

SK TECH CO., LTD.

Page 1 of 17

FCC-Certificate of Compliance(Class II)

Test Report No.:	SKTFCE-0601002-001		
NVLAP CODE :	200220-0		
Applicant:	softDSP Co., Ltd.		
Applicant Address:	Jungil Bldg 203, 552-1 Sungnae-dong, Kangdong-ku, Seoul, Korea		
Manufacturer :	softDSP Co., Ltd.		
Manufacturer Address:	Jungil Bldg 203, 552-1 Sungnae-dong, Kangdong-ku, Seoul, Korea		
Product:	PC Based Digital Oscilloscope		
FCC ID:	PO6SDS200A	Model No.:	SDS 200A, PCS-3200
Receipt No.:	SKTEU05-0772	Date of receipt:	Dec. 08, 2005
Date of Issue:	Jan. 02, 2006		
Testing location:	SK TECH CO., LTD. 820-2, Wolmoon-Ri, Wabu-Up, Namyangju-Si, Kyunggi-Do, Korea		
Test Standards:	ANSI C63.4 / 2003		
Rule Parts:	FCC part 15 Subpart B		
Equipment Class :	Class B Digital Device Peripheral		
Test Result:	The above mentioned product has been tested and passed.		

Prepared by: S.Y.Ye

Tested by: J.S.Hyun/Engineer

Approved by: D.H.Kang
/Manager & Chief Engineer

Signature	Date	Signature	Date	Signature	Date
Other Aspects :					
Abbreviations :	· OK, Pass = passed · Fail = failed · N/A = not applicable				

- This test report is not permitted to copy partly without our permission.
- This test result is dependent on only equipment to be used.
- This test result is based on a single evaluation of one sample of the above mentioned.
- This test report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S Government.
- We certify that this test report has been based on the measurement standards that is traceable to the national or International standards.

NVLAP Lab. Code: 200220-0

 》》 **Contents** 《《

Contents	2
List of Tables	2
List of Figures	2
1. General	3
2. Test Site	3
2.1 Location	3
2.2 List of Test and Measurement Instruments	4
2.3 Test Date	4
2.4 Test Environment	4
3. Description of the tested samples	5
3.1 Rating and Physical Characteristics	5
3.2 Submitted Documents	5
4. Measurement Conditions	6
4.1 Modes of Operation	6
4.2 List of Peripherals	6
4.3 Type of Used cables	7
4.4 Test Setup	8
4.5 Uncertainty	9
5. EMISSION Test	12
5.1 Conducted Emissions	12
5.2 Radiated Emissions	16

 》 **List of Tables**

Table 1	List of test and measurement Equipment	4
Table 2	Test Data, Radiated Emissions	17

 》 **List of Figures**

Figure 1	Test Data, Conducted Disturbance	13
Figure 2	Spectral Diagram, LINE-PE	14
Figure 3	Spectral NEUTRAL –PE	15

SK TECH CO., LTD.*Page 3 of 17*

1. General

This equipment has been shown to be capable of compliance with the applicable technical standards and was tested in accordance with the measurement procedures as indicated in this report.

We attest to the accuracy of data. All measurements reported herein were performed by SK Tech Co., Ltd. and were made under Chief Engineer's supervision.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. Test Site

SK TECH Co., Ltd.

2.1 Location

820-2, Wolmoon Ri, Wabu-Up, Namyangju-Si, Kyunggi-Do, Korea

The test site is in compliance with ISO/IEC 17025 for general requirements for the competence of testing and calibration laboratories.

This laboratory is accredited by NVLAP for NVLAP Lab. Code : 200220-0 and DATech for DAR-Registration No.:DAT-P-076/97-01

2.2 List of Test and Measurement Instruments

Table 1 : List of Test and Measurement Equipment

- **Conducted Disturbance**

Kind of Equipment	Type	S/N	Calibrated until
EMI Receiver	ESHS10	862970/019	09.2006
Artificial Mains Network	ESH2-Z5	834549/011	08.2006
EMI Receiver	ESHS10	835871/002	09.2006
Artificial Mains Network	ESH3-Z5	836679/018	08.2006

- **Radiated Disturbance**

Kind of Equipment	Type	S/N	Calibrated until
EMI Receiver	ESVS 10	825120/013	09.2006
EMI Receiver	ESVS 10	834468/008	09.2006
Spectrum Analyzer	R3361A	11730187	09.2006
Amplifier	8447F	3113A05153	08.2006
Log Periodic Antenna	UHALP9107	1819	11.2006
Biconical Antenna	BBA9106	91031626	11.2006
Open Site Cable	N/A	N/A	N/A
Antenna Turntable Driver	5907	N/A	N/A
Antenna Turntable controller	5906	N/A	N/A
Amp & Receiver connection cable	N/A	N/A	N/A
Amp & Spectrum connection cable	N/A	N/A	N/A
50Ω Switcher	MP59B	6100214538	N/A

2.3 Test Date

Date of Application : Dec. 08, 2005

Date of Test : Dec. 27, 2005

2.4 Test Environment

See each test item's description.

3. Description of the tested samples

The EUT is a PC Based Digital Oscilloscope.

The USB cable branches into two lines. One is for EUT 's power and data, the other is only for power. SDS 200A is the basic model and PCS-3200 is multi-listing model.

3.1 Rating and Physical Characteristics

● Input

- Max. sample rate : Realtime sampling: 100MS/s using one channel, 50MS/s using two channels
Equivalent sampling :5GS/s
- Channels : 2
- Bandwidth : 200MHz (-3dB)
Single shot bandwidth : 50MHz
20MHz bandwidth limiting function is available (SDS 200A)
- Vertical resolution : 9 bits/ channel
- Gain range : 10mV ~ 10V/div @x1 probe
(10mV, 20mV, 50mV, 100mV, 200mV, 500mV, 1V, 2V, 5V, 10V/div
1,2,5 sequence)
100mV ~ 100V/div @x10 probe
1V ~ 1000V/div @x100 probe
10V ~ 10kV/div @x1000 probe
- Range : 8 divisions
- Offset level : ± 4 divisions
- Coupling : AC, DC, GND(SDS 200A)
- Offset increments : 0.02 div
- Impedance : 1M ohm
- DC accuracy : $\pm 3\%$
- Input protection : 42Vpk (DC + peak AC < 10 kHz, without external attenuation)

● Physical

- Interface : Universal Serial Bus(USB)
- Power : No external power source required. Bus-powered from USB

3.2 Submitted Documents

N/A

4. Measurement Conditions

The EUT use USB power from PC.

The supplied power of PC was AC 120 V, 60Hz.

4.1 Modes of Operation

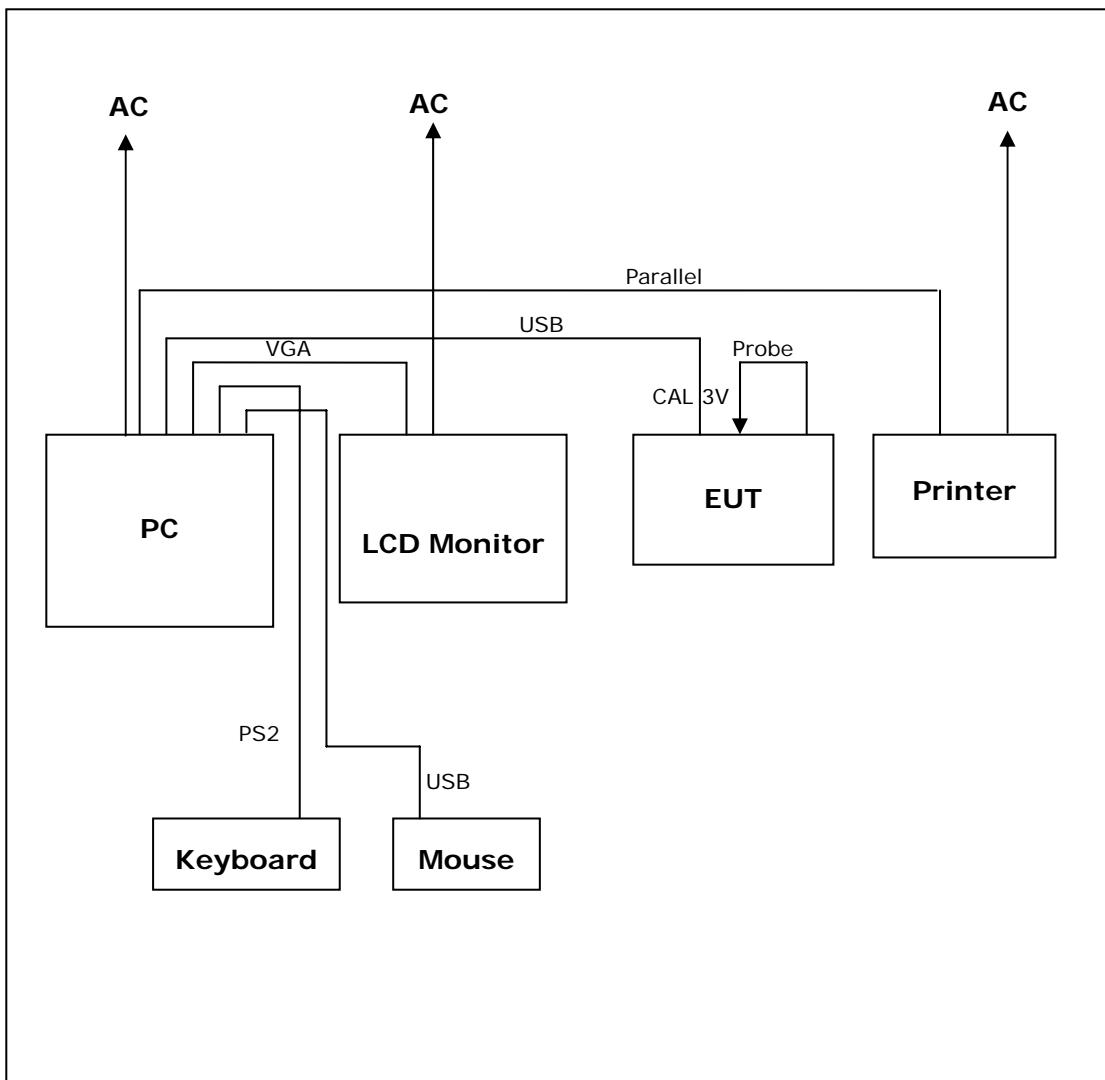
The probe was connected to the CAL 3V on the EUT and it's ground was connected to the GND on the EUT. The waveform from the CAL 3V was displayed on the LCD Monitor using dedicated software.

4.2 List of Peripherals

Equipment	Manufacturer	Model No.	Serial No.
Keyboard(PS2)	Jing Mold Enterprise Co., Ltd	LKB-0107	20103196
Mouse(USB)	LG	LMULBGS01I	04CU000254
Printer(Parallel)	EPSON PRECISION (PHILIPPINES),INC.	EPSON STYLUS PHOTO 830	ELTK014633
LCD Monitor	LG	1510TFT Rev B	304KG04862
Personal Computer	SAMSUNG	DM-P40	Z39699AXC00334V

SK TECH CO., LTD.

Page 7 of 17


4.3 Type of Used Cables

Equipment	Manufacturer	M/N	S/N	Cables &connectors
PC Based Digital Oscilloscope	softDSP Co., Ltd.	SDS 200A	-	1.2m USB cable shielded 1.2m Probe cable shielded
Keyboard(PS2)	Jing Mold Enterprise Co., Ltd	LKB-0107	20103196	1.0m PS/2 cable unshielded
Mouse(USB)	LG	LMULBGS01I	04CU000254	1.2m USB cable unshielded
Printer(Parallel)	EPSON PRECISION (PHILIPPINES),INC.	EPSON STYLUS PHOTO 830	ELTK014633	2.0m Parallel cable shielded 1.5m Power cable unshielded
LCD Monitor	LG	1510TFT Rev B	304KG04862	1.5m VGA cable shielded 1.5m Power cable unshielded

4.4 Test Setup

The test setup photographs showed the external supply connections and interfaces.

[System Block Diagram of Test Configuration]

4.5 Uncertainty

1) Radiated disturbance

- ◎ Horizontally polarized radiated disturbances from 30MHz to 1000MHz at a distance of 10m

Input quantity	Uncertainty of Xi		U(Xi) dB	Ci	Ciu(xi)	CISPR 16-4
	dB	Probability distribution function				
1) Receiver reading	±0.1	K =1	0.1	1	0.1	0.10
2) Attenuation: antenna-receiver	±0.18	K=2	0.09	1	0.09	0.05
3) Antenna factor	±1.5	K=2	0.75	1	0.75	1.00
RECEIVER CORRECTIONS:						
4) Sine wave voltage	±0.56	K=2	0.28	1	0.50	0.50
5) Pulse amplitude response	±1.5	Rectangular (1/3)	0.87	1	0.87	0.87
6) Pulse repetition rate response	±1.5	Rectangular (1/3)	0.87	1	0.87	0.87
7) Noise floor proximity	±0.5	K=2	0.25	1	0.25	0.25
8) AF frequency interpolation	±0.3	Rectangular (1/3)	0.17	1	0.17	0.17
9) Balance	±0.3	Rectangular (1/3)	0.17	1	0.17	0.53
10) AF height deviations	±0.5	Rectangular (1/3)	0.29	1	0.29	0.29
11) Phase center location	±0.3	Rectangular (1/3)	0.17	1	0.17	0.17
12) Directive difference	+1.0	Rectangular (1/3)	0.29	1	0.29	0.29
13) Cross polarization	±0.9	Rectangular (1/3)	0.52	1	0.52	0.52
14) Site corrections	±2.6	Rectangular (1/3)	1.5	1	1.5	1.63
15) Mismatch (ant-receiver)	±1.06	U-shaped (1/2)	0.75	1	0.75	0.67

Combined Uncertainty

$$Uc(xi) = \sqrt{(1)^2 + (2)^2 + (3)^2 + (4)^2 + (5)^2 + (6)^2 + (7)^2 + (8)^2 + (9)^2 + (10)^2 + (11)^2 + (12)^2 + (13)^2 + (14)^2 + (15)^2} = 2.37$$

Expanded Uncertainty

$$U = k * Uc(xi) = 2 * 2.37 = 4.74 \text{dB} \quad (\text{The coverage factor } k = 2 \text{ yields approximately a 95% level of confidence})$$

◎ Vertically polarized radiated disturbances from 30MHz to 1000 MHz at a distance of 10 m

Input quantity	Uncertainty of Xi		U(Xi) dB	Ci	Ciu(xi)	CISPR 16-4
	dB	Probability distribution function				
1) Receiver reading	±0.1	K=1	0.1	1	0.1	0.10
2) Attenuation: antenna-receiver	±0.18	K=2	0.09	1	0.09	0.05
3) Antenna factor	±1.5	K=2	0.75	1	0.75	1.00
RECEIVER CORRECTIONS:						
4) Sine wave voltage	±0.56	K=2	0.28	1	0.50	0.50
5) Pulse amplitude response	±1.5	Rectangular (√3)	0.87	1	0.87	0.87
6) Pulse repetition rate response	±1.5	Rectangular (√3)	0.87	1	0.87	0.87
7) Noise floor proximity	±0.5	K=2	0.25	1	0.25	0.25
8) AF frequency interpolation	±0.3	Rectangular (√3)	0.17	1	0.17	0.17
9) Balance	±0.9	Rectangular (√3)	0.52	1	0.52	0.52
10) AF height deviations	±0.3	Rectangular (√3)	0.17	1	0.17	0.17
11) phase center location	±0.3	Rectangular (√3)	0.17	1	0.17	0.17
12) directive difference	+1.0	Rectangular (√3)	0.29	1	0.29	0.29
13) cross polarization	±0.9	Rectangular (√3)	0.52	1	0.52	0.52
14) site corrections	±2.6	Rectangular (√3)	1.5	1	1.5	1.63
15) Mismatch (ant-receiver)	±1.06	U-shaped (√2)	0.75	1	0.75	0.67

Combined Uncertainty

$$Uc(xi) = \sqrt{(1)^2 + (2)^2 + (3)^2 + (4)^2 + (5)^2 + (6)^2 + (7)^2 + (8)^2 + (9)^2 + (10)^2 + (11)^2 + (12)^2 + (13)^2 + (14)^2 + (15)^2} = 2.43$$

Expanded Uncertainty

$$U = k * Uc(xi) = 2 * 2.43 = 4.86 \text{ dB}$$

(The coverage factor k =2 yields approximately a 95% level of confidence)

SK TECH CO., LTD.

Page 11 of 17

2) Conducted disturbance

- ◎ Conducted disturbance from 150 KHz to 30 MHz using a 50 Ω/ 50 uH AMN

input quantity	Uncertainty of Xi		U(Xi) dB	Ci	Ciu(xi)	CISPR 16-4
	dB	Probability distribution function				
1) Receiver Readeing	±0.1	K=1	0.1	1	0.1	0.10
2) Attenuation:AMN-receiver	±0.36	Triangular ($\sqrt{6}$)	0.15	1	0.15	0.05
RECEIVER CORRECTIONS:						
3) Sine wave voltage	±0.5	K=2	0.25	1	0.25	0.50
4) Pulse amplitude response	±1.5	Rectangular ($\sqrt{3}$)	0.87	1	0.87	0.87
5) Pulse repetition rate response	±1.5	Rectangular ($\sqrt{3}$)	0.87	1	0.87	0.87
6) AMN voltage division factor	±0.07	K=2	0.04	1	0.04	0.1
7) Mismatch : AMN-receiver	±0.55	U-shaped ($\sqrt{2}$)	0.39	1	0.39	0.53
8) AMN impedance	±1.52	Triangular ($\sqrt{6}$)	0.62	1	0.62	1.08

- 1)~8) For numbered comments, refer to following articles

Combined Uncertainty

$$Uc(xi) = \sqrt{(1)^2 + (2)^2 + (3)^2 + (4)^2 + (5)^2 + (6)^2 + (7)^2 + (8)^2} = 1.47$$

Expanded uncertainty

$$U = k * Uc(xi) = 2 * 1.47 = 2.94 \text{dB}$$

The coverage factor $k = 2$ yields approximately a 95% level of confidence

◎ Refer

- 1) receiver's resolution capacity
- 2) refer to the sub clause 11. of a calibration report
- 3) quoted from CISPR 16-4
- 4) refer to a calibration report
- 5) refer to CISPR 16-4 article 5. 7)
- 6) refer to a calibration report and a measured AMN impedance data

5. EMISSION Test

5.1 Conducted Emissions

Result:**PASS**

The line-conducted facility is located inside a 2.6M x 3.6M x 7.0M shielded enclosure.

The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 604-05.

A 1 m x 1.5 m wooden table 80 cm high is placed 40 cm. away from the vertical wall and 1.5 m away from the side wall of the shielded room. ROHDE & SCHWARZ Model ESH3-Z5 (10 kHz-30 MHz) 50 ohm/50 uH Line-Impedance Stabilization Networks(LISNs) are bonded to the shielded room.

The EUT is powered from the ROHDE & SCHWARZ LISN and the support equipment is powered from the ROHDE & SCHWARZ LISN. Power to the LISNs are filtered by a high-current high-insertion loss Lindgren enclosures power line filters (100dB 14 kHz-10 GHz).

The purpose of the filter is to attenuate ambient signal interference and this filter is also bonded to the shielded enclosure.

All electrical cables are shielded by braided tinned copper zipper tubing with inner diameter of 1/2".

If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the ROHDE & SCHWARZ LISN.

All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentine fashion) to a 1-meter length.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT.

The spectrum was scanned from 150 kHz to 30 MHz with 100msec. sweep time.

The frequency producing the maximum level was reexamined using EMI/field Intensity Meter (ESHS 10) and Quasi-Peak adapter. The detector function was set to CISPR quasi-peak mode.

The bandwidth of the receiver was set to 10 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; if applicable; whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in photograph of conducted test.

Each EME reported was calibrated using self-calibrating mode.

Figure 1: Test Data, Conducted Disturbance

<Quasi-Peak>

Frequency (MHz)	(1)Reading (dBuV)	Line	(2)C/F (dB)	(3)C/L (dB)	(4)Actual (dBuV)	(5)Limit (dBuV)	(6)Margin (dB)
0.150	49.43	N	0.12	0.01	49.56	66.00	16.44
0.430	40.29	N	0.12	0.04	40.45	57.25	16.80
0.580	39.24	N	0.12	0.04	39.40	56.00	16.60
0.650	38.97	N	0.12	0.05	39.14	56.00	16.86
0.780	39.87	L	0.14	0.05	40.06	56.00	15.94
2.340	39.40	N	0.15	0.11	39.66	56.00	16.34

► NOTE

* C/F = Correction Factor

* C/L = Cable Loss

* LINE : L - Line PE, N - Neutral PE

* Margin Calculation

$$(6)\text{Margin(Q.P)} = (5)\text{Limit} - (4)\text{Actual}$$

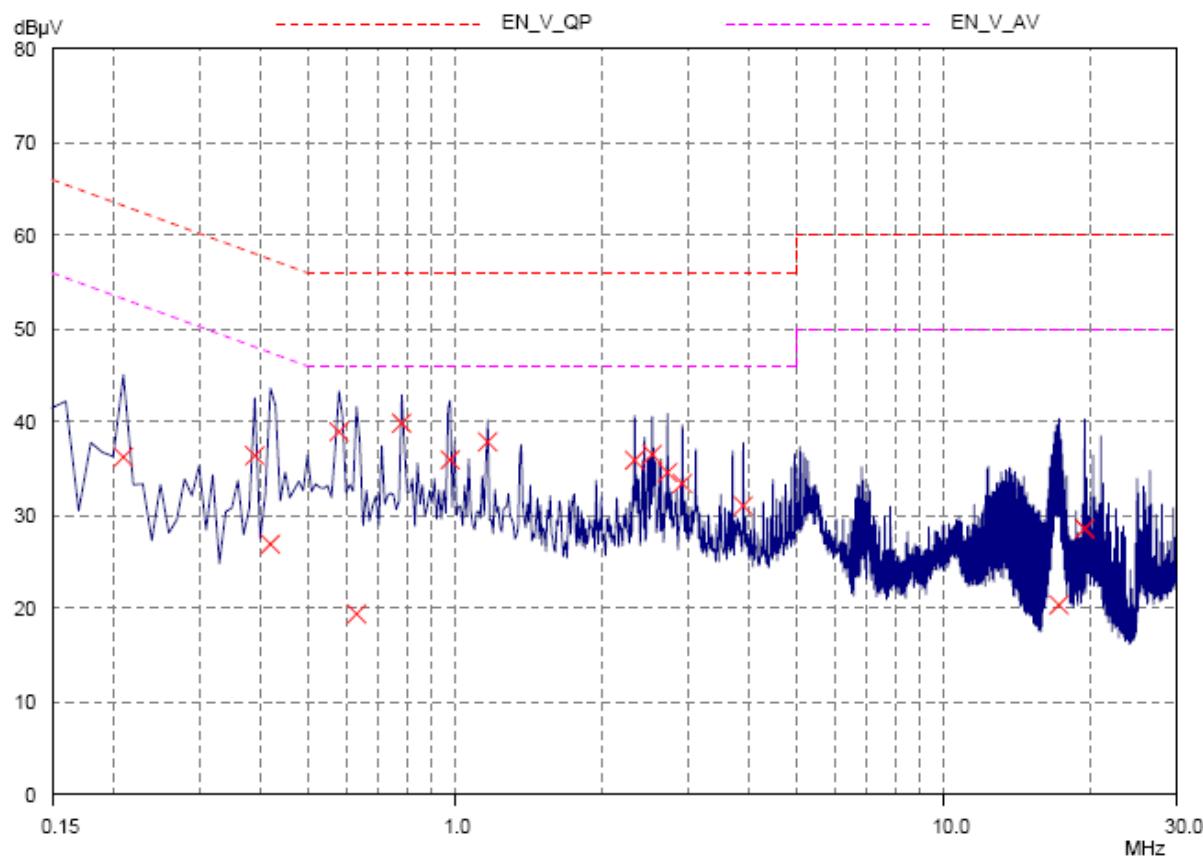
$$[(4)\text{Actual(Q.P)} = (1)\text{Reading(Q.P)} + (2)\text{C/F} + (3)\text{C/L}]$$

※ *Supplementing the conduction graphs to next 2 pages*

SK TECH CO., LTD.

Page 14 of 17

Figure 2 : Spectral Diagram, LINE – PE


21 Dec 2005 20:51

CONDUCTED DISTURBANCE

EUT: SDS 200A
Manuf:
Op Cond:
Operator:
Test Spec:
Comment: LINE-PE
Result File: 200A_L.dat : New Measurement

Scan Settings (1 Range)		Receiver Settings						
Frequencies		Step	IF BW	Detector	M-Time	Atten	Preamp	OpRge
Start 150kHz	Stop 30MHz	10kHz	10kHz	PK	100msec	Auto	OFF	60dB

Final Measurement: Detector: X QP
Meas Time: 1sec
Peaks: 16
Acc Margin: 35 dB

SK TECH CO., LTD.

Page 15 of 17

Figure 3 : Spectral Diagram, NEUTRAL – PE

21 Dec 2005 21:02

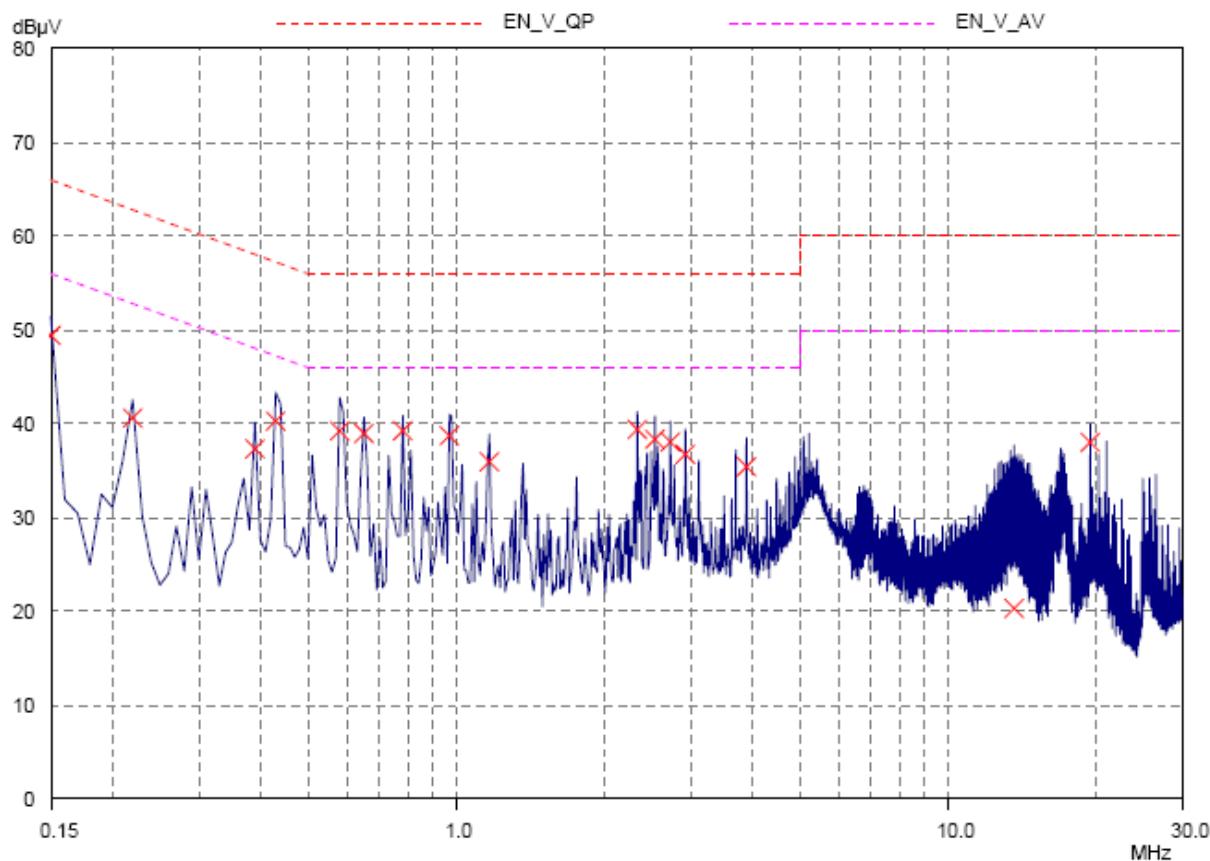
CONDUCTED DISTURBANCE

EUT: SDS 200A

Manuf:

Op Cond:

Operator:


Test Spec:

Comment: NEUTRAL-PE

Result File: 200A_N.dat : New Measurement

Scan Settings (1 Range)		Receiver Settings						
Start	Stop	Step	IF BW	Detector	M-Time	Atten	Preamp	OpRge
150kHz	30MHz	10kHz	10kHz	PK	100msec	Auto	OFF	60dB

Final Measurement: Detector: X QP
 Meas Time: 1sec
 Peaks: 16
 Acc Margin: 35 dB

5.2 Radiated Emissions

Result :**PASS**

Preliminary measurements were made indoors at 3 meter using broadband antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME.

Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna were noted for each frequency found.

The spectrum was scanned from 30 to 300 MHz using biconical antenna and from 300 to 1000 MHz using log-periodic antenna. Above 1 GHz, linearly polarized double ridge horn antennas were used.

Final measurements were made outdoors at 3-meter test range using SCHWARZBECK dipole antennas. The test equipment was placed on a wooden table situated on a 4x4 meter area adjacent to the measurement area. Turntable was to protect from weather in the dome that made with FRP.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined and investigated using EMI/Field Intensity Meter(ESVS 10) and Quasi-Peak Adapter. The detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 100 kHz or 1 MHz depending on the frequency or type of signal.

The half-wave dipole antenna was tuned to the frequency found during preliminary radiated measurements. The EUT, support equipment and interconnecting cables were re-configured to the set-up producing the maximum emission for the frequency and were placed on top of a 0.8-meter high non-metallic 1 x 1.5 meter table.

The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each EME emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: varying the mode of operation or resolution; clock or data exchange speed, and/or support equipment, if applicable; and changing the polarity of the antenna, whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in photograph of radiated emission test.

Each EME reported was calibrated using self-calibrating mode.

Table 2 : Test Data, Radiated Emissions

Frequency [MHz]	Pol.	Height [m]	Real Reading	Correction Factor		T-Fact [dB]	Data [dBuV/m]	Limits [dBuV/m]	Margin [dB]
				Antenna	Cable				
61.47	V	1.8	9.5	7.2	0.9	8.1	17.6	30.0	12.4
112.22	H	3.7	4.0	11.8	1.7	13.5	17.5	30.0	12.5
151.61	H	3.0	4.5	15.0	2.0	17.0	21.5	30.0	8.5
235.52	H	4.0	6.5	17.3	2.6	19.9	26.4	37.0	10.6
252.71	H	4.0	5.3	17.6	2.7	20.3	25.6	37.0	11.4
298.36	V	1.3	1.6	19.4	3.1	22.5	24.1	37.0	12.9
351.61	H	1.0	2.4	17.0	3.3	20.3	22.7	37.0	14.3

NOTES:

1. All modes of operation were investigated and the worst-case emission are reported.
2. All other emission are non-significant.
3. All readings are calibrated by self-mode in receiver.
4. Measurements using CISPR quasi-peak mode.
5. H = Horizontal, V = Vertical Polarization
6. DATA = Real Reading + T - FACTOR(=Antenna+Cable)
7. Margin = Limits - DATA