

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

TEST REPORT

Report Number: 3077009LAX-001

Project Number: 3077009

August 25, 2005

Testing performed on the
Wireless Video Transmitter
FCC ID: PO288CE-T010
Model: CE-T010

to

FCC Part 15.249

For
Chang Industry, Inc.

A2LA Certificate Number: 2085-01

Test Performed by:
Intertek
27611 La Paz Road., Suite C
Laguna Niguel, CA 92677

Test Authorized by:
Chang Industry, Inc.
1925 McKinley Ave. Suite F
La Verne, CA 91750

Prepared by:

A handwritten signature in black ink that appears to read 'Sergey Marker'.

Sergey Marker

Date: August 25, 2005

Reviewed by:

A handwritten signature in blue ink that appears to read 'Ollie Moyrong'.

Ollie Moyrong

Date: August 26, 2005

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

Table of Contents

1.0	Summary of Test Results.....	3
2.0	General Description.....	4
2.1	Product Description	4
2.2	Related Submittal(s) Grants	5
2.3	Test Methodology	5
2.4	Test Facility	5
3.0	System Test Configuration.....	6
3.1	Justification.....	6
3.2	EUT Exercising Software	6
3.3	System Test Configuration	6
3.3.1	Support Equipment	6
3.3.2	Block Diagram of Test Setup.....	7
3.4	Equipment Modification	7
3.5	Mode(s) of operation	7
4.0	Field Strength of Emission	8
4.1	Test Description	8
4.1.1	Test Procedure	8
4.1.2	Field Strength Calculation	8
4.1.3	Radiated Emission Data.....	9
4.2	Test Description	13
4.2.1	Test Procedure	13
4.2.2	Field Strength Calculation	13
4.2.3	Radiated Emission Data.....	14
4.3	Test Description	15
4.3.1	Test Procedure	15
4.3.2	Field Strength Calculation	15
4.3.3	Radiated Emission Data.....	16
5	Out of Band Emission.....	17
5.1	Test Description	17
5.2	Test Procedure	17
5.3	Test Results	17
6.0	Antenna Requirement	28
6.1	Test description	28
6.2	Test Procedure	28
6.3	Test Result	28
7.0	TEST EQUIPMENT.....	29

Date of Test: August 22 to 24, 2005

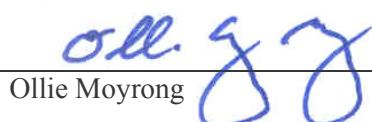
FCC ID: PO288CE-T010

1.0 Summary of Test Results

FCC RULE	DESCRIPTION OF TEST	RESULT	PAGE
15.249a	Field Strength of fundamental	Worst case: 91.6 dB(μ V/m) Margin: 2.4 dB	11
15.249a	Field Strength of harmonics	Worst case: 46.2 dB(μ V/m) @ 9140 MHz. Margin: 7.8 dB	11
15.249c	Radiated emissions outside the band, except harmonics.	Worst case: 38.8 dB(μ V/m) @ 601.4 MHz Margin: 7.2 dB	18
15.203	Antenna requirement	Complies	29
15.107 / 207	Line Conducted Emissions	N/A	
15.109 / 209	Radiated Emission	Worst case: 38.8 dB(μ V/m) @ 601.4 MHz Margin: 7.2 dB(μ V/m)	14, 16

We attest to the accuracy of this report:

EMC Department


Date of issue: August 25, 2005

Test Engineer:

Sergey Marker

Reviewing Engineer:

Ollie Moyrong

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

2.0 General Description**2.1 Product Description***EQUIPMENT UNDER TEST***Type of equipment** Wireless Video Transmitter**Type/Model** CE-T010**EUT description***Video Camera :*

- 1/3-inch CCD Image Sensor
- Resolution: Horizontal 420 TV lines
- Sensitivity: 0.05 LUX
- Automatic Exposure Control
- Pinhole Lens, 90° Field of View

RF Transmitter:

- Type of Emission: F3F
- Frequency: 900 MHz ISM Band.
- Can be configured to operate on one of four fixed frequencies: 909, 914, 919, 924 MHz
- Output Power: 0 dBm
- Modulation: FM
- Antennas: 1/4 Wave Vertical Antenna (permanently attached)
- Batteries: Up to 4 hours of continuous operation with Lithium Polymer Pack

Manufacturer

Chang Industry, Inc.
1925 McKinley Ave. Suite F
La Verne, CA 91750

Tested by request of

Mr. Steve Spears
Tel: 909-596-7888
Fax: 909-596-8388

Standards:

FCC Part 15.249

Test Report No.

3077009LAX-001

FCC ID:

PO288CE-T010

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

2.2 Related Submittal(s) Grants

This report is for use with an application for certification of a low power transmitter. One transmitter is included in the application. This specific report details the emission characteristics of transmitter.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (2003). Radiated emission measurements were performed in 10 m OATS. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application.

2.4 Test Facility

The test facility was a specially designed and constructed Open Area Test Site (OATS). Test site included a metal ground plane constructed of 22-gauge sheet metal. It contained a 2.5 meter diameter turntable for floor standing equipment, and a fiber glass table measuring 1.5 x 1.5 x 0.8 meters for table top equipment. To facilitate testing, also it has heat and air conditioning systems to control environmental test conditions.

This test facility and site measurement data have been fully placed on file with the FCC, Industry of Canada and A2LA accredited.

Test Facility: Intertek ETL Semko
27611 La Paz Road, Suite C
Laguna Niguel, CA 92677

Accreditations:

FCC Registration Number: 90711
A2LA Certificate Number: 2085-01
IC Reference Number: IC 3753

Date of Test: August 22 to 24, 2005

FCC ID: **PO288CE-T010**

3.0 System Test Configuration

3.1 Justification

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions.

For the measurements, the EUT is attached to a cardboard box (if necessary) and placed on the fiber glass turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power.

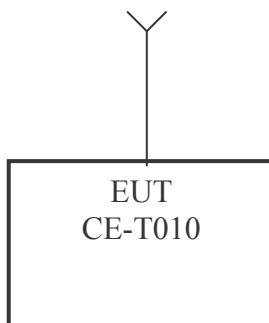
The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

3.2 EUT Exercising Software

No software was required to exercise the EUT.

3.3 System Test Configuration


3.3.1 Support Equipment

No support equipment was required to operate the EUT.

Date of Test: August 22 to 24, 2005

FCC ID: **PO288CE-T010**

3.3.2 Block Diagram of Test Setup

S:	Shielded	U:	Unshielded	F:	With Ferrite Core
-----------	----------	-----------	------------	-----------	-------------------

Support Equipment					
Equip.#	Equipment	Manufacturer	Model #	S/N #	FCC ID
None					

3.4 Equipment Modification

None

3.5 Mode(s) of operation

The EUT was powered from fully charged batteries. During the tests EUT was operating at continuous transmitting mode

Date of Test: August 22 to 24, 2005

FCC ID: **PO288CE-T010**

4.0 Field Strength of Emission

4.1 Test Description

Parameter:	FCC 15.249a
Requirement:	FCC 15.249a
Fundamental:	Limit 94 dB μ V
Harmonics:	Limit 54 dB μ V

4.1.1 Test Procedure

For the measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable which is 0.8 m above the ground plane on the open test site. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power. The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Radiated emission measurements were performed from 30 MHz to the 10th harmonic of transmitter frequency. Analyzer resolution is 120 KHz for 30 to 1000 MHz, 1 MHz for >1000 MHz. This test was performed per test procedure specified in ANSI C63.4 (2003).

4.1.2 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with antennas, cables, preamplifiers (if any) and average factors (when specified limits are in average and measurements are made with peak detectors). The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG + AV$$

where FS = Field Strength in dB(μ V/m)

RA = Receiver Amplitude in dB(μ V)

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB/m

AG = Amplifier Gain in dB

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antenna factor of 7.4 dB/m and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB(μ V/m).

$$RA = 52 \text{ dB}(\mu\text{V}) \quad CF = 1.6 \text{ dB}$$

$$AF = 7.4 \text{ dB/m} \quad AG = 29 \text{ dB} \quad FS = 52 + 7.4 + 1.6 - 29 = 32 \text{ dB}(\mu\text{V/m})$$

This value in dB(μ V/m) was converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm $\{[32 \text{ dB}(\mu\text{V/m})]/20\} = 39.8 \mu\text{V/m}$

Note: In the following table(s), the level shown on the data table includes the antenna factor, cable factor and preamplifier gain.

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

4.1.3 Radiated Emission Data

Standard: FCC Part 15.249a **Measurement Uncertainty:** 3.92dB
Company: Chang Industry, Inc. **Temperature:** 24°C
Job No. 3077009LAX-001 **Relative Humidity:** 49 %
Model Name: CE-T010
Date: 8/22/05
Distance: 3 m
Test Channel: Channel 1 (909 MHz)

Frequency	Detector	Vertical level	Horizontal level	D.C.F.	Limit	Margin
MHz		(dBuV/m)	(dBuV/m)	dB	(dBuV/m)	(dB)
909	Q.Peak	90.0	82.4	0.0	94	-4.0
1818	Peak	43.0	38.8	0.0	74.0	-30.7
1818	Ave	29.6	28.9	0.0	54.0	-24.4
*2727	Peak	48.5	46.0	0.0	74.0	-25.5
*2727	Ave.	33.8	32.8	0.0	54.0	-20.2
*3636	Peak	47.9	48.3	0.0	74.0	-25.7
*3636	Ave.	35.3	35.1	0.0	54.0	-18.7
*4545	Peak	49.6	48.6	0.0	74.0	-24.4
*4545	Ave.	36.5	35.2	0.0	54.0	-17.5
*5454	Peak	54.1	48.7	0.0	74.0	-19.9
*5454	Ave.	38.8	36.2	0.0	54.0	-15.2
6363	Peak	55.1	54.0	0.0	74.0	-18.9
6363	Ave.	39.8	39.6	0.0	54.0	-14.2
*7272	Peak	53.1	52.8	0.0	74.0	-21.2
*7272	Ave.	41.3	41.2	0.0	54.0	-12.7
*8181	Peak	54.1	54.8	0.0	74.0	-19.2
*8181	Ave.	42.8	43.0	0.0	54.0	-11.0
*9090	Peak	57.0	56.6	0.0	74.0	-17.0
*9090	Ave.	45.4	45.4	0.0	54.0	-8.6

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010**Test Channel:** Channel 4 (914 MHz)

Frequency MHz	Detector	Vertical level (dBuV/m)	Horizontal level (dBuV/m)	D.C.F. dB	Limit (dBuV/m)	Margin (dB)
**914	Q.Peak	91.6	82.6	0.0	94	-2.4
1828	Peak	40.8	41.4	0.0	74.0	-32.6
1828	Ave	30.4	28.0	0.0	54.0	-23.6
*2742	Peak	45.1	43.5	0.0	74.0	-28.9
*2742	Ave.	32.5	31.3	0.0	54.0	-21.5
*3656	Peak	49.2	47.0	0.0	74.0	-24.8
*3656	Ave.	35.4	35.9	0.0	54.0	-18.1
*4570	Peak	49.9	47.8	0.0	74.0	-24.1
*4570	Ave.	36.4	36.7	0.0	54.0	-17.3
5484	Peak	52.5	50.6	0.0	74.0	-21.5
5484	Ave.	38.9	38.5	0.0	54.0	-15.1
6398	Peak	54.1	51.4	0.0	74.0	-19.9
6398	Ave.	39.6	39.3	0.0	54.0	-14.4
*7312	Peak	54.3	52.9	0.0	74.0	-19.7
*7312	Ave.	42.1	41.4	0.0	54.0	-11.9
*8226	Peak	55.0	54.9	0.0	74.0	-19.0
*8226	Ave.	43.3	43.0	0.0	54.0	-10.7
*9140	Peak	57.5	57.8	0.0	74.0	-16.2
*9140	Ave.	46.2	45.5	0.0	54.0	-7.8

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

Test Channel: Channel 2 (924 MHz)

Frequency MHz	Detector	Vertical level (dBuV/m)	Horizontal level (dBuV/m)	D.C.F. dB	Limit (dBuV/m)	Margin (dB)
**924	Q.Peak	90.2	83.4	0.0	94	-3.8
1848	Peak	42.0	39.7	0.0	74.0	-32.0
1848	Ave	30.2	29.3	0.0	54.0	-23.8
*2772	Peak	42.9	44.8	0.0	74.0	-29.2
*2772	Ave.	32.4	32.9	0.0	54.0	021.1
*3696	Peak	48.3	47.7	0.0	74.0	-25.7
*3696	Ave.	35.9	35.6	0.0	54.0	-18.1
*4650	Peak	50.4	49.5	0.0	74.0	-23.6
*4650	Ave.	36.3	36.2	0.0	54.0	-17.7
5544	Peak	52.6	51.8	0.0	74.0	-21.4
5544	Ave.	39.0	38.9	0.0	54.0	-15.0
6468	Peak	52.5	53.8	0.0	74.0	-20.2
6468	Ave.	39.3	39.2	0.0	54.0	-14.7
*7392	Peak	53.4	52.3	0.0	74.0	-20.6
*7392	Ave.	41.1	41.2	0.0	54.0	-12.8
*8316	Peak	54.8	55.1	0.0	74.0	-18.9
*8316	Ave.	43.8	43.8	0.0	54.0	-10.2
9240	Peak	58.0	57.4	0.0	74.0	-16.0
9240	Ave.	45.5	45.4	0.0	54.0	-8.5

Notes:

- The field strength shown in the table (Vertical and Horizontal levels) included Antenna factor, Cable loss and Pre-amplifier Gain (if applicable).
- Negative signs (-) in Margin column signify levels below the limits.
- For frequencies below 1000 MHz the, above limits are based on quasi-peak limits.
Analyzer setting: RBW =120 KHz, VBW =300 KHz
- For frequencies above 1000 MHz the, above limits are based on average limits.
Analyzer setting: RBW =1 MHz, VBW =1 MHz
- Peak measurement shown for the compliance with 15.35b (peak measurements of emission shall not exceed the average limits specified above by more than 20 dB).
- All other emissions not reported are below the equipment noise floor which is at least 6 dB below the limits.
- D.C.F: Distance Correction Factor.

Date of Test: August 22 to 24, 2005FCC ID: **PO288CE-T010**

h) * Restricted Frequency Band. Only spurious emissions are permitted (15.205).

Test Result	Passed with margin 2.4 dB at 914 MHz.
	** The measurement result is below the specification limit by a margin less than the measurement uncertainty; it is not therefore possible to determine compliance at a level of confidence of 95%. However, the measured result indicates a high probability that the product tested complies with the specification limit

Date of Test: August 22 to 24, 2005

FCC ID: **PO288CE-T010**

4.2 Test Description

Parameter:	FCC 15.109
Requirement:	FCC 15.109, class B
30-88 MHz	40 dB μ @ 3 m
88-216 MHz	43.5 dB μ V @ 3 m
216-960 MHz	46 dB μ V @ 3 m
Above 960 MHz	54 dB μ V @ 3 m

4.2.1 Test Procedure

See section 4.1.1.

4.2.2 Field Strength Calculation

See section 4.1.2.

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

4.2.3 Radiated Emission Data

Standard: FCC Part 15, Subpart C (15.109)

Measurement Uncertainty: 3.92dB

Company: Chang Industry, Inc.

Temperature: 24°C

Job No. 3077009LAX-001

Relative Humidity: 49 %

Model Name: CE-T010

Date: 8/23/05

Mode: Channel 1 (904 MHz)

Frequency	Detector	Vertical level	Horizontal level	Distance	D.C.F.	Limit	Margin
MHz		(dBuV/m)	(dBuV/m)	m	dB	(dBuV/m)	(dB)
601.4	Q-P	38.5	30.9	3	0.0	46	-7.5

Mode: Channel 4 (914 MHz)

Frequency	Detector	Vertical level	Horizontal level	Distance	D.C.F.	Limit	Margin
MHz		(dBuV/m)	(dBuV/m)	m	dB	(dBuV/m)	(dB)
601.4	Q-P	37.5	30.5	3	0.0	46	-8.5

Mode: Channel 2 (924 MHz)

Frequency	Detector	Vertical level	Horizontal level	Distance	D.C.F.	Limit	Margin
MHz		(dBuV/m)	(dBuV/m)	m	dB	(dBuV/m)	(dB)
601.4	Q-P	38.8	31.2	3	0.0	46	-7.2

Notes:

- a) The field strength shown in the table for Q-Peak Detector (Vertical and Horizontal levels) included Antenna factor, Cable loss and Pre-amplifier Gain (if applicable).
- b) All emissions not reported were at least 20 dB below the limits or noise level of EMI receiver.
- c) Negative signs (-) in Margin column signify levels below the limits.
- d) Analyzer setting:
 - RBW \geq 1 MHz, VBW \geq 1 MHz, for freq. $>$ 1 GHz
 - RBW \geq 100 kHz, VBW \geq 100 kHz, for freq. $<$ 1 GHz
 - RBW \geq 1 kHz, VBW \geq 1 kHz for freq. $<$ 150 kHz
 Detector mode: Average ($>$ 1 GHz and $<$ 150 kHz) and Quasi-peak ($<$ 1 GHz).
- e) D.C.F: Distance Correction Factor

Test Result

Passed with 7.2 dB margin at 601.4 MHz.

Date of Test: August 22 to 24, 2005**FCC ID: PO288CE-T010****4.3 Test Description**

Parameter:	FCC 15.209
Requirement:	FCC 15.209
0.009 – 0.490	2400/F (kHz) (μ V/m) @ 300 m
0.490 – 1.705	2400/F (kHz) (μ V/m) @ 30 m
1.705 – 30.0	29.5 dB μ V @ 30 m
30-88 MHz	40 dB μ @ 3 m
88-216 MHz	43.5 dB μ V @ 3 m
216-960 MHz	46 dB μ V @ 3 m
Above 960 MHz	54 dB μ V @ 3 m

4.3.1 Test Procedure

See section 4.1.1.

4.3.2 Field Strength Calculation

See section 4.1.2.

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

4.3.3 Radiated Emission Data

Standard: FCC Part 15, Subpart C (15.209)

Measurement Uncertainty: 3.92dB

Company: Chang Industry, Inc.

Temperature: 24°C

Job No. 3077009LAX-001

Relative Humidity: 49 %

Model Name: CE-T010**Date:** 8/23/05**Mode:** Channel 1 (904 MHz)

Frequency	Detector	Vertical level	Horizontal level	Distance	D.C.F.	Limit	Margin
MHz		(dBuV/m)	(dBuV/m)	m	dB	(dBuV/m)	(dB)
601.4	Q-P	38.5	30.9	3	0.0	46	-7.5

Mode: Channel 4 (914 MHz)

Frequency	Detector	Vertical level	Horizontal level	Distance	D.C.F.	Limit	Margin
MHz		(dBuV/m)	(dBuV/m)	m	dB	(dBuV/m)	(dB)
601.4	Q-P	37.5	30.5	3	0.0	46	-8.5

Mode: Channel 2 (924 MHz)

Frequency	Detector	Vertical level	Horizontal level	Distance	D.C.F.	Limit	Margin
MHz		(dBuV/m)	(dBuV/m)	m	dB	(dBuV/m)	(dB)
601.4	Q-P	38.8	31.2	3	0.0	46	-7.2

Notes:

- The field strength shown in the table for Q-Peak Detector (Vertical and Horizontal levels) included Antenna factor, Cable loss and Pre-amplifier Gain (if applicable).
- All emissions not reported were at least 20 dB below the limits or noise level of EMI receiver
- Negative signs (-) in Margin column signify levels below the limits.
- Analyzer setting: $RBW \geq 1 \text{ MHz}$, $VBW \geq 1 \text{ MHz}$, for freq. $> 1 \text{ GHz}$
 $RBW \geq 100 \text{ kHz}$, $VBW \geq 100 \text{ kHz}$, for freq. $< 1 \text{ GHz}$
 $RBW \geq 1 \text{ kHz}$, $VBW \geq 1 \text{ kHz}$ for freq. $< 150 \text{ kHz}$
Detector mode: Average ($> 1 \text{ GHz}$ and $< 150 \text{ kHz}$) and Quasi-peak ($< 1 \text{ GHz}$).
- D.C.F: Distance Correction Factor

Test Result**Passed with 7.2 dB margin at 601.4 MHz.**

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

5 Out of Band Emission

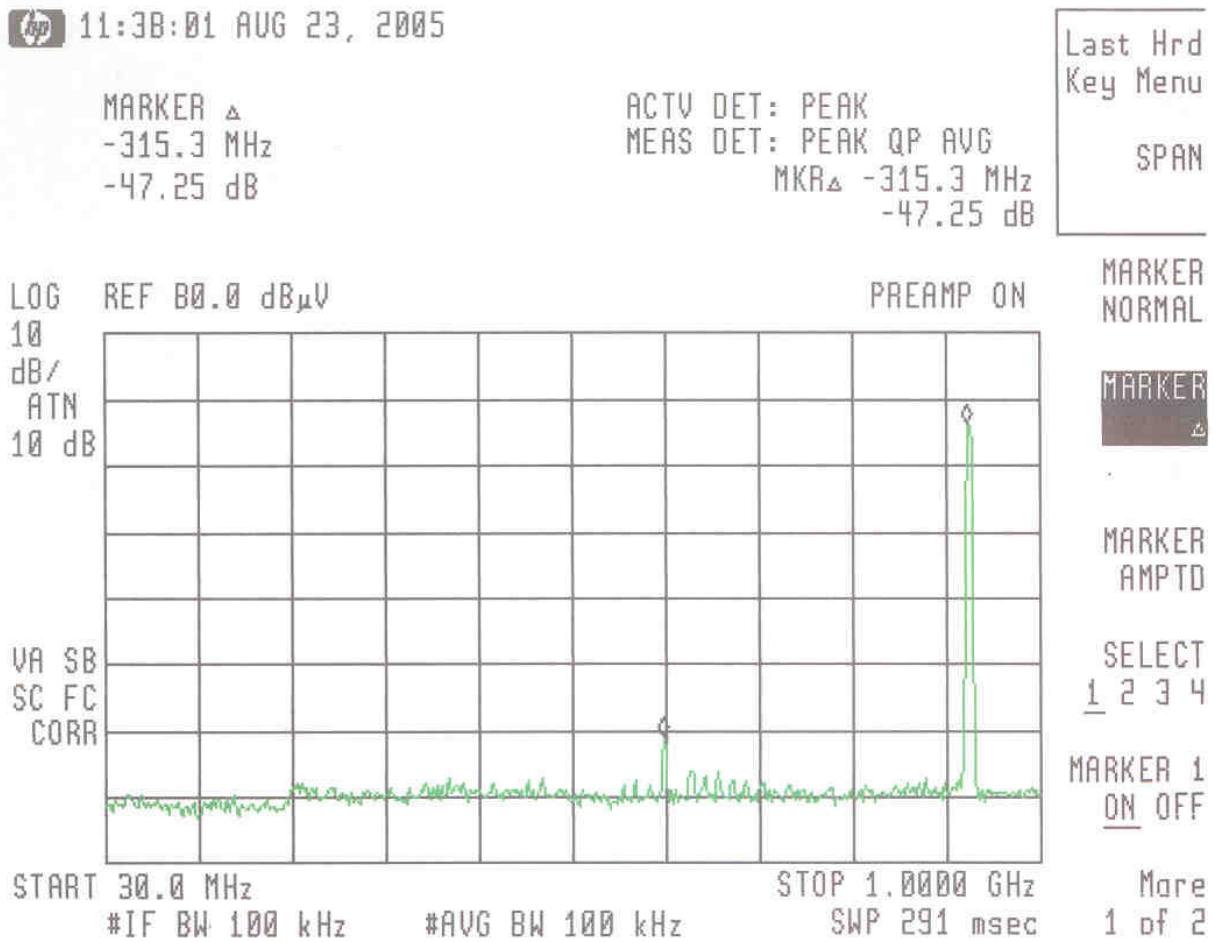
5.1 Test Description

Parameter:	FCC 15.249c
Requirement:	FCC 15.249c
Attenuation limits	> 50 dB or FCC 15.209

5.2 Test Procedure

These measurements performed inside the semi anechoic chamber. For measurements below 1 GHz, a biconilog antenna was used. For measurements above 1 GHz, a horn antenna was used. Several plots were made to show emissions from 30 MHz up to 7th harmonic.

5.3 Test Results


The following plots show the relative spurious emission levels of the transmitter.

Plot #	Description
5.3.1	Plot shows peak measurements differential between fundamental and frequency range from 30 to 902 MHz. Complies with >50 dB, except @ f = 601.4 MHz complies with 15.209 (see section 4.3).
5.3.2	Plot shows peak measurements differential between fundamental @ 904 MHz and lower edge of the frequency band. Complies with >50 dB.
5.3.3	Plot shows peak measurements differential between fundamental @ 904 MHz and upper edge of the frequency band. Complies with >50 dB.
5.3.4	Plot shows peak measurements differential between fundamental @ 914 MHz and lower edge of the frequency band. Complies with >50 dB.
5.3.5	Plot shows peak measurements differential between fundamental @ 914 MHz and upper edge of the frequency band. Complies with >50 dB.
5.3.6	Plot shows peak measurements differential between fundamental @ 924 MHz and lower edge of the frequency band. Complies with >50 dB.
5.3.7	Plot shows peak measurements differential between fundamental @ 924 MHz and upper edge of the frequency band. Complies with >50 dB.
5.3.8	Plot shows peak measurements differential between fundamental and frequency range from 902 to 2000 MHz. Complies with >50 dB.
5.3.9	Plot shows no spurious emission from 2000 to 4000 MHz. It also shows compliance with 50 dB below the level of fundamental (complies with >50 dB)
5.3.10	Plot shows no spurious emission from 4000 to 6500 MHz. It also shows compliance with 50 dB below the level of fundamental (complies with >50 dB)

Note 1: There are no emissions observed above 3rd harmonic of fundamental frequency. All spurious emissions outside the frequency band 902 – 928 MHz are attenuated by more than 50 dB below the level of fundamental or below the limits specified in 15.209

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

Plot 5.3.1

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

11:30:21 AUG 23, 2005

MARKER Δ
-7.22 MHz
-54.95 dBACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR Δ -7.22 MHz
-54.95 dBLast Hrd
Key Menu

SPAN

LOG REF B0.0 dB μ V

PREAMP ON

10

dB/
ATN

10 dB

VA SB
SC FC
CORR

START 902.00 MHz

#IF BW 100 kHz

#AVG BW 100 kHz

STOP 928.00 MHz

SWP 20.0 msec

MARKER
NORMALMARKER
 Δ MARKER
AMPTDSELECT
1 2 3 4MARKER 1
ON OFFMore
1 of 2

Plot 5.3.2

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

11:31:40 AUG 23, 2005

MARKER Δ
18.66 MHz
-56.47 dBACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR Δ 18.66 MHz
-56.47 dBLast Hrd
Key Menu
SPANLOG REF B0.0 dB μ V

PREAMP ON

10

dB/

ATN

10 dB

VA SB
SC FC
CORRMARKER
NORMALMARKER
 Δ MARKER
AMPTDSELECT
1 2 3 4MARKER 1
ON OFFMore
1 of 2

START 902.00 MHz #IF BW 100 kHz #AVG BW 100 kHz STOP 928.00 MHz SWP 20.0 msec

Plot 5.3.3

Date of Test: August 22 to 24, 2005

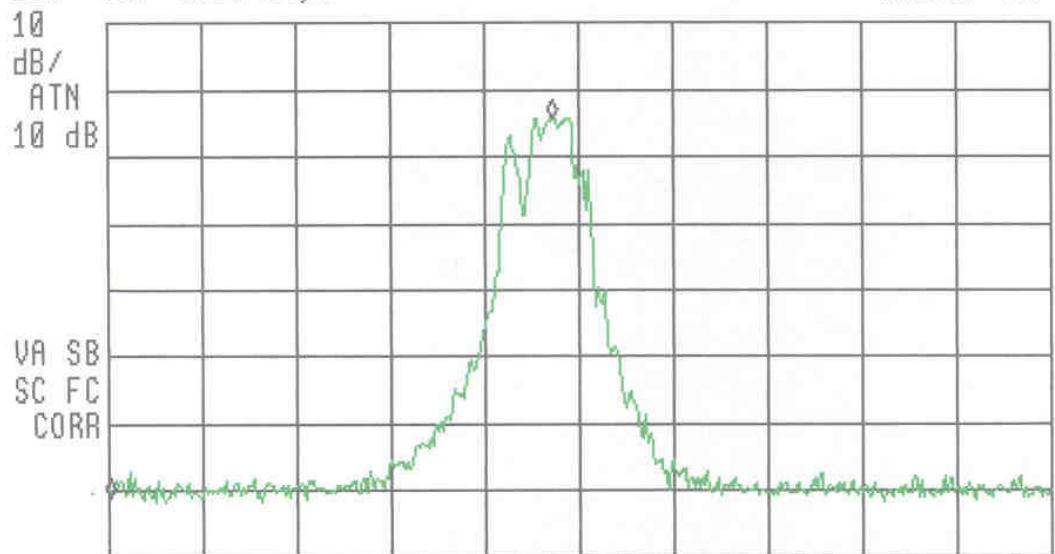
FCC ID: PO288CE-T010

11:52:35 AUG 23, 2005

MARKER A
-12.22 MHz
-56.77 dBACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKRA -12.22 MHz
-56.77 dBLast Hrd
Key Menu

SPAN

LOG REF 80.0 dB μ V


PREAMP ON

10
dB/
ATN
10 dBVA SB
SC FC
CORRSTART 902.00 MHz
#IF BW 100 kHz

#AVG BW 100 kHz

STOP 928.00 MHz
SWP 20.0 msecMARKER
NORMAL

MARKER

MARKER
AMPTDSELECT
1 2 3 4MARKER 1
ON OFFMore
1 of 2

Plot 5.3.4

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

11:54:06 AUG 23, 2005

MARKER Δ
13.72 MHz
-55.78 dBACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR Δ 13.72 MHz
-55.78 dBLast Hrd
Key Menu
SPANLOG REF 80.0 dB μ V

PREAMP ON

10

dB/

ATN

10 dB

VA SB

SC FC

CORR

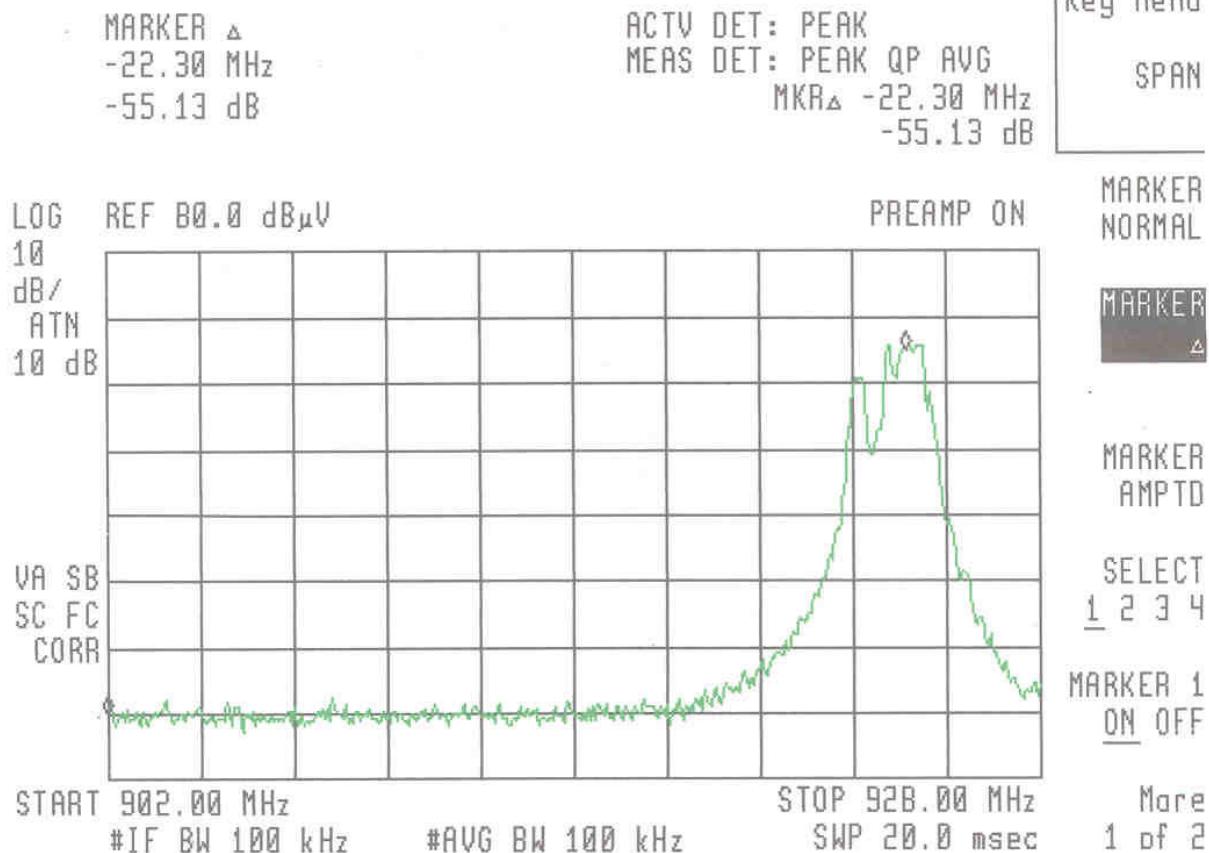
START 902.00 MHz

#IF BW 100 kHz

#AVG BW 100 kHz

STOP 928.00 MHz

SWP 20.0 msec


MARKER
NORMALMARKER
 Δ MARKER
AMPTDSELECT
1 2 3 4MARKER 1
ON OFFMore
1 of 2

Plot 5.3.5

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

11:59:15 AUG 23, 2005

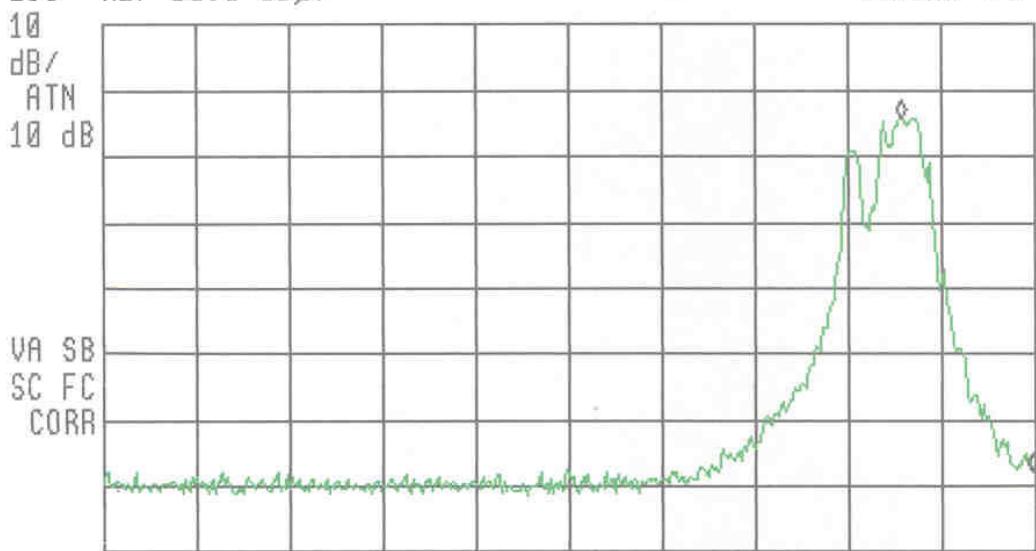
Plot 5.3.6

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

12:02:31 AUG 23, 2005

MARKER Δ
3.64 MHz
-53.71 dBACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR Δ 3.64 MHz
-53.71 dBLast Hrd
Key Menu


SPAN

LOG REF 80.0 dB μ V

PREAMP ON

10
dB/
ATN
10 dBVA SB
SC FC
CORRSTART 902.00 MHz
#IF BW 100 kHz

#AVG BW 100 kHz

STOP 928.00 MHz
SWP 20.0 msecMARKER
NORMALMARKER
 Δ MARKER
AMPTDSELECT
1 2 3 4MARKER 1
ON OFFMore
1 of 2

Plot 5.3.7

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

13:45:28 AUG 23, 2005

MARKER Δ
244 MHz
-58.51 dBACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR Δ 244 MHz
-58.51 dBLast Hrd
Key Menu

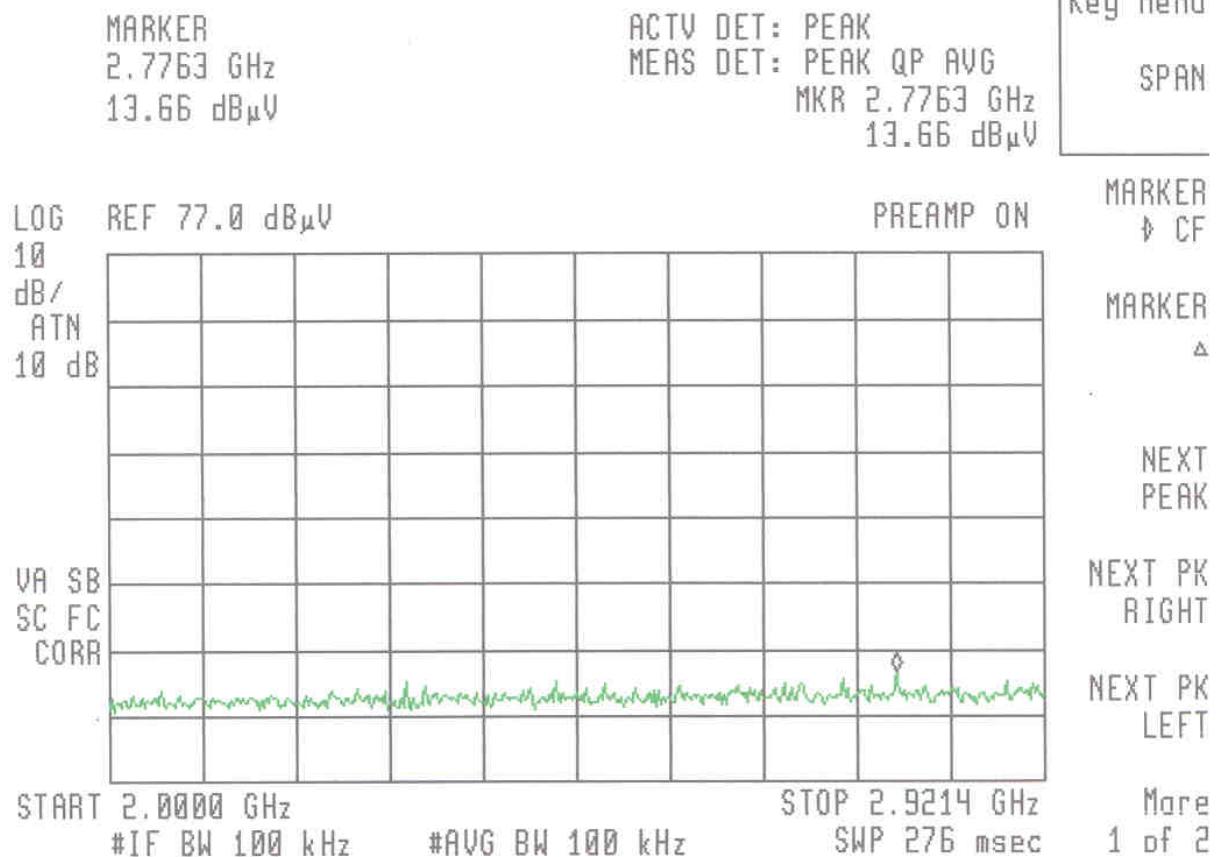
SPAN

LOG REF 77.0 dB μ V

PREAMP ON

10
dB/
ATN
10 dBVA SB
SC FC
CORRSTART 902 MHz
#IF BW 100 kHz

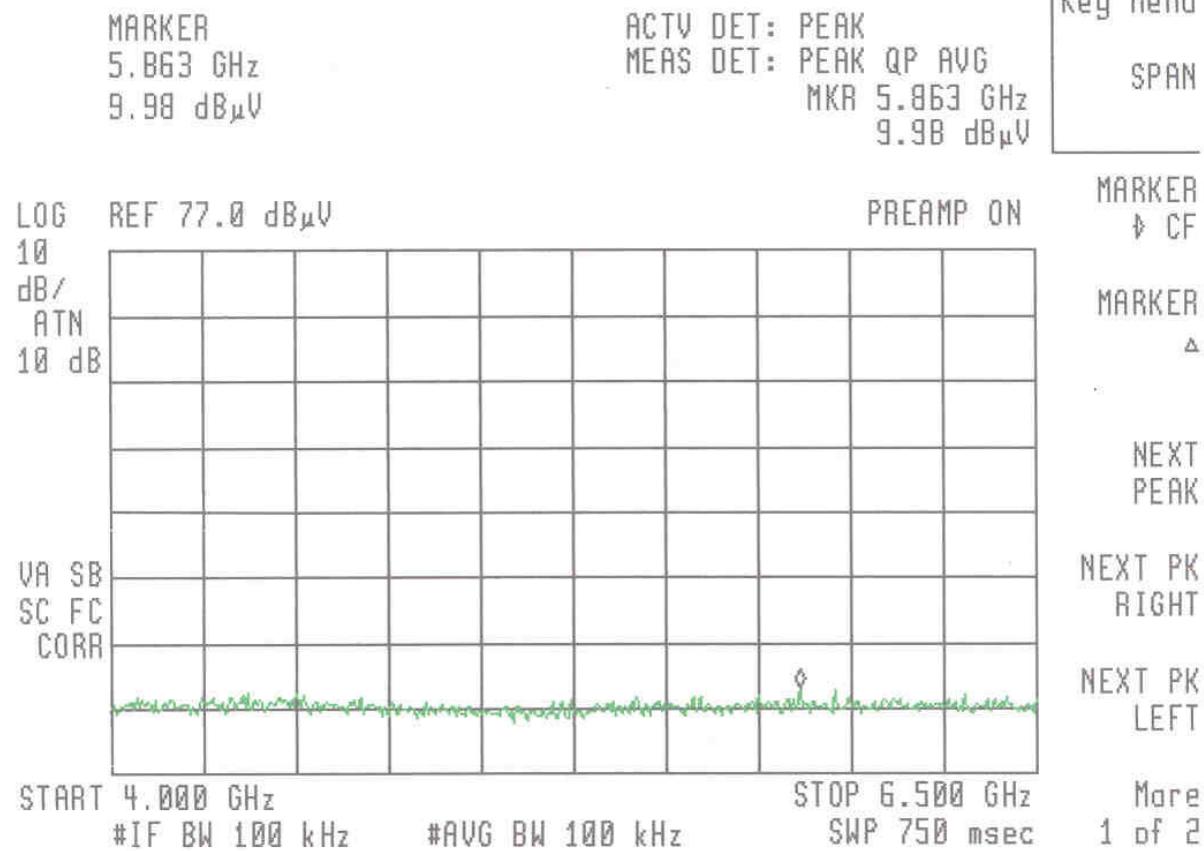
#AVG BW 100 kHz


STOP 2.000 GHz
SWP 329 msecMARKER
 Δ CFMARKER
 Δ NEXT
PEAKNEXT PK
RIGHTNEXT PK
LEFTMore
1 of 2

Plot 5.3.8

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010


13:48:48 AUG 23, 2005

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

13:53:51 AUG 23, 2005

Plot 5.3.10

Date of Test: August 22 to 24, 2005

FCC ID: **PO288CE-T010**

6.0 Antenna Requirement

6.1 Test description

Parameter:	FCC 15.203
Requirement:	FCC 15.203
Descriptions:	No antenna other than furnished by the responsible party shall be used with the device.

6.2 Test Procedure

None

6.3 Test Result

The device is considered to comply with the requirements by:

	Description
X	The transmitter uses a permanently connected antenna.
	The antenna is affixed to the EUT using a unique connector which allows for replacement of a broken antenna, but does NOT use a standard antenna jack or electrical connector.

Date of Test: August 22 to 24, 2005

FCC ID: PO288CE-T010

7.0 TEST EQUIPMENT

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

Receivers / Spectrum Analyzers

DESCRIPTION	SERIAL NO.	LAST CAL DATE	CAL DUE	TICK IF USED
HP 8546A Receiver RF Section	3549A00261	11/16/04	11/16/05	X
HP 85460A RF Filter Section	3448A00265	11/16/04	11/16/05	X
Tile Software	Rev. 3.0 G	N/A	N/A	X
R & S FSP40 Spectrum Analyzer	100027	2/21/05	2/21/06	X

Antennas

DESCRIPTION	SERIAL NO.	LAST CAL DATE	CAL DUE	TICK IF USED
Electro-metrics LPA-25 Log Periodic	1077	08/27/04	08/27/05	
Comp Power Biconical Antenna AB 900	15299	03/22/05	03/22/06	X
Com-Power AL-100 Logperiodic Antenna	16055	05/02/05	05/02/06	X
ETS Lindgren 3115 Horn Antenna	00031626	03/09/05	03/09/06	X
Chase Bilog Antenna CBL6112	2040	11/23/04	11/23/05	

Artificial Mains Networks/Absorbing Clamps

DESCRIPTION	SERIAL NO.	LAST CAL DATE	CAL DUE	TICK IF USED
EMCO 3816/2NM 16A LISN	1039	08/20/04	08/20/05	
FCC LISN 50 Amp 5 μ H	9827	02/07/05	02/07/06	