

SDT 500 UB ARK ECHO
Cabinet Radiation

CONTENTS

1.1	PURPOSE	3
1.1.1	CABINET RADIATED EMISSION	4
1.2	Test Bench block diagram.....	5
1.3	Test Bench picture and details	6
1.4	Results of the measurements.....	9
1.4.1	XMTR CABINET RADIATION SPREADSHEET ch 14	10
1.4.2	XMTR CABINET RADIATION SPREADSHEET ch 25	14
1.4.3	XMTR CABINET RADIATION SPREADSHEET ch 36	18

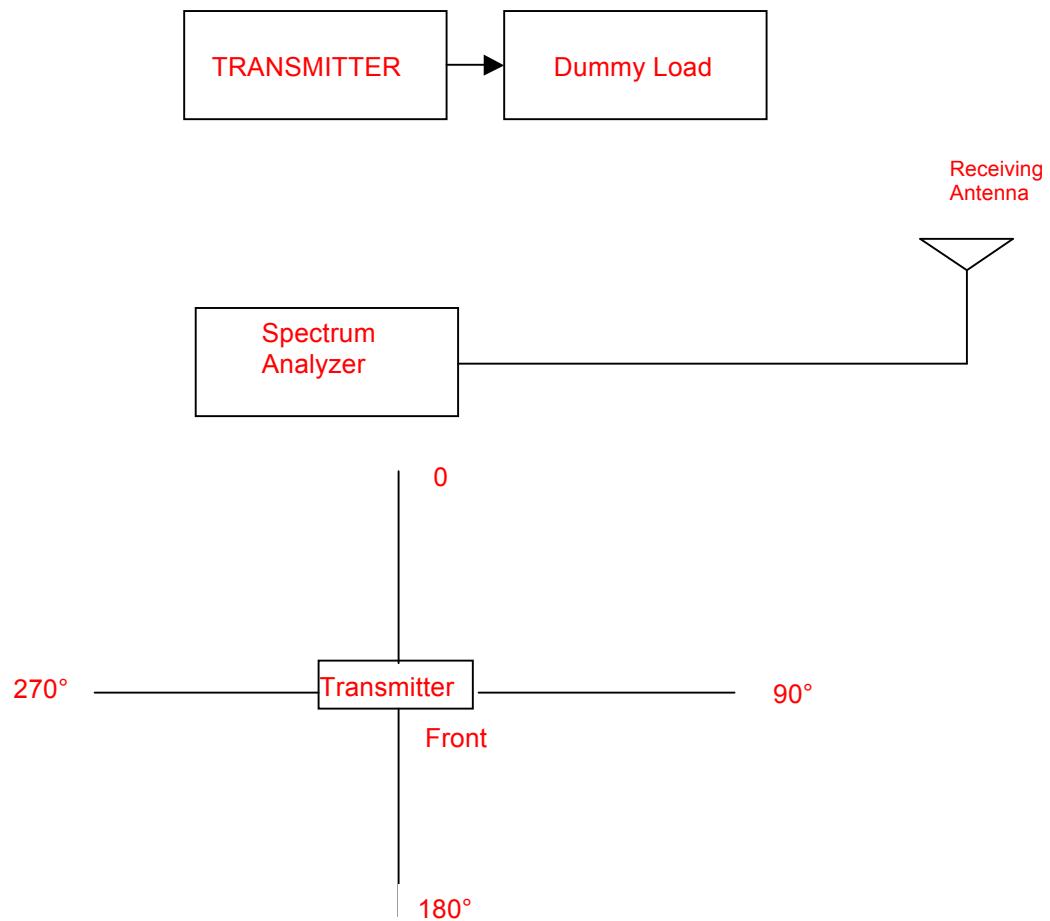
1.1 PURPOSE

The purpose of this document is to give the sufficient and necessary information about:

SDT 500 UB ARK ECHO CABINET RADIATION

At rated output power which is 20.0 W under ATSC standard

By the results below it turns out that:


- The requirement at TOP, MIDDLE and BOTTOM frequency matches the FCC RULES

No harmonics are present with a level higher than **-60 dBc** with reference to the nominal rated output power.

1.1.1 CABINET RADIATED EMISSION

The transmitter and test equipment are configured as described above including the angles of measurement with respect to the transmitter cabinet. The transmitter has been checked at three frequencies so covering the whole required FCC range with 20W average power into a dummy load and cabinet radiation measurements were taken at those channels (14, 25 and 36). The free space path loss, cable loss and antenna gain characteristics are obtained at the fundamental frequency and at each of the harmonics up to the 10th harmonic of the center frequency of in order to accurately assess the level of the signal radiated from the cabinet. (The spectrum analyzer and receiving antenna are placed 10 meters away from the transmitter and dummy load with no obstructions in the path.) Radiation from the cabinet was measured at a distance of ~10 meters in 4 different physical rotation angles: 0 (front), 90(left), 180(rear) and 270 (right) degrees (0 degrees being the front of the cabinet) by rotating the transmitter. The transmitter is energized and the spectrum analyzer is adjusted to search for the harmonic (or other spurious products) signal. For each measurement made, the receiving antenna is rotated in polarization (between 0 degrees—totally Horizontal polarization and 90 degrees being totally vertical polarization) and adjusted for the maximum displayed signal on the spectrum analyzer. The level of the signal measured on the spectrum analyzer is recorded in the table in the column for “measured value”. For digital waveforms, the largest value in the frequency range of the harmonic on the display is where the center frequency of the spectrum analyzer is selected. The measurement have been done with the measurement bandwidth set at 100 KHz All spectral components above the noise floor radiated from the cabinet were recorded. The values are tabulated in the table on the next pages following the test equipment configuration drawing. Once the value is recorded for this frequency the next highest harmonic or spurious frequency is evaluated.

1.2 Test Bench block diagram

1.3 Test Bench picture and details

5.6 Radiated, radio-frequency, electromagnetic field

For test instruments and accessories used see section 6.

5.6.1 Description of the test location

Test location: Anechoic chamber

5.6.2 Photo documentation of the test set-up

DEVICE UNDER TEST

NETWORK ANALYSER

MPEG GENERATOR

SPECTRUM ANALYSER

POWER METER

1.4 Results of the measurements

In the following spreadsheets there are reported the results of the measurements.

As per FCC requirement the Harmonics are better than 60 dBc corresponding to a maximum required level not exceeding -17 dBm.

The rated power is 20 W (43 dBm) and the measurements have been done at three channels 14,25 and 36.

The measurement at the fundamental is considered NOT APPLICABLE.