

Rogers Labs, a division of The Compatibility Center LLC

7915 Nieman Rd.
Lenexa, KS 66214
Phone / Fax (913) 660-0666

**47CFR Paragraph 15.247 FHSS and
Industry Canada RSS-GEN Issue 5 and RSS-247 Issue 3
Application For Grant of Certification**

HVIN: Handheld Controller

902.4-927.6 MHz (DSS)
Frequency Hopping Spread Spectrum
License Exempt Intentional Radiator

FCC ID: PLH-HHC IC: 4006A-HHC

Nevco Sports LLC

301 East Harris Avenue
Greenville, IL 62246
Kelly Stearns

Test Report Number: 241010

Test Date: October 10, 2024 – March 10, 2025

Authorized Signatory:

Patrick Powell

Rogers Labs, a division of The Compatibility Center LLC

FCC Designation: US5305

ISED Registration: 3041A

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Rogers Labs, a division of The Compatibility Center LLC

7915 Nieman Road FCC ID: PLH-HHC IC: 4006A-HHC

Lenexa, KS 66214

Test: 241010

Phone/Fax: (913) 660-0666 Test to: 47CFR 15C, RSS-Gen RSS-247 Date: August 6, 2025

Revision 2

File: Nevco Handheld Controller DSS TstRpt 241010 r2

Nevco Sports LLC

HVIN: Handheld Controller

SN's: 1010

Page 1 of 41

TABLE OF CONTENTS.....	2
REVISIONS.....	4
EXECUTIVE SUMMARY	5
OPINION / INTERPRETATION OF RESULTS	5
EQUIPMENT TESTED.....	8
Equipment Operational Modes.....	8
Equipment Function	9
Equipment Configuration.....	9
ENVIRONMENTAL CONDITIONS.....	9
APPLICATION FOR CERTIFICATION.....	11
APPLICABLE STANDARDS	12
TEST PROCEDURES.....	13
AC Line Conducted Emission Test Procedure	13
Radiated Emission Procedure	13
Antenna Port Conducted Emission Test Procedure.....	13
Diagram 1 Test arrangement for radiated emissions of tabletop equipment.....	14
Diagram 2 Test arrangement for radiated emissions tested in Semi-Anechoic Chamber (SAC) and Outdoor Area Test Site (OATS)	15
Diagram 3 Test arrangement for Antenna Port Conducted emissions.....	16
TEST SITE LOCATIONS	16
UNITS OF MEASUREMENTS	17
STATEMENT OF MODIFICATIONS AND DEVIATIONS	18
INTENTIONAL RADIATORS.....	18

Antenna Requirements	18
Restricted Bands of Operation.....	18
Table 1 Radiated Emissions in Restricted Frequency Bands Data Mode 2, 900MHz.....	19
Summary of Results for Radiated Emissions in Restricted Bands	19
AC Line Conducted EMI Procedure	20
General Radiated Emissions Procedure.....	20
Table 1 General Radiated Emissions Data - Horizontal Polarization	21
Table 2 General Radiated Emissions Data - Vertical Polarization	21
Summary of Results for General Radiated Emissions	21
Operation in the Band 902 - 928 MHz.....	22
Figure 1 Plot of Transmitter Emissions Operation in 902.4-927.6 MHz Mode 2, 900MHz.....	24
Figure 2 Plot of Transmitter Emissions 20-dB Occupied Bandwidth Mode 2, 900 MHz	25
Figure 3 Plot of Transmitter Emissions 99% Occupied Bandwidth Mode 2, 900 MHz.....	26
Figure 4 Plot of Number of Hopping Channels Mode 2, 900 MHz.....	27
Figure 5 Plot of Number of Hopping Channels Mode 2, 900 MHz.....	28
Figure 6 Plot of Number of Hopping Channels Mode 2, 900 MHz.....	29
Figure 7 Plot of Channel Separation Mode 2, 900 MHz	30
Figure 8 Plot of Dwell time On Channel Mode 2, 900 MHz.....	31
Figure 9 Plot of Number of Times on Channel over 6 Second Period Mode 2, 900 MHz	32
Figure 10 Plot of Transmitter Emissions Low Band Edge Mode 2, 900 MHz.....	33
Figure 11 Plot of Transmitter Emissions High Band Edge Mode 2, 900 MHz	34
Transmitter Emissions Data.....	35
Table 3 Transmitter Radiated Emissions Mode 2, 900 MHz.....	35
Table 4 Transmitter Data Mode 2, 900 MHz.....	36
Summary of Results for Transmitter Radiated Emissions of Intentional Radiator.....	36
ANNEX.....	37
Annex A Measurement Uncertainty Calculations	38
Annex B Test Equipment.....	39
Annex C Laboratory Certificate of Accreditation.....	41

Revisions

Revision 1 Issued June 20, 2025 – Initial formal release.

Rogers Labs, a division of The Compatibility Center LLC	Nevco Sports LLC		
7915 Nieman Road	FCC ID: PLH-HHC	IC: 4006A-HHC	HVIN: Handheld Controller
Lenexa, KS 66214	Test: 241010	SN's: 1010	
Phone/Fax: (913) 660-0666	Test to: 47CFR 15C, RSS-Gen RSS-247	Date: August 6, 2025	
Revision 2	File: Nevco Handheld Controller DSS TstRpt 241010 r2	Page 4 of 41	

Executive Summary

License Exempt Digital Transmission System Intentional Radiator operating under Title 47 of the Code of Federal Regulations (47CFR) Paragraph 15.247 and Industry Canada RSS-247 Issue 3 and RSS-GEN Issue 5, Frequency Hopping Spread Spectrum (FHSS) or Direct Sequence Spread Spectrum (DSS) transmitter operations in the 902-928 MHz frequency band.

Name of Applicant: Nevco Sports LLC
 301 East Harris Avenue
 Greenville, IL 62246

HVIN: Handheld Controller

FCC ID: PLH-HHC IC: 4006A-HHC

Operating Frequency Range: 902.4-927.6 MHz

Operation Frequency Hopping Spread Spectrum (FHSS) communication mode 2 was chosen for transmitter configuration testing and used for final measurements.

Mode	Power Watts	99% OBW (kHz)	20-dB OBW (kHz)
Mode 2 900MHz	0.037	470.6	490.8

This report addresses EUT Operations as Frequency Hopping Spread Spectrum (FHSS) Transmitter using transmitter modulation in Mode 2. Note, the production device utilizes integral non-user accessible antenna system providing 1.046 dBi gain.

Opinion / Interpretation of Results

Tests Performed	Margin (dB)	Results
Restricted Bands 47CFR 15.205, RSS-210 4.1	-7.5	Complies
Conducted Emissions as per 47CFR 15.207, RSS-GEN 8.8	N/A	Complies
Radiated Emissions 47CFR 15.209, RSS-GEN 8.9	-7.7	Complies
Harmonic Emissions per 47CFR 15.247, RSS-247	-1.3	Complies

Tests performed include

47CFR

§15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20-dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20-dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

(c) Operation with directional antenna gains greater than 6 dBi.

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247 Issue 3

Rogers Labs, a division of The Compatibility Center LLC

7915 Nieman Road FCC ID: PLH-HHC IC: 4006A-HHC

Lenexa, KS 66214

Test: 241010

Phone/Fax: (913) 660-0666 Test to: 47CFR 15C, RSS-Gen RSS-247 Date: August 6, 2025

Revision 2 File: Nevco Handheld Controller DSS TstRpt 241010 r2 Page 6 of 41

Nevco Sports LLC

HVIN: Handheld Controller

SN's: 1010

5.1 Frequency hopping systems (FHS)

FHSs employ a spread spectrum technology in which the carrier is modulated with coded information in a conventional manner, causing a conventional spreading of the radio frequency (RF) energy around the carrier frequency. The carrier frequency is not fixed, but changes at fixed intervals under the direction of a coded sequence.

FHSs are not required to employ all available hopping frequencies during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the requirements in this section in case the transmitter is presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of frequency hopping equipment and must distribute its transmissions over the minimum number of hopping channels specified in this section.

Incorporation of intelligence into an FHS that enables it to recognize other users of the band and to avoid occupied frequencies is permitted provided that the FHS does it individually and independently chooses or adapts its hopset. The coordination of FHSs in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The following applies to FHSs in each of the three bands:

- a) The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The system's radio frequency (RF) bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopset. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- b) FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.
- c) For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall be 500 kHz.
- d) FHSs operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.
- e) FHSs operating in the band 5725-5850 MHz shall use at least 75 hopping channels. The maximum 20 dB bandwidth of the hopping channel shall be 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30-second period.

Equipment Tested

Model: Handheld Controller

Nevco Sports LLC
301 East Harris Avenue
Greenville, IL 62246

Equipment	Model / PN	Serial Number
EUT #1	Handheld Controller	1010

Test results in this report relate only to the items tested. Worst-case configuration data recorded in this report.

The design may operate one transmitter chain at a time and is not capable of simultaneous transmission on more than one port.

Software (FVIN): 3.1.2 or higher; Antennas: 2.4 GHz ceramic chip antenna (1.5 dBi), 900 MHz trace L antenna (1.046 dBi)

Equipment Operational Modes

Mode	Transmitter Operation
mode 1	BT BLE (GMSK)
mode 2	915MHz

Equipment Function

The Handheld Controller is designed to provide easy control of game statistics and timing through a simple keypad interface with an LCD display. It allows users to manage essential game functions such as game time control, statistical changes, scores, and other game actions with intuitive button presses. The controller features automatic operations in accordance with sports rules, such as resetting counts or clocks after game actions or maximum counts are reached. Additionally, it includes a USB-A interface connection and an options menu for accessing device information and configuring system settings, ensuring efficient and seamless game management. The controller wirelessly connects with Nevco scoreboards in the 902.4 – 927.6 MHz frequency band or the 2402 – 2480 MHz frequency band, allowing for real-time updates and synchronization of game data. During testing, the test system was configured to operate in a manufacturer defined modes. The manufacturer provided test software for testing transmitter and equipment function. The software provided the ability to operate the transmitters at near 100% duty cycle for testing purposes. The testing mode of operation exceeds typical duty cycle operation of production equipment. As requested by the manufacturer the equipment was tested for emissions compliance using the available configurations with the worst-case data presented. Test results in this report relate only to the products described in this report.

Equipment Configuration

- 1) EUT operating off internal battery

EUT

Environmental Conditions

Ambient Temperature	23.5° C
Relative Humidity	37.0 %
Atmospheric Pressure	1023.8 mb

Rogers Labs, a division of The Compatibility Center LLC 7915 Nieman Road Lenexa, KS 66214	FCC ID: PLH-HHC IC: 4006A-HHC Test: 241010 Phone/Fax: (913) 660-0666 Revision 2	Nevco Sports LLC HVIN: Handheld Controller SN's: 1010 Date: August 6, 2025 Page 9 of 41
Test to: 47CFR 15C, RSS-Gen RSS-247 File: Nevco Handheld Controller DSS TstRpt 241010 r2		

NVLAP Lab Code 200087-0

Rogers Labs, a division of The Compatibility Center LLC
7915 Nieman Road FCC ID: PLH-HHC IC: 4006A-HHC
Lenexa, KS 66214 Test: 241010
Phone/Fax: (913) 660-0666 Test to: 47CFR 15C, RSS-Gen RSS-247 Date: August 6, 2025
Revision 2 File: Nevco Handheld Controller DSS TstRpt 241010 r2 Page 10 of 41
Nevco Sports LLC
HVIN: Handheld Controller
SN's: 1010

Application for Certification

(1) Manufacturer: Nevco Sports LLC
301 East Harris Avenue
Greenville, IL 62246

(2) Identification: HVIN: Handheld Controller
FCC ID: PLH-HHC IC: 4006A-HHC

(3) Instruction Book:
Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:
Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:
Refer to Exhibit of Operational Description.

(6) Report of Measurements:
Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:
Refer to Exhibit for photographs of equipment.

(8) List of Peripheral Equipment Necessary for operation. The equipment operates from external direct current power provided from installation vehicle. The EUT provides interface ports for power, loads and communications as presented in this filing.

(9) Transition Provisions of 47CFR 15.37 are not requested.

(10) Not Applicable. The unit is not a scanning receiver.

(11) Not Applicable. The EUT does not operate in the 59 – 64 GHz frequency band.

(12) The equipment is not software defined and this section is not applicable.

(13) Applications for certification of U-NII devices in the 5.15-5.35 GHz and the 5.47-5.85 GHz bands must include a high-level operational description of the security procedures that control the radio frequency operating parameters and ensure that unauthorized modifications cannot be made. This requirement is not applicable to his DTS device.

(14) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used. This information is provided in this report and Test Setup Exhibits provided with the application filing.

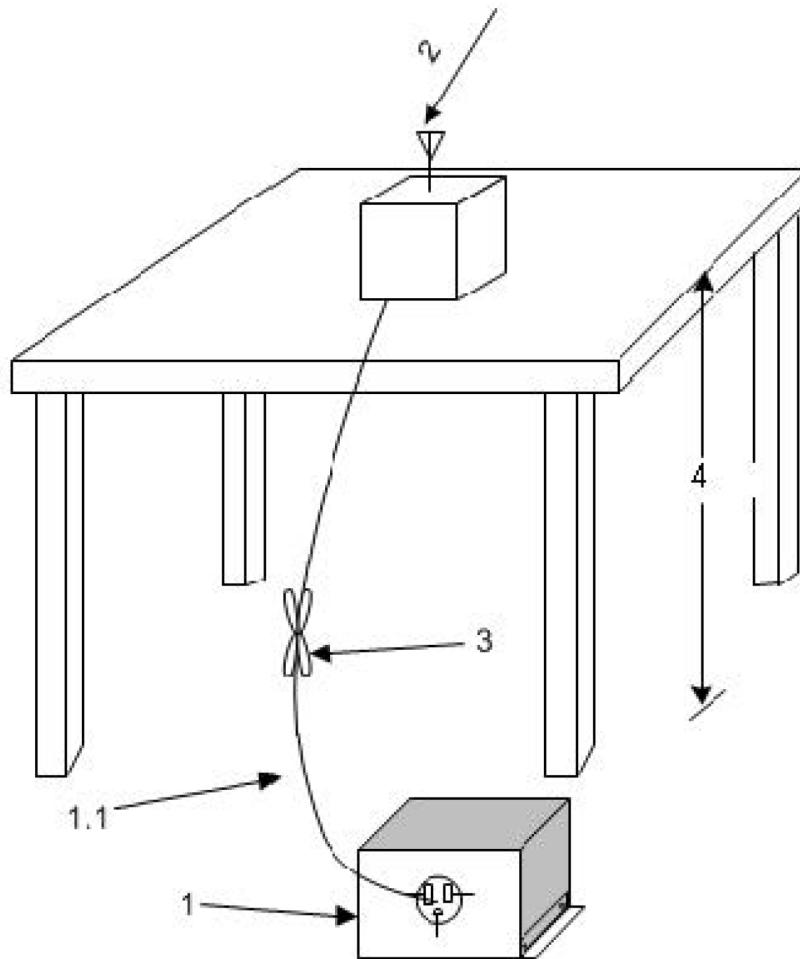
Applicable Standards

The following information is submitted in accordance with the eCFR (electronic Title 47 Code of Federal Regulations) (47CFR), dated February 15, 2024: Part 2, Subpart J, Part 15C Paragraph 15.247, RSS-247 Issue 3, and RSS-GEN Issue 5. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.10-2013. This report documents compliance for the EUT operations as Frequency Hopping Spread Spectrum (DSS) Transmitter.

Test Procedures

AC Line Conducted Emission Test Procedure

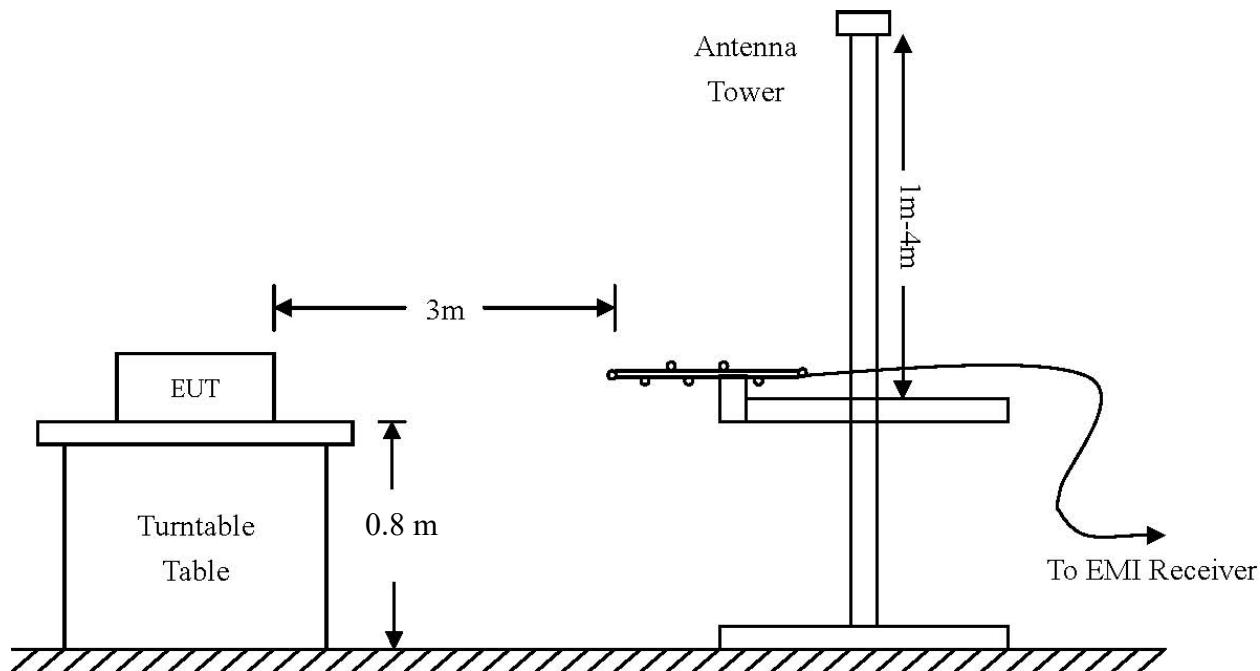
The EUT operates from battery power only. The design offers no provision for connection to the public utility power system and is therefore exempt from AC Line Conducted emissions testing.


Radiated Emission Procedure

Radiated emissions testing was performed as required in 47CFR 15C, RSS-247 Issue 3, RSS-GEN and specified in ANSI C63.10-2013. The EUT was placed on a rotating 0.9 x 1.2-meter platform, elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement permitting orientation in three orthogonal axes, raising, and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken and recorded. The frequency spectrum from 9 kHz to 25,000 MHz was searched for emissions during preliminary investigation. Refer to diagrams two and three showing typical test setup. Refer to photographs in the test setup exhibits for specific EUT placement during testing.

Antenna Port Conducted Emission Test Procedure

The EUT did not have an antenna port connection available.


Diagram 1 Test arrangement for radiated emissions of tabletop equipment

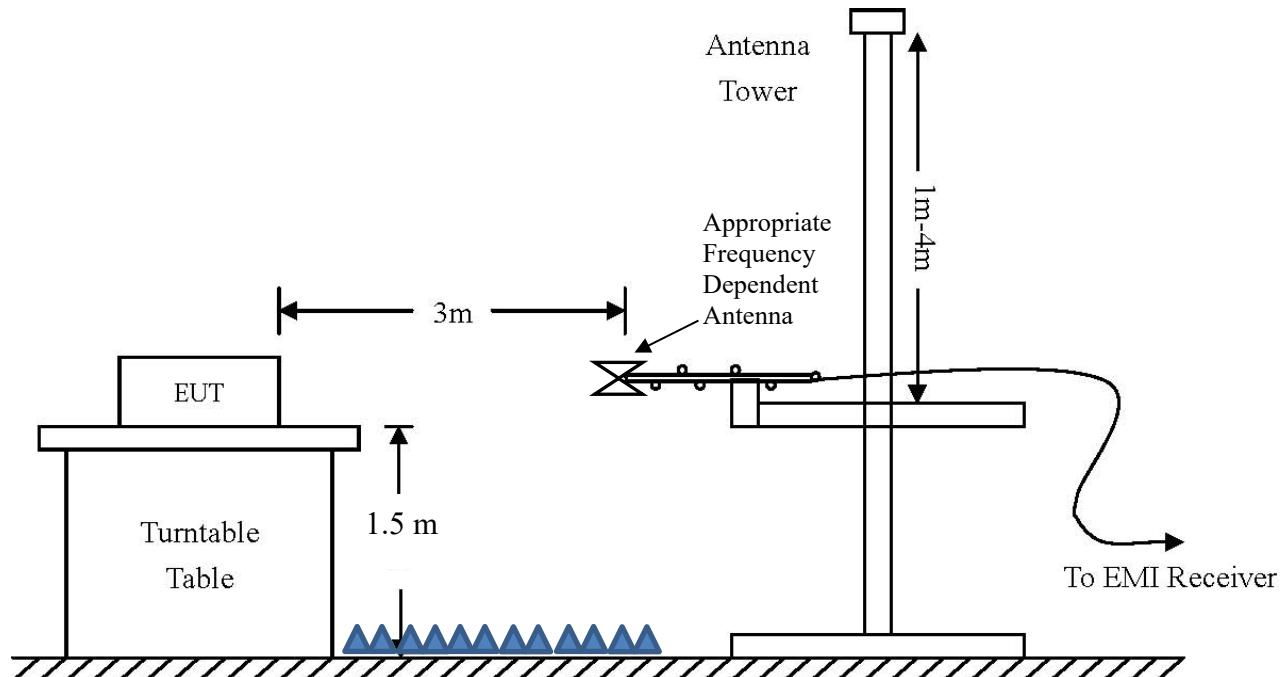
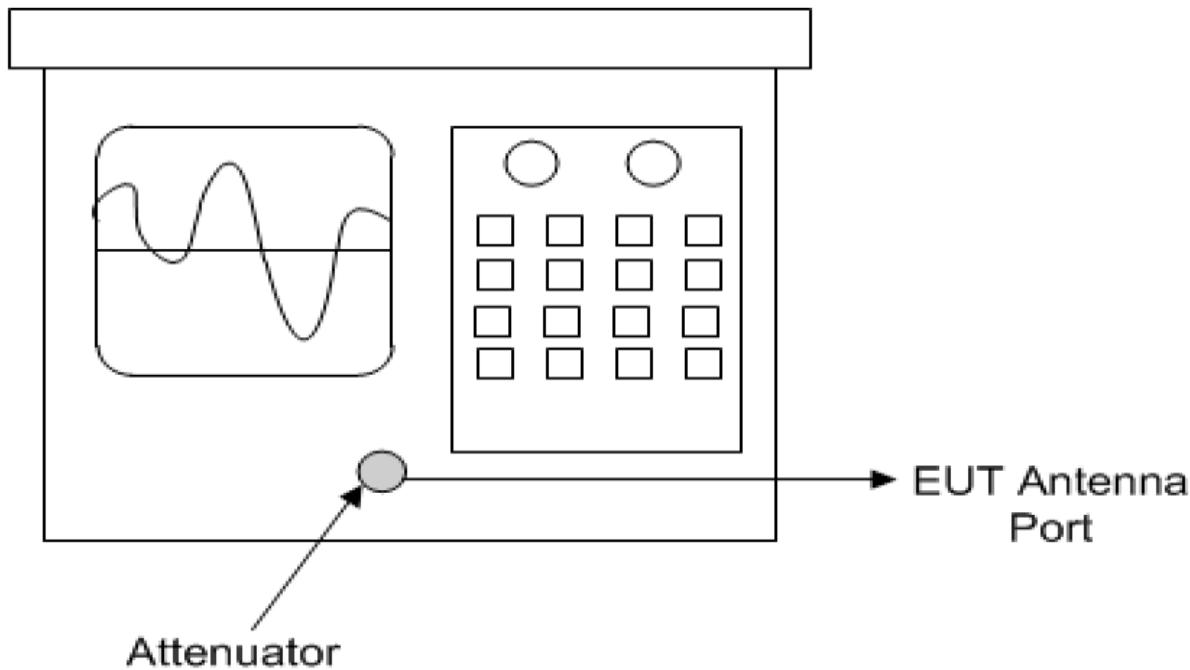

1. A LISN is optional for radiated measurements between 30 MHz and 1000 MHz but not allowed for measurements below 30 MHz and above 1000 MHz (see 6.3.1). If used, then connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in $50\ \Omega$ loads. The LISN may be placed on top of, or immediately beneath, the reference ground plane (see 6.2.2 and 6.2.3.2).
 - 1.1. LISN spaced at least 80 cm from the nearest part of the EUT chassis.
2. Antenna can be integral or detachable, depending on the EUT (see 6.3.1).
3. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.3.1).
4. For emission measurements at or below 1 GHz, the table height shall be 80 cm. For emission measurements above 1 GHz, the table height shall be 1.5 m for measurements, except as otherwise specified (see 6.3.1 and 6.6.3.1).

Diagram 2 Test arrangement for radiated emissions tested in Semi-Anechoic Chamber (SAC) and Outdoor Area Test Site (OATS)


Below 1 GHz

Above 1 GHz:

**Diagram 3 Test arrangement for Antenna Port Conducted emissions
Spectrum Analyzer**

Test Site Locations

Conducted EMI	AC line conducted emissions testing performed in a shielded screen room located at Rogers Labs, a division of The Compatibility Center LLC, 7915 Nieman Rd., Lenexa, KS (or satellite location).
Antenna port	Antenna port conducted emissions testing was performed in a shielded screen room located at Rogers Labs, a division of The Compatibility Center LLC, 7915 Nieman Rd., Lenexa, KS (or satellite location).
Radiated EMI	The radiated emissions tests were performed at the 3 meters Semi-Anechoic Chamber (SAC) located at Rogers Labs, a division of The Compatibility Center LLC, 7915 Nieman Rd., Lenexa, KS or at the 3 meters Outdoor Area Test Site (OATS) in the satellite location.

Registered Site information: FCC Site: US5305, ISED: 3041A, CAB Identifier: US0096

NVLAP Accreditation Lab code 200087-0

Units of Measurements

Conducted EMI Data presented in dB μ V; dB referenced to one microvolt

Antenna port Conducted Data is in dBm; dB referenced to one milliwatt

Radiated EMI Data presented in dB μ V/m; dB referenced to one microvolt per meter

Note: The limit is expressed for a measurement in dB μ V/m when the measurement is taken at a distance of 3 or 10 meters. Data taken for this report was taken at distance of 3 meters. Sample calculation demonstrates corrected field strength reading for Semi-Anechoic Chamber using the measurement reading and correcting for receive antenna factor, cable losses, and amplifier gains.

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength Measured

A.F. = Receive antenna factor, Losses = attenuators/cable losses, Gain = amplification gains

$$\text{RFS (dB}\mu\text{V/m @ 3m)} = \text{FSM (dB}\mu\text{V)} + \text{A.F. (dB/m)} + \text{Losses (dB)} - \text{Gain (dB)}$$

Frequency: 9 kHz-30 MHz	Frequency: 30 MHz- 1 GHZ	Frequency: Above 1 GHz
Loop Antenna	Broadband Biconilog	Horn
RBW = 9 kHz	RBW = 120 kHz	RBW = 1 MHz
VBW = 30 kHz	VBW = 500 kHz	VBW = 3 MHz
Sweep time = Auto	Sweep time = Auto	Sweep time = Auto
Detector = PK, QP	Detector = PK, QP	Detector = PK, AV
Antenna Height 1m	Antenna Height 1-4m	Antenna Height 1-4m

Statement of Modifications and Deviations

No modifications to the EUT were required for the equipment to demonstrate compliance with the 47CFR Part 15C, Industry Canada RSS-247 Issue 3, and RSS-GEN Issue 5 emission requirements. There were no deviations to the specifications.

Intentional Radiators

The following information is submitted supporting compliance with the requirements of 47CFR, Subpart C, paragraph 15.247, Industry Canada RSS-247 Issue 3, and RSS-GEN Issue 5.

Antenna Requirements

The EUT incorporates integral non-user accessible system. Production equipment offers no provision for connection to alternate antenna system. The antenna connection point complies with the unique antenna connection requirements. There are no deviations or exceptions to the specification.

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at the SAC. The EUT utilizes frequency determining circuitry, which generates harmonics falling in the restricted bands. Emissions were investigated at the SAC, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worst-case data presented below. Test procedures of ANSI C63.10-2013 were used during testing. No other significant emission was observed which fell into the restricted bands of operation. Computed emission values consider the received radiated field strength, receive antenna correction factor, amplifier gain stage, and test system cable losses.

Table 1 Radiated Emissions in Restricted Frequency Bands Data Mode 2, 900MHz

Frequency in MHz	Horizontal Peak (dB μ V/m)	Horizontal Average (dB μ V/m)	Vertical Peak (dB μ V/m)	Vertical Average (dB μ V/m)	Limit @ 3m (dB μ V/m)	Horizontal Margin (dB)	Vertical Margin (dB)
2707.1	54.0	40.0	54.9	41.2	54.0	-14.0	-12.8
2745.0	45.8	32.4	45.4	32.1	54.0	-21.6	-21.9
2782.8	54.4	40.6	55.4	41.6	54.0	-37.4	-12.4
3609.5	55.5	41.4	55.6	41.2	54.0	-12.6	-12.8
3660.0	48.6	34.8	50.0	34.8	54.0	-19.2	-19.2
3710.4	54.2	40.1	53.8	40.1	54.0	-37.4	-13.9
4511.9	56.9	43.2	56.7	43.2	54.0	-10.8	-10.8
4575.0	47.9	34.4	47.7	34.3	54.0	-19.6	-19.7
4638.0	57.5	43.8	56.8	43.8	54.0	-37.4	-10.2
5414.2	58.1	44.5	58.1	44.5	54.0	-9.5	-9.5
5490.0	50.0	36.6	49.9	36.5	54.0	-17.4	-17.5
5565.6	60.2	46.5	59.9	46.5	54.0	-37.4	-7.5

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Part 15C and RSS-247 Issue 3 Intentional Radiator requirements. The EUT demonstrated a worst-case minimum margin of -7.5 dB below the emissions requirements in restricted frequency bands. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

AC Line Conducted EMI Procedure

The EUT operates from battery power only. The design offers no provision for connection to the public utility power system and is therefore exempt from AC Line Conducted emissions testing.

General Radiated Emissions Procedure

Testing for the radiated emissions were performed as specified in CFR47 15B, RSS-GEN, and directed in ANSI C63.4-2014. For testing purposes, the EUT was arranged as presented in the applicable configuration diagrams above and operated through all modes as presented.

Exploratory radiated emissions measurements were performed in the SAC chamber or screen room, finding maximized emissions over frequency, EUT orientation, antenna height and polarity. This data is then used to focus the final radiated emissions measurements on these maximized points.

Final radiated emissions data were taken with the EUT located in the OATS or SAC at distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 9 kHz to 6,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, changing cable location, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Loop, Biconical, Broadband Biconilog, Log Periodic, and Double Ridge or Pyramidal Horns and mixers above 1 GHz.

Refer to tables one through two for general radiated emissions data of the EUT in configuration #1 radiated emissions (30 MHz to 6 GHz) taken in the SAC and screen room.

Table 1 General Radiated Emissions Data - Horizontal Polarization

Frequency (MHz)	Peak (dB μ V/m)	Quasi-Peak (dB μ V/m)	Limit @ 3m (dB μ V/m)	Margin (dBm)
30.2	35.2	25.8	40	-14.2
721.9	40.1	30.0	47	-17.0
865.2	41.0	32.4	47	-14.6
888.8	41.3	32.8	47	-14.2
943.4	46.8	34.3	47	-12.8
30.2	35.2	25.8	40	-14.2

Table 2 General Radiated Emissions Data - Vertical Polarization

Frequency (MHz)	Peak (dB μ V/m)	Quasi-Peak (dB μ V/m)	Limit @ 3m (dB μ V/m)	Margin (dBm)
30.0	22.4	15.5	40	-24.5
79.9	15.1	9.9	40	-30.1
823.8	30.8	22.2	47	-24.8
890.1	52.2	32.9	47	-14.2
942.9	55.8	39.3	47	-7.7
30.0	22.4	15.5	40	-24.5

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Part 15C paragraph 15.209, RSS-210 Issue 11, and RSS-GEN Issue 5 Intentional Radiators. The EUT worst-case transmitter configuration demonstrated a minimum margin of -7.7 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Rogers Labs, a division of The Compatibility Center LLC
 7915 Nieman Road FCC ID: PLH-HHC IC: 4006A-HHC
 Lenexa, KS 66214 Test: 241010
 Phone/Fax: (913) 660-0666 Test to: 47CFR 15C, RSS-Gen RSS-247 Date: August 6, 2025
 Revision 2 File: Nevco Handheld Controller DSS TstRpt 241010 r2

Nevco Sports LLC
 HVIN: Handheld Controller
 SN's: 1010
 Date: August 6, 2025
 Page 21 of 41

Operation in the Band 902 - 928 MHz

Test procedures of ANSI C63.10-2013 and KDB 558074 D01 15.247 Meas Guidance v05 were used during transmitter testing. The transmitter peak power was measured with a radiated test configuration as described in ANSI C63.10-2013 and KDB 558074. The 20-dB and 99% emission bandwidths were measured as described in C63.10-2013. The channel separation and the number of hopping channels were measured with radiated test configuration as described in C63.10-2013 and KDB 558074. The system utilizes at least 25 channels with average time of occupancy on any channel not exceeding 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. The transmitter radiated spurious and general emissions were measured in a semi-anechoic chamber @ 3 meters. During radiated emissions measurements, the EUT sample #1 was placed on a turntable elevated as required above the ground plane at a distance of 3 meters from the measurement antenna. The amplitude of each emission was then recorded from the measurement results. The test system gains and losses were accounted for in the measurement results presented. The amplitude of each radiated emission was maximized by equipment orientation and placement on the turn table, raising and lowering the FSM (Field Strength Measuring) antenna, changing the FSM antenna polarization, and by rotating the turntable. A Loop antenna was used for measuring emissions from 0.009 to 30 MHz, Biconilog Antenna for 30 to 1000 MHz, Double-Ridge, and/or Pyramidal Horn Antennas from 1 GHz to 25 GHz. Emissions were measured in dB μ V/m @ 3 meters. Radiated emission data and plots were taken using test sample #1.

Requirement:

Average occupancy time Requirement:

Average time of occupancy on any channel shall not be greater than 400 mS (0.4 seconds) within a 10 second period (0.4 times the number of hopping channels of 53).

Time on channel:

The design resides on channel 14 times in 6 seconds (23 times in a 10 second period) transmitting each time for 777.2 μ S. This equates to an average time of occupancy of (23*777.2 μ S) 17.9 mS over 10 seconds.

The 17.9 mS average time of occupancy over 10 seconds demonstrates compliance with the requirement of less than 400 mS in 10 second period. Additional Frequency Hopping detail may be found in the operational description exhibits.

Refer to figures seven through seventeen showing plots taken of the 902 - 928 MHz Frequency Hopping Spread Spectrum operation displaying compliance with the specifications.

Figure 1 Plot of Transmitter Emissions Operation in 902.4-927.6 MHz Mode 2, 900MHz

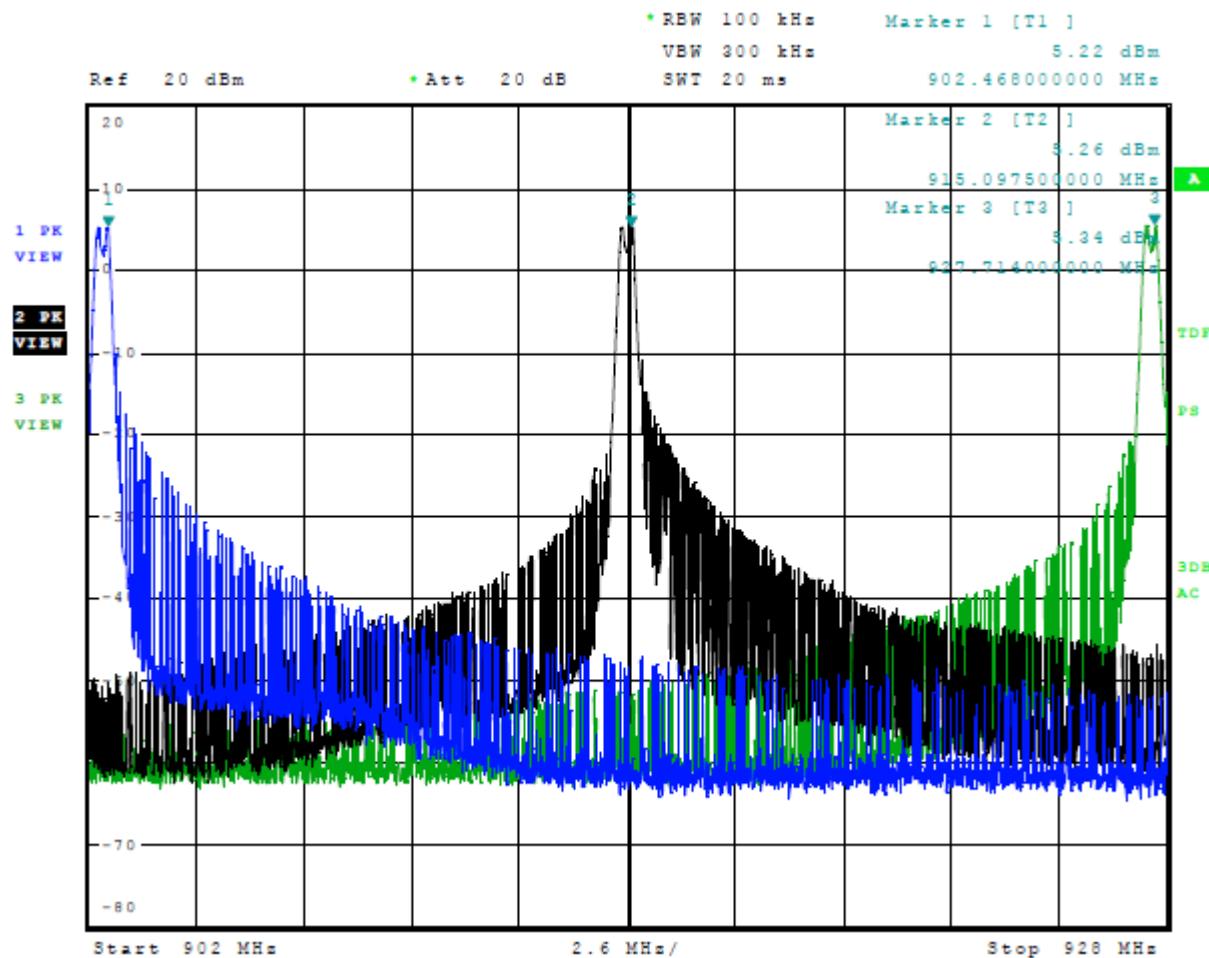


Figure 2 Plot of Transmitter Emissions 20-dB Occupied Bandwidth Mode 2, 900 MHz

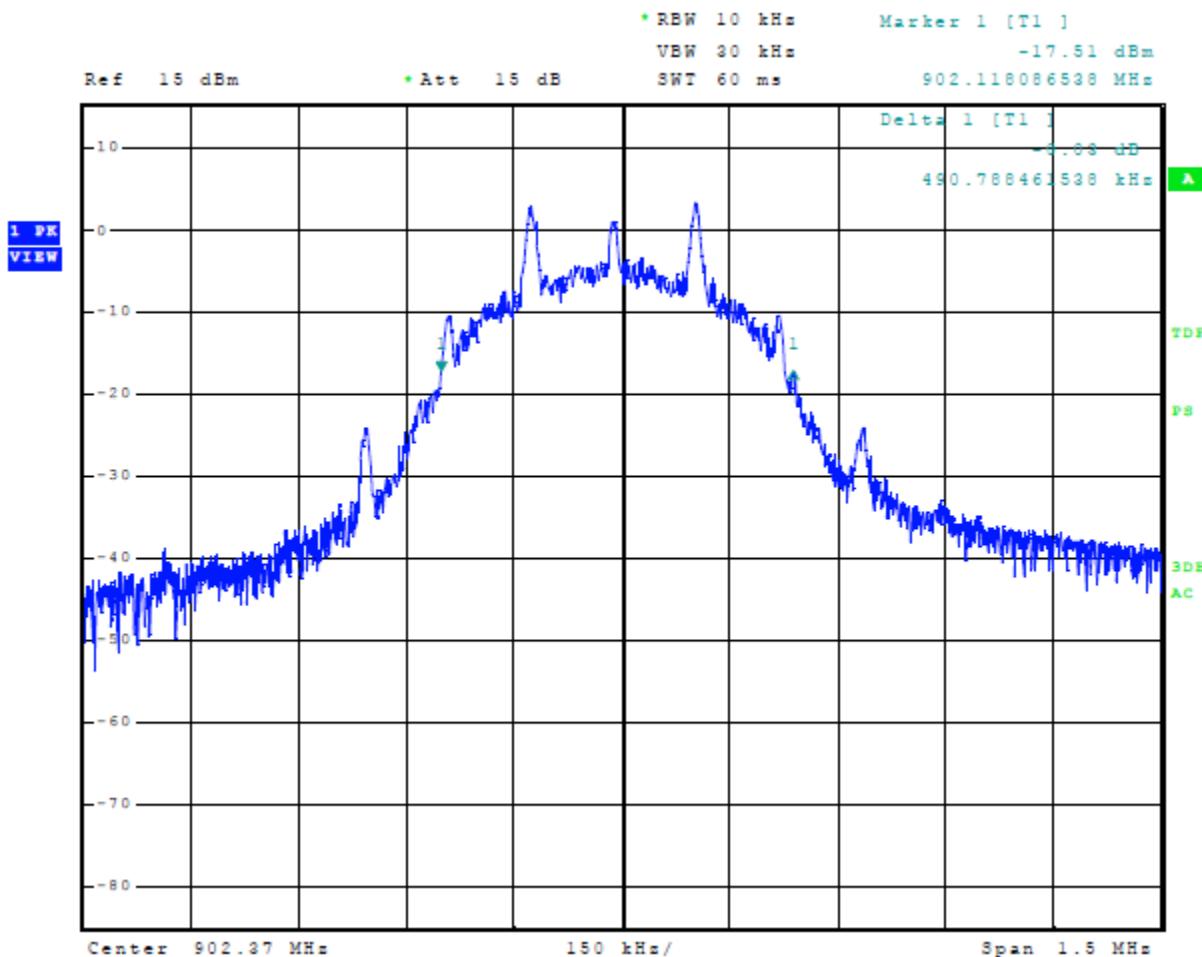
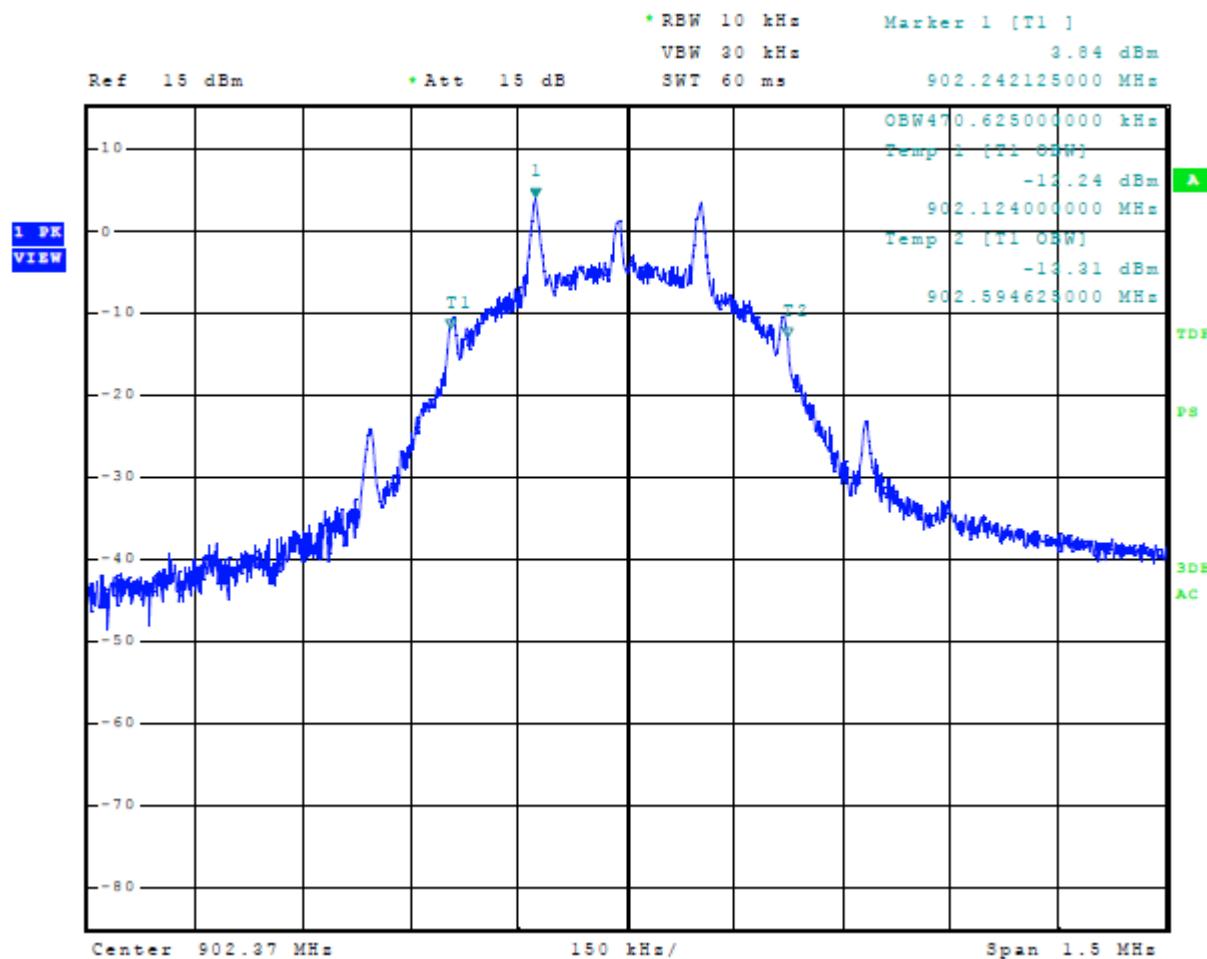
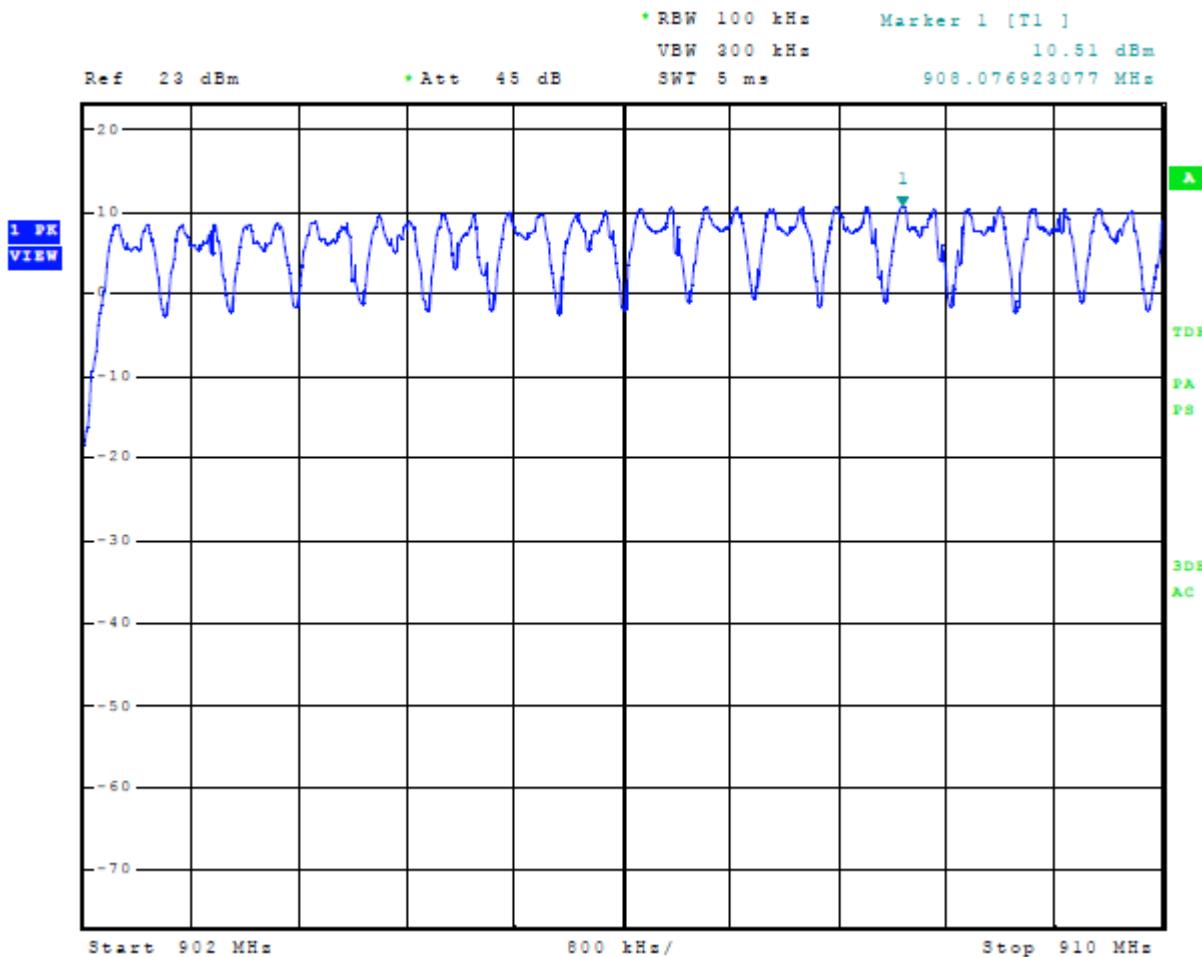




Figure 3 Plot of Transmitter Emissions 99% Occupied Bandwidth Mode 2, 900 MHz

Figure 4 Plot of Number of Hopping Channels Mode 2, 900 MHz

Figure 5 Plot of Number of Hopping Channels Mode 2, 900 MHz

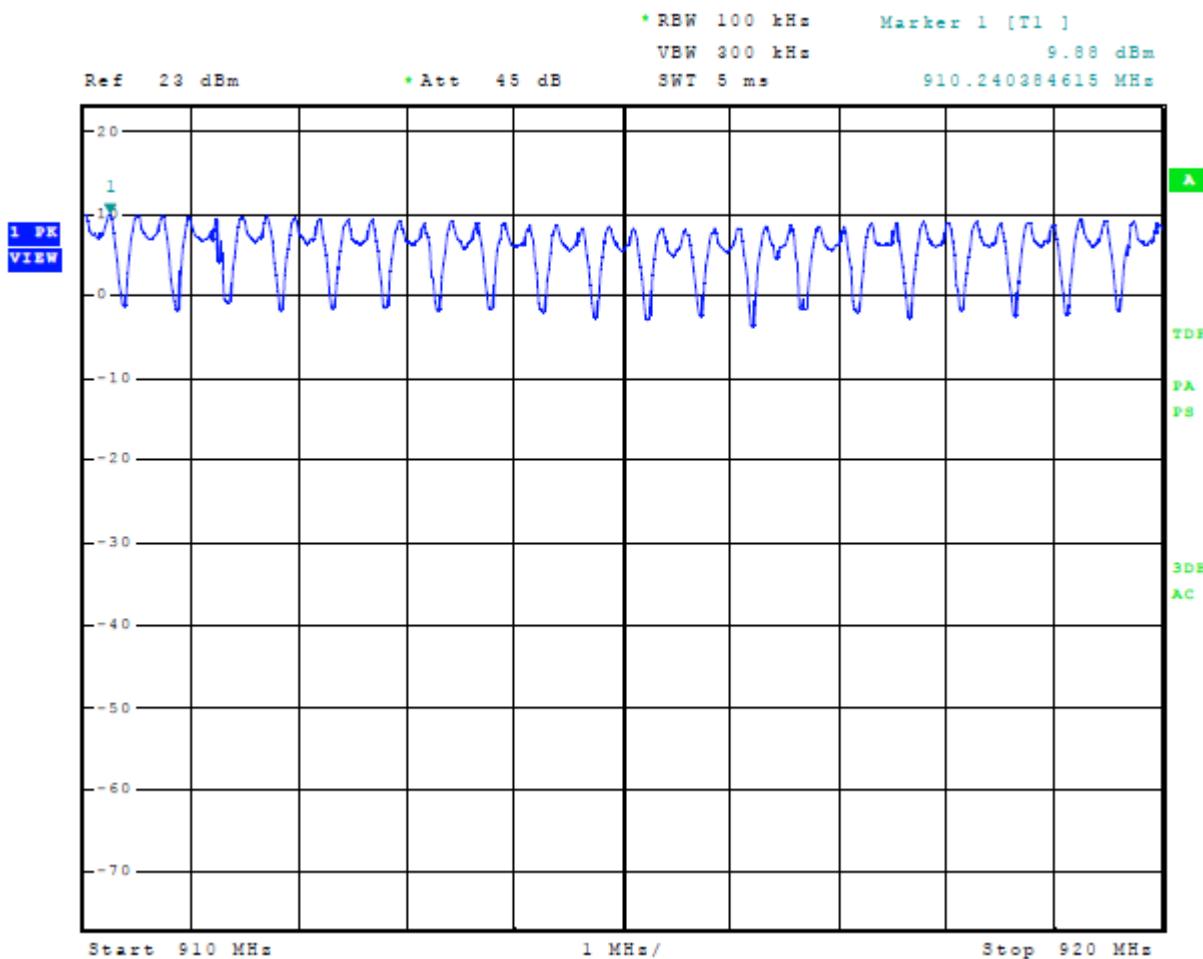


Figure 6 Plot of Number of Hopping Channels Mode 2, 900 MHz

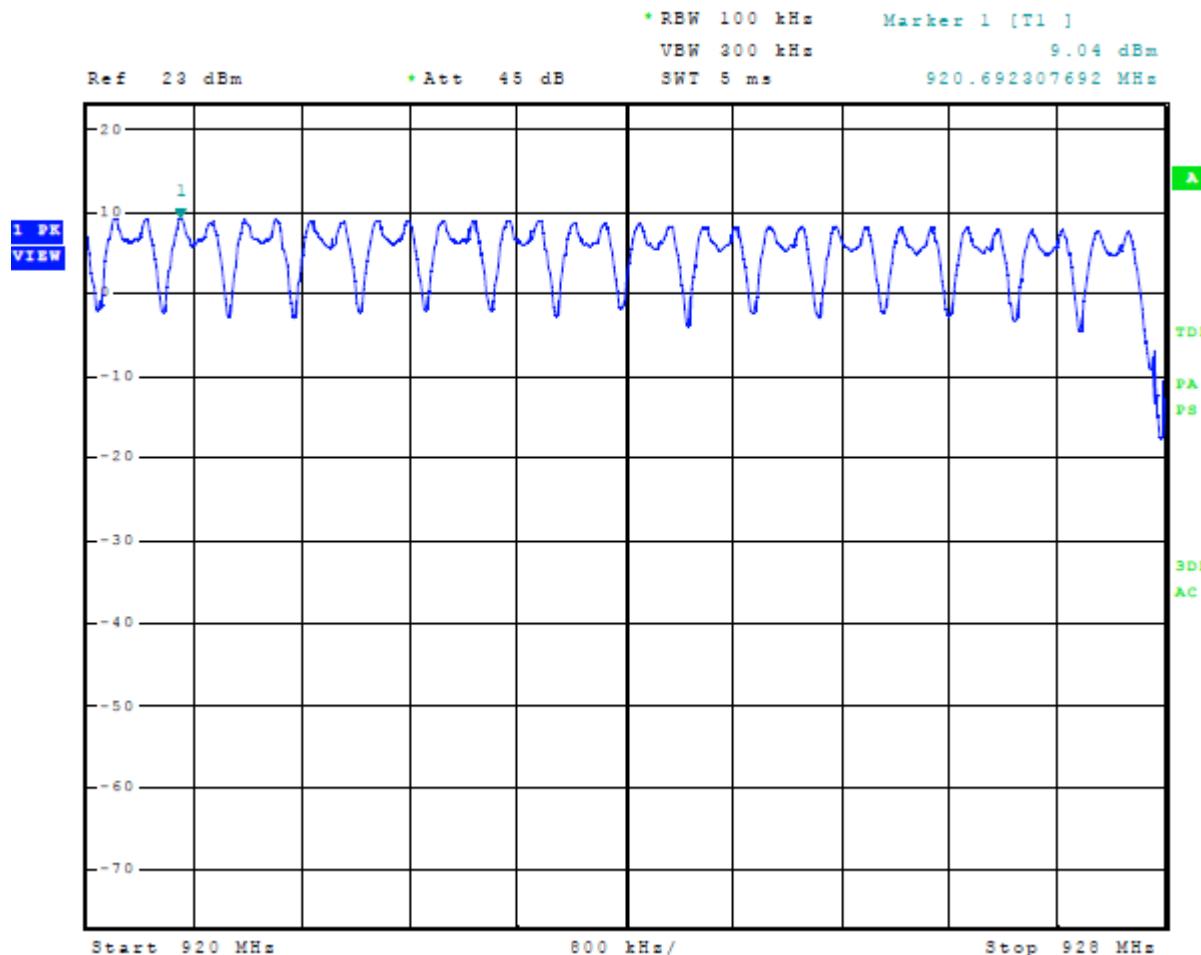


Figure 7 Plot of Channel Separation Mode 2, 900 MHz

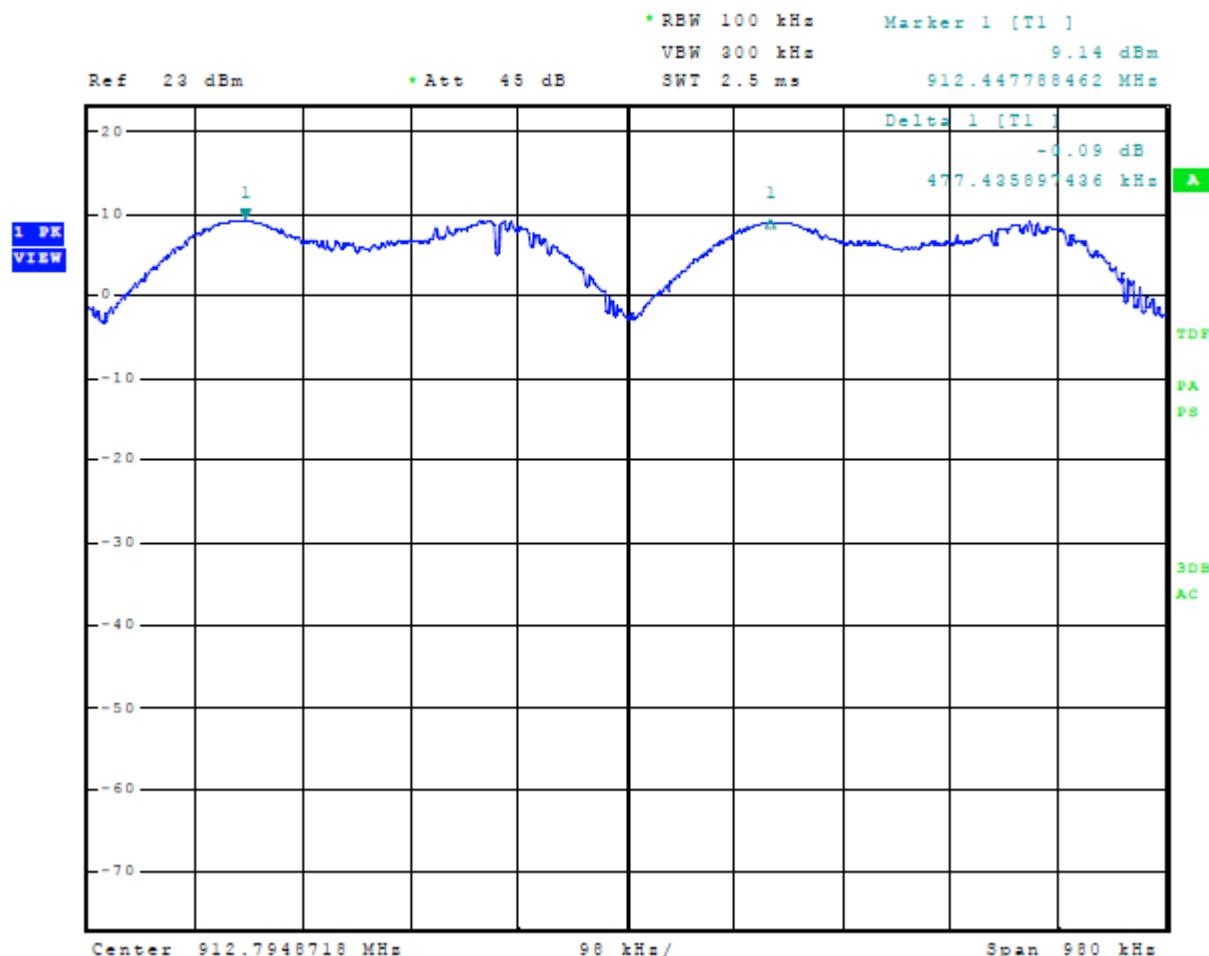


Figure 8 Plot of Dwell time On Channel Mode 2, 900 MHz

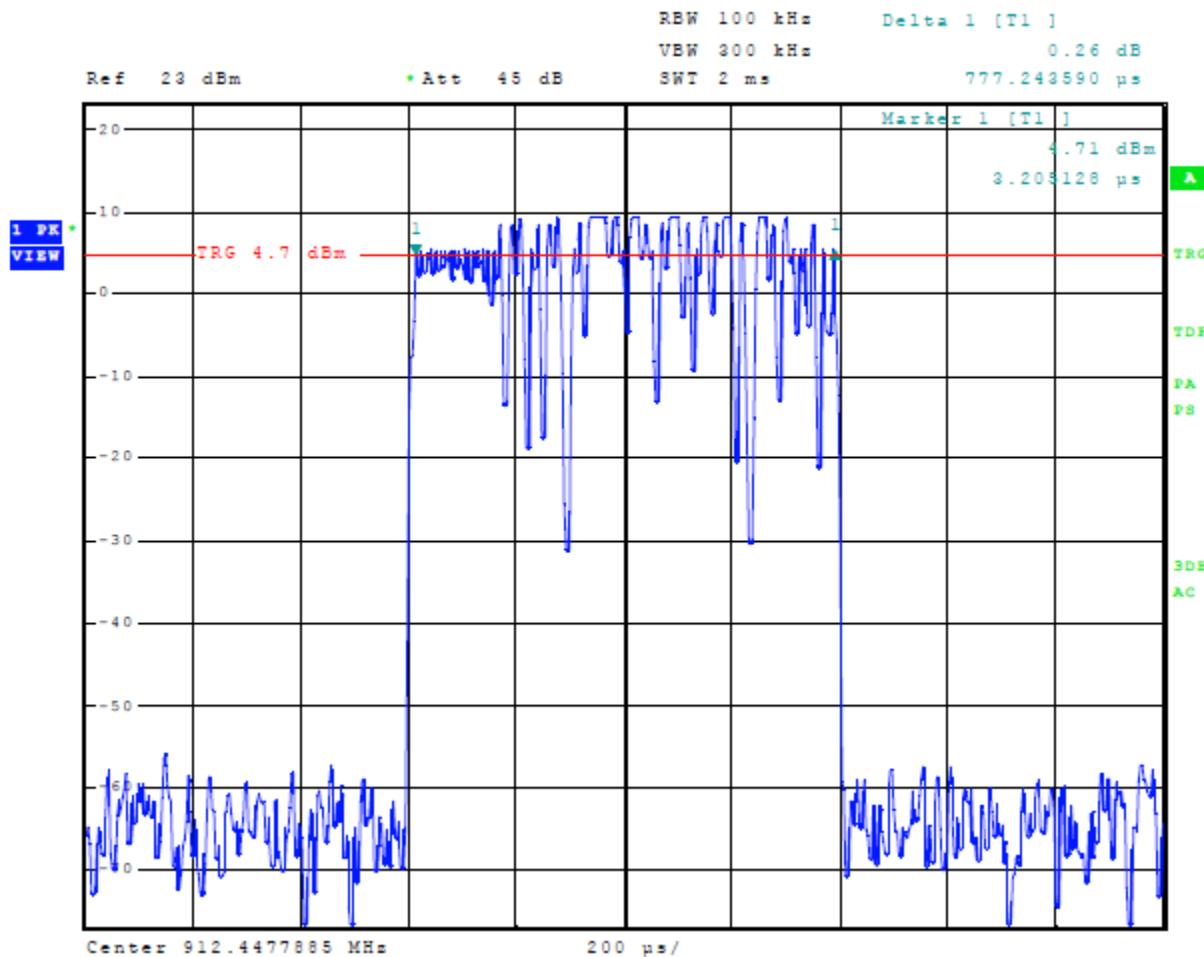
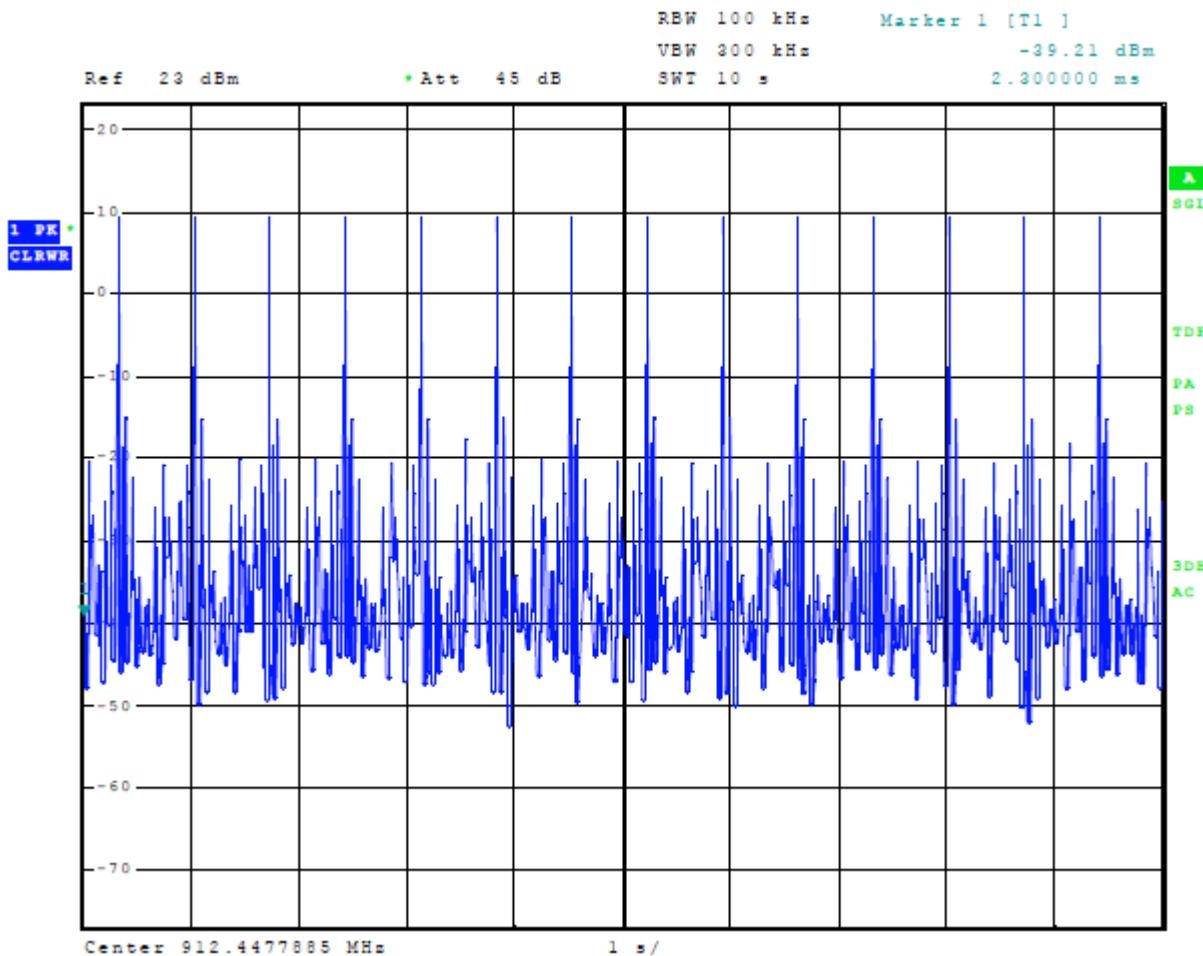



Figure 9 Plot of Number of Times on Channel over 6 Second Period Mode 2, 900 MHz

Figure 10 Plot of Transmitter Emissions Low Band Edge Mode 2, 900 MHz

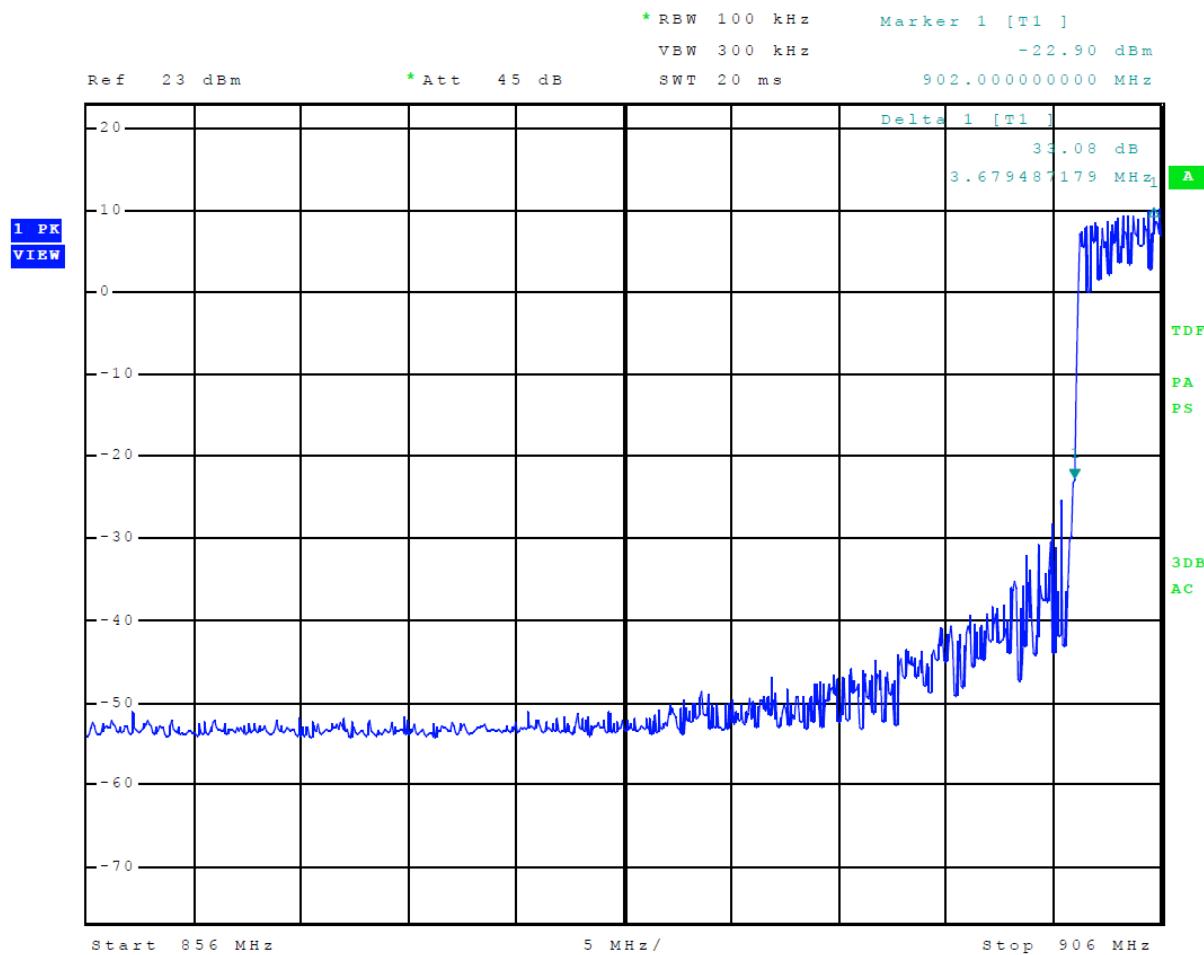
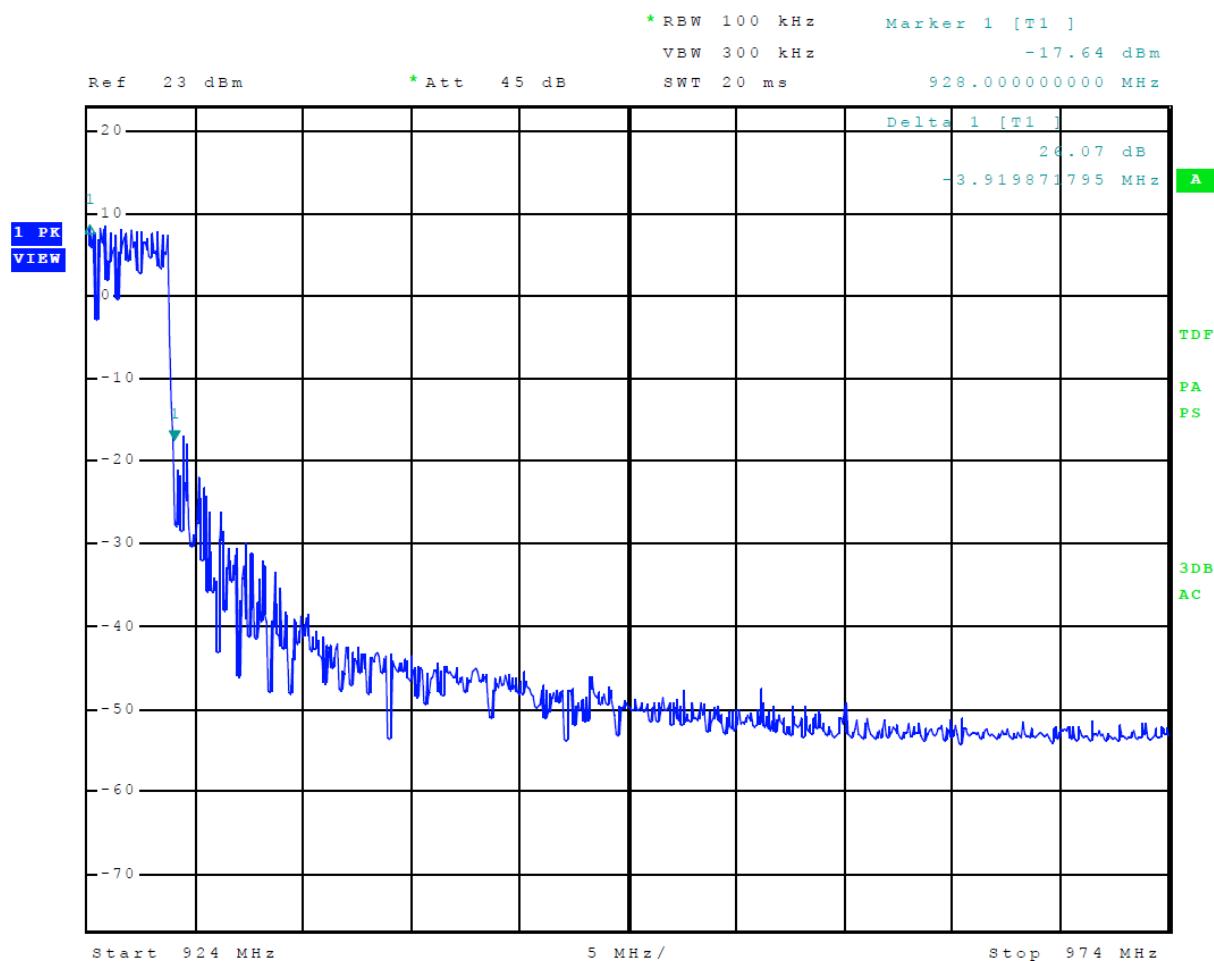



Figure 11 Plot of Transmitter Emissions High Band Edge Mode 2, 900 MHz

Transmitter Emissions Data

Table 3 Transmitter Radiated Emissions Mode 2, 900 MHz

Frequency in MHz	Horizontal Peak (dB μ V/m)	Horizontal Average (dB μ V/m)	Vertical Peak (dB μ V/m)	Vertical Average (dB μ V/m)	Limit @ 3m (dB μ V/m)	Horizontal Margin (dB)	Vertical Margin (dB)
902.4	--	--	--	--	--	--	--
1804.7	64.0	52.7	57.4	43.2	54.0	-1.3	-10.8
2707.1	54.0	40.0	54.9	41.2	54.0	-14.0	-12.8
3609.5	55.5	41.4	55.6	41.2	54.0	-12.6	-12.8
4511.9	56.9	43.2	56.7	43.2	54.0	-10.8	-10.8
5414.2	58.1	44.5	58.1	44.5	54.0	-9.5	-9.5
6316.6	63.9	49.6	63.5	49.6	54.0	-4.4	-4.4
915.0	--	--	--	--	--	--	--
1830.0	53.7	44.5	56.2	47.2	54.0	-9.5	-6.8
2745.0	45.8	32.4	45.4	32.1	54.0	-21.6	-21.9
3660.0	48.6	34.8	50.0	34.8	54.0	-19.2	-19.2
4575.0	47.9	34.4	47.7	34.3	54.0	-19.6	-19.7
5490.0	50.0	36.6	49.9	36.5	54.0	-17.4	-17.5
6405.0	53.5	39.2	53.0	39.2	54.0	-14.8	-14.8
927.6	--	--	--	--	--	--	--
1855.2	60.9	49.4	59.1	47.3	54.0	-4.6	-6.7
2782.8	54.4	40.6	55.4	41.6	54.0	-13.4	-12.4
3710.4	54.2	40.1	53.8	40.1	54.0	-13.9	-13.9
4638.0	57.5	43.8	56.8	43.8	54.0	-10.2	-10.2
5565.6	60.2	46.5	59.9	46.5	54.0	-7.5	-7.5
6493.2	63.0	49.7	63.1	49.7	54.0	-4.3	-4.3

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Table 4 Transmitter Data Mode 2, 900 MHz

Frequency MHz	Average Output Power (Watts)	99% Occupied Bandwidth (kHz)	20-dB Occupied Bandwidth (kHz)
Mode 2, 900 MHz			
902.4	0.019	470.6	490.8
915.0	0.037	467.6	477.8
927.6	0.027	467.6	480.8

Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Paragraph 15.247, Industry Canada RSS-247 Issue 3, and RSS-GEN Issue 5. The antenna port conducted output power measured was 0.037 Watts. The unit utilizes 53 hopping channels with the average time of occupancy less than 0.4 seconds over the required time. The EUT worst-case configuration demonstrated minimum radiated harmonic emission margin of -1.3 dB below the limit. No other radiated emissions were found in the restricted bands less than 20 dB below limits than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the limits.

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Test Equipment
- Annex C Laboratory Certificate of Accreditation

Annex A Measurement Uncertainty Calculations

The measurement uncertainty was calculated for all measurements listed in this test report according To CISPR 16-4. Result of measurement uncertainty calculations are recorded below. Component and process variability of production devices similar to those tested may result in additional deviations. The manufacturer has the sole responsibility of continued compliance.

Measurement	Expanded Measurement Uncertainty $U_{(lab)}$
3 Meter Horizontal 0.009-1000 MHz Measurements	4.16
3 Meter Vertical 0.009-1000 MHz Measurements	4.33
3 Meter Measurements 1-18 GHz	5.46
3 Meter Measurements 18-40 GHz	5.16
10 Meter Horizontal Measurements 0.009-1000 MHz	4.15
10 Meter Vertical Measurements 0.009-1000 MHz	4.32
AC Line Conducted	1.75
Antenna Port Conducted power	1.17
Frequency Stability	1.00E-11
Temperature	1.6°C
Humidity	3%

Annex B Test Equipment

Equipment	Manufacturer	Model (SN)	Band	Cal Date(m/d/y)	Due
<input checked="" type="checkbox"/> LISN	FCC	FCC-LISN-50-25-10(1PA) (160611)	.15-30MHz	3/25/2024	3/25/2025
<input type="checkbox"/> LISN: Fischer Custom Communications Model: FCC-LISN-50-16-2-08				3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(L10M)(303073)9kHz-40 GHz	9/16/2024	9/16/2025	
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(1.5M)(303069)9kHz-40 GHz	9/16/2024	9/16/2025	
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(1.5M)(303070)9kHz-40 GHz	9/16/2024	9/16/2025	
<input checked="" type="checkbox"/> Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	9/16/2024	9/16/2025
<input type="checkbox"/> Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Antenna	Com Power	AL-130 (121055)	.001-30 MHz	9/16/2024	9/16/2025
<input type="checkbox"/> Antenna:	EMCO	6509	.001-30 MHz	9/16/2024	9/16/2026
<input checked="" type="checkbox"/> Antenna	ARA	BCD-235-B (169)	20-350MHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Antenna	Sunol	JB-6 (A100709)	30-1000 MHz	9/16/2024	9/16/2025
<input type="checkbox"/> Antenna	ETS-Lindgren	3147 (40582)	200-1000MHz	9/16/2024	9/16/2026
<input checked="" type="checkbox"/> Antenna	ETS-Lindgren	3117 (200389)	1-18 GHz	3/25/2024	3/25/2026
<input checked="" type="checkbox"/> Antenna	Com Power	AH-118 (10110)	1-18 GHz	9/16/2024	9/16/2026
<input checked="" type="checkbox"/> Antenna	Com Power	AH-1840 (101046)	18-40 GHz	3/27/2023	3/27/2025
<input checked="" type="checkbox"/> Analyzer	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	7/8/2024	7/8/2025
<input checked="" type="checkbox"/> Analyzer	Rohde & Schwarz	ESW44 (101534)	20Hz-44GHz	1/21/2025	1/21/2026
<input type="checkbox"/> Analyzer	Rohde & Schwarz	FS-Z60, 90, 140, and 220	40GHz-220GHz	12/22/2017	12/22/2027
<input type="checkbox"/> Amplifier	Com-Power	PA-010 (171003)	100Hz-30MHz	9/16/2024	9/16/2025
<input type="checkbox"/> Amplifier	Com-Power	CPPA-102 (01254)	1-1000 MHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Amplifier	Com-Power	PAM-118A (551014)	0.5-18 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Amplifier	Com-Power	PAM-840A (461328)	18-40 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Pwr Sensor	Rohde & Schwarz	NRP33T	0.05-33 GHz	9/26/2023	9/26/2025
<input checked="" type="checkbox"/> Power meter	Agilent	N1911A with N1921A	0.05-40 GHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Generator	Rohde & Schwarz	SMB100A6 (100150)	20Hz-6 GHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Generator	Rohde & Schwarz	SMBV100A6 (260771)	20Hz-6 GHz	3/25/2024	3/25/2025
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC50722 (009).9G notch	30-18000 MHz	3/25/2024	3/25/2025
<input type="checkbox"/> RF Filter	Micro-Tronics	HPM50114 (017)1.5G HPF	30-18000 MHz	3/25/2024	3/25/2025
<input type="checkbox"/> RF Filter	Micro-Tronics	HPM50117 (063) 3G HPF	30-18000 MHz	3/25/2024	3/25/2025
<input type="checkbox"/> RF Filter	Micro-Tronics	HPM50105 (059) 6G HPF	30-18000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> RF Filter	Micro-Tronics	BRM50702 (172) 2G notch	30-18000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> RF Filter	Micro-Tronics	BRC50703 (G102) 5G notch	30-18000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> RF Filter	Micro-Tronics	BRC50705 (024) 5G notch	30-18000 MHz	3/25/2024	3/25/2025
<input type="checkbox"/> Attenuator	Fairview	SA6NFNF100W-40 (1625)	30-18000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (1436)	30-6000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (1445)	30-6000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (1735)	30-6000 MHz	3/25/2024	3/25/2025
<input checked="" type="checkbox"/> Attenuator	Mini-Circuits	VAT-6W2+ (1438)	30-6000 MHz	3/25/2024	3/25/2025
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-6W2+ (1736)	30-6000 MHz	3/25/2024	3/25/2025

Rogers Labs, a division of The Compatibility Center LLC

7915 Nieman Road FCC ID: PLH-HHC IC: 4006A-HHC

Lenexa, KS 66214

Test: 241010

Phone/Fax: (913) 660-0666

Test to: 47CFR 15C, RSS-Gen RSS-247

Revision 2

File: Nevco Handheld Controller DSS TstRpt 241010 r2

Nevco Sports LLC

HVIN: Handheld Controller

SN's: 1010

Date: August 6, 2025

Page 39 of 41

<u>Equipment</u>	<u>Manufacturer</u>	<u>Model (SN)</u>	<u>Band</u>	<u>Cal Date(m/d/y)</u>	<u>Due</u>
<input type="checkbox"/> Frequency Counter: Leader		LDC-825 (8060153)		3/28/2023	3/28/2025
<input type="checkbox"/> ISN	Com-Power	Model ISN T-8 (600111)		3/25/2024	3/25/2025
<input type="checkbox"/> LISN	Compliance Design	FCC-LISN-2.Mod.cd,(126)	.15-30MHz	9/16/2024	9/16/2025
<input type="checkbox"/> LISN:	Com-Power	Model LI-220A		9/16/2024	9/16/2026
<input checked="" type="checkbox"/> LISN:	Com-Power	Model LI-550C		9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(1.5M)(303072)	9kHz-40 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(L1M)(281183)	9kHz-40 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(L4M)(281184)	9kHz-40 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(L10M)(317546)	9kHz-40 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Cable	Time Microwave	4M-750HF290-750 (L4M)	9kHz-24 GHz	9/16/2024	9/16/2025
<input checked="" type="checkbox"/> Cable	Mini-Circuits	KBL-2M-LOW+ (23090329)	9kHz-40 GHz	3/25/2024	3/25/2025
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC17663 (001)	9.3-9.5 notch 30-1800 MHz	3/28/2023	3/28/2025
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC19565 (001)	9.2-9.6 notch 30-1800 MHz	3/28/2023	3/28/2025
<input checked="" type="checkbox"/> Analyzer	HP	8562A (3051A05950)	9kHz-125GHz	3/25/2024	3/25/2025
<input type="checkbox"/> Wave Form Generator Keysight		33500B (MY57400128)		3/25/2024	3/25/2025
<input type="checkbox"/> Antenna:	Solar	9229-1 & 9230-1		2/5/2025	2/5/2026
<input type="checkbox"/> CDN:	Com-Power	Model CDN325E		9/16/2024	9/16/2025
<input type="checkbox"/> Oscilloscope Scope: Tektronix		MDO 4104		2/5/2025	2/5/2026
<input type="checkbox"/> EMC Transient Generator HVT		TR 3000		2/5/2025	2/5/2026
<input type="checkbox"/> AC Power Source (Ametech, California Instruments)				2/5/2025	2/5/2026
<input checked="" type="checkbox"/> Field Intensity Meter: EFM-018				2/5/2025	2/5/2026
<input checked="" type="checkbox"/> ESD Simulator: MZ-15				2/5/2025	2/5/2026
<input checked="" type="checkbox"/> Weather station Davis		6152 (A70927D44N)		7/11/2024	7/11/2025
<input type="checkbox"/> Injection Clamp Luthi Model EM101				not required	
<input type="checkbox"/> R.F. Power Amp ACS 230-50W				not required	
<input type="checkbox"/> R.F. Power Amp EIN Model: A301				not required	
<input type="checkbox"/> R.F. Power Amp A.R. Model: 10W 1010M7				not required	
<input type="checkbox"/> R.F. Power Amp A.R. Model: 50U1000				not required	
<input checked="" type="checkbox"/> Temperature Chamber				not required	
<input checked="" type="checkbox"/> Shielded Room				not required	

Annex C Laboratory Certificate of Accreditation

United States Department of Commerce
National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 200087-0

Rogers Labs, a division of The Compatibility Center LLC
Lenexa, KS

*is accredited by the National Voluntary Laboratory Accreditation Program for specific services,
listed on the Scope of Accreditation, for:*

Electromagnetic Compatibility & Telecommunications

*This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality
management system (refer to joint ISO-ILAC-IAF Communiqué dated January 2009).*

2024-03-18 through 2025-03-31

Effective Dates

For the National Voluntary Laboratory Accreditation Program

United States Department of Commerce
National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 200087-0

Rogers Labs, a division of The Compatibility Center LLC
Lenexa, KS

*is accredited by the National Voluntary Laboratory Accreditation Program for specific services,
listed on the Scope of Accreditation, for:*

Electromagnetic Compatibility & Telecommunications

*This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality
management system (refer to joint ISO-ILAC-IAF Communiqué on ISO/IEC 17025).*

2025-03-11 through 2026-03-31

Effective Dates

For the National Voluntary Laboratory Accreditation Program

Rogers Labs, a division of The Compatibility Center LLC	Nevco Sports LLC
7915 Nieman Road	HVIN: Handheld Controller
Lenexa, KS 66214	SN's: 1010
Test: 241010	
Phone/Fax: (913) 660-0666	Date: August 6, 2025
Revision 2	
File: Nevco Handheld Controller DSS TstRpt 241010 r2	Page 41 of 41