co., Ltd.*'s product, model number: 6610 (*FCC ID: PP26610*) or ("EUT") in this report is a *Dual-mode Optical Mouse*, which was measured approximately: 9.4 cm (L) x5.8 cm (W) x 3.5 cm (H), rated input voltage: DC 1.5V from two parallel AA battery.

Report No.: R1DG121023004-00B

* All measurement and test data in this report was gathered from production sample serial number: 12001661000001 (Assigned by applicant). The EUT was received on 2012-10-23.

Frequency range:

Bluetooth: 2402-2480 MHz 2.4G wireless: 2402-2479 MHz

Objective

This report is prepared on behalf of *ShenZhen Rapoo Technology Co., Ltd.* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine the Bluetooth of EUT compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15C DXX submissions with FCC ID: PP26610 for 2.4G wireless.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emission measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

The uncertainty of any RF tests which use conducted method measurement is ± 0.96 dB, the uncertainty of any radiation on emission measurement is ± 4.0 dB

FCC Part 15.247 Page 4 of 35

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Report No.: R1DG121023004-00B

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

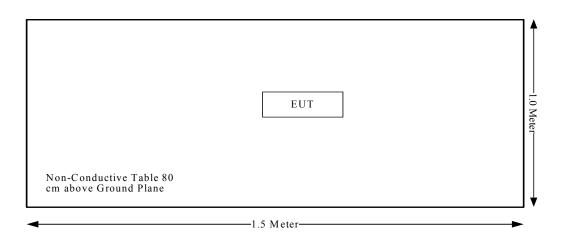
FCC Part 15.247 Page 5 of 35

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode, which was provided by manufacturer.

Report No.: R1DG121023004-00B


EUT Exercise Software

Boardcom Bluetool 1.4.4.9

Equipment Modifications

No modification was made to the EUT tested.

Block Diagram of Test Setup

FCC Part 15.247 Page 6 of 35

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1093	RF Exposure	Compliace
§15.203	Antenna Requirement	Compliance
§15.207 (a)	Conducted Emission	Not Applicable*
\$15.205, \$15.209, \$15.247(d)	Radiated Emission	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edge	Compliance

Report No.: R1DG121023004-00B

Not Applicable*: The EUT is powered by DC 1.5V battery.

FCC Part 15.247 Page 7 of 35

FCC §15.247 (i) & §1.1307 (b) (1) & §2.1093- RF EXPOSURE

Applicable Standard

According to §15.247(e)(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: R1DG121023004-00B

According to KDB 447498 D01 Mobile Portable RF Exposure V04, no SAR required if power is lower than the flowing threshold:

When routine evaluation is required for SAR and the output power is \leq 60/f(GHz) mW, the test reduction and test exclusion procedures given herein, or in KDB 616217 or KDB 648474, are applicable.

A device may be used in portable exposure conditions with no restrictions on host platforms when either the source-based time-averaged output power is $\leq 60/f(GHz)$ mW or all measured 1-g SAR are < 0.4 W/kg.10 When SAR evaluation is required, the most conservative exposure conditions for all expected operating configurations must be tested.

Measurement Result

Peak conducted output power= -4.65 dBm SAR exclusion threshold=60/f=60/2.402=24.98 mW = 13.98 dBm > -4.65 dBm

So the SAR evaluation is not necessary.

FCC Part 15.247 Page 8 of 35

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: R1DG121023004-00B

Antenna Connector Construction

The EUT has an internal printed antenna permanently soldering on the the printed circuit boards, which complied with 15.203, the maximum gain is 2.17 dBi, please refer to the internal photos.

Result: Compliance.

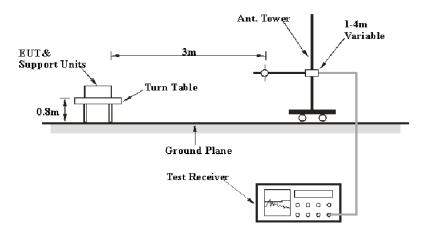
FCC Part 15.247 Page 9 of 35

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSION

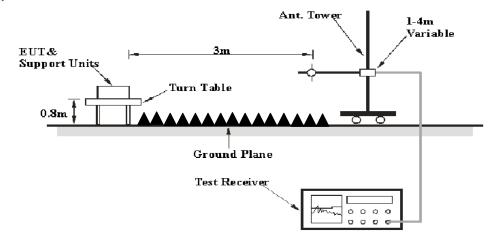
Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty


All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Report No.: R1DG121023004-00B


Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emission measurement at Bay Area Compliance Laboratories Corp. (Dongguan) is 4.0 dB(k=2, 95% level of confidence), and the uncertainty will not be taken into consideration for all the test data recorded in the report.

EUT Setup

Below 1GHz:

Above 1GHz:

FCC Part 15.247 Page 10 of 35

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209, and FCC 15.247 limits.

Report No.: R1DG121023004-00B

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video BW	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	QP
1000 MHz – 25 GHz	1 MHz	3 MHz	PK
1000 MHz – 25 GHz	1 MHz	10 Hz	Ave.

Test Procedure

Maximizing procedure was performed on the highest emission to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	101121	2012-10-8	2013-10-7
Sunol Sciences	Hybrid Antennas	ЈВ3	A060611-1	2011-9-6	2013-9-5
HP	Pre-amplifier	8447E	2434A02181	2012-10-8	2013-10-7
R&S	Spectrum Analyzer	FSEM	1079 8500	2012-10-9	2013-10-8
Dayang	Horn Antenna	OMCDH10180	10279001B	2010-7-30	2015-7-29
Mini-Circuits	Wideband Amplifier	ZVA-183-S+	96901149	2012-5-13	2013-5-12

FCC Part 15.247 Page 11 of 35

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Report No.: R1DG121023004-00B

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, and section 15.205, 15.209 and 15.247</u>, with the worst margin reading of:

4.38dB at **2483.5 MHz** in the Vertical polarization

Test Data

Environmental Conditions

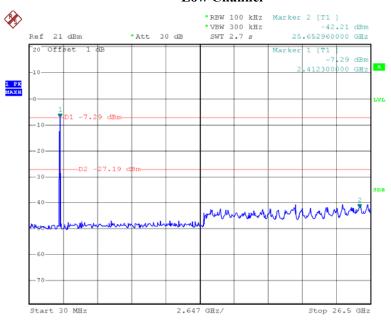
Temperature:	27.1℃
Relative Humidity:	62 %
ATM Pressure:	100.5kPa

The testing was performed by Leon Chen on 2012-10-30.

FCC Part 15.247 Page 12 of 35

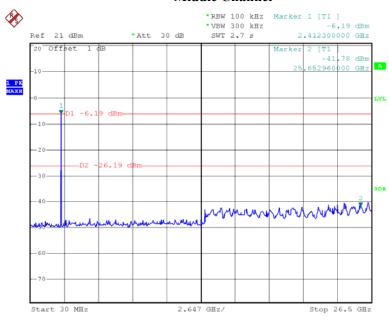
Test Mode: Tansmitting

Frequency	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	FCC 1	5.247
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			L	ow Channe	l: 2402(M	(Hz)			
2390	14.36	AV	V	30.98	3.84	0.00	49.19	54.00	4.81
2390	28.14	PK	V	30.98	3.84	0.00	62.97	74.00	11.03
327.32	38.65	QP	V	14.64	2.16	21.59	33.85	46.00	12.15
9608	16.89	AV	V	38.52	8.75	26.39	37.76	54.00	16.24
7206	16.88	AV	V	38.67	6.50	26.54	35.51	54.00	18.49
9608	33.54	PK	V	38.52	8.75	26.39	54.41	74.00	19.59
7206	31.2	PK	V	38.67	6.50	26.54	49.83	74.00	24.17
4804	16.35	AV	V	33.17	4.67	27.34	26.85	54.00	27.15
3462.58	16.34	AV	V	31.64	5.34	27.25	26.08	54.00	27.92
4804	30.33	PK	V	33.17	4.67	27.34	40.83	74.00	33.17
3462.58	30.12	PK	V	31.64	5.34	27.25	39.86	74.00	34.14
2402	52.33	AV	Н	31.05	3.90	0.00	87.29	N/A	N/A
2402	58.87	PK	Н	31.05	3.90	0.00	93.83	N/A	N/A
2402	54.68	AV	V	31.05	3.90	0.00	89.64	N/A	N/A
2402	60.32	PK	V	31.05	3.90	0.00	95.28	N/A	N/A
	Middle Channel: 2441(MHz)								
328.33	39.02	QP	V	14.65	2.15	21.59	34.23	46.00	11.77
9764	16.79	AV	V	38.83	8.58	26.54	37.65	54.00	16.35
7323	16.54	AV	V	38.88	6.72	26.67	35.48	54.00	18.52
9764	33.06	PK	V	38.83	8.58	26.54	53.92	74.00	20.08
7323	31.25	PK	V	38.88	6.72	26.67	50.19	74.00	23.81
4882	16.38	AV	V	33.34	4.75	27.04	27.43	54.00	26.57
3463.02	16.13	AV	V	31.64	5.34	27.25	25.86	54.00	28.14
4882	30.26	PK	V	33.34	4.75	27.04	41.31	74.00	32.69
3463.02	30.01	PK	V	31.64	5.34	27.25	39.74	74.00	34.26
2441	49.33	AV	Н	31.27	3.99	0.00	84.59	N/A	N/A
2441	54.25	PK	Н	31.27	3.99	0.00	89.51	N/A	N/A
2441	51.61	AV	V	31.27	3.99	0.00	86.87	N/A	N/A
2441	57.42	PK	V	31.27	3.99	0.00	92.68	N/A	N/A
	1			igh Channe			1	T = -	
2483.5	14.31	AV	V	31.51	3.80	0.00	49.62	54.00	4.38
2483.5	30.25	PK	V	31.51	3.80	0.00	65.55	74.00	8.45
328.11	38.67	QP	V	14.65	2.15	21.59	33.88	46.00	12.12
9920	16.88	AV	V	39.14	8.41	26.70	37.73	54.00	16.27
7440	16.43	AV	V	39.09	6.95	26.79	35.68	54.00	18.32
9920	33.64	PK	V	39.14	8.41	26.70	54.49	74.00	19.51
7440	31.11	PK	V	39.09	6.95	26.79	50.36	74.00	23.64
4960	16.25	AV	V	33.51	4.70	27.26	27.20	54.00	26.80
3462.59	15.89	AV	V	31.64	5.34	27.25	25.63	54.00	28.37
4960	30.86	PK	V	33.51	4.70	27.26	41.81	74.00	32.19
3462.59	30.15	PK	V	31.64	5.34	27.25	39.89	74.00	34.11
2480	46.55	AV	Н	31.49	3.82	0.00	81.86	N/A	N/A
2480	49.36	PK	Н	31.49	3.82	0.00	84.67	N/A	N/A
2480	50.14	AV	V	31.49	3.82	0.00	85.45	N/A	N/A
2480	55.33	PK	V	31.49	3.82	0.00	90.64	N/A	N/A


Report No.: R1DG121023004-00B

FCC Part 15.247 Page 13 of 35

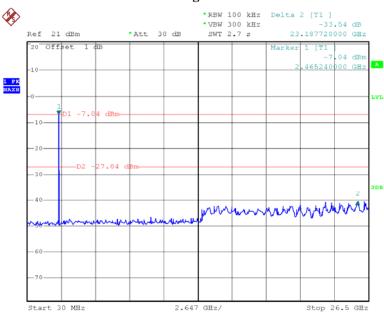
Conducted Spurious Emission at Antenna Port


Report No.: R1DG121023004-00B

Low Channel

Date: 30.0CT.2012 14:31:09

Middle Channel



Date: 30.0CT.2012 14:30:23

FCC Part 15.247 Page 14 of 35

High Channel

Report No.: R1DG121023004-00B

Date: 30.0CT.2012 14:29:29

FCC Part 15.247 Page 15 of 35

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Report No.: R1DG121023004-00B

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Procedure

- Set the EUT in transmitting mode, spectrum Bandwidth was set at $100\,\mathrm{kHz}$, maxhold the channel. Set the adjacent channel of the EUT maxhold another truce
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	26.3℃
Relative Humidity:	56 %
ATM Pressure:	100.7kPa

^{*} The testing was performed by Leon Chen on 2012-10-26.

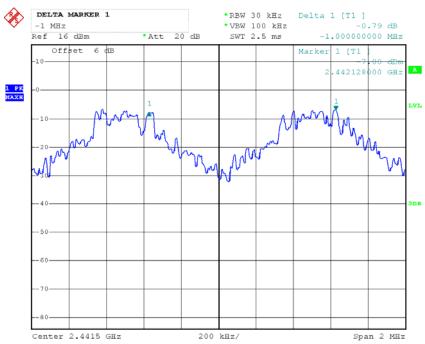
Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
Low	2402	1.008	0.64	Pass
Adjacent	2403	1.008	0.04	1 ass
Middle	2441	1.000	0.64	Pass
Adjacent	2442	1.000	0.04	Pass
High	2480	1.003	0.64	Pass
Adjacent	2479	1.003	0.04	r ass

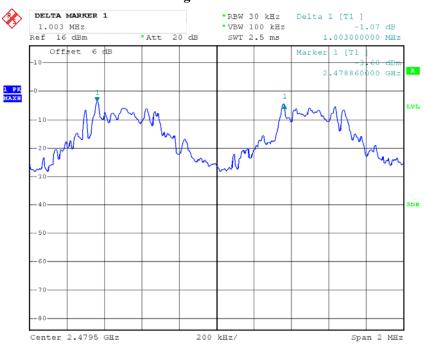
FCC Part 15.247 Page 16 of 35


Low Channel

Report No.: R1DG121023004-00B

Date: 26.OCT.2012 13:11:15

Middle Channel



Date: 26.OCT.2012 13:12:39

FCC Part 15.247 Page 17 of 35

High Channel

Report No.: R1DG121023004-00B

Date: 26.OCT.2012 13:16:49

FCC Part 15.247 Page 18 of 35

FCC $\S15.247(a)$ (1) – 20 dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Report No.: R1DG121023004-00B

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

Environmental Conditions

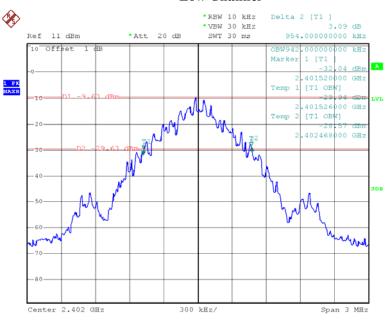
Temperature:	26.3-26.4℃
Relative Humidity:	52-55 %
ATM Pressure:	100.7kPa

^{*} The testing was performed by Leon Chen from 2012-10-24 to 2012-10-25.

Test Result: Compliance.

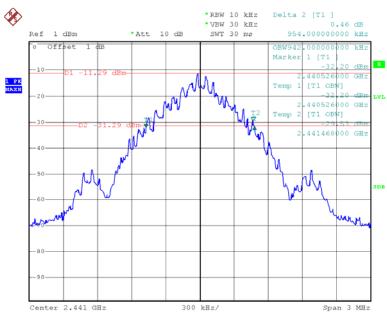
Please refer to following tables and plots

Test Mode: Transmitting


Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
Low	2402	0.954
Middle	2441	0.954
High	2480	0.966

Please refer to the following plots.

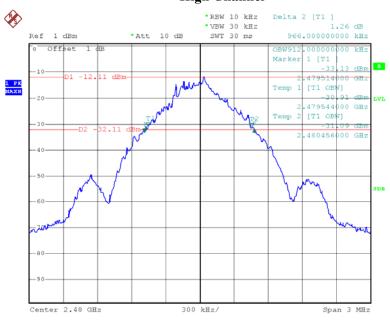
FCC Part 15.247 Page 19 of 35


Low Channel

Report No.: R1DG121023004-00B

Date: 24.0CT.2012 13:50:04

Middle Channel



Date: 25.0CT.2012 15:06:00

FCC Part 15.247 Page 20 of 35

High Channel

Report No.: R1DG121023004-00B

Date: 25.0CT.2012 15:08:36

FCC Part 15.247 Page 21 of 35

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Report No.: R1DG121023004-00B

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

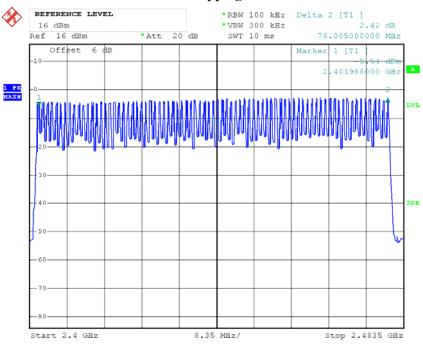
Environmental Conditions

Temperature:	26.3 °C
Relative Humidity:	56 %
ATM Pressure:	100.7kPa

The testing was performed by Leon Chen on 2012-10-26.

Test Result: Compliance.

Please refer to following tables and plots


FCC Part 15.247 Page 22 of 35

Test Mode: Transmitting

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Report No.: R1DG121023004-00B

Number of Hopping Channels

Date: 26.OCT.2012 13:08:31

FCC Part 15.247 Page 23 of 35

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: R1DG121023004-00B

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 * channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Dwell Time= time slot length * hope rate/ number of hopping channels * 31.6s Hop rate=1600/s

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

Environmental Conditions

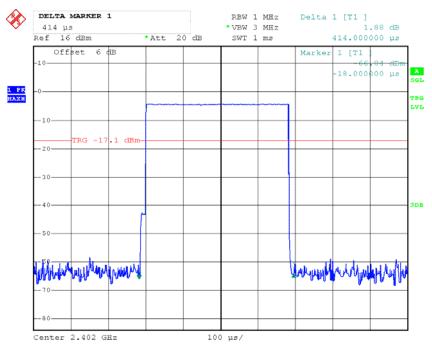
Temperature:	26.3 °C
Relative Humidity:	56 %
ATM Pressure:	100.7kPa

^{*} The testing was performed by Leon Chen on 2012-10-26.

Test Result: Compliance.

Please refer to following tables and plots

FCC Part 15.247 Page 24 of 35

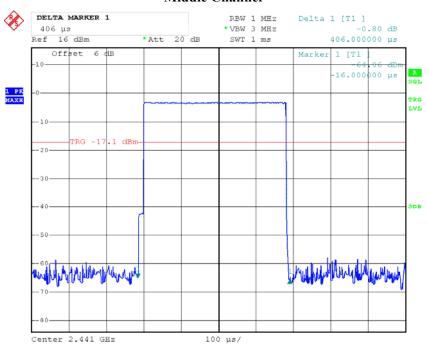

DH1:

Test Mode: Transmitting

Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result	
Low	0.414	0.132	0.4	Pass	
Middle	0.406	0.130	0.4	Pass	
High	0.418	0.134	0.4	Pass	
Note: Dwell time = Pulse time* $(1600/2/79)*31.6S$					

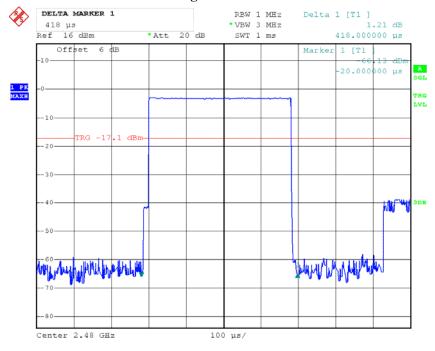
Report No.: R1DG121023004-00B

Low Channel


26.OCT.2012 13:18:09

Date:

FCC Part 15.247 Page 25 of 35


Middle Channel

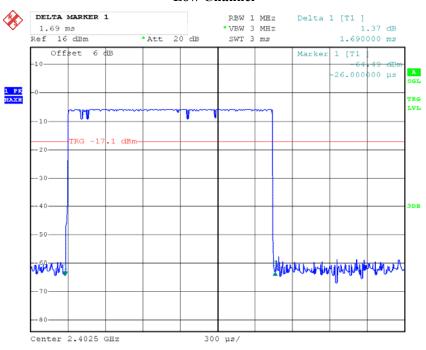
Report No.: R1DG121023004-00B

Date: 26.OCT.2012 13:18:50

High Channel

Date: 26.OCT.2012 13:19:27

FCC Part 15.247 Page 26 of 35

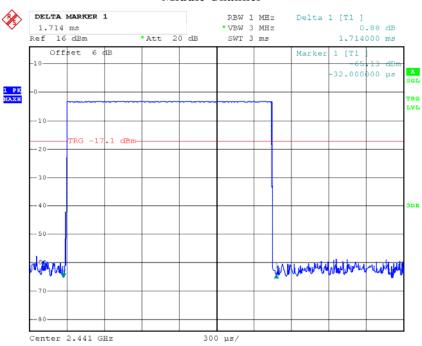

DH3:

Test Mode: Transmitting

Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result
Low	1.690	0.270	0.4	Pass
Middle	1.714	0.274	0.4	Pass
High	1.696	0.271	0.4	Pass
Note: Dwell time = Pulse time*(1600/4/79)*31.6S				

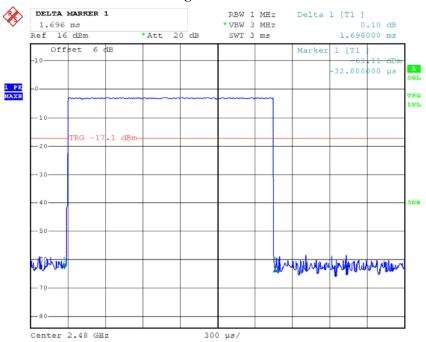
Report No.: R1DG121023004-00B

Low Channel



Date: 26.0CT.2012 13:21:30

FCC Part 15.247 Page 27 of 35


Middle Channel

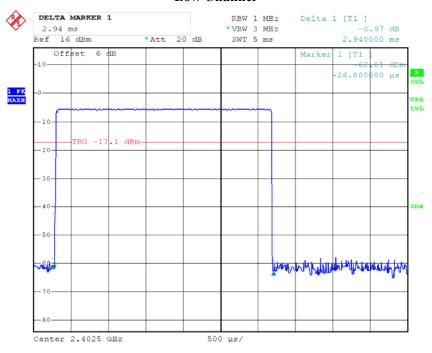
Report No.: R1DG121023004-00B

Date: 26.OCT.2012 13:20:58

High Channel

Date: 26.OCT.2012 13:20:28

FCC Part 15.247 Page 28 of 35

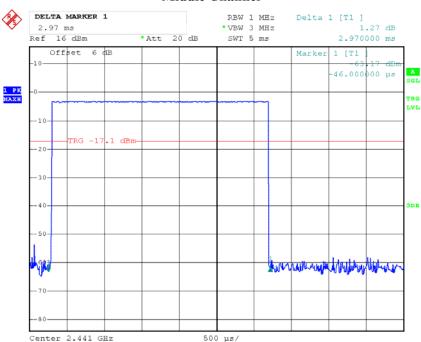

DH5:

Test Mode: Transmitting

Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result
Low	2.940	0.314	0.4	Pass
Middle	2.970	0.317	0.4	Pass
High	2.950	0.315	0.4	Pass
Note: Dwell time = Pulse time*(1600/6/79)*31.6S				

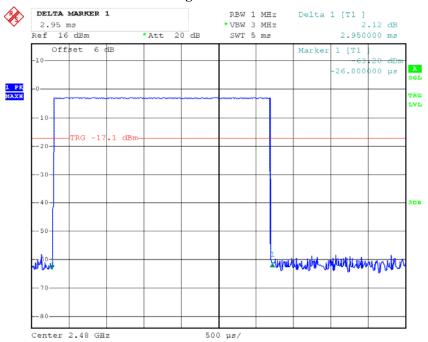
Report No.: R1DG121023004-00B

Low Channel



Date: 26.OCT.2012 13:23:02

FCC Part 15.247 Page 29 of 35


Middle Channel

Report No.: R1DG121023004-00B

Date: 26.OCT.2012 13:23:36

High Channel

Date: 26.OCT.2012 13:24:44

FCC Part 15.247 Page 30 of 35

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

Report No.: R1DG121023004-00B

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI test receiver.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

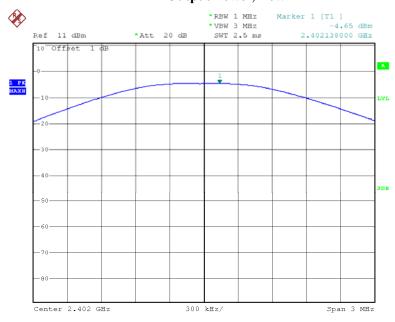
Environmental Conditions

Temperature:	26.3-26.4℃
Relative Humidity:	52-55 %
ATM Pressure:	100.7kPa

^{*} The testing was performed by Leon Chen from 2012-10-24 to 2012-10-25.

Test Result: Compliance.

FCC Part 15.247 Page 31 of 35

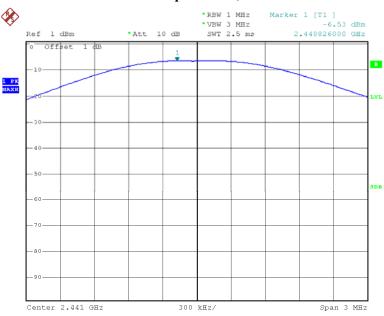

Test Mode: Transmitting

Channel	Frequency (MHz)	Output power (dBm)	Limit (dBm)
Low	2402	-4.65	30
Middle	2441	-6.53	30
High	2480	-6.93	30

Report No.: R1DG121023004-00B

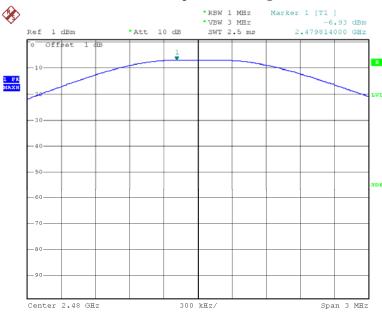
Note: The data above was tested in conducted mode.

Output Power, Low



Date: 24.0CT.2012 13:32:38

FCC Part 15.247 Page 32 of 35


Output Power, Middle

Report No.: R1DG121023004-00B

Date: 25.0CT.2012 15:04:32

Output Power, High

Date: 25.0CT.2012 15:09:19

FCC Part 15.247 Page 33 of 35

FCC §15.247(d) - BAND EDGE TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emission which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: R1DG121023004-00B

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

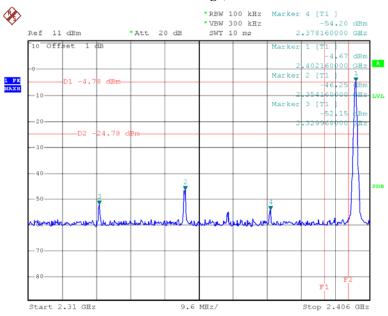
Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-5-14	2013-5-13

Test Data

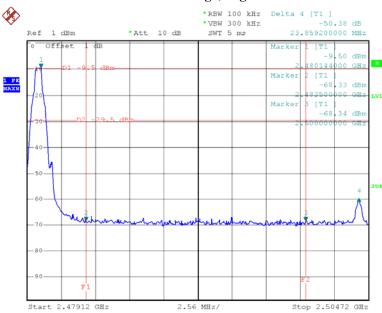
Environmental Conditions

Temperature:	26.3-26.4°C
Relative Humidity:	52-55 %
ATM Pressure:	100.7kPa


^{*}The testing was performed by Leon Chen from 2012-10-24 to 2012-10-25.

FCC Part 15.247 Page 34 of 35

Test Result: Compliance


Band Edge, Left Side

Report No.: R1DG121023004-00B

Date: 24.0CT.2012 13:42:22

Band Edge, Right Side

Date: 25.0CT.2012 15:14:46

***** END OF REPORT *****

FCC Part 15.247 Page 35 of 35