

TABLE OF CONTENTS LIST FOR PART 90 UHF DEVICE

APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

TEST REPORT:

PAGE 1.....COVER SHEET - GENERAL INFORMATION & TECHNICAL DESCRIPTIVE
PAGE 2.....TECHNICAL DESCRIPTION CONTINUED & RF POWER OUTPUT
PAGE 3.....RF POWER OUTPUT AND MODULATION CHARACTERISTICS
PAGE 4-5....OCCUPIED BANDWIDTH
PAGE 6.....OCCUPIED BANDWIDTH PLOT CW
PAGE 7.....OCCUPIED BANDWIDTH PLOT 12.5 kHz
PAGE 8.....SPURIOUS EMISSIONS AT ANTENNA TERMINALS
PAGE 9.....METHOD OF MEASURING SPURIOUS EMISSIONS AT ANTENNA TERM.
PAGE 10-11..FIELD STRENGTH OF SPURIOUS EMISSIONS
PAGE 12.....METHOD OF MEASURING RADIATED SPURIOUS EMISSIONS
PAGE 13.....FREQUENCY STABILITY
PAGE 14-15..TRANSIENT FREQUENCY STABILITY
PAGE 16-17..TRANSIENT FREQUENCY RESPONSE PLOTS-25kHz-LOW POWER
PAGE 18-19..TRANSIENT FREQUENCY RESPONSE PLOTS-25kHz-HIGH POWER
PAGE 20-21..TRANSIENT FREQUENCY RESPONSE PLOTS-12.5kHz-LOW POWER
PAGE 22-23..TRANSIENT FREQUENCY RESPONSE PLOTS-12.5kHz-HIGH POWER
PAGE 24-25..SPECTRAL EFFICIENCY PLOTS
PAGE 26-28..LIST OF TEST EQUIPMENT

EXHIBITS CONTAINING:

EXHIBIT 1.....FCC ID LABEL SAMPLE & LABEL LOCATION
EXHIBIT 2.....SCHEMATIC
EXHIBIT 3.....BLOCK DIAGRAM
EXHIBIT 4.....EXTERNAL PHOTOGRAPH FRONT VIEW
EXHIBIT 5.....EXTERNAL PHOTOGRAPH TOP VIEW
EXHIBIT 6-7.....EXTERNAL PHOTOGRAPH SIDE VIEWS
EXHIBIT 8.....INTERNAL PHOTOGRAPH COMPONENT VIEW
EXHIBIT 9.....INTERNAL PHOTOGRAPH COPPER VIEW
EXHIBIT 10.....USERS MANUAL
EXHIBIT 11.....OPERATIONAL DESCRIPTION
EXHIBIT 12.....TEST SETUP PHOTOGRAPH

APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

TABLE OF CONTENTS LIST

GENERAL INFORMATION REQUIRED
FOR TYPE ACCEPTANCE

2.1033 (c)(1)(2) GENEX ELECTRONICS CO., LTD. will sell the FCC ID: PM3SD5200 UHF transceiver using F5K modulation in quantity, for use under FCC RULES PART 90.

2.1033 (c) TECHNICAL DESCRIPTION
2.1033 (3) User Manual See Exhibit 10

2.1033 (4) Type of Emission: 20K0F1D For 25 kHz
11K2F1D For 12.5 kHz

For 25kHz

Bn = 2M + 2DK
M = 19,200 Bits per second
D = 0.4 kHz (Peak Deviation)
K = 1
Bn = $2(19200/2) + 2(0.4k)(1) = 19.2k + 0.8k = 20k$
ALLOWED AUTHORIZED BANDWIDTH = 20.00 kHz.
MAXIMUM ALLOWED DEVIATION IS .4 kHz.

For 12.5kHz

Bn = 2M + 2DK
M = 9,600 Bits per second
D = 0.8 kHz (Peak Deviation)
K = 1
Bn = $2(9600/2) + 2(0.8k)(1) = 9.6k + 1.6k = 11.2k$
ALLOWED AUTHORIZED BANDWIDTH = 11.25 kHz.
MAXIMUM ALLOWED DEVIATION IS .8kHz.

90.209(b)(5)

2.1033 (5) Frequency Range: 450-470 MHz
(6) Power Range and Controls: There are NO user Power controls.
(7) Maximum Output Power Rating:
5.0 Watts into a 50 ohm resistive load.
(8) DC Voltages and Current into Final Amplifier:
POWER INPUT - SEE NEXT PAGE
(9) Tune-up procedure. The tune-up procedure is given in the users manual.

APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 1 of 28

2.10

Measurement Procedures for Type Acceptance:

Measurement techniques have been in accordance with TIA/EIA STD 603-1992.

2.1033 (10) Complete Circuit Diagrams: The circuit diagram is included as EXHIBIT 2. The block diagram is included as EXHIBIT 3.

Function of each semiconductor device or other active circuit device:

-SEE EXHIBIT 11-

(10) Description of all circuitry and devices provided for determining and stabilizing frequency is included in the circuit description in the instruction manual.

2.1033(c)(11) A photograph or drawing of the equipment identification label is shown in Exhibit 1.

2.1033(c)(12) Photographs of the equipment of sufficient clarity to reveal equipment construction and layout and label location are shown in Exhibit 4-9.

2.1033(c)(13) For equipment employing digital modulation, a detail description of the modulation technique. This UUT uses FSK to modulate the transmitter.

2.1033(c)(14) data required for 2.1046 to 2.1057 See Below

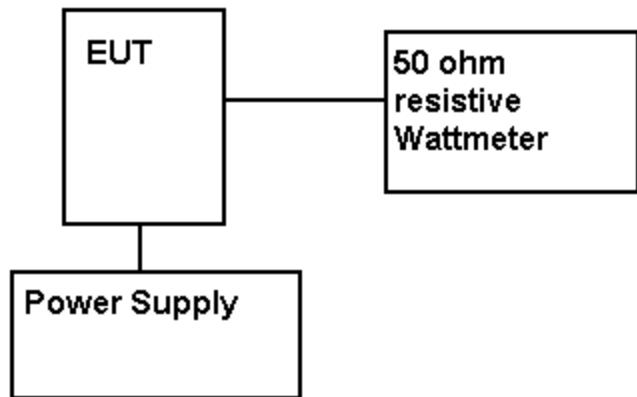
2.1046(a) RF power output.

RF power is measured by connecting a 50 ohm, resistive wattmeter to the RF output connector. With a nominal battery voltage of 12 VDC, and the transmitter properly adjusted the RF output measures:

POWER INPUT:

INPUT POWER - HIGH: (12V)(1.8A) = 21.6 Watts
INPUT POWER - LOW: (12V)(1.8A) = 21.6 Watts

OUTPUT POWER: HIGH - 5 Watts
LOW - 2 Watts


APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 2 of 28

METHOD OF MEASURING RF POWER OUTPUT

2.1047(a) Voice Modulation characteristics:
NOT APPLICABLE, F1 type of emission.

2.1049 Audio Low Pass Filter
This UUT does not have a low pass filter.

2.1049 Occupied bandwidth:
90.210(c,)

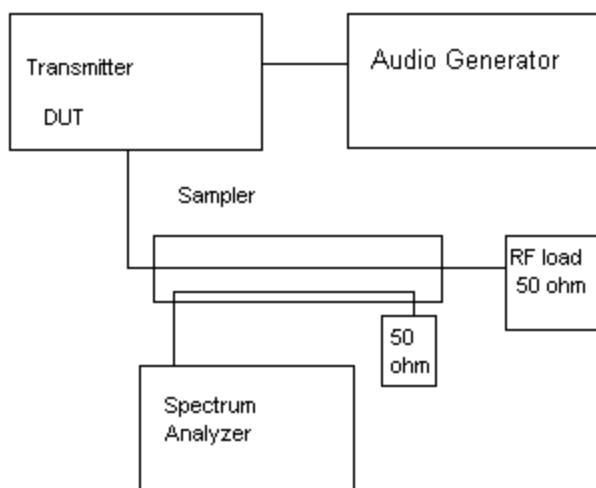
For transmitters that are not equipped with an audio low pass filter pursuant to S90.211(b), the power of any emission must be attenuated below the unmodulated carrier output power as follows: (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency(fd in kHz) of more than 5 kHz but not more than 10 kHz: At least $83 \log(fd/5)$ dB; (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency(fd in kHz) of more than 10 kHz, but not more than 250% of the authorized bandwidth: At least $29 \log(fd^2/11)$ dB or 50 dB, whichever is the lesser attenuation; (3) On any frequency removed from the center of the authorized bandwidth by more than 250% of the authorized bandwidth: At least $43 + 10 \log(P_o)$ dB.

90.210(d) Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(1) On any frequency from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 : Zero dB.

(2) On any frequency from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least $7.27 (fd - 2.88 \text{ kHz})$ dB.

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least $50 + 10 \log (P)$ dB or 70 dB, whichever is the lesser attenuation.

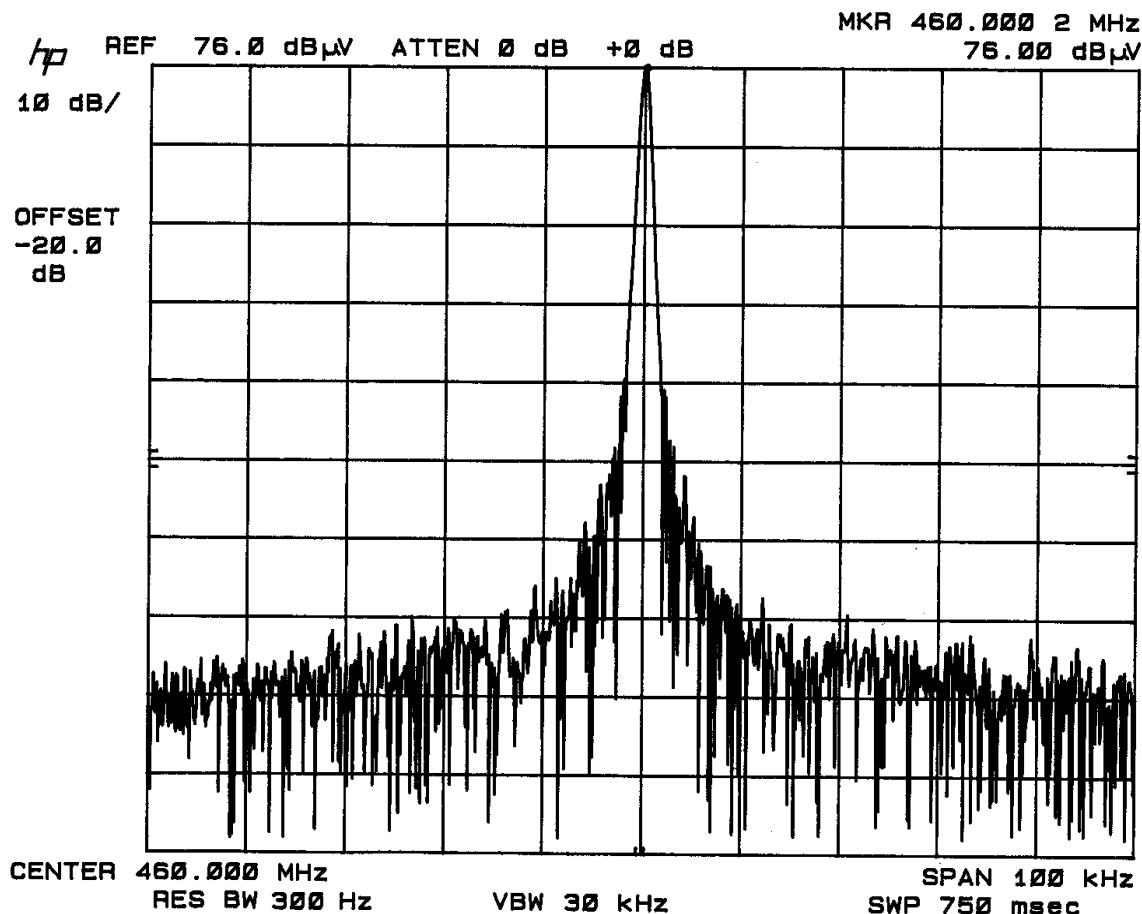

Radiotelephone transmitter with modulation limiter.

Test procedure: TIA/EIA-603 para 2.2.11 , with the exception that various tones were used.

Test procedure diagram

OCCUPIED BANDWIDTH MEASUREMENT

Occupied BW Test Equipment Setup



APPLICANT: GENEX ELECTRONICS CO., LTD.

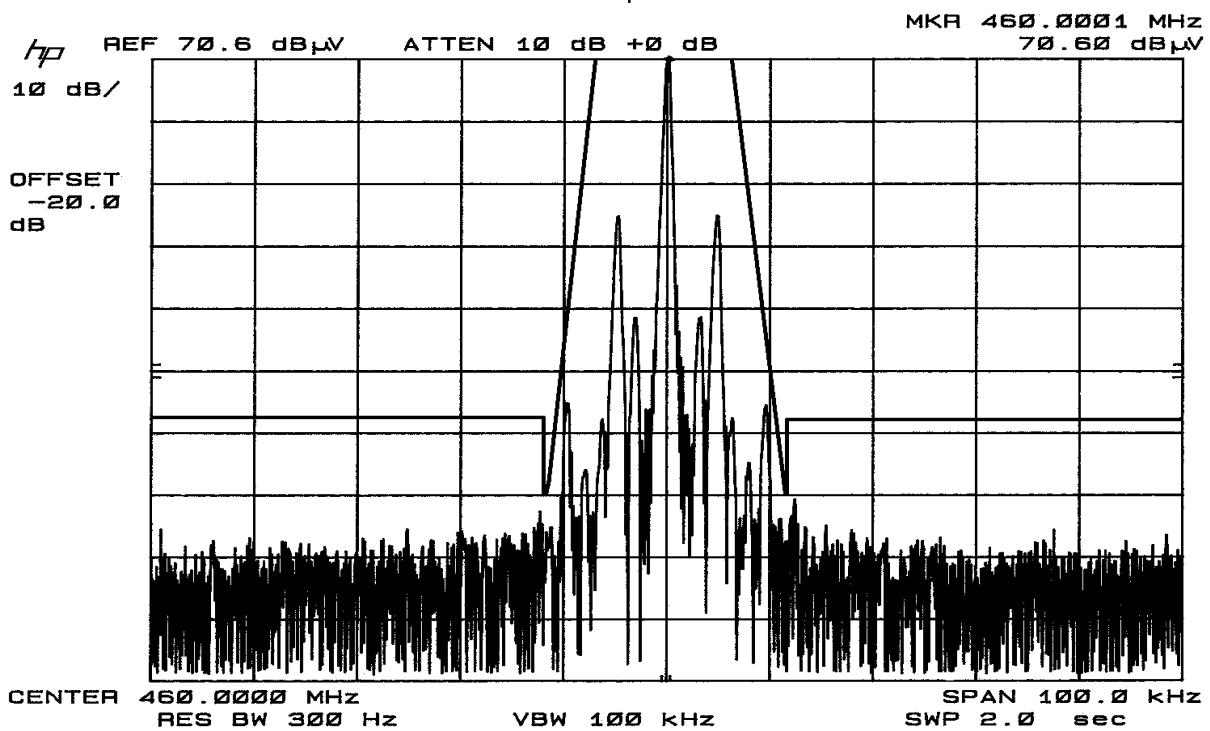
FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 5 of 28

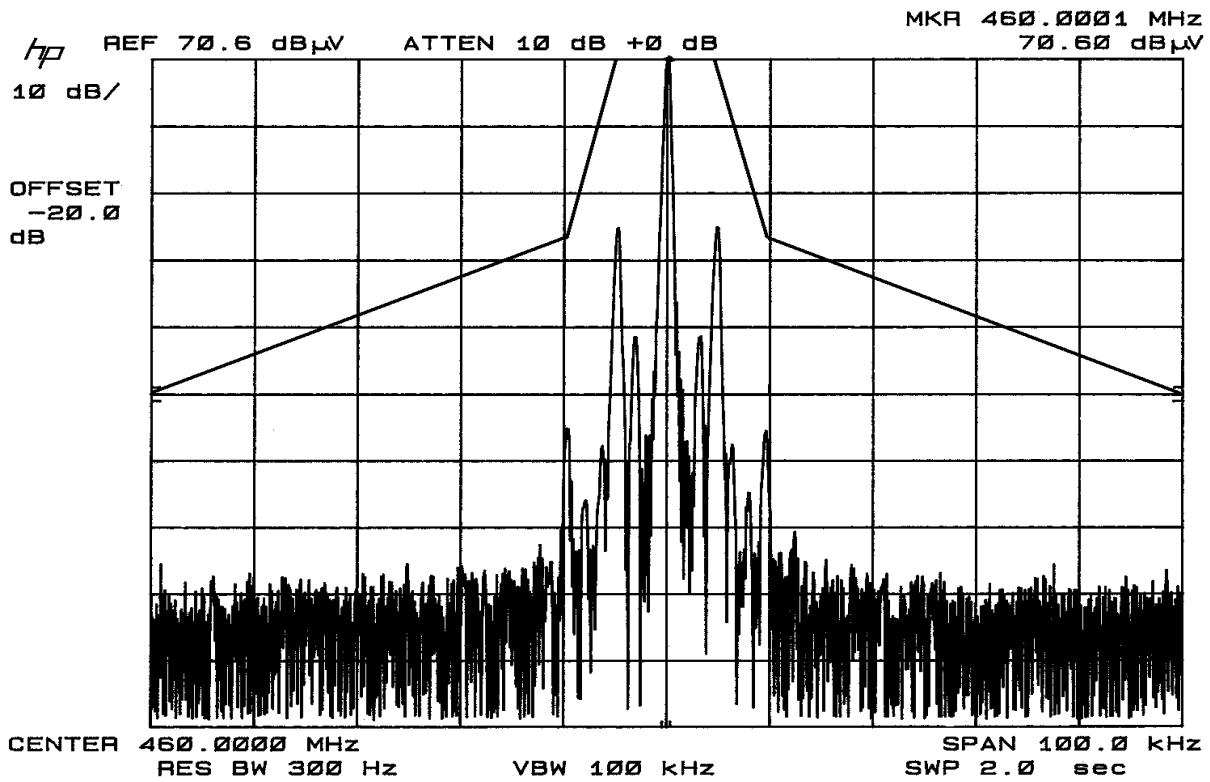
Occupied Bandwidth Plot CW

APPLICANT: GENEX ELECTRONICS CO., LTD.


FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 6 of 28


9600 Baud

Genex Electronics PM3SD5200 Occupied BW 12.5 kHz

19200 baud

Genex Electronics PM3SD5200 Occupied BW 25 kHz

APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 7 of 28

2.1051 Spurious emissions at antenna terminals (conducted):
 2.1052 Data on the following page shows the level of conducted spurious responses. The spectrum was scanned from 0.4 to at least the 10th harmonic of the fundamental. The measurements were made in accordance with standard TIA/EIA-603.

REQUIREMENTS: Emissions must be $43 + 10\log(P_o)$ dB below the mean power output of the transmitter.

FOR 12.5kHz:

HIGH POWER: $43 + 10\log(5) = 50$ dB

LOW POWER: $43 + 10\log(2) = 46$ dB

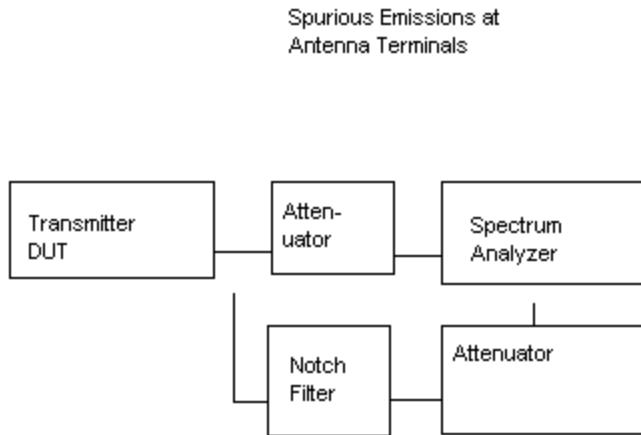
EMISSION FREQUENCY MHz	dB BELOW CARRIER HIGH POWER	dB BELOW CARRIER LOW POWER
460.00	0.0	0.0
920.0	-65.4	-67.3
1380.0	-75.1	-70.8
1840.00	-65.1	-68.9
2300.00	-77.9	-80.5
2760.00	-90.8	-93.5
3220.00	-86.3	-85.7
3680.00	-84.7	-86.0
4140.00	-86.7	-83.5
4600.00	-92.5	-95.7

FOR 25kHz:

HIGH POWER: $50 + 10\log(5) = 57$ dB

LOW POWER: $50 + 10\log(2) = 53$ dB

EMISSION FREQUENCY MHz	dB BELOW CARRIER HIGH POWER	dB BELOW CARRIER LOW POWER
460.00	0.0	0.0
920.0	-65.4	-67.3
1380.0	-75.1	-70.8
1840.00	-65.1	-68.9
2300.00	-77.9	-80.5
2760.00	-90.8	-93.5
3220.00	-86.3	-85.7
3680.00	-84.7	-86.0
4140.00	-86.7	-83.5
4600.00	-92.5	-95.7


APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 8 of 28

Method of Measuring Conducted Spurious Emissions

METHOD OF MEASUREMENT: The procedure used was TIA/EIA-603 STANDARD without any exceptions. The output of the transmitter connected to a standard load and from the standard load through a preselector filter of the spectrum analyzer. The spectrum was scanned from 30 MHz to at least the tenth harmonic of the fundamental using a HP model 8566B spectrum analyzer. The measurements were made using the shielded room located at TIMCO ENGINEERING INC. 849 N.W. State Road 45, Newberry, Florida 32669.

2.1053

Field strength of spurious emissions:

NAME OF TEST: RADIATED SPURIOUS EMISSIONS

REQUIREMENTS: Emissions must be $50 + 10\log(P_o)$ dB below the mean power output of the transmitter.

TEST DATA:

FOR 12.5kHz:

HIGH POWER: $43 + 10\log(5) = 50$ dB

LOW POWER: $43 + 10\log(2) = 46$ dB

Emission Frequency MHz	ATTN dBc	Margin dB
LOW POWER		
460.00	0.00	0.00
920.00	87.38	41.37
1,380.00	78.62	32.61
1,840.00	82.26	36.25
2,300.00	88.17	42.16
3,220.00	87.00	40.99
4,140.00	83.16	37.15
HIGH POWER		
460.00	0.00	0.00
920.00	90.86	40.86
1,380.00	76.10	26.10
1,840.00	86.94	36.94
2,300.00	89.65	39.65
2,760.00	94.64	44.64
3,220.00	92.28	42.28
3,680.00	88.95	38.95

APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 10 of 28

2.1053

Field strength of spurious emissions:

NAME OF TEST:

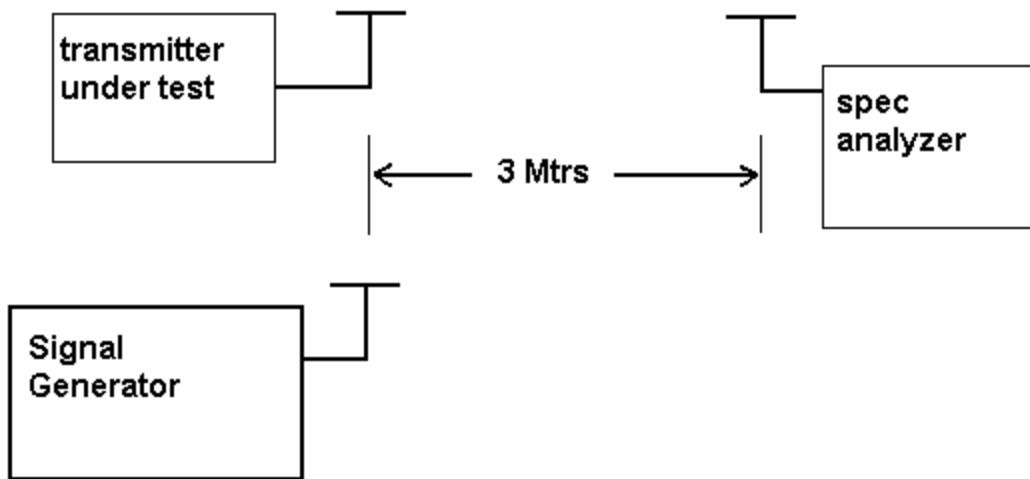
RADIATED SPURIOUS EMISSIONS CONTINUED

FOR 25kHz:

HIGH POWER: $50+10\log(5) = 57$ dB
LOW POWER: $50+10\log(2) = 53$ dB

Emission Frequency MHz	ATTN dBc	Margin dB
LOW POWER		
460.00	0.00	0.00
920.00	87.38	34.37
1,380.00	78.62	25.61
1,840.00	82.26	29.25
2,300.00	88.17	35.16
3,220.00	87.00	33.99
4,140.00	83.16	30.15
HIGH POWER		
460.00	0.00	0.00
920.00	90.86	33.87
1,380.00	76.10	19.11
1,840.00	86.94	29.95
2,300.00	89.65	32.66
2,760.00	94.64	37.65
3,220.00	92.28	35.29
3,680.00	88.95	31.96

METHOD OF MEASUREMENTS: The tabulated data shows the results of the radiated field strength emissions test. The spectrum was scanned from 30 MHz to at least the tenth harmonic of the fundamental. This test was conducted per TIA/EIA STANDARD 603 using the substitution method. Measurements were made at the open field test site of TIMCO ENGINEERING, INC. located at 849 NW State Road 45, Newberry, FL 32669.


APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 11 of 28

Testsetup of Measuring Radiated Spurious Emissions

2.1055 Frequency stability:

90.213(a)(1)

Temperature and voltage tests were performed to verify that the frequency remains within the 5.0 ppm specification limit for 25KHz spacing. 2.5ppm for 12.5KHz spacing. And 1.0ppm for 6.25KHz spacing. The test was conducted as follows: The transmitter was placed in the temperature chamber at 25 degrees C and allowed to stabilize for one hour. The transmitter was keyed ON for one minute during which four frequency readings were recorded at 15 second intervals. The worse case number was taken for temperature plotting. The assigned channel frequency was considered to be the reference frequency. The temperature was then reduced to -30 degrees C after which the transmitter was again allowed to stabilize for one hour. The transmitter was keyed ON for one minute, and again frequency readings were noted at 15 second intervals. The worst case number was recorded for temperature plotting. This procedure was repeated in 10 degree increments up to + 50 degrees C.

Readings were also taken at minus 15% of the battery voltage of 12VDC, which we estimate to be the battery endpoint.

MEASUREMENT DATA:

Assigned Frequency (Ref. Frequency): 460.000 300 MHz

TEMPERATURE_°C	FREQUENCY_MHz	PPM
REFERENCE_____	460.000 300	00.0
-30_____	459.999 938	-00.79
-20_____	459.999 915	-00.84
-10_____	460.000 011	-00.63
0_____	460.000 122	-00.39
+10_____	460.000 268	-00.07
+20_____	460.000 287	-00.03
+30_____	460.000 251	-00.11
+40_____	460.000 241	-00.13
+50_____	460.000 201	-00.22

Battery End-Point 12VDC 460.000 298 00.00
Battery End-Point 10.2VDC 460.000 304 00.01

RESULTS OF MEASUREMENTS: The maximum frequency variation over the temperature range was -.84 ppm.

APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

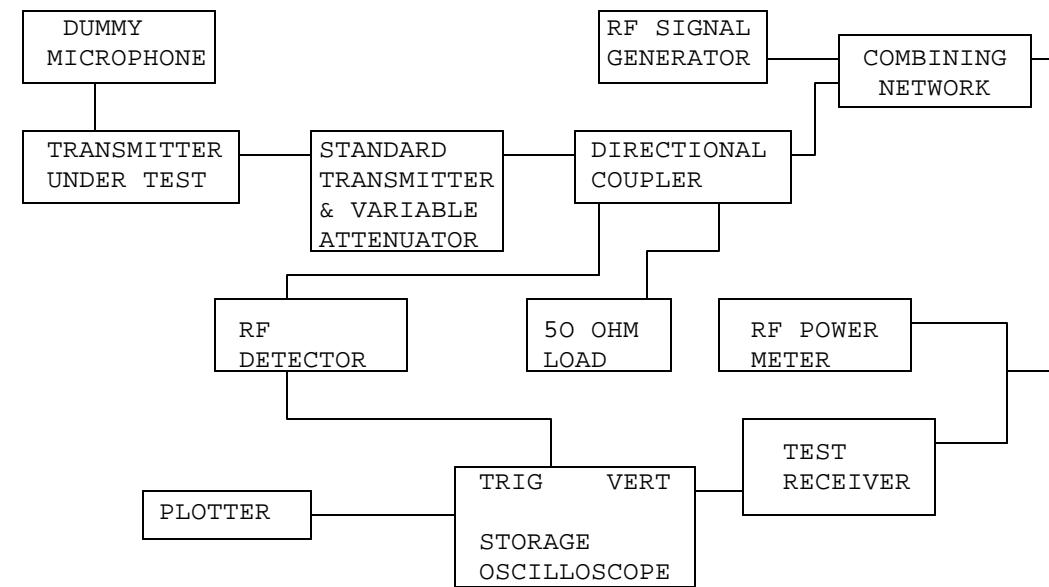
REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 13 of 28

2.1055(a)(1) Frequency stability:
90.214 Transient Frequency Behavior

REQUIREMENTS: In the 450-470MHz frequency band, transient frequencies must be within the maximum frequency difference limits during the time interval indicated below for 12.5kHz Channels:

Time Interval	Maximum Frequency	Portable Radios 450-470 MHz
t1	+12.5 kHz	10.0 ms
t2	+6.25 kHz	25.0 ms
t3,t4	+12.5 kHz	10.0 ms

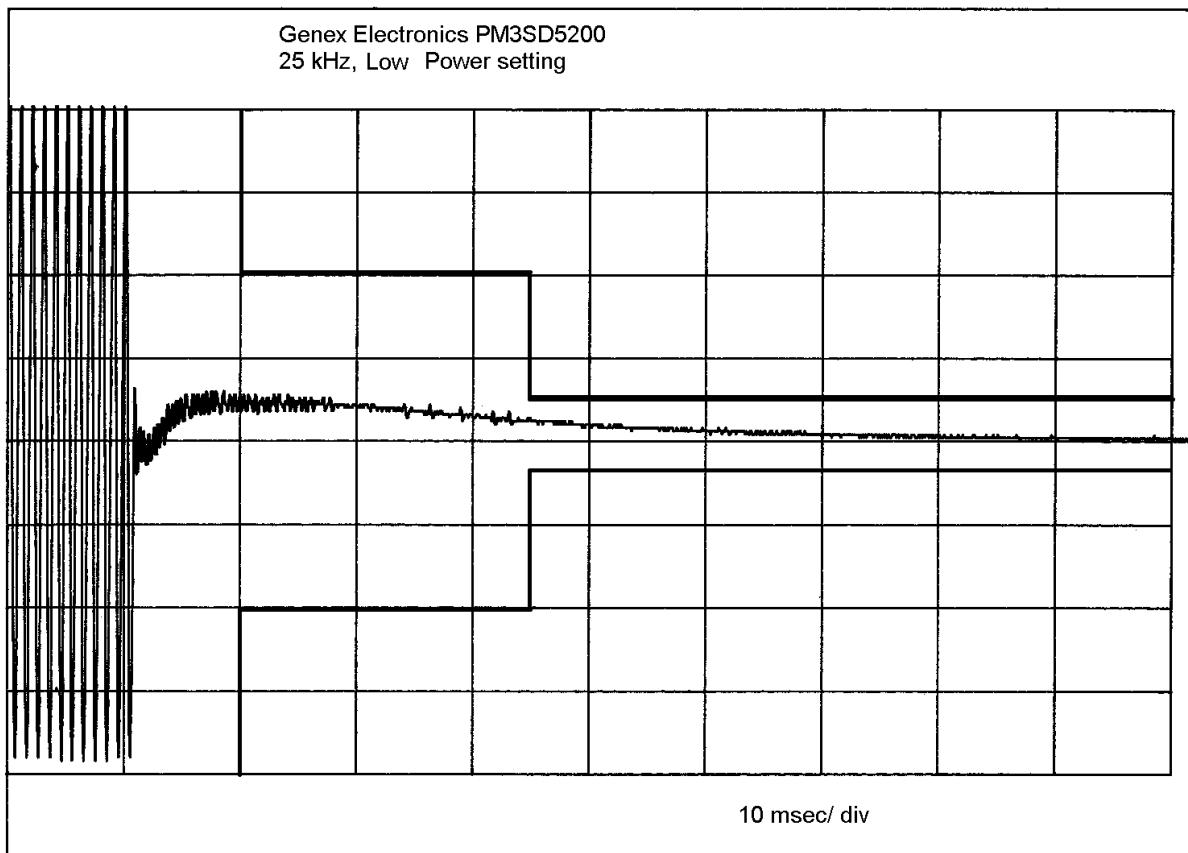

TEST PROCEEDURE: TIA/EIA TS603 PARA 2.2.19, the levels were set as follows;

1. Using the variable attenuator the transmitter level was set to 40 dB below the test receivers maximum input level, then the transmitter was turned off.
2. With the transmitter off the signal generator was set 20dB below the level of the transmitter in the above step, this level will be maintained with the signal generator through-out the test.
3. Reduce the attenuation between the transmitter and the RF detector by 30 dB.
4. With the levels set as above the transient frequency behavior was observed & recorded.

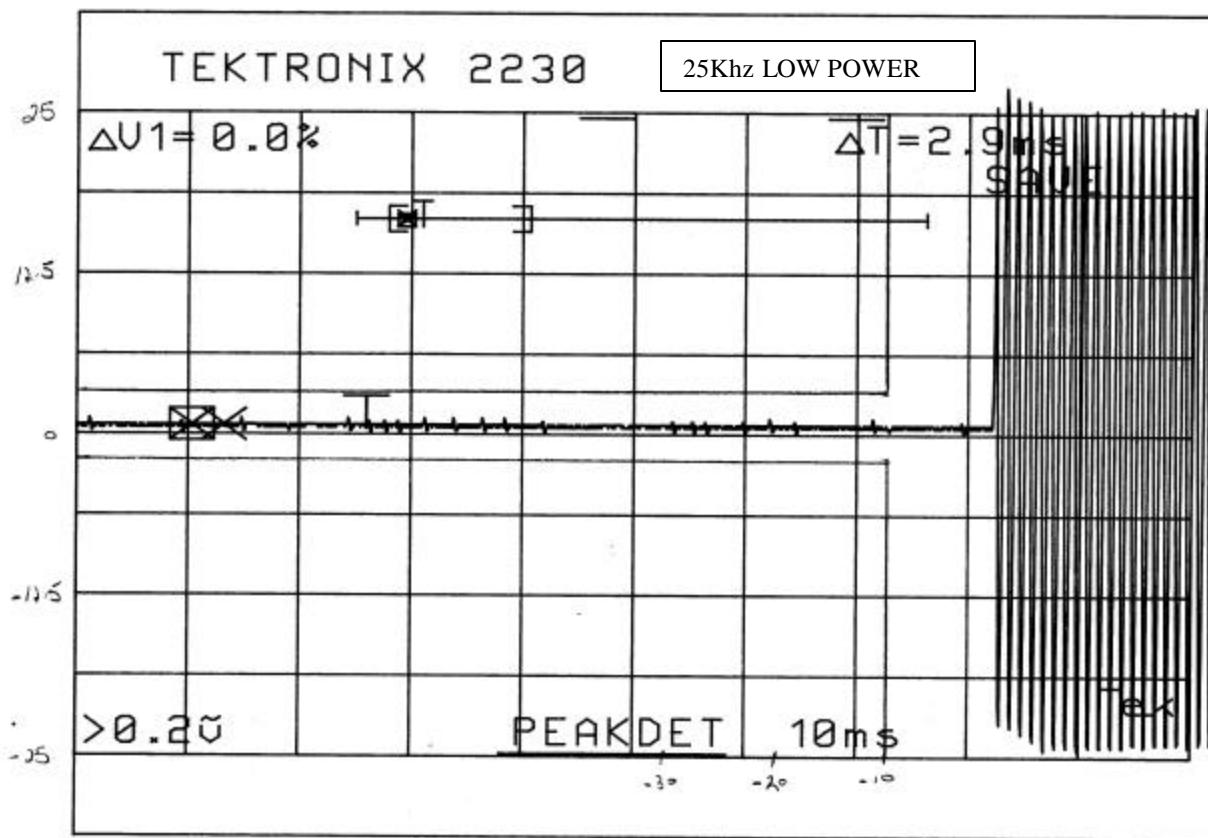
2.1055

Frequency stability:
Transient Frequency Behavior

90.214
(Continued)



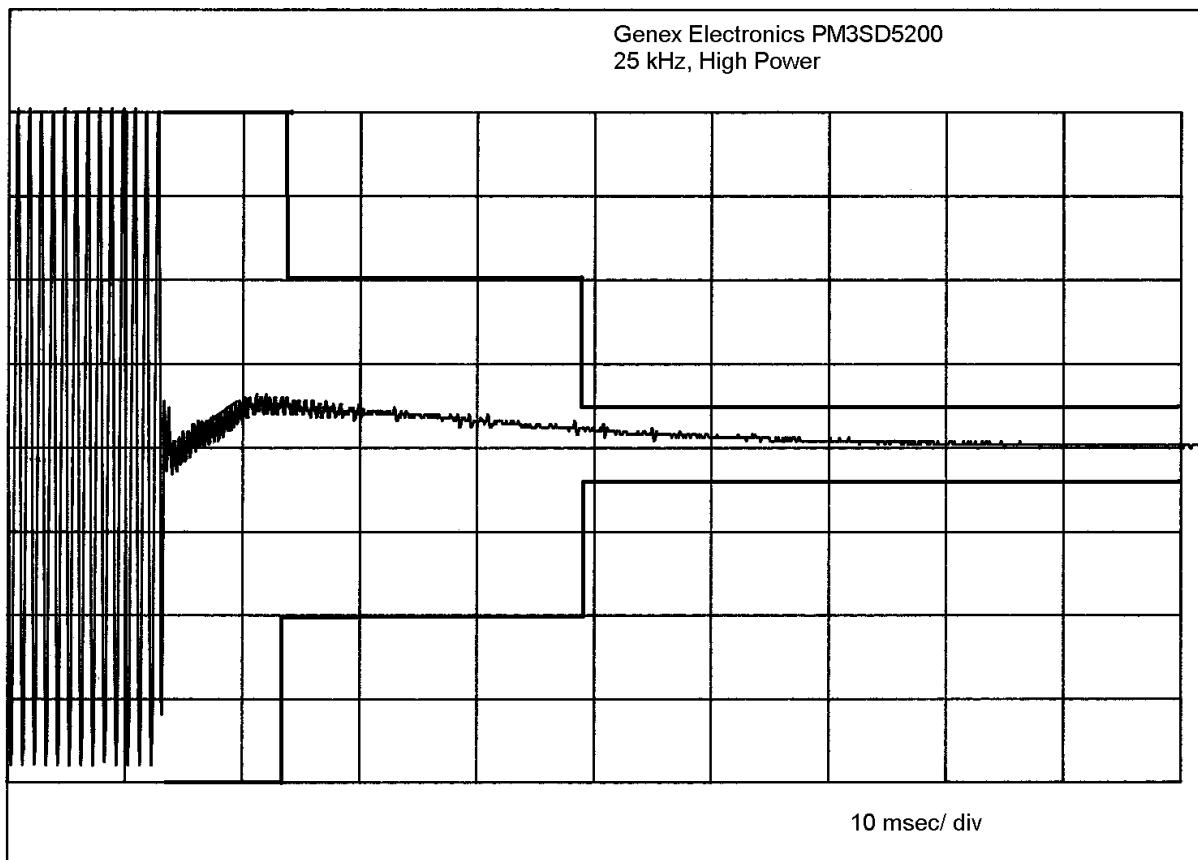
APPLICANT: GENEX ELECTRONICS CO., LTD.


FCC ID: PM3SD5200

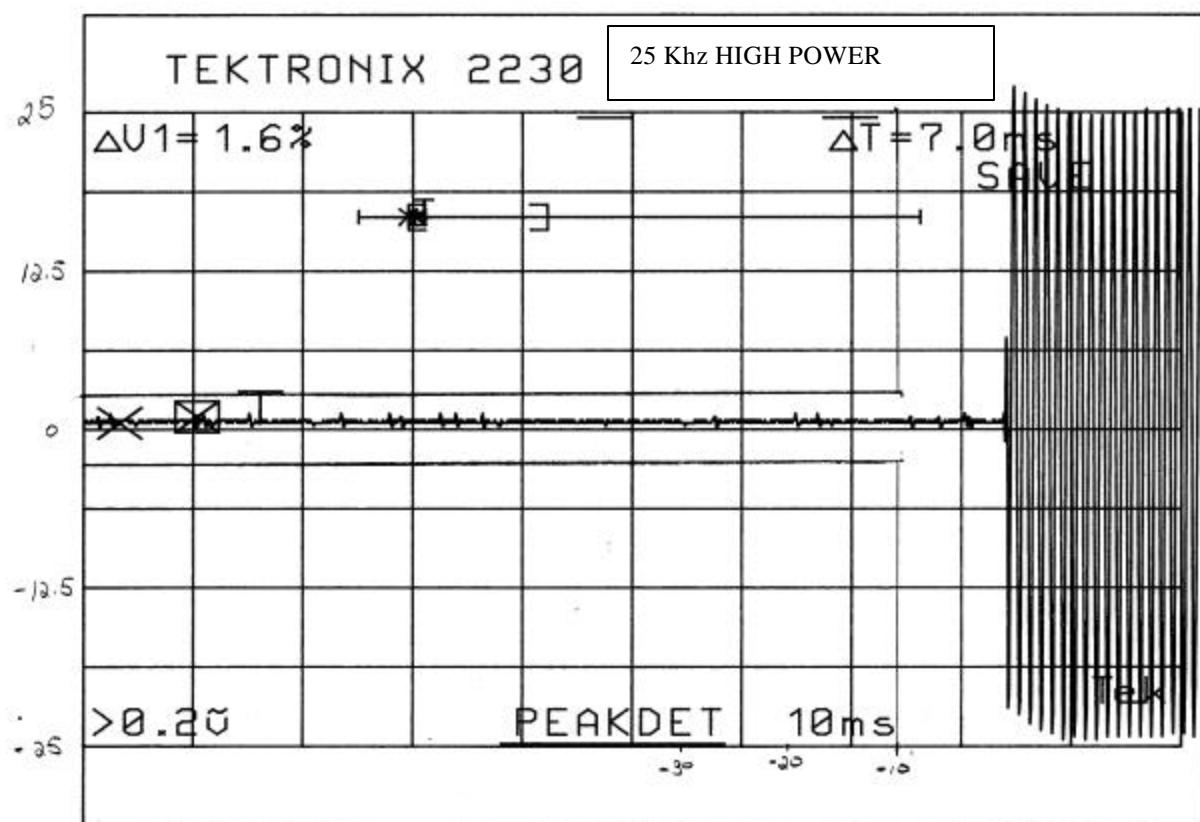
REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 15 of 28

APPLICANT: GENEX ELECTRONICS CO., LTD.
FCC ID: PM3SD5200
REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc
Page 16 of 28



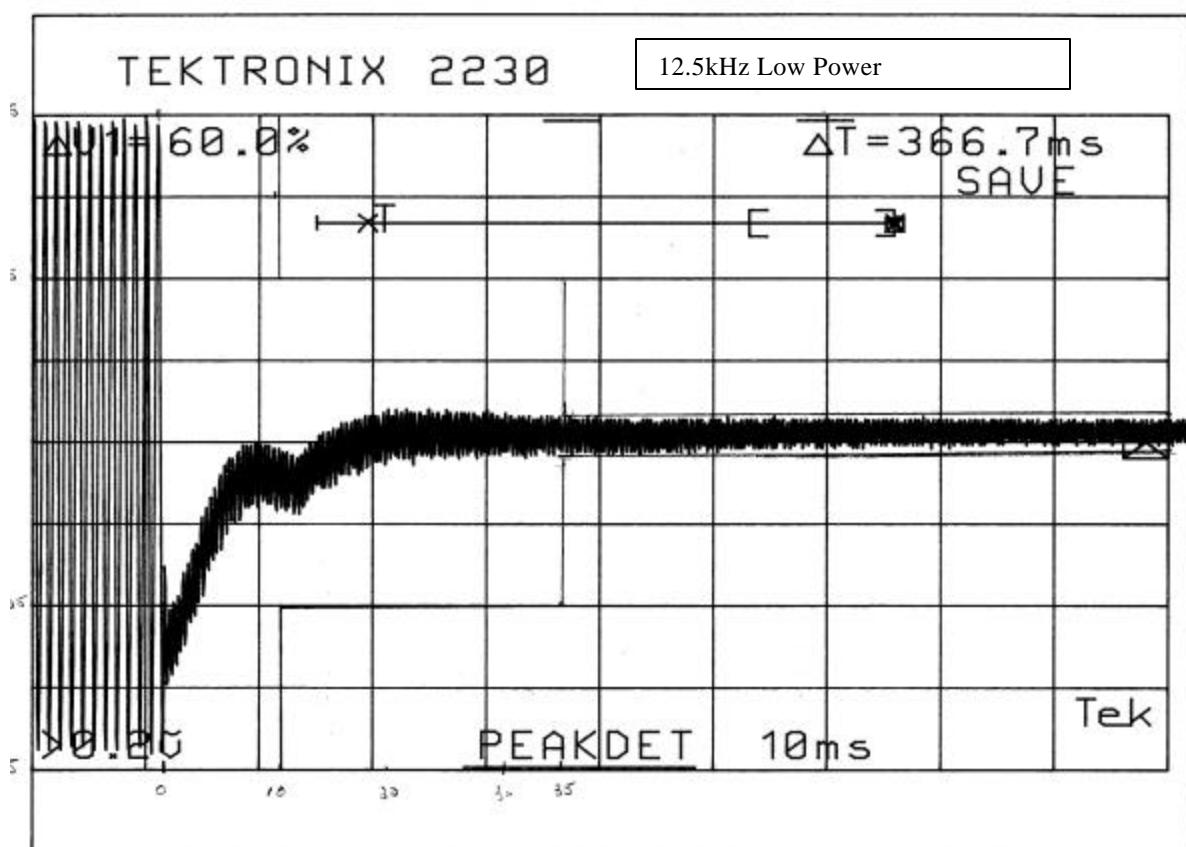
APPLICANT: GENEX ELECTRONICS CO., LTD.


FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 17 of 28

APPLICANT: GENEX ELECTRONICS CO., LTD.
FCC ID: PM3SD5200
REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc
Page 18 of 28

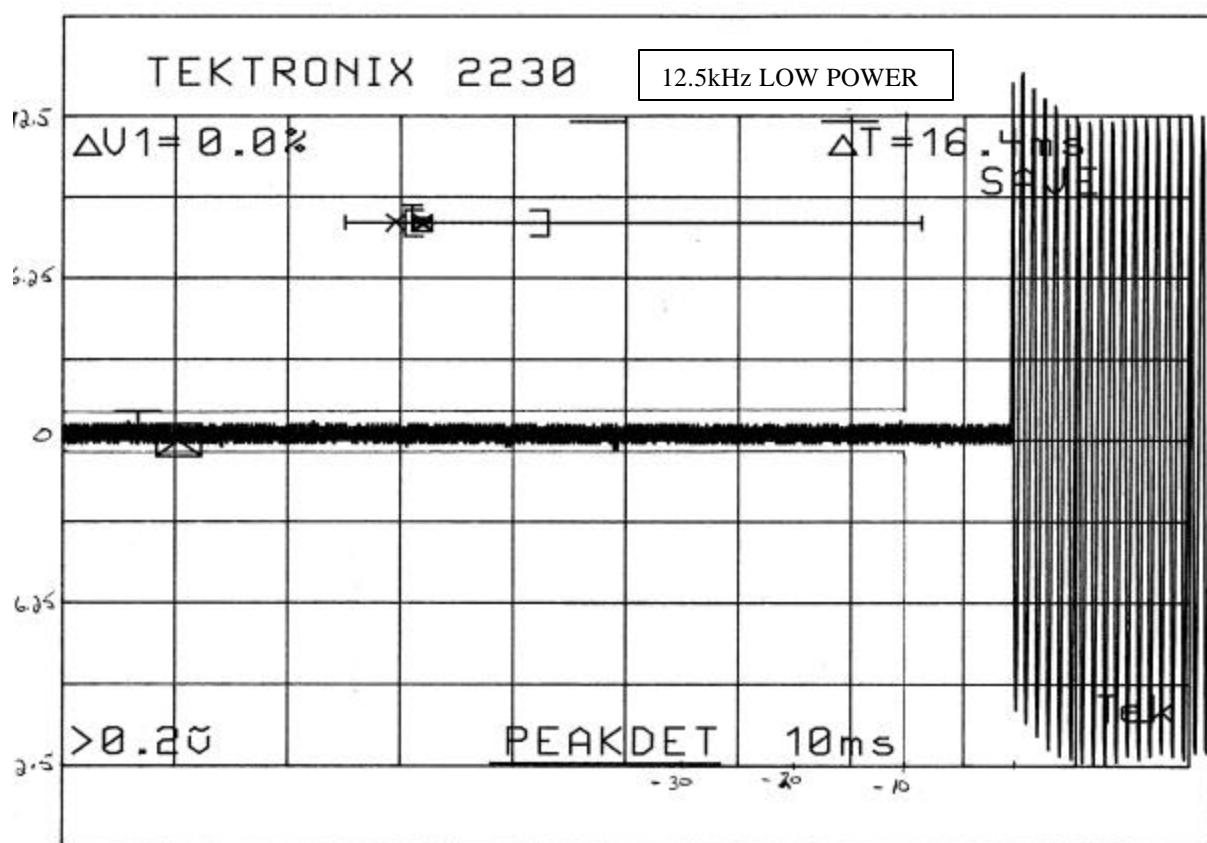


APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 19 of 28

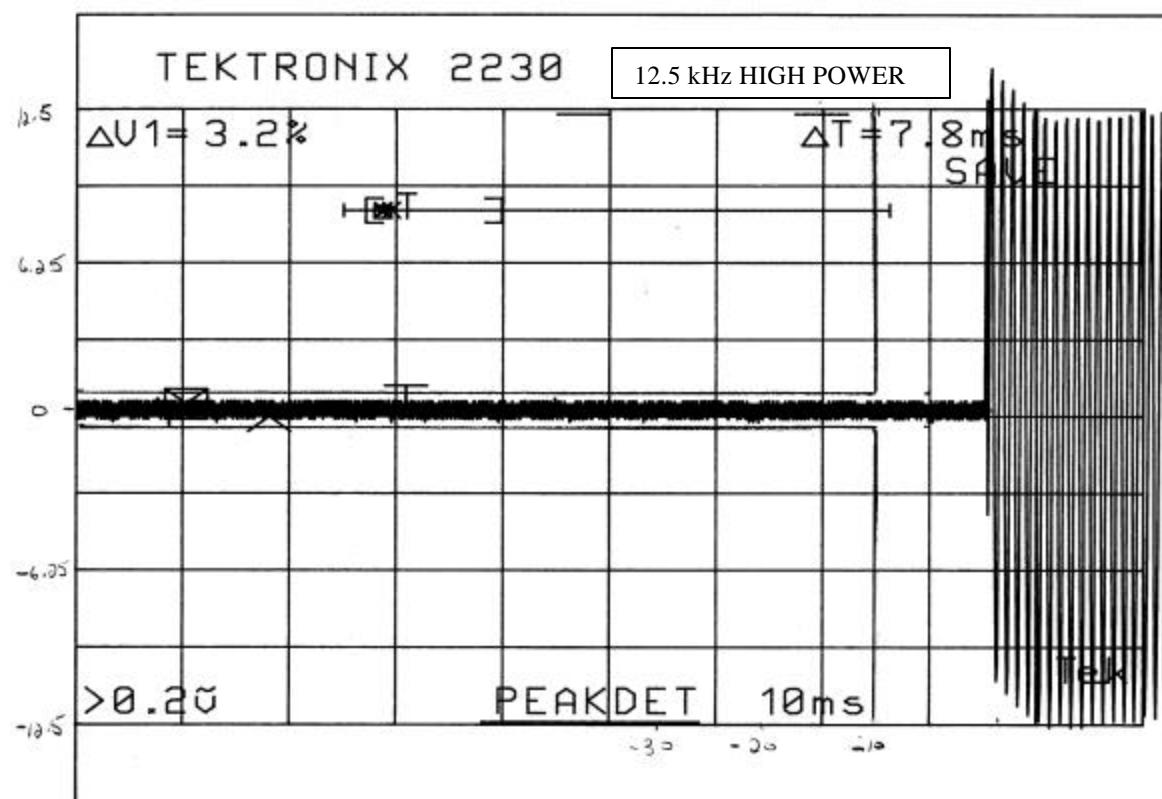


APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 20 of 28

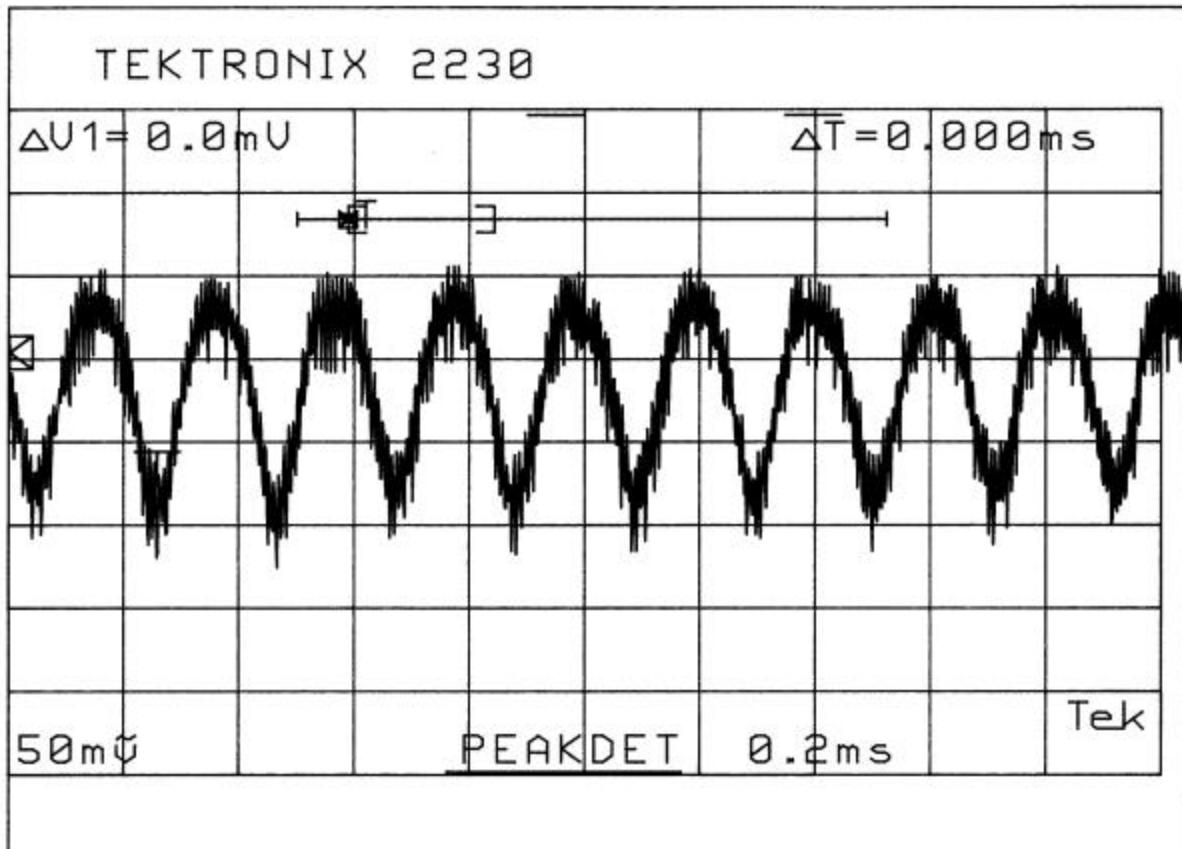

APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 21 of 28

APPLICANT: GENEX ELECTRONICS CO., LTD.

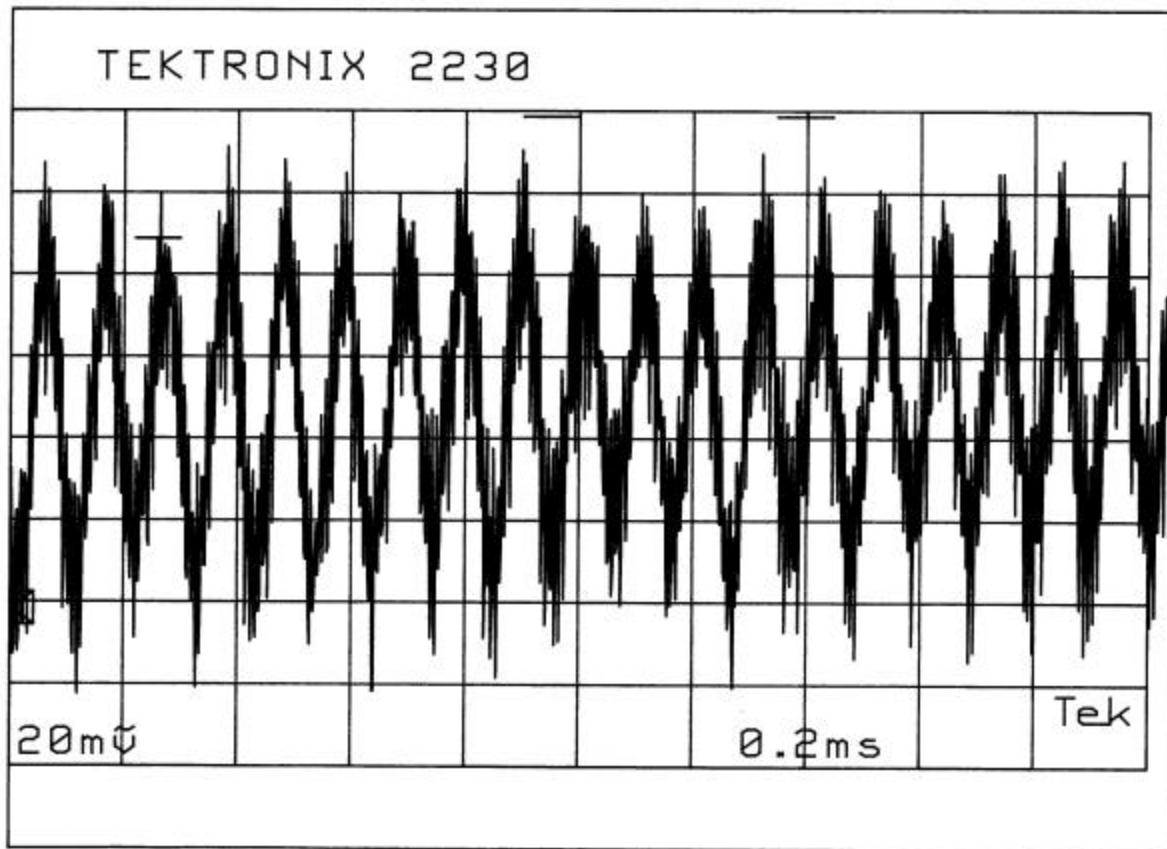

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 23 of 28

SPECTRAL EFFICIENCY

Procedure: The RF transmitters carrier is modulated by an audio generator that is set to frequencies that are equivalent to 9600 and 19200 baud. The RF output is then demodulated by a standard receiver and plotted. The results are shown below.


Spectral Efficiency 9600 baud

APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 24 of 28

Spectral Efficiency 19200 baud

APPLICANT: GENEX ELECTRONICS CO., LTD.
FCC ID: PM3SD5200
REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc
Page 25 of 28

EMC Equipment List

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
X	3-Meter OATS	TEI	N/A	N/A	Listed 12/22/99	12/22/02
	3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
X	Receiver, Beige Tower Spectrum Analyzer (Tan)	HP	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/03
X	RF Preselector (Tan)	HP	85685A	3221A01400	CAL 8/31/01	8/31/03
X	Quasi-Peak Adapter (Tan)	HP	85650A	3303A01690	CAL 8/31/01	8/31/03
	Receiver, Blue Tower Spectrum Analyzer (Blue)	HP	8568B	2928A04729 2848A18049	CHAR 10/22/01	10/22/03
	RF Preselector (Blue)	HP	85685A	2926A00983	CHAR 10/22/01	10/22/03
	Quasi-Peak Adapter (Blue)	HP	85650A	2811A01279	CHAR 10/22/01	10/22/03
X	Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
	Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/03
	Biconnical Antenna	Eaton	94455-1	1057	CHAR 3/15/00	3/15/02
	BiconiLog Antenna	EMCO	3143	9409-1043		
X	Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/03
	Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/03
	Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CHAR 10/16/01	10/16/03
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CHAR 11/24/00	11/24/03
	Double-Ridged Horn Antenna	Electro-Metrics	RGA -180	2319	CAL 12/19/01	12/19/03
	Horn Antenna	Electro-Metrics	EM-6961	6246	CAL 3/21/01	3/21/03
	Horn Antenna	ATM	19-443-6R	None	No Cal Required	

APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 26 of 28

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
	Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03
	Line Impedance Stabilization . . .	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/03
	Line Impedance Stabilization . . .	Electro-Metrics	EM-7820	2682	CAL 3/16/01	3/16/03
	Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	5/25/01
	Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CAL 12/12/01	12/12/03
	Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/03
X	Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
	AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/03
	AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/03
	AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/03
X	Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04
	Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
	Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/04
	Multimeter	Fluke	FLUKE-77-3	79510405	CAL 9/26/01	9/26/03
	Peak Power Meter	HP	8900C	2131A00545	CHAR 1/26/01	1/26/03
	Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/04
	Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
X	Temp/Humidity gauge	EXTech	44577F	E000901	CHAR 1/22/02	1/22/04
	Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/03
	Power Sensor	Agilent Technologies	84811A	2551A02705	CAL 1/26/01	1/26/03
	Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/02
	Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
	Signal Generator	HP	8640B	2308A21464	CAL 11/15/01	11/15/03

APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 27 of 28

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Modulation Analyzer	HP	8901A	3435A06868	CAL 9/5/01	9/5/03
Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/03
BandReject Filter	Lorch Microwave	5BR4-2400/ 60-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	6BR6-2442/ 300-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	5BR4-10525/ 900-S	Z1	CHAR 3/2/01	3/2/03
High Pas Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/03
Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/03
Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/03
Frequency Counter	HP	5385A	3242A07460	CHAR 12/11/01	12/11/03
Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/03
Amplifier	HP	11975A	2738A01969	CHAR 3/1/01	3/1/03
Egg Timer	Unk			CHAR 8/31/01	8/31/03
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		2/1/02	2/1/04
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/04
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04

APPLICANT: GENEX ELECTRONICS CO., LTD.

FCC ID: PM3SD5200

REPORT #: T:\G\GENEXPM3\564AUT2\564AUT2TestReport.doc

Page 28 of 28