

Electromagnetic Compatibility Test Report

Tests Performed on a Recognition Source, LLC 902-928 MHz Transceiver, Model PIM-OTD Radiometrics Document RP-5053B

Product Detail:

FCC ID: PM7-DCMI2001

Equipment type: 902 to 928 MHz Low Power Transceiver

Canada Certification No. 4044104409A

Test Standards:

US CFR Title 47, Chapter I, FCC Part 15 Subpart C

FCC Part 15 CFR Title 47: 2002

Industry Canada RSS-210, Issue 5 as required for Category I Equipment

This report concerns: Class II permissive change.

FCC Part 15.247

Tests Performed For:

Test Facility: **Recognition Source, LLC Radiometrics Midwest Corporation**

3820 Stern Avenue 12 East Devonwood St. Charles, IL 60174 Romeoville, IL 60446

Phone: (815) 293-0772

Test Date(s): (Month-Day-Year) July 18 and August 15, 2003

Document RP-5053B Revisions:

Rev.	Issue Date	Affected Pages	Revised By	Authorized Signature for Revision	
0	September 11, 2003				

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report				
Equipment Tested (Company, Model, Product Name):	Document No.:	Page:		
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	2 of 22		

Table of Contents

1 ADMINISTRATIVE DATA	3
2 TEST SUMMARY AND RESULTS	3
3 EQUIPMENT UNDER TEST (EUT) DETAILS	4
3.1 EUT Description	4
3.1.1 FCC Section 15.203 & RSS-210 Section 5.5 Antenna Requirements	4
3.2 Related Submittals	4
4 TESTED SYSTEM DETAILS	4
4.1 Tested System Configuration	4
4.2 Special Accessories	
4.3 Equipment Modifications	
5 TEST SPECIFICATIONS AND RELATED DOCUMENTS	5
6 RADIOMETRICS' TEST FACILITIES	5
7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	6
8 CERTIFICATION	
9 TEST EQUIPMENT TABLE	6
10 TEST SECTIONS	
10.1 AC Conducted Emissions; Section 15.207	7
Figure 1. Conducted Emissions Test Setup	8
10.2 Occupied Bandwidth (20 dB)	8
10.3 Peak Output Power	10
10.4 Power Spectral Density	
10.5 Band-edge Compliance of RF Conducted Emissions	11
10.6 Spurious RF Conducted Emissions	12
10.7 Spurious Radiated Emissions	
10.7.1 Radiated Emissions Field Strength Sample Calculation	
Figure 2. Drawing of Radiated Emissions Setup	20
10.7.2 Spurious Radiated Emissions Test Results (Restricted Band)	
10.8 Peak to Average Calculations	22

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report			
Equipment Tested (Company, Model, Product Name): Document No.: Page:			
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	3 of 22	

1 ADMINISTRATIVE DATA

Equipment Under Test: A Recognition Source, LLC, 902-928 MHz Transceiver Model: PIM-OTD Serial Number: None This will be referred to as the EUT in this Report				
Date EUT Received at Radiometrics: (Month-Day-Year) 7/18/03	Test Date(s): (Month-Day-Year) July 18 and August 15, 2003			
Test Report Written By: Joseph Strzelecki Senior EMC Engineer	Test Witnessed By: Dennis Johanson James F. Wiemeyer Recognition Source			
Radiometrics' Personnel Responsible for Test: Stryelerbi	Test Report Approved By Chris W. Carlson			
Joseph Strzelecki Senior EMC Engineer NARTE EMC-000877-NE	Chris W. Carlson Director of Engineering NARTE EMC-000921-NE			

2 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a 902-928 MHz Transceiver, Model PIM-OTD, manufactured by Recognition Source, LLC. The detailed test results are presented in a separate section. The following is a summary of the test results.

Emissions Tests Results

Environmental Phenomena	Frequency Range	Basic Standard	Test Result
RF Radiated Emissions	30-9300 MHz	RSS-210 & FCC Part 15	Pass
Occupied Bandwidth Test	Fundamental Freq.	RSS-210 & FCC Part 15	Pass
Conducted Emissions, AC Mains	0.15-30 MHz	RSS-210 & FCC Part 15	Pass

Spread Spectrum Transmitter Requirements

opicad opectiani Transmitter Requirements						
Environmental Phenomena	Frequency Range	FCC Section	RSS-210 Section	Test Result		
20 dB Bandwidth Test	902-928 MHz	15.247 a	6.2.2 (o) (a)	Pass		
Peak Output Power	902-928 MHz	15.247 b	6.2.2 (o) (a)	Pass		
Band-edge Compliance of RF Conducted Emissions	902-928 MHz	15.247 c	6.2.2 (o) (e)	Pass		
Spurious RF Conducted Emissions	30-9300 MHz	15.247 c	6.2.2 (o) (e1)	Pass		
Spurious Radiated Emissions	30-9300 MHz	15.247 c	6.2.2 (o) (a)	Pass		
Power Spectral Density	902-928 MHz	15.247 d	6.2.2 (o) (b)	Pass		

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report				
Equipment Tested (Company, Model, Product Name): Document No.: Page:				
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	4 of 22		

3 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a 902-928 MHz Transceiver, Model PIM-OTD, manufactured by Recognition Source, LLC. The EUT was in good working condition during the tests, with no known defects.

3.1.1 FCC Section 15.203 & RSS-210 Section 5.5 Antenna Requirements

The EUT is professionally installed, so the antenna does not need unique antenna adaptors. The EUT will be marketed to businesses only.

3.2 Related Submittals

Recognition Source, LLC is also submitting a permissive change on a related product. Its FCC ID is PM7-IRL2001.

4 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations.

Since the EUT is wall mounted, it was placed in an upright configuration during the tests. Power was supplied at 115 VAC, 60 Hz single-phase to its external power supply.

The identification for all equipment, plus descriptions of all cables used in the tested system, are:

List of System Cables

	QTY	QTY Length (m) Cable Description		Shielded?
	1	1.8	AC Cord from PIM to Transformer	No
	1	1	I/O cable "APA"	No
	1	1	I/O cable "APB"	No

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.3 Equipment Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report				
Equipment Tested (Company, Model, Product Name):	Document No.:	Page:		
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	5 of 22		

5 TEST SPECIFICATIONS AND RELATED DOCUMENTS

Document	Date	Title
FCC CFR Title 47	2002	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices
ANSI C63.4-1992	1992	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
IC RSS-210 Issue 5	2001	Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands)
IC RSS-212 Issue 1	1998	Test Methods For Radio Equipment
FCC DA 00-705	2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

The test procedures used are in accordance with the FCC DA 00-75, Industry Canada RSS-212 and ANSI document C63.4-1992, (July 17, 1992) "Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The specific procedures are described herein. Radiated testing was performed at an antenna to EUT distance of 3 meters. The antenna was raised and lowered from 1 to 4 meters.

6 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics has been accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 1999 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the "basic standards" listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la.org).

The following is a list of shielded enclosures located in Romeoville, Illinois:

- Chamber A: Is an anechoic chamber that measures 24' L X 12' W X 12' H. The walls and ceiling are fully lined with ferrite absorber tiles. The floor has a 10' x 10' section of ferrite absorber tiles in the located in the center. Panashield of Rowayton, Connecticut manufactured the chamber. The enclosure is NAMAS certified.
- Chamber B: Is a shielded enclosure that measures 24' L X 12' W X 8' H. Erik A. Lindgren & Associates of Chicago, Illinois manufactured the enclosure.
- Chamber C: Is a shielded enclosure that measures 20' L X 10' W X 8' H. Lindgren RF Enclosures Inc. of Addison, Illinois manufactured the enclosure.
- Chamber D: Is a fully anechoic chamber that measures 22' L X 10' W X 10' H. The walls, ceiling and floor are fully lined with ferrite absorber tiles. Braden Shielding Systems of Tulsa, Oklahoma manufactured the chamber.

A separate ten-foot long, brass plated, steel ground rod attached via a 6 inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report			
Equipment Tested (Company, Model, Product Name): Document No.: Page:			
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	6 of 22	

Open Area Test Site (OATS): Is located on 8625 Helmar Road in Newark, Illinois, USA and measures 56' L X 24' W X 17' H. The entire open field test site has a metal ground screen. The FCC has accepted these sites as test site number 31040/SIT 1300F2. The FCC test site Registration Number is 90897. Details of the site characteristics are on file with the Industry Canada as file number IC3124.

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

7 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

8 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

9 TEST EQUIPMENT TABLE

					Frequency	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	11/29/02
AMP-12	MITEQ	Pre-amplifier	AM-1431	530935	0.01-1000MHz	12 Mo.	12/28/02
AMP-22	Anritsu	Pre-amplifier	MH648A	M23969	0.1-1200MHz	12 Mo.	11/25/02
ANT-03	Tensor	Biconical Antenna	4104	2231	20-200MHz	12 Mo.	08/07/03
ANT-06	EMCO	Log-Periodic Ant.	3146	1248	200-1000MHz	12 Mo.	08/07/03
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	12 Mo.	09/30/02
ANT-28	Empire	Loop Antenna	LG-105	102	10-150kHz	12 Mo.	05/01/03
ANT-29	Empire	Loop Antenna	LP-105	656	0.15-30MHz	12 Mo.	05/01/03
ATT-02	KDI	Attenuator	A710N	RMC1	DC-10GHz	12 Mo.	12/31/02
HPF-01	Solar	High Pass Filter	7930-100	HPF-1	0.15-30MHz	12 Mo.	01/02/03
HPF-02	Microwave Cir.	High Pass Filter	H2G09G02	HPF-2	1.5-11 GHz	12 Mo.	05/01/03
LSN-01	Electrometrics	LISN	FCC/VDE 50/2	1001	0.01-30MHz	12 Mo.	1/10/03
REC-01	Hewlett	Spectrum Analyzer	8566A	2106A02115,	30Hz-22GHz	12 Mo.	06/07/03
	Packard			2209A01349			
REC-07	Anritsu	Spectrum Analyzer	MS2601A	MT53067	0.01-2200MHz	12 Mo.	12/23/02
REC-10	Hewlett	Spectrum Analyzer	8594E	3441A01426	9kHz-2.9GHz	12 Mo.	12/23/02
	Packard						
THM-01	Extech Inst.	Temp/Humid Meter	4465CF	001106557	N/A	12 Mo.	12/31/02

Note: All calibrated equipment is subject to periodic checks.

NCR – No Calibration Required. Device monitored by calibrated equipment. N/A: Not Applicable.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report					
Equipment Tested (Company, Model, Product Name): Document No.: Page:					
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	7 of 22			

10 TEST SECTIONS

10.1 AC Conducted Emissions; Section 15.207

A computer-controlled analyzer was used to perform the conducted emissions measurements. The frequency range was divided into 500 subranges equally spaced on a logarithmic scale. The computer recorded the peak of each subrange. This data was then plotted on semi-log graph paper generated by the computer and plotter. Adjusting the positions of the cables and orientation of the test system then maximizes the highest emissions.

Mains Conducted emission measurements were performed using a 50 Ohm/50 uH Line Impedance Stabilization Network (LISN) as the pick-up device. Measurements were repeated on both leads within the power cord. If the EUT power cord exceeded 80 cm in length, the excess length of the power cord was made into a 30 to 40 cm bundle near the center of the cord. The LISN was placed on the floor at the base of the test platform and electrically bonded to the ground plane.

FCC Limits of Conducted Emissions at the AC Mains Ports

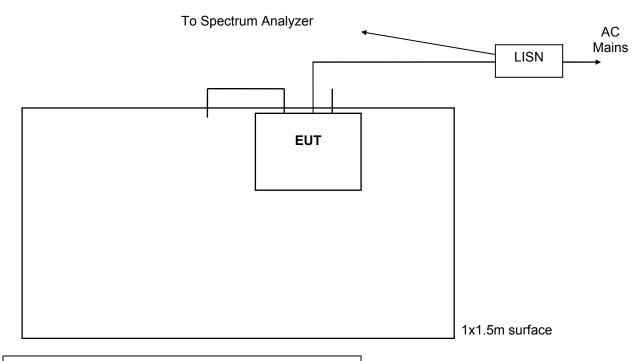
1 GO Elimito di Gondactea Elimenteno at the Ao Maine i Cito						
Frequency Range	Class B Lir	nits (dBuV)				
(MHz)	Quasi-Peak	Average				
0.150 - 0.50*	66 - 56	56 - 46				
0.5 - 5.0	56	46				
5.0 - 30	60	50				
* The limit decreases linearly with the logarithm of the frequency in this range.						

The initial step in collecting conducted data is a peak detector scan and the plotting of the measurement range. Significant peaks are then marked as shown on the following table, and these signals are then measured with the quasi-peak detector. The following represents the worst case emissions from EUT power cord, after testing all modes of operation.

Test Date: August 15, 2003

The Amplitude is the final corrected value with cable and LISN Loss.

	Frequency	QP		Average	Average
Lead Tested	MHz	Amplitude	QP Limit	Amplitude	Limit
AC Neutral	0.15	40.6	66.0	34.5	56.0
AC Neutral	0.21	38.0	63.1	32.2	53.1
AC Neutral	1.11	32.0	56.0	26.0	46.0
AC Hot	0.15	40.4	65.9	34.3	55.9
AC Hot	0.17	39.7	64.9	33.3	54.9
AC Hot	0.33	35.1	59.5	28.8	49.5
AC Hot	0.73	32.4	56.0	26.1	46.0


The above are the worst case results with three frequencies test for each EUT

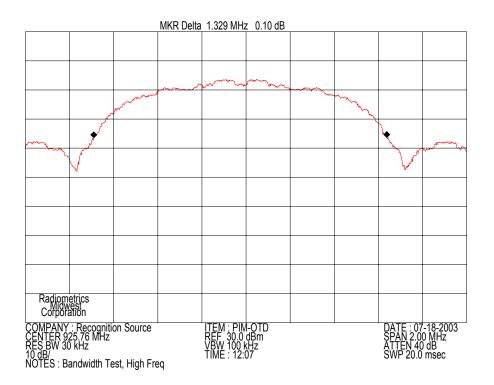
Judgment: Passed by 20.7 dB

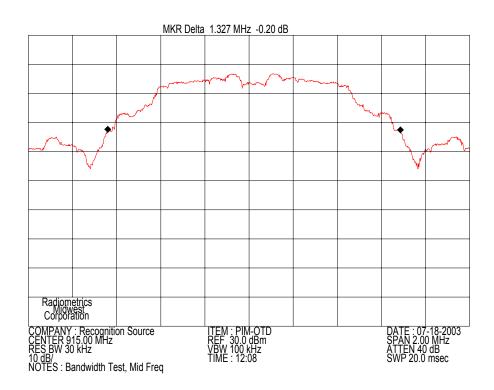
^{*} QP readings are quasi-peak with a 9 kHz bandwidth and no video filter.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report					
Equipment Tested (Company, Model, Product Name): Document No.: Page:					
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	8 of 22			

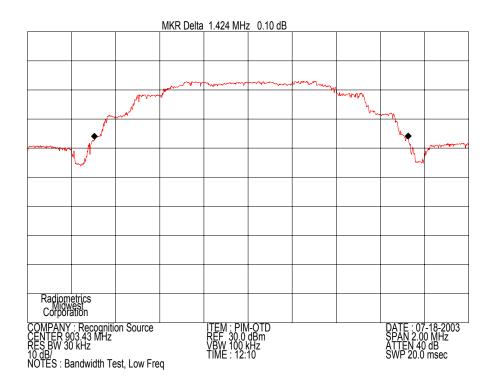
Figure 1. Conducted Emissions Test Setup

Notes:


- LISN's at least 80 cm from EUT chassis
- Vertical conductive plane 40 cm from rear of table top
- EUT power cord bundled


10.2 Occupied Bandwidth (20 dB)

The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize.


The marker-to-peak function was set to the peak of the emission. Then the marker-delta function was used to measure 20 dB down one side of the emission. The marker-delta function was reset and then moved to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report					
Equipment Tested (Company, Model, Product Name): Document No.: Page:					
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	9 of 22			

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report					
Equipment Tested (Company, Model, Product Name):	Document No.:	Page:			
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	10 of 22			

10.3 Peak Output Power

The spectrum analyzer was set to the following settings:

Span = 50 kHz (approximately 5 times the 20 dB bandwidth, centered on a hopping channel)

RBW = 100 kHz (> the 20 dB bandwidth of the emission being measured)

VBW = 300 kHz

Sweep = auto

Detector function = peak

Trace = max hold

The trace was allowed to stabilize. The marker-to-peak function was used to measure the peak of the emission. The indicated level is the peak output power. Note 30 dBm = 1 watt. Since the gain of the antenna is always less than 6dB, the limit is not reduced.

Frequency	Reading	Cable Loss	Total	Power	
(MHz)	(dBm)	(dB)	dBm	Watts	Limit (dBm)
903.5	21.6	0.1	21.7	0.148	30
915.0	22.3	0.1	22.4	0.174	30
925.7	23.1	0.1	23.2	0.209	30

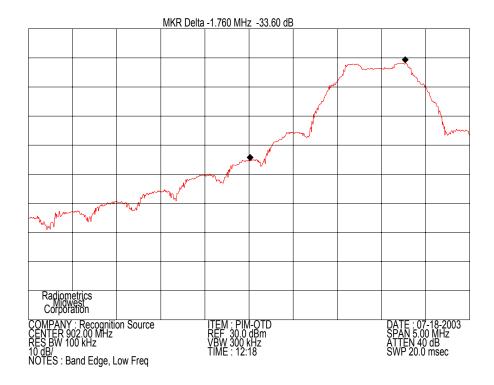
RADIOMETRICS MIDWEST CORPORATION - EMC Test Report					
Equipment Tested (Company, Model, Product Name): Document No.: Page:					
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	11 of 22			

10.4 Power Spectral Density

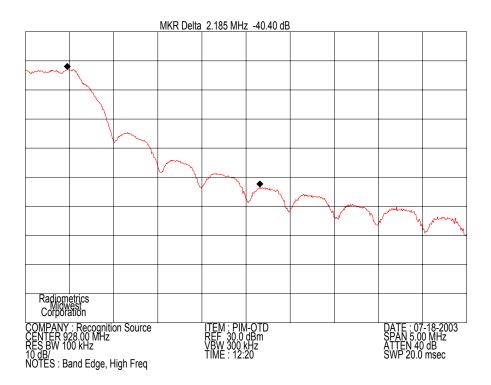
The spectrum analyzer was set to the following settings:

Span = 6 kHz (Stepped Center frequency within channel to obtain Maximum Reading) Channel Bandwidth = 3 kHz

RBW = 1 kHz

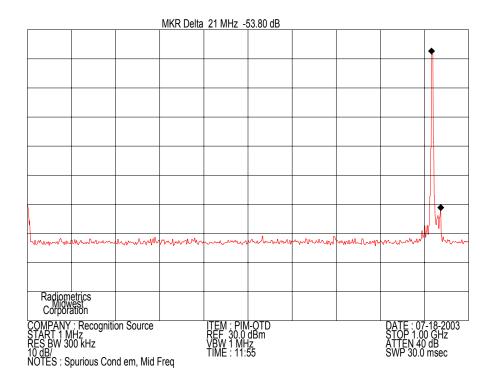

VBW = 10 kHz

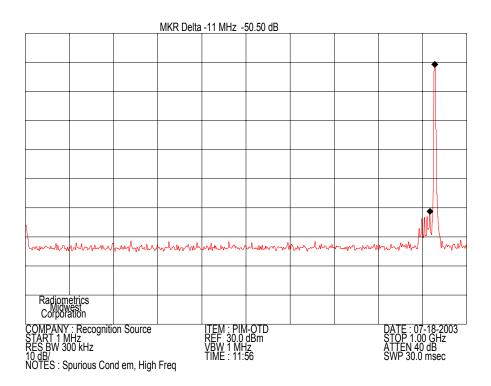
Sweep = auto


Frequency	Reading	Cable Loss	3 kHz Spectral Density	Limit
(MHz)	(dBm)	(dB)	(dBm)	(dBm)
903.5	-2.5	0.1	-2.4	8
915.0	-1.6	0.1	-1.5	8
925.7	-0.3	0.1	-0.2	8

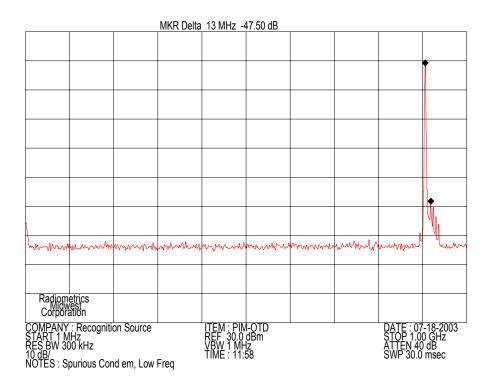
10.5 Band-edge Compliance of RF Conducted Emissions

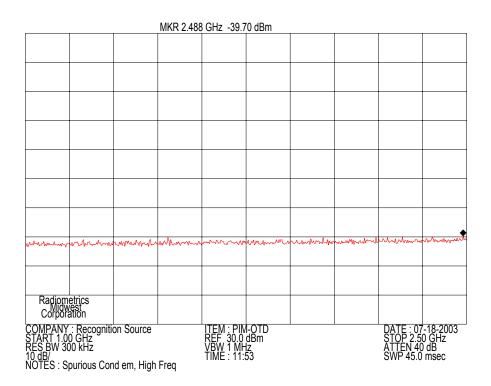
The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation at the band-edge, with the EUT set to the lowest frequency. The trace was allowed to stabilize.

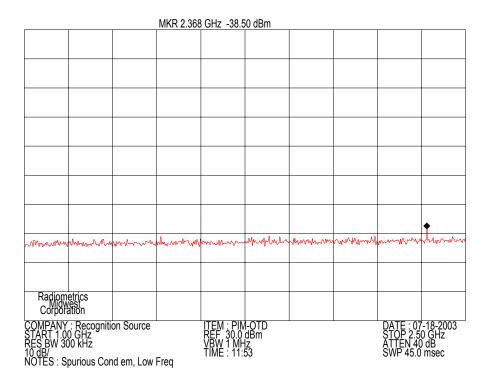

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report					
Equipment Tested (Company, Model, Product Name): Document No.: Page:					
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	12 of 22			

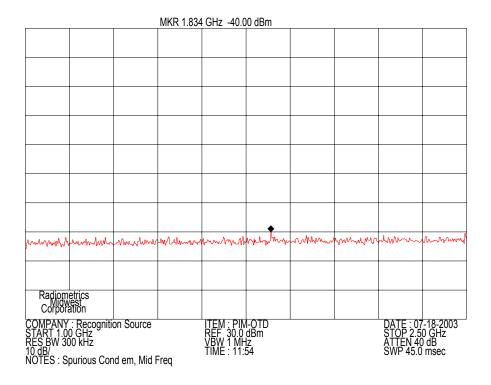


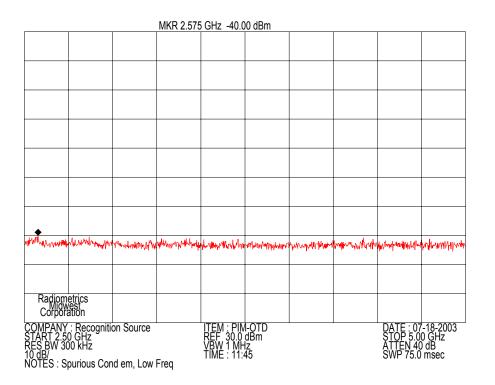
10.6 Spurious RF Conducted Emissions

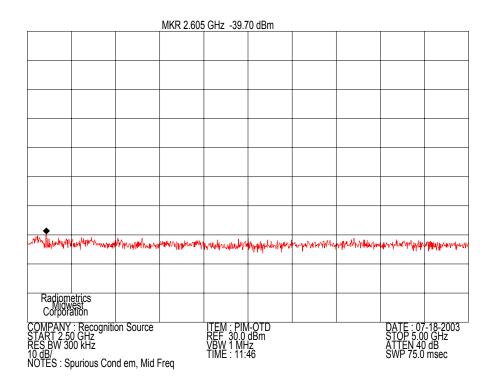

The spectrum analyzer was set to the MAX HOLD mode to record all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. The trace was allowed to stabilize. The first two plots were made while stepping through three frequencies (Low middle and high). Each frequency was on for 30 seconds. The last two plots were made with hopping enabled.

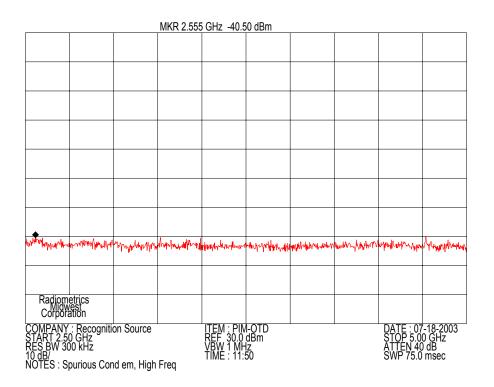

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report					
Equipment Tested (Company, Model, Product Name): Document No.: Page:					
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	13 of 22			

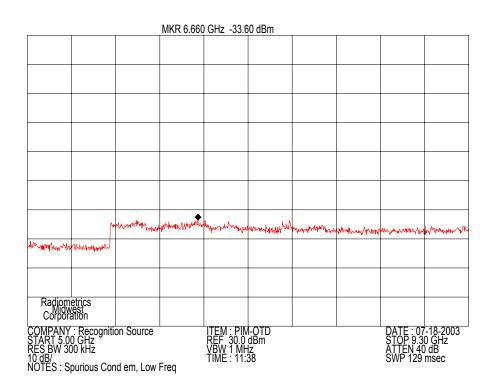


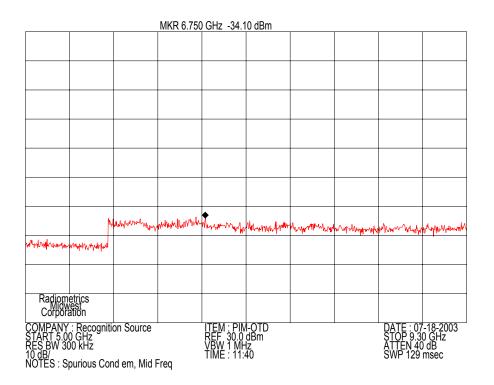

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report				
Equipment Tested (Company, Model, Product Name): Document No.: Page:				
Recognition Source, PIM-OTD, 902-928 MHz Transceiver RP-5053B Rev. 0 14 of 22				

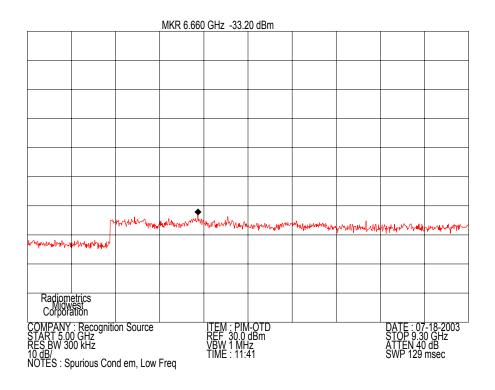



RADIOMETRICS MIDWEST CORPORATION - EMC Test Report				
Equipment Tested (Company, Model, Product Name): Document No.: Page:				
Recognition Source, PIM-OTD, 902-928 MHz Transceiver RP-5053B Rev. 0 15 of 22				




RADIOMETRICS MIDWEST CORPORATION - EMC Test Report				
Equipment Tested (Company, Model, Product Name): Document No.: Page:				
Recognition Source, PIM-OTD, 902-928 MHz Transceiver RP-5053B Rev. 0 16 of 22				




RADIOMETRICS MIDWEST CORPORATION - EMC Test Report				
Equipment Tested (Company, Model, Product Name): Document No.: Page:				
Recognition Source, PIM-OTD, 902-928 MHz Transceiver RP-5053B Rev. 0 17 of 22				

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report				
Equipment Tested (Company, Model, Product Name): Document No.: Page:				
Recognition Source, PIM-OTD, 902-928 MHz Transceiver RP-5053B Rev. 0 18 of 22				

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report				
Equipment Tested (Company, Model, Product Name): Document No.: Page:				
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	19 of 22		

10.7 Spurious Radiated Emissions

Radiated emission measurements in the Restricted bands were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. Below 1 GHz, when a radiated emission is detected approaching the specification limit, the measurement of the emission is repeated using a tuned dipole antenna with a Roberts Balun. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists.

From 30 to 1000 MHz, an Anritsu Spectrum analyzer and a MITEQ AM-1431 amplifier with a 10 dB attenuator connected to the input were used. The out of band emissions and the ambient emissions were below the level of input overload (80 dBuV).

For tests from 1 to 9.3 GHz, an HP8566A spectrum analyzer was used with a Celeritek uWave amplifier. The out of band emissions and the ambient emissions were below the level of input overload (72 dBuV). In addition, a high pass filter was used to reduce the fundamental emission.

Radiated emission measurements are performed with linearly polarized broadband antennas. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded.

Final radiated emissions measurements were performed in the open area test site at a test distance of 3 meters. The entire frequency range from 30 to 9300 MHz was slowly scanned and the emissions in the restricted frequency bands were recorded. Measurements were performed using the peak detector function. The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground. The open area test site used to collect the radiated data is located on 8625 Helmar Road in Newark, Illinois. The open field test site has a metal ground screen. All other tests are performed at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

10.7.1 Radiated Emissions Field Strength Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation with a sample calculation is as follows:

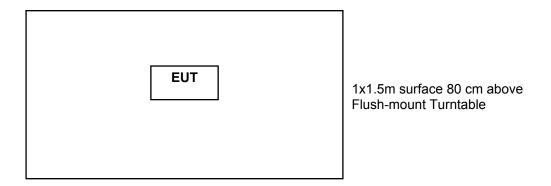
FS = RA + AF + CF - AG + PKA

Where: FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor


AG = Amplifier Gain

PKA = Peak to Average Factor (This is zero for non average measurements)

The Peak to average factor is used when average measurements are required. It is calculated by the highest duty cycle in percent over any 100mS transmission. The factor in dB is 20 * Log(Duty cycle/100).


RADIOMETRICS MIDWEST CORPORATION - EMC Test Report				
Equipment Tested (Company, Model, Product Name): Document No.: Page:				
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	20 of 22		

Figure 2. Drawing of Radiated Emissions Setup

Notes:

- AC outlet with low-pass filter at the base of the turntable
- Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

10.7.2 Spurious Radiated Emissions Test Results (Restricted Band)

The following spectrum analyzer settings were used.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

The duty cycle factor is 20 * Log(37/100) = -8.6 dB; The details for this is in section 10.3. The peak emissions did not exceed the average by more than 20 dB.

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report				
Equipment Tested (Company, Model, Product Name): Document No.: Page:				
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	21 of 22		

Test Distance	3 Meters	Test Date	8-15-03			
Specification	FCC Part 15 Subpart C & RS	FCC Part 15 Subpart C & RSS-210				
Abbreviations	Pol = Antenna Polarization; V = Vertical; H = Horizontal; BC = Biconical (ANT-3);					
	LP = Log-Periodic (ANT-6); HN = Horn (ANT-13) P = peak; Q = QP					
Notes	Corr. Factors = Cable Loss – Preamp Gain + High Pass Filter Loss					
Antennas	30 to 200 MHz Biconical (ANT-3); 200 to 1000 MHz Log-Periodic (ANT-6)					
Used	1 to 18 GHz Double Ridged C	Suide Horn (ANT-	13)			

Transmitting at 903.6 MHz

Freq

Meter

Ant Factor

Ant

Corr.

Peak to

EUT Field

Limit

Margin

Transmittin		VII 12		Com	Dook to	CUT Ciald		Morgin
From	Meter	Ant Factor	Ant	Corr. Factors	Peak to Ave Factor	EUT Field Strength	Limit	Margin under Limit
Freq (MHz)	Reading (dBuV)	(dB/m)	Polarity	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
2709.8	41.1	31.2	H	-20.4	-8.6	43.3	54.0	10.7
3612.9	41.2	33.4	H	-20.4	-8.6	45.7	54.0	8.3
4518.1	39.3	34.9	H	-20.3	-8.6	43.8	54.0	10.2
5421.5	39.2	36.2	H			45.4	54.0	
7228.1	39.7	37.7	H	-21.4	-8.6			8.6
8131	40.1	38.0	H	-20.3	-8.6	48.5	54.0	5.5
9034.4	39.5	40.1	H	-20.7	-8.6	48.8	54.0	5.2
2710.1	42.9	31.2	V	-19.6	-8.6	51.4	54.0	2.6
				-20.4	-8.6	45.1	54.0	8.9
3614.6	41.3	33.4	V	-20.3	-8.6	45.8	54.0	8.2
4518.1	39.2	34.9	V	-21.8	-8.6	43.7	54.0	10.3
5419.9	39	36.2	V	-21.4	-8.6	45.2	54.0	8.8
7226.8	39.7	37.7	V	-20.3	-8.6	48.5	54.0	5.5
8131.7	39.5	38.0	V	-20.7	-8.6	48.2	54.0	5.8
9033.8	38.6	40.1	V	-19.6	-8.6	50.5	54.0	3.5
Transmitting	g at 915 MH							
2744.4	41.4	31.3	Н	-20.3	-8.6	43.8	54.0	10.2
3659.1	45.3	33.6	Н	-20.3	-8.6	50.0	54.0	4.0
4576.9	40.1	35.0	Н	-21.8	-8.6	44.7	54.0	9.3
7318.1	40.1	37.8	Н	-20.4	-8.6	48.9	54.0	5.1
8235.9	40.3	38.1	Н	-20.9	-8.6	48.9	54.0	5.1
9149.1	39.5	39.8	Н	-19.8	-8.6	50.9	54.0	3.1
2745	41.3	31.3	V	-20.3	-8.6	43.7	54.0	10.3
3661.3	43.2	33.6	V	-20.3	-8.6	47.9	54.0	6.1
4573.9	39.6	35.0	V	-21.8	-8.6	44.2	54.0	9.8
7319.4	39.9	37.8	V	-20.4	-8.6	48.7	54.0	5.3
8232.8	39.9	38.1	V	-20.8	-8.6	48.6	54.0	5.4
9148	39	39.8	V	-19.8	-8.6	50.4	54.0	3.6
Transmittin	g at 925 MI	-lz						1
2776.4	40.2	31.3	Н	-20.3	-8.6	42.6	54.0	11.4
3704.1	46.3	33.8	Н	-20.3	-8.6	51.2	54.0	2.8
4627.1	40	35.0	Н	-21.7	-8.6	44.7	54.0	9.3
7406.9	39	37.9	Н	-20.7	-8.6	47.6	54.0	6.4
	I	1						

RADIOMETRICS MIDWEST CORPORATION - EMC Test Report					
Equipment Tested (Company, Model, Product Name): Document No.: Page:					
Recognition Source, PIM-OTD, 902-928 MHz Transceiver	RP-5053B Rev. 0	22 of 22			

(MHz)	Reading (dBuV)	(dB/m)	Polarity	Factors (dB)	Ave Factor (dB)	Strength (dBuV/m)	(dBuV/m)	under Limit (dB)
8333.3	40.5	38.2	Н	-20.8	-8.6	49.3	54.0	4.7
9252.9	37.9	39.5	Н	-20.1	-8.6	48.7	54.0	5.3
2777	41	31.3	V	-20.3	-8.6	43.4	54.0	10.6
3703.7	46.3	33.8	V	-20.3	-8.6	51.2	54.0	2.8
4629.3	39.8	35.0	V	-21.7	-8.6	44.5	54.0	9.5
7405.8	38.8	37.9	V	-20.7	-8.6	47.4	54.0	6.6
8331.7	40.5	38.2	V	-20.8	-8.6	49.3	54.0	4.7
9252.4	38.1	39.5	V	-20.0	-8.6	49.0	54.0	5.0

Radiated Emissions Test Results Below 1 GHz.

Notes	Corr. Factors = cable loss - preamp gain
Abbreviations	Pol = Antenna Polarization; V = Vertical; H = Horizontal; BC = Biconical; LP =
	Log-Periodic; BL = Bilog; P = peak; Q = QP

	Meter Antenna		nna	Corr.	Field Strength		Margin
	Reading	Factor	Pol/	Factors	dBuV/m		Under Limit
Freq. MHz	dBuV	dB	Type	dB	EUT	Limit	dB
37.5	35.2 P	12.0	H/BC	-27.8	19.4	40.0	20.6
249.5	36.4 P	12.7	H/LP	-26.1	23.0	46.0	23.0
267.3	36.5 P	13.3	H/LP	-25.9	23.9	46.0	22.1
267.5	34.7 P	13.3	H/LP	-25.9	22.1	46.0	23.9
273.4	36.3 P	13.6	H/LP	-25.8	24.1	46.0	21.9
37.5	41.3 Q	12.0	V/BC	-27.8	25.5	40.0	14.5
37.6	41.3 Q	12.1	V/BC	-27.8	25.6	40.0	14.4
74.1	42.1 P	5.5	V/BC	-27.4	20.2	40.0	19.8
243.2	30.5 P	17.2	V/BC	-26.3	21.4	46.0	24.6
255.2	35.5 P	12.9	V/LP	-26.0	22.5	46.0	23.5
261.3	36.0 P	13.1	V/LP	-25.9	23.2	46.0	22.8
267.3	35.6 P	13.3	V/LP	-25.9	23.0	46.0	23.0

Judgment: Passed by 2.6 dB

No other emissions were detected in the restricted bands.

10.8 Peak to Average Calculations

As required by FCC section 15.35 and RSS-210 section 6.5, the Peak to Average correction factor was calculated with the data supplied by the EUT designer.

The device will transmit RF-borne messages of 37.0ms duration or less. Its duty cycle averaged over 100ms will not exceed 37%. The PIM-OTD will transmit a maximum 37.0ms duration message, at a rate of not more than 1 message per 100ms.

20*Log(.37) = -8.6 dB Peak to average correction factor.