

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Novatel Wireless
9645 Scranton Road, Suite 205
San Diego, CA 92121
Dates of Test: Nove Test Report Number:

FCC ID: PKRNVWMIFI4510 IC Certificate: 3229B-MIFI4510

Model(s): 4510L

Test Sample: Engineering Unit Same as Production

Serial No.: 148

Equipment Type: Wireless Personal Router

Classification: PCS Licensed Transmitter (PCB)

TX Frequency Range: 824.7–848.3 MHz, 1851.25–1908.75 MHz, 779.5 – 784.5 MHz,

2412-2462 MHz

Frequency Tolerance: ± 2.5 ppm

Maximum RF Output: 835 MHz - 24.50 dB, 1900 MHz - 24.46 dB,

750 MHz - 24.52 dB, 2450 MHz - 16.05 dB Conducted

Signal Modulation: CDMA, QPSK, 16QAM, DSSS, OFDM

Antenna Type (Length): Internal Application Type: Certification

FCC Rule Parts: Part 2, 15, 22, 24, 27 KDB Issued for Test: KDB 869935, 831948

Industry Canada: RSS-102

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003, OET Bulletin 65 Supp. C, RSS-102 and Safety Code 6 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton Vice President

November 23, 29-30, 2010

SAR.20101104

Revision E

Table of Contents

1.		_
	SAR Definition [5]	3
2.	SAR Measurement Setup	4
	Robotic System	4
	System Hardware	4
	System Description	4
	E-Field Probe	
3.		
4.	•	
5.	·	
-	SAM Phantom	
	Head & Body Simulating Mixture Characterization	
	Device Holder	
	Body Worn Configurations	
6	ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]	
٠.	Uncontrolled Environment	
	Controlled Environment	
7.		
8.	·	
٠.	Tissue Verification	
	Test System Verification	
9.		
٥.	Procedures Used To Establish Test Signal	
	Device Test Condition	
10	Device Test Condition FCC 3G Measurement Procedures – Oct. 2007 (revised)	
10	10.1 Procedures Used to Establish RF Signal for SAR	15
	10.2 SAR Measurement Conditions for CDMA2000, 1xEV-DO	
	10.3 SAR Measurement Conditions for LTE Band 13	
	10.4 SAR Test Location Matrix	
	SAR Data Summary – 835 MHz Body – Rev 0	
	SAR Data Summary – 1900 MHz Body – Rev 0	
	SAR Data Summary – 2450 MHz Body	
	SAR Data Summary – 750 MHz Body – LTE Band 13 10 MHz QPSK	
	SAR Data Summary – 750 MHz Body – LTE Band 13 10 MHz 16QAM	
	SAR Data Summary – Simultaneous Transmission Evaluation	
11	•	
12		
13		
	opendix A – System Validation Plots and Data	
	opendix B – SAR Test Data Plots	
	opendix C – SAR Test Setup Photos	
	opendix D – Probe Calibration Data Sheets	
	opendix E – Dipole Calibration Data Sheets	
	opendix F – Phantom Calibration Data Sheets	
, \L	/DOTIGIA	. _

1. Introduction

This measurement report shows compliance of the Novatel Wireless Model 4510L FCC ID: PKRNVWMIFI4510 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 3229B-MIFI4510 with RSS102 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], IEEE Std.1528 – 2003 Recommended Practice [5], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

The measurements are conducted utilizing the ALSAS-10-U automated dosimetric assessment system. The ALSAS-10-U is designed and manufactured by Aprel Laboratories in Nepean, Ontario, Canada. The system utilizes a Robcomm 3 robot manufactured by ThermoCRS located in Michigan USA.

System Hardware

The system consists of a six axis articulated arm, controller for precise probe positioning (0.05 mm repeatability), a power supply, a teach pendent for teaching area scans, near field probe, an IBM Pentium 4^{TM} 2.66 GHz PC with Windows XP Pro^{TM} , and custom software developed to enable communications between the robot controller software and the host operating system.

An amplifier is located on the articulated arm, which is isolated from the custom designed end effector and robot arm. The end effector provides the mechanical touch detection functionality and probe connection interface. The amplifier is functionally validated within the manufacturer's site and calibrated at NCL Calibration Laboratories. A Data Acquisition Card (DAC) is used to collect the signal as detected by the isotropic e-field probe. The DAC manufacturer calibrates the DAC to NIST standards. A formal validation is executed using all mechanical and electronic components to prove conformity of the measurement platform as a whole.

System Description

The ALSAS-10-U has been designed to measure devices within the compliance environment to meet all recognized standards. The system also conforms to standards, which are currently being developed by the scientific and manufacturing community.

The course scan resolution is defined by the operator and reflects the requirements of the standard to which the device is being tested. Precise measurements are made within the predefined course scan area and the values are logged.

The user predefines the sample rate for which the measurements are made so as to ensure that the full duty-cycle of a pulse modulation device is covered during the sample. The following algorithm is an example of the function used by the system for linearization of the output for the probe.

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

The Aprel E-Field probe is evaluated to establish the diode compression point.

A complex algorithm is then used to calculate the values within the measured points down to a resolution of 1mm. The data from this process is then used to provide the co-ordinates from which the cube scan is created for the determination of the 1 g and 10 g averages.

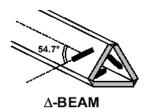
Cube scan averaging consists of a number of complex algorithms, which are used to calculate the one, and ten gram averages. The basis for the cube scan process is centered on the location where the maximum measured SAR value was found. When a secondary peak value is found which is within 60% of the initial peak value, the system will report this back to the operator who can then assess the need for further analysis of both the peak values prior to the one and ten-gram cube scan averaging process. The algorithm consists of 3D cubic Spline, and Lagrange extrapolation to the surface, which form the matrix for calculating the measurement output for the one and ten gram average values. The resolution for the physical scan integral is user defined with a final calculated resolution down to 1mm.

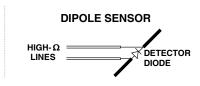
In-depth analysis for the differential of the physical scanning resolution for the cube scan analysis has been carried out, to identify the optimum setting for the probe positioning steps, and this has been determined at 8mm increments on the X, & Y planes. The reduction of the physical step increment increased the time taken for analysis but did not provide a better uncertainty or return on measured values.

The final output from the system provides data for the area scan measurements, physical and splined (1mm resolution) cube scan with physical and calculated values (1mm resolution).

The overall uncertainty for the methodology and algorithms the ALSAS-10-U used during the SAR calculation was evaluated using the data from IEEE 1528 f3 algorithm:

$$f_3(x,y,z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$


The probe used during the measurement process has been assessed to provide values for diode compression. These values are calculated during the probe calibration exercise and are used in the mathematical calculations for the assessment of SAR.


E-Field Probe

The E-field probe used by RF Exposure Lab, LLC, has been fully calibrated and assessed for isotropic, and boundary effect. The probe utilizes a triangular sensor arrangement as detailed in the diagram below right.

The SAR is assessed with the probe which moves at a default height of 4mm from the center of the diode, which is mounted to the sensor, to the phantom surface (Z height). The diagram above right shows how the center of the sensor is defined with the location of the diode placed at the center of the dipole. The 4mm default in the Z axis is the optimum height for assessing SAR where the boundary effect is at its least, with the probe located closest to the phantom surface (boundary).

The manufacturer specified precision of the robot is \pm 0.05 mm and the precision of the APREL bottom detection device is \pm 0.1 mm. These precisions are calibrated and tested in the manufacturing process of the bottom detection device. A constant distance is maintained because the surface of the phantom is dynamically detected for each point. The surface detection algorithm corrects the position of the robot so that the probe rests on the surface of the phantom. The probe is then moved to the measurement location 2.44 mm above the phantom surface resulting in the probe center location to be at 4.0 mm above the phantom surface. Therefore, the probe sensor will be at 4.0 mm above the phantom surface \pm 0.1 mm for each SAR location for frequencies below 3 GHz. The probe is moved to the measurement location 1.44 mm above the phantom surface resulting in the probe center location to be at 2.0 mm above the phantom surface. Therefore, the probe sensor will be at 2.0 mm above the phantom surface \pm 0.1 mm for each SAR location for frequencies above 3 GHz.

The probe boundary effect compensation cannot be disabled in the ALSAS-10U testing system. The probe tip will always be at least half a probe tip diameter from the phantom surface. For frequencies up to 3 GHz, the probe diameter is 5 mm. With the sensor offset set at 1.54 mm (default setting), the sensor to phantom gap will be 4.0 mm which is greater than half the probe tip diameter. For frequencies greater than 3 GHz, the probe diameter is 3 mm. With the sensor offset set at 0.56 mm (default setting), the sensor to phantom gap will be 3.0 mm which is greater than half the probe tip diameter.

The separation of the first 2 measurement points in the zoom scan is specified in the test setup software. For frequencies below 3 GHz, the user must specify a zoom scan resolution of less than 6 mm in the z-axis to have the first two measurements within 1 cm of the surface. The z-axis is set to 4 mm as shown on each of the data sheets in Appendix B. For frequencies above 3 GHz, the user must specify a zoom scan resolution of less than 3 mm in the z-axis to have the first two measurements within 5 mm of the surface. The z-axis is set to 2 mm as shown on each of the data sheets in Appendix B.

The zoom scan volume for devices ≤ 3 GHz with a cube scan of 5x5x8 yields a volume of 32x32x28 mm³. For devices ≥ 3 GHz and ≤ 4.5 GHz, the cube scan of 9x9x9 yields a volume of 32x32x24 mm³. For devices ≥ 4.5 GHz, the cube scan of 7x7x12 yields a volume of 24x24x22 mm³.

3. Robot Specifications

Specifications

Positioner: ThermoCRS, Robot Model: Robocomm 3

Repeatability: 0.05 mm

No. of axis: 6

Data Acquisition Card (DAC) System

Cell Controller

Processor: Pentium 4[™] Clock Speed: 2.66 GHz

Operating System: Windows XP Pro™

Data Converter

Features: Signal Amplifier, End Effector, DAC

Software: ALSAS 10-U Software

E-Field Probe

Model: Various See Probe Calibration Sheet
Serial Number: Various See Probe Calibration Sheet
Construction: Triangular Core Touch Detection System

Frequency: 10MHz to 6GHz

Phantom

Phantom: Uniphantom, Right Phantom, Left Phantom

4. Probe and Dipole Calibration

See Appendix D and E.

5. Phantom & Simulating Tissue Specifications

SAM Phantom

The Aprel system utilizes three separate phantoms. Each phantom for SAR assessment testing is a low loss dielectric shell, with shape and dimensions derived from the anthropomorphic data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM phantom shell is bisected along the mid sagittai plane into right and left halves. The perimeter sidewalls of each phantom half is extended to allow filling with liquid to a depth of 15 cm that is sufficient to minimize reflections from the upper surface [5]. The Uni-Phantom is used to conduct body measurements and held to face measurements. The depth of the phantom allows for 15 cm of tissue material to be filled within the phantom. See photos in Appendix C.

Head & Body Simulating Mixture Characterization

52.50

45.00

1.40

1.00

0.10

0.00

55.20

0.97

Target

Target

The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

69.91

0.00

0.13

0.00

0.00

29.96

53.30

1.52

73.20

0.00

0.10

0.00

0.00

26.70

52.70

1.95

Table 5.1 Typical Composition of Ingredients for Tissue

Device Holder

Dielectric Constant

Conductivity (S/m)

Water

Sugar

Salt

HEC

DGBE

Bactericide

In combination with the SAM phantom, the mounting device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can easily, accurately, and repeatably be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, and uni-phantom).

52.50

45.00

1.40

1.00

0.10

0.00

55.41

0.97

Body Worn Configurations

Body-worn operating configurations are tested in a normal use configuration. Body dielectric parameters are used.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing. All test position spacings are documented.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

6. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Head	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

7. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i ¹ (1-g)	c _i ¹ (10-g)	Standard Uncertainty (1-g) %	Standard Uncertai nty (10- g) %	Vi
Marana and Gardan								
Measurement System								
Probe Calibration	3.5	normal	1	1	1	3.5	3.5	∞
Axial Isotropy	3.7	rectangular	√3	0.7	0.7	1.5	1.5	∞
Hemispherical Isotropy	10.9	rectangular	√3	0.7	0.7	4.4	4.4	∞
Boundary Effect	1.0	rectangular	√3	1	1	0.6	0.6	∞
Linearity	4.7	rectangular	√3	1	1	2.7	2.7	∞
Detection Limit	1.0	rectangular	√3	1	1	0.6	0.6	∞
Readout Electronics	1.0	normal	1	1	1	1.0	1.0	∞
Response Time	0.8	rectangular	√3	1	1	0.5	0.5	∞
Integration Time	1.7	rectangular	√3	1	1	1.0	1.0	∞
RF Ambient Condition	3.0	rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner Mech. Restriction	0.4	rectangular	√3	1	1	0.2	0.2	∞
Probe Positioning with respect to Phantom Shell	2.9	rectangular	√3	1	1	1.7	1.7	8
Extrapolation and Integration	3.7	rectangular	√3	1	1	2.1	2.1	∞
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0	7
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0	2
Drift of Output Power	4.2	rectangular	√3	1	1	2.4	2.4	∞
Phantom and Setup								
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	√3	1	1	2.0	2.0	∞
Liquid Conductivity(target)	5.0	rectangular	√3	0.7	0.5	2.0	1.4	∞
Liquid Conductivity (meas.)	0.5	normal	1	0.7	0.5	0.4	0.3	5
Liquid Permittivity(target)	5.0	rectangular	√3	0.6	0.5	1.7	1.4	∞
Liquid Permittivity (meas.)	1.0	normal	1	0.6	0.5	0.6	0.5	5
Combined Uncertainty		RSS				9.6	9.4	>500
Combined Uncertainty (coverage factor=2)		Normal(k=2)				19.1	18.8	>500

8. System Validation

Tissue Verification

Table 10.1 Measured Tissue Parameters

Table 1011 medealed 1100de 1 drametere								
		835 N	1Hz Body	1900 MHz Body		2450 MHz Body		
Date(s)		Nov. 23, 2010		Nov. 23, 2010		Nov. 29, 2010		
Liquid Temperature (°C)	20.0	Target	Target Measured		Measured	Target	Measured	
Dielectric Constant: ε		55.20	55.01	53.30	53.17	52.70	52.17	
Conductivity: σ		0.97	0.98	1.52	1.54	1.95	1.97	
		782 N	1Hz Body					
Date(s)		Nov.	30, 2010					
Liquid Temperature (°C)	20.0	Target	Measured					
Dielectric Constant: ε		55.41	53.63					
Conductivity: σ		0.97	0.99					

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached)

Table 10.2 System Dipole Validation Target & Measured

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Tissue Used for Verification	Deviation (%)
23-Nov-2010	835 MHz	9.81	9.58	Body	- 2.34
23-Nov-2010	1900 MHz	40.90	41.18	Body	+ 0.68
29-Nov-2010	2450 MHz	51.50	53.24	Body	+ 3.38
30-Nov-2010	750 MHz	8.70	9.07	Body	+ 4.25

See Appendix A for data plots.

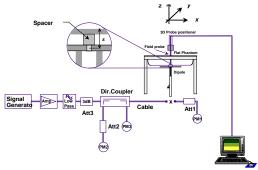


Figure 10.1 Dipole Validation Test Setup

Note: KDB 450824 was applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

9. SAR Test Data Summary See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.

The testing was conducted on Top Face, Bottom Face and edges closest to each antenna. The Top Face, Bottom Face, Side 'D', Side 'A' and Side 'B' testing was conducted for the WWAN antenna. The sixth side of the unit was not tested as the WWAN antenna was more than 2.5 cm from the side. The Side 'A', Top Face and Bottom Face was tested for the WLAN antenna. The remain three sided were not tested as the antenna was more than 2.5 cm from the three sides. All testing was conducted per TCB Workshop October 2010 presentation. See the photo in Appendix C for a pictorial of the setups, labeling of the sides tested and antenna locations. The distance between the WWAN and WLAN antenna is 5.02 cm.

The 1xRTT testing was conducted in RC3 with the device configured using TDSO/SO32 with FCH transmitting at full rate. The power control was set to "All Bits Up." 1xRTT did not require SAR testing due to the measured power being less than 1/4 dB of Rev. 0.

The Rev. 0 testing was conducted with the Reverse Data Channel rate of 153.6 kbps. The Forward Traffic Channel data rate is set to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots. The power control was set to "All Bits Up." Other rates were not tested due to the conducted power measured was less than ¼ dB higher than 153.6 kbps.

The Rev. A Subtype 2 testing was conducted with the Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots. The Forward Traffic Channel data rate is set to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots. The power control was set to "All Bits Up." Rev. A did not require SAR testing due to the measured power being less than ½ dB of Rev. 0.

10. FCC 3G Measurement Procedures – Oct. 2007 (revised)

Power measurements were performed using a base station simulator under average power.

10.1 Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a screen room. Such test signals offer a consistent means for testing SAR and recommended for evaluating SAR. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated.

10.2 SAR Measurement Conditions for CDMA2000, 1xEV-DO

10.2.1 Output Power Verification 1xRTT

Use CDMA2000 Rev 6 protocol in the call box.

- 1) Test for Reverse/Forward TCH RC1, Reverse/Forward TCH RC2, and RC3 Reverse FCH and demodulation of RC 3, 4 and 5.
 - a. Set up a call using Fundamental Channel Test Mode 1 (RC1, SO 2) with 9600 bps data rate only.
 - b. As per C.S0011 or TIA/EIA-98-F Table 4.4.5.2-1, set the test parameters.
 - c. Send continuously '0' power control bits to the device.
 - d. Measure the output power at device antenna connector as recorded on the power meter with values corrected for cables losses.
 - e. Repeat step b through d for Fundamental Channel Test Mode:
 - i. RC1, SO2 ii. RC2, SO9 iii. RC1, SO55
 - iv. RC3, SO55
- 2) Test for RC 3 Reverse FCH, RC3 Reverse SCH0 and demodulation of RC 3, 4 and 5.
 - a. Set up a call using Supplemental Channel Test Mode 3 (RC 3, SO 32) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
 - b. As per C.S0011 or TIA/EIA-98-F Table 4.4.5.2-2, set the test parameters.
 - c. Send alternating '0' and '1' power control bit to the device
 - d. Determine the active channel configuration. If the desired channel configuration is not the active channel configuration, increase for by 1 dB and repeat the verification. Repeat this step until the desired channel configuration becomes active.
 - e. Measure the output power at the device antenna connector.
 - f. Decrease îor by 0.5 dB.
 - g. Determine the active channel configuration. If the active channel configuration is the desired channel configuration, measure the output power at the device antenna connector.
 - h. Repeat step f and g until the output power no longer increases or the desired channel configuration is no longer active. Record the highest output power achieved with the desired channel configuration active.
 - i. Repeat step a through h ten times and average the result.

10.2.2 Output Power Verification 1xEvDo

- 1) Use 1xEV-DO Rel 0 protocol in the call box 8960.
 - a. FTAP
 - Select Test Application Protocol to FTAP
 - Set FTAP Rate to 307.2 kbps (2 Slot, QPSK)
 - Generator Info -> Termination Parameters -> Max Forward Packet Duration -> 16 Slots
 - Set Îor to -60 dBm/1.23 MHz
 - Send continuously '0' power control bits
 - Measure the power at device antenna connector
 - b. RTAP
 - Select Test Application Protocol to RTAP
 - Set RTAP Rate to 9.6 kbps
 - Generator Info -> Termination Parameters -> Max Forward Packet Duration -> 16 Slots
 - Set Îor to -60 dBm/1.23 MHz
 - Send continuously '0' power control bits
 - Measure the power at device antenna connector
 - Repeat above steps for RTAP Rate = 19.2 kbps, 38.4 kbps, 76.8 kbps and 153.6 kbps respectively
- 2) Use 1xEV-DO Rev A protocol in the call box 8960
 - a. FETAP
 - Select Test Application Protocol to FETAP
 - Set FETAP Rate to 307.2 kbps (2 Slot, QPSK)
 - Generator Info -> Termination Parameters -> Max Forward Packet Duration -> 16 Slots
 - Set Îor to -60 dBm/1.23 MHz
 - Send continuously '0' power control bits
 - Measure the power at device antenna connector
 - b. RETAP
 - Select Test Application Protocol to RETAP
 - F-Traffic Format -> 4 (1024, 2, 128) Canonical (307.2k, QPSK) Set R-Data Pkt Size to 128
 - Protocol Subtype Config -> Release A Physical Layer Subtype -> Subtype 2 PL Subtype 2 Access Channel MAC Subtype -> Default (Subtype 0)
 - Generator Info -> Termination Parameters -> Max Forward Packet Duration ->
 16 Slots -> ACK R-Data After -> Subpacket 0 (All ACK)
 - Set Îor to -60 dBm/1.23 MHz
 - Send continuously '0' power control bits
 - Measure the power at device antenna connector
 - Repeat above steps for R-Data Pkt Size = 256, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288 respectively.

10.3 SAR Measurement Conditions for LTE Band 13

10.3.1 LTE Functionality

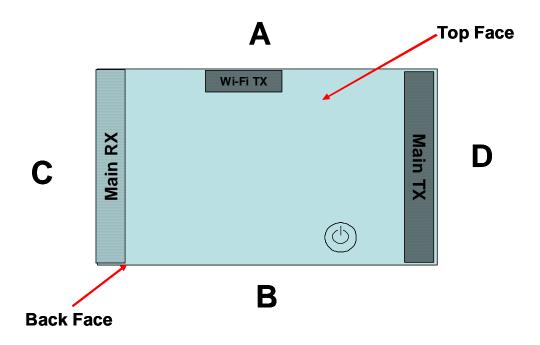
This device supports 5 MHz and 10 MHz bandwidths. At the 5 MHz bandwidth operation, there are two channels of operation. At the 10 MHz bandwidth, there is one channel of operation.

10.3.2 Test Conditions

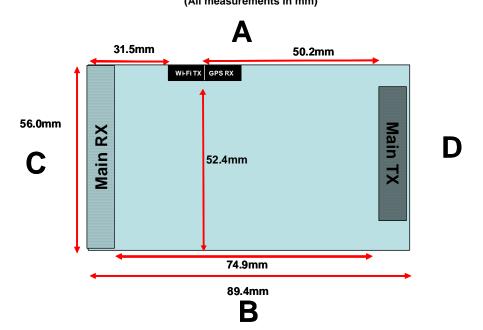
All SAR measurements for LTE were performed using the R&S CMW500. A closed loop power control setting allowed the UE to transmit at the maximum output power during the SAR measurements. The 5 MHz bandwidth was not tested due to the maximum conducted measured output power was with 0.5 dB of the 10 MHz bandwidth maximum conducted output power measurement and the SAR was less than 1.45 W/kg per KDB 941225 and the October 2010 TCB Workshop presentation (LTE Interim SAR Test Considerations).

MPR is not enabled for this device. A-MPR was disabled for all SAR test measurements.

10.4 SAR Test Location Matrix


	Cell – EvDo	PCS – EvDo	LTE	802.11
Top Face	Yes	Yes	Yes	Yes
Back Face	Yes	Yes	Yes	Yes
Side 'A'	Yes	Yes	Yes	Yes
Side 'B'	Yes	Yes	Yes	No
Side 'C'	No	No	No	No
Side 'D'	Yes	Yes	Yes	No

Notes:


- Per October 2010 TCB FCC Workshop the edges with antennas within 2.5 cm are required to be evaluated for SAR.
- Wi-Fi can function with LTE or CDMA simultaneously. LTE and CDMA are not able to transmit simultaneously.
- The transmission details were outlined in KDB inquiry 831948 and 869935.

SAR Identification Location Diagram

SAR Antenna Distance Diagram (All measurements in mm)

CDMA Power Measurements

IS-2000	Channel	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDo Rev. 0 [dBm]	1x EvDo Rev. A [dBm]
	F-RC	FCH+SCH	FCH	RTAP	RETAP
Band	Vocoder Rate	Full	Full	Full	Full
	1013	24.42	24.42	24.48	24.41
Cellular	384	24.44	24.45	24.50	24.43
	777	24.40	24.40	24.45	24.38
	25	24.34	24.36	24.42	24.31
PCS	600	24.38	24.39	24.43	24.33
	1175	24.39	24.42	24.46	24.35

Power Control was set in "All Bits Up" for all measurements.

Band 13 LTE Power Measurements

Frequency [MHz]	Modulation	Channel Bandwidth [MHz]	RB Size	RB Offset	Maximum Avg. Power [dBm]
	QPSK	5	1	0	24.10
	16QAM	5	1	0	24.42
	QPSK	5	1	24	24.22
779.5	16QAM	5	1	24	24.32
119.5	QPSK	5	12	6	24.39
	16QAM	5	12	6	24.02
	QPSK	5	25	0	24.27
	16QAM	5	25	0	24.40
	QPSK	5	1	0	24.36
	16QAM	5	1	0	24.49
	QPSK	5	1	24	24.03
784.5	16QAM	5	1	24	24.11
704.5	QPSK	5	12	6	24.45
	16QAM	5	12	6	24.21
	QPSK	5	25	0	24.22
	16QAM	5	25	0	24.42
	QPSK	10	1	0	24.35
	16QAM	10	1	0	24.52
	QPSK	10	1	49	24.45
782	16QAM	10	1	49	24.50
102	QPSK	10	25	13	24.51
	16QAM	10	25	13	24.44
	QPSK	10	50	0	24.20
	16QAM	10	50	0	24.30

The following table measurements were tested on a different device then the original conducted power level measurements. The values are on a device which was set to the same power level as the original device to show the MPR values.

Band 13 LTE MPR Measurements

Freq. (MHz)	Modulation	Channel Bandwidth (MHz)	RB Size	RB Offset	MPR Disabled Max. Avg. Power (dBm)	MPR Enabled Max. Avg. Power (dBm)	MPR Target Backoff (dB)	Measured Reduction (dB)
	QPSK	5	1	0	24.5	24.6	0	
	16QAM	5	1	0	24.2	23.3	1	0.9
	QPSK	5	1	24	24.5	24.5	0	
779.5	16QAM	5	1	24	24.1	23.2	1	0.9
119.5	QPSK	5	12	6	24.5	23.6	1	0.9
	16QAM	5	12	6	24.4	22.5	2	1.9
	QPSK	5	25	0	24.6	23.7	1	0.9
	16QAM	5	25	0	24.7	22.9	2	1.8
	QPSK	5	1	0	24.6	24.7	0	
	16QAM	5	1	0	24.4	23.4	1	1.0
	QPSK	5	1	24	24.4	24.5	0	
784.5	16QAM	5	1	24	24.1	23.2	1	0.9
704.5	QPSK	5	12	6	24.6	23.6	1	1.0
	16QAM	5	12	6	24.3	22.5	2	1.8
	QPSK	5	25	0	24.6	23.7	1	0.9
	16QAM	5	25	0	24.7	22.9	2	1.8
	QPSK	10	1	0	24.3	24.4	0	
	16QAM	10	1	0	24.4	23.5	1	0.9
	QPSK	10	1	49	24.5	24.6	0	
782	16QAM	10	1	49	24.1	23.4	1	0.7
102	QPSK	10	25	13	24.6	23.7	1	0.9
	16QAM	10	25	13	24.6	22.8	2	1.8
	QPSK	10	50	0	24.4	23.5	1	0.9
	16QAM	10	50	0	24.7	22.7	2	2.0

Band 13 LTE MPR Target Values

	Modulation	Channel bandwidth/Transmission bandwidth configuration (RB)						
	Modulation	5 MHz	10 MHz	(dB)				
	QPSK	> 8	> 12	≤ 1				
	16QAM	≤ 8	≤ 12	≤ 1				
	16QAM	> 8	> 12	≤2				

	80)2.11b	
Freq	Channel	Data Rate	Avg. Power
2412	1	1	15.97
2437	6	1	16.05
2462	11	1	16.02
2437	6	2	15.95
2437	6	5.5	15.76
2437	6	11	15.64
	80)2.11g	
Freq	Channel	Data Rate	Avg. Power
2412	1	6	10.47
2437	6	6	11.15
2462	11	6	11.06
2437	6	9	11.13
2437	6	12	11.12
2437	6	18	11.11
2437	6	24	11.13
2437	6	36	11.08
2437	6	48	11.02
2437	6	54	11.01
	80)2.11n	_
Freq	Channel	Data Rate	Avg. Power
2412	1	6.5/7.2	11.04
2437	6	6.5/7.2	11.12
2462	11	6.5/7.2	11.07
2437	6	13/14.4	10.97
2437	6	19.5/21.7	10.89
2437	6	26/28.9	10.92
2437	6	39/43.3	10.82
2437	6	52/57.8	10.79
2437	6	58.5/65	10.74
2437	6	65/72.2	10.68

SAR Data Summary - 835 MHz Body - Rev 0

MEAS	MEASUREMENT RESULTS												
Gap	Position			_	n/End wer	Reverse	Forward Channel	SAR					
_		MHz	Ch.		(dBm)	(dBm)	Channel		(W/kg)				
		824.7	1013	Rev 0	24.48	24.45	153.6 kbps	2 Slot 307.2 kbps	1.275				
	Top Face	836.6	384	Rev 0	24.50	24.46	153.6 kbps	2 Slot 307.2 kbps	1.275				
		848.3	777	Rev 0	24.45	24.40	153.6 kbps	2 Slot 307.2 kbps	0.811				
		824.7	1013	Rev 0	24.43	24.39	153.6 kbps	2 Slot 307.2 kbps	1.281				
	Bottom Face	836.6	384	Rev 0	24.46	24.41	153.6 kbps	2 Slot 307.2 kbps	1.314				
12 mm	race	848.3	777	Rev 0	24.40	24.37	153.6 kbps	2 Slot 307.2 kbps	0.796				
	Side 'D'	836.6	384	Rev 0	24.47	24.40	153.6 kbps	2 Slot 307.2 kbps	0.316				
	Side 'A'	836.6	384	Rev 0	24.44	24.38	153.6 kbps	2 Slot 307.2 kbps	0.761				
	Side 'B'	836.6	384	Rev 0	24.43	24.35	153.6 kbps	2 Slot 307.2 kbps	0.484				
	Bottom Face	836.6	384	Rev A	24.43	24.42	4096 bits	2 Slot 307.2 kbps	1.160				

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a	all tests.		
	Power Measured	⊠Conducted	ERP	EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	Test Code	⊠Base Station Sim	ulator
4.	Test Configuration	With Belt Clip	Without Belt Clip	o N/A
5.	Tissue Depth is at least 15.0	cm		

Jay M. Moulton Vice President

Note: When the highest SAR channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e). The 12 mm gap for testing was approved by the FCC for testing this device in KDB inquiry 869935 and 831948. The testing was conducted on Top Face, Bottom Face and edges closest to each antenna. The Top Face, Bottom Face, Side 'D', Side 'A' and Side 'B' testing was conducted for the WWAN antenna. The sixth side of the unit was not tested as the WWAN antenna was more than 2.5 cm from the side. All testing was conducted per TCB Workshop October 2010 presentation. See the photo in Appendix C for a pictorial of the setups, labeling of the sides tested and antenna locations.

SAR Data Summary – 1900 MHz Body – Rev 0

MEASUREMENT RESULTS Begin/End Frequency Reverse **Forward** SAR Gap **Position** Rev Level **Power** Channel Channel (W/kg) (dBm) MHz Ch. (dBm) 2 Slot 307.2 kbps 1851.25 25 Rev 0 24.42 24.39 153.6 kbps 1.299 1880.00 600 Rev 0 24.43 24.41 153.6 kbps 2 Slot 307.2 kbps Top Face 1.118 1908.75 1175 Rev₀ 24.46 24.40 153.6 kbps 2 Slot 307.2 kbps 1.089 25 2 Slot 307.2 kbps 1851.25 24.40 24.35 153.6 kbps 1.408 Rev 0 **Bottom** 1880.00 600 24.41 24.34 2 Slot 307.2 kbps 1.160 Rev 0 153.6 kbps Face 1908.75 1175 Rev 0 24.43 24.36 153.6 kbps 2 Slot 307.2 kbps 1.183 12 mm Rev₀ 24.39 153.6 kbps 2 Slot 307.2 kbps 1851.25 25 24.32 1.339 24.37 24.30 153.6 kbps 2 Slot 307.2 kbps Side 'D' 1880.00 600 Rev 0 1.333 1908.75 1175 24.40 24.35 153.6 kbps 2 Slot 307.2 kbps 1.417 Rev 0 0.272 Side 'A' 1880.00 600 Rev 0 24.38 24.31 153.6 kbps 2 Slot 307.2 kbps Side 'B' 1880.00 600 Rev 0 24.41 24.37 153.6 kbps 2 Slot 307.2 kbps 0.794 Side 'D' 1908.75 1175 Rev A 24.35 24.30 4096 bits 2 Slot 307.2 kbps 1.370

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a	all tests.		
	Power Measured		☐ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	Test Code	⊠ Base Station Sim	nulator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Cli	p N/A
5.	Tissue Depth is at least 15.0	cm		

Jay M. Moulton Vice President

Note: When the highest SAR channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e). The 12 mm gap for testing was approved by the FCC for testing this device in KDB inquiry 869935 and 831948. The testing was conducted on Top Face, Bottom Face and edges closest to each antenna. The Top Face, Bottom Face, Side 'D', Side 'A' and Side 'B' testing was conducted for the WWAN antenna. The sixth side of the unit was not tested as the WWAN antenna was more than 2.5 cm from the side. All testing was conducted per TCB Workshop October 2010 presentation. See the photo in Appendix C for a pictorial of the setups, labeling of the sides tested and antenna locations.

SAR Data Summary - 2450 MHz Body

MEASU	MEASUREMENT RESULTS										
Gap	Side	Freque	ency	Mode Modulation Begin		Begin/En	d Power	SAR			
	0.00	MHz	Ch.				(W/kg)				
	Top Face	2437	6	b	DSSS	16.05	16.03	0.182			
12 mm	Bottom Face	2437	6	b	DSSS	16.01	15.99	0.143			
	Side 'A'	2437	6	b	DSSS	16.02	16.00	0.181			

Body
1.6 W/kg (mW/g)
averaged over 1 gram

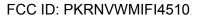
1.	Battery is fully charged for a	all tests.		
	Power Measured		□ERP	EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	\boxtimes Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Sir	nulator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Cl	ip N/A
5.	Tissue Depth is at least 15.0	cm		

Jay M. Moulton Vice President

Note: When the highest conducted power channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e). The 12 mm gap for testing was approved by the FCC for testing this device in KDB inquiry 869935 and 831948. Test was conducted for 802.11b only as 802.11g and 802.11n power levels were not greater than 0.25 dB than 802.11b per 248227. The testing was conducted on Top Face, Bottom Face and edges closest to each antenna. The Side 'A', Top Face and Bottom Face was tested for the WLAN antenna. The remain three sided were not tested as the antenna was more than 2.5 cm from the three sides. All testing was conducted per TCB Workshop October 2010 presentation. See the photo in Appendix C for a pictorial of the setups, labeling of the sides tested and antenna locations.

SAR Data Summary - 750 MHz Body - LTE Band 13 10 MHz QPSK

MEASUREMENT RESULTS												
Position	Frequency		Modulation	RB	RB	Begin/End Power		SAR				
1 OSILIOII	MHz	Ch.	Modulation	Size	Offset	(dBm)	(dBm)	(W/kg)				
	782.0	23230	QPSK	25	13	24.51	24.50	0.675				
Top Face	782.0	23230	QPSK	1	0	24.35	24.32	0.535				
	782.0	23230	QPSK	1	49	24.45	24.42	0.649				
Bottom	782.0	23230	QPSK	25	13	24.50	24.48	0.735				
	782.0	23230	QPSK	1	0	24.33	24.30	0.669				
race	782.0	23230	QPSK	1	49	24.41	24.39	0.675				
	782.0	23230	QPSK	25	13	24.49	24.47	0.140				
Side 'D'	782.0	23230	QPSK	1	0	24.31	24.29	0.131				
	782.0	23230	QPSK	1	49	24.40	24.38	0.142				
	782.0	23230	QPSK	25	13	24.48	24.47	0.309				
Side 'A'	782.0	23230	QPSK	1	0	24.32	24.30	0.256				
	782.0	23230	QPSK	1	49	24.44	24.41	0.301				
	782.0	23230	QPSK	25	13	24.50	24.47	0.273				
Side 'B'	782.0	23230	QPSK	1	0	24.32	24.30	0.317				
	782.0	23230	QPSK	1	49	24.40	24.38	0.308				
	Position Top Face Bottom Face Side 'D'	Position Frequence	Frequency MHz Ch. 782.0 23230	Frequency Modulation Frequency Modulation MHz Ch. Modulation 782.0 23230 QPSK 782.0 23230 QPSK	Frequency Modulation RB Size Top Face Frequency Modulation RB Size Top Face 782.0 23230 QPSK 25 Bottom Face 782.0 23230 QPSK 1 Face 782.0 23230 QPSK 1 Side 'D' 782.0 23230 QPSK 1 Side 'A' 782.0 23230 QPSK 1 Side 'A' 782.0 23230 QPSK 1 Side 'A' 782.0 23230 QPSK 1 782.0 23230 QPSK 1 Side 'A' 782.0 23230 QPSK 1 Side 'A' <td>Position Frequency Modulation RB Size RB Offset Top Face 782.0 23230 QPSK 25 13 Top Face 782.0 23230 QPSK 1 0 782.0 23230 QPSK 1 49 Bottom Face 782.0 23230 QPSK 1 0 782.0 23230 QPSK 1 49 782.0 23230 QPSK 1 49 Side 'D' 782.0 23230 QPSK 1 0 782.0 23230 QPSK 1 49 782.0 23230 QPSK 1 49 Side 'A' 782.0 23230 QPSK 1 0 782.0 23230 QPSK 1 0 782.0 23230 QPSK 1 49 782.0 23230 QPSK 1 49 782.0 23230 <t< td=""><td>Position Frequency Modulation RB Size RB Offset Gegin/E MHz Ch. Modulation RB Size RB Offset Gegin/E 782.0 23230 QPSK 25 13 24.51 782.0 23230 QPSK 1 0 24.35 80ttom Face 782.0 23230 QPSK 25 13 24.50 782.0 23230 QPSK 1 0 24.33 782.0 23230 QPSK 1 49 24.41 Side 'D' 782.0 23230 QPSK 1 0 24.31 782.0 23230 QPSK 1 49 24.49 Side 'D' 782.0 23230 QPSK 1 49 24.49 Side 'A' 782.0 23230 QPSK 1 0 24.32 782.0 23230 QPSK 1 0 24.32 782.0</td><td>Position Frequency Modulation RB Size RB Offset Begin/End Power (dBm) Top Face 782.0 23230 QPSK 25 13 24.51 24.50 782.0 23230 QPSK 1 0 24.35 24.32 782.0 23230 QPSK 1 49 24.45 24.42 80ttom Face 782.0 23230 QPSK 25 13 24.50 24.48 782.0 23230 QPSK 1 0 24.33 24.30 782.0 23230 QPSK 1 0 24.33 24.30 782.0 23230 QPSK 1 49 24.41 24.39 8 ide 'D' 782.0 23230 QPSK 1 0 24.31 24.29 782.0 23230 QPSK 1 49 24.40 24.38 8 ide 'A' 782.0 23230 QPSK 1 0 <td< td=""></td<></td></t<></td>	Position Frequency Modulation RB Size RB Offset Top Face 782.0 23230 QPSK 25 13 Top Face 782.0 23230 QPSK 1 0 782.0 23230 QPSK 1 49 Bottom Face 782.0 23230 QPSK 1 0 782.0 23230 QPSK 1 49 782.0 23230 QPSK 1 49 Side 'D' 782.0 23230 QPSK 1 0 782.0 23230 QPSK 1 49 782.0 23230 QPSK 1 49 Side 'A' 782.0 23230 QPSK 1 0 782.0 23230 QPSK 1 0 782.0 23230 QPSK 1 49 782.0 23230 QPSK 1 49 782.0 23230 <t< td=""><td>Position Frequency Modulation RB Size RB Offset Gegin/E MHz Ch. Modulation RB Size RB Offset Gegin/E 782.0 23230 QPSK 25 13 24.51 782.0 23230 QPSK 1 0 24.35 80ttom Face 782.0 23230 QPSK 25 13 24.50 782.0 23230 QPSK 1 0 24.33 782.0 23230 QPSK 1 49 24.41 Side 'D' 782.0 23230 QPSK 1 0 24.31 782.0 23230 QPSK 1 49 24.49 Side 'D' 782.0 23230 QPSK 1 49 24.49 Side 'A' 782.0 23230 QPSK 1 0 24.32 782.0 23230 QPSK 1 0 24.32 782.0</td><td>Position Frequency Modulation RB Size RB Offset Begin/End Power (dBm) Top Face 782.0 23230 QPSK 25 13 24.51 24.50 782.0 23230 QPSK 1 0 24.35 24.32 782.0 23230 QPSK 1 49 24.45 24.42 80ttom Face 782.0 23230 QPSK 25 13 24.50 24.48 782.0 23230 QPSK 1 0 24.33 24.30 782.0 23230 QPSK 1 0 24.33 24.30 782.0 23230 QPSK 1 49 24.41 24.39 8 ide 'D' 782.0 23230 QPSK 1 0 24.31 24.29 782.0 23230 QPSK 1 49 24.40 24.38 8 ide 'A' 782.0 23230 QPSK 1 0 <td< td=""></td<></td></t<>	Position Frequency Modulation RB Size RB Offset Gegin/E MHz Ch. Modulation RB Size RB Offset Gegin/E 782.0 23230 QPSK 25 13 24.51 782.0 23230 QPSK 1 0 24.35 80ttom Face 782.0 23230 QPSK 25 13 24.50 782.0 23230 QPSK 1 0 24.33 782.0 23230 QPSK 1 49 24.41 Side 'D' 782.0 23230 QPSK 1 0 24.31 782.0 23230 QPSK 1 49 24.49 Side 'D' 782.0 23230 QPSK 1 49 24.49 Side 'A' 782.0 23230 QPSK 1 0 24.32 782.0 23230 QPSK 1 0 24.32 782.0	Position Frequency Modulation RB Size RB Offset Begin/End Power (dBm) Top Face 782.0 23230 QPSK 25 13 24.51 24.50 782.0 23230 QPSK 1 0 24.35 24.32 782.0 23230 QPSK 1 49 24.45 24.42 80ttom Face 782.0 23230 QPSK 25 13 24.50 24.48 782.0 23230 QPSK 1 0 24.33 24.30 782.0 23230 QPSK 1 0 24.33 24.30 782.0 23230 QPSK 1 49 24.41 24.39 8 ide 'D' 782.0 23230 QPSK 1 0 24.31 24.29 782.0 23230 QPSK 1 49 24.40 24.38 8 ide 'A' 782.0 23230 QPSK 1 0 <td< td=""></td<>				


Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully charged for a	all tests.		
	Power Measured		☐ERP	EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	Test Code	⊠ Base Station Sim	nulator
4.	Test Configuration	☐With Belt Clip	Without Belt Cli	p N/A
5.	Tissue Depth is at least 15.0	cm		

Jay M. Moulton

Jay M. Moulton Vice President

Note: When the highest conducted power channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e). The 12 mm gap for testing was approved by the FCC for testing this device in KDB inquiry 869935 and 831948. Test reduction was based on TCB workshop slides from October of 2010. The testing was conducted on Top Face, Bottom Face and edges closest to each antenna. The Top Face, Bottom Face, Side 'D', Side 'A' and Side 'B' testing was conducted for the WWAN antenna. The sixth side of the unit was not tested as the WWAN antenna was more than 2.5 cm from the side. The 5 MHz bandwidth was not tested due to the maximum conducted measured output power was with 0.5 dB of the 10 MHz bandwidth maximum conducted output power measurement and the SAR was less than 1.45 W/kg per KDB 941225 and the October 2010 TCB Workshop presentation (LTE Interim SAR Test Considerations). MPR is not enabled for this device. A-MPR was disabled for all SAR test measurements. All testing was conducted per TCB Workshop October 2010 presentation. See the photo in Appendix C for a pictorial of the setups, labeling of the sides tested and antenna locations.

SAR Data Summary – 750 MHz Body – LTE Band 13 10 MHz 16QAM

MEASUREMENT RESULTS												
Gap	Position	Frequ	uency	Modulation	RB	RB	Begin/End Power		SAR			
Jup	1 00111011	MHz	Ch.	Modulation	Size	Offset	(dBm)	(dBm)	(W/kg)			
		782.0	23230	16QAM	25	13	24.44	24.40	0.687			
	Top Face	782.0	23230	16QAM	1	0	24.52	24.50	0.599			
		782.0	23230	16QAM	1	49	24.50	24.47	0.587			
	Bottom Face	782.0	23230	16QAM	25	13	24.40	24.38	0.746			
		782.0	23230	16QAM	1	0	24.50	24.46	0.679			
	race	782.0	23230	16QAM	1	49	24.47	24.43	0.592			
		782.0	23230	16QAM	25	13	24.42	24.39	0.135			
12 mm	Side 'D'	782.0	23230	16QAM	1	0	24.49	24.47	0.122			
		782.0	23230	16QAM	1	49	24.46	24.40	0.138			
		782.0	23230	16QAM	25	13	24.43	24.37	0.298			
	Side 'A'	782.0	23230	16QAM	1	0	24.51	24.48	0.249			
		782.0	23230	16QAM	1	49	24.49	24.46	0.260			
		782.0	23230	16QAM	25	13	24.40	24.35	0.251			
	Side 'B'	782.0	23230	16QAM	1	0	24.49	24.42	0.274			
		782.0	23230	16QAM	1	49	24.47	24.43	0.306			

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully charged for a	all tests.		
	Power Measured		☐ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	Test Code	⊠Base Station Sim	nulator
4.	Test Configuration	☐With Belt Clip	Without Belt Cli	p N/A
5.	Tissue Depth is at least 15.0	cm		

Jay M. Moulton Vice President

Note: When the highest conducted power channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e). The 12 mm gap for testing was approved by the FCC for testing this device in KDB inquiry 869935 and 831948. Test reduction was based on TCB workshop slides from October of 2010. The testing was conducted on Top Face, Bottom Face and edges closest to each antenna. The Top Face, Bottom Face, Side 'D', Side 'A' and Side 'B' testing was conducted for the WWAN antenna. The sixth side of the unit was not tested as the WWAN antenna was more than 2.5 cm from the side. The 5 MHz bandwidth was not tested due to the maximum conducted measured output power was with 0.5 dB of the 10 MHz bandwidth maximum conducted output power measurement and the SAR was less than 1.45 W/kg per KDB 941225 and the October 2010 TCB Workshop presentation (LTE Interim SAR Test Considerations). MPR is not enabled for this device. A-MPR was disabled for all SAR test measurements. All testing was conducted per TCB Workshop October 2010 presentation. See the photo in Appendix C for a pictorial of the setups, labeling of the sides tested and antenna locations.

SAR Data Summary – Simultaneous Transmission Evaluation

MEAS	MEASUREMENT RESULTS												
Band 1 Band 2									SAR	SAR	SAR		
Freque	ency	Modulation/R	RB	RB	Freque	ency	Modulation	Position	Position	(, , ,	(W/kg) Total	
MHz	Ch.	ev Level	Size	Offset	MHz	Ch.	Modulation		Band 1	Band 2	Total		
836.6	384	Rev. 0			2437	6	DSSS	Bottom Face	1.314	0.143	1.457		
1908.75	1175	Rev. 0			2437	6	DSSS	Side 'D'	1.417	*	1.417		
782	23230	QPSK	25	13	2437	6	DSSS	Bottom	0.735	0.143	0.878		
782	23230	16QAM	25	13	2437	6	DSSS	Face	0.746	0.143	0.889		

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a	all tests.		
	Power Measured		□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	\boxtimes Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	Test Code	⊠Base Station Sir	nulator
4.	Test Configuration	☐With Belt Clip	Without Belt Cl	ip N/A
5	Tissue Depth is at least 15.0	cm		

Jay M. Moulton Vice President

Note: The WWAN or LTE and WLAN can transmit simultaneously. The WWAN and LTE cannot transmit simultaneously. Test reduction was conducted per KDB 941225 SAR for Simultaneous Transmission. The sum of the two SAR values is below the 1.6 W/kg SAR limit.

^{**} The Band 2 Side 'D' was not tested as a single transmitter due to the antenna being greater than 2.5 cm from the side. Therefore, there was no SAR value which would add to the WWAN value.

11. Test Equipment List

Table 11.1 Equipment Specifications

	Calibration Due Date	Serial Number
Type		
ThermoCRS Robot	N/A	RAF0338198
ThermoCRS Controller	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	8189D8U KCPR08N
Aprel E-Field Probe ALS-E020	09/22/2011	RFE-215
Aprel E-Field Probe ALS-E030	07/14/2011	E030-001
Aprel Dummy Probe	N/A	023
Aprel Left Phantom	N/A	RFE-267
Aprel Right Phantom	N/A	RFE-268
Aprel UniPhantom	N/A	RFE-273
Aprel Validation Dipole ALS-D-450-S-2	01/12/2011	RFE-362
Aprel Validation Dipole ALS-D-835-S-2	01/14/2011	180-00561
Aprel Validation Dipole ALS-D-900-S-2	01/12/2011	RFE-275
Aprel Validation Dipole ALS-D-1900-S-2	01/15/2011	210-00713
Aprel Validation Dipole ALS-D-2450-S-2	01/12/2011	RFE-278
Aprel Validation Dipole RFE-D-2600-S-2	01/18/2011	RFE-121
Aprel Validation Dipole RFE-D-BB-S-2	01/12/2011	235-00801
Agilent (HP) 437B Power Meter	03/24/2011	3125U08837
Agilent (HP) 8481B Power Sensor	03/24/2011	3318A05384
Advantest R3261A Spectrum Analyzer	03/24/2011	31720068
Agilent (HP) 8350B Signal Generator	04/19/2011	2749A10226
Agilent (HP) 83525A RF Plug-In	04/19/2011	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/25/2011	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/25/2011	2904A00595
Agilent (HP) 8960 Base Station Sim.	03/25/2012	MY48360364
R&S CMW500 Wideband Radio Comm. Box	8/14/2011	101383
Aprel Dielectric Probe Assembly	N/A	0011
Head Equivalent Matter (450 MHz)	N/A	N/A
Head Equivalent Matter (835 MHz)	N/A	N/A
Head Equivalent Matter (1900 MHz)	N/A	N/A
Head Equivalent Matter (2450 MHz)	N/A	N/A
Body Equivalent Matter (450 MHz)	N/A	N/A
Body Equivalent Matter (750 MHz)	N/A	N/A
Body Equivalent Matter (835 MHz)	N/A	N/A
Body Equivalent Matter (1900 MHz)	N/A	N/A
Body Equivalent Matter (2450 MHz)	N/A	N/A
Body Equivalent Matter (2600 MHz)	N/A	N/A
Body Equivalent Matter (5200 MHz)	N/A	N/A
Body Equivalent Matter (5800 MHz)	N/A	N/A

12. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

13. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, June 2001.
- [5] IEEE Standard 1528 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.
- [6] Industry Canada, RSS 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2010.
- [7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

```
************
Test Result for UIM Dielectric Parameter
Tue 23/Nov/2010 08:17:36
Freq Frequency (GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
***************
Freq FCC_eB FCC_sB Test_e Test_s
0.8050 55.32 0.97 55.16 0.94
0.8150 55.28 0.97 55.12 0.95
0.8250 55.24 0.97 55.07 0.96
0.8350 55.20 0.97 55.01 0.98
0.8450 55.17 0.98 54.98 0.99

      0.8450
      55.17
      0.98
      54.98
      0.99

      0.8550
      55.14
      0.99
      54.94
      1.01

      0.8650
      55.11
      1.01
      54.90
      1.02

*************
Test Result for UIM Dielectric Parameter
Tue 23/Nov/2010 08:34:10
Freq Frequency (GHz)
FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM
Test_s Sigma of UIM
*****************
Freq FCC_eB FCC_sB Test_e Test_s
1.8700 53.30 1.52 53.23 1.50
1.8800 53.30 1.52 53.21 1.52
1.8900 53.30 1.52 53.19 1.53
1.9000 53.30 1.52 53.17 1.54

    1.9100
    53.30
    1.52
    53.15
    1.55

    1.9200
    53.30
    1.52
    53.14
    1.57

    1.9300
    53.30
    1.52
    53.12
    1.58
```



```
*****************
Test Result for UIM Dielectric Parameter
Mon 29/Nov/2010 07:48:11
Freq Frequency (GHz)
FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM
*****
Freq FCC_eB FCC_sB Test_e Test_s
2.4200 52.74 1.92 52.23 1.93
2.4300 52.73 1.93 52.21 1.94
2.4400 52.71 1.94 52.19 1.96
2.4500 52.70 1.95 52.17 1.97

      2.4600
      52.69
      1.96
      52.15
      1.98

      2.4700
      52.67
      1.98
      52.11
      1.99

2.4800 52.66
                                    1.99
                                                      52.09
                                                                          2.01
***************
Test Result for UIM Dielectric Parameter
Tue 30/Nov/2010 07:29:51
Freq Frequency (GHz)
FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM
******************
Freq FCC_eB FCC_sB Test_e Test_s
0.7520 55.52 0.96 53.78 0.96
0.7620 55.48 0.96 53.73 0.97
0.7720 55.45 0.97 53.69 0.98

    0.7820
    55.41
    0.97
    53.63
    0.99

    0.7920
    55.37
    0.97
    53.58
    1.00

    0.8020
    55.33
    0.97
    53.53
    1.01

    0.8120
    55.29
    0.97
    53.49
    1.01
```


SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 08:27:43 AM End Time : 23-Nov-2010 08:42:55 AM Scanning Time : 912 secs

Product Data

Product Data

Device Name : Validation

Serial No. : 835

Type : Dipole

Model : ALS-D-835-S-2

Frequency : 835.00 MHz Max. Transmit Pwr : 0.1 W

Drift Time : 0 min(s)
Length : 161 mm
Width : 3.6 mm
Depth : 89.8 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 1.040 W/kg Power Drift-Finish: 1.039 W/kg Power Drift (%) : -0.129

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 49.00 RH%

Epsilon : 55.01 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

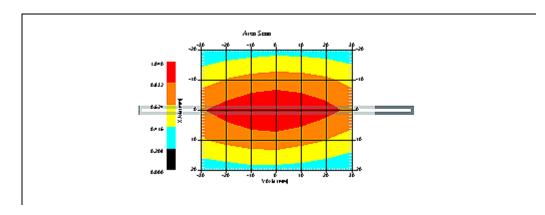
Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

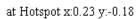
Compression Point: 95.00 mV : 1.56 mm Offset

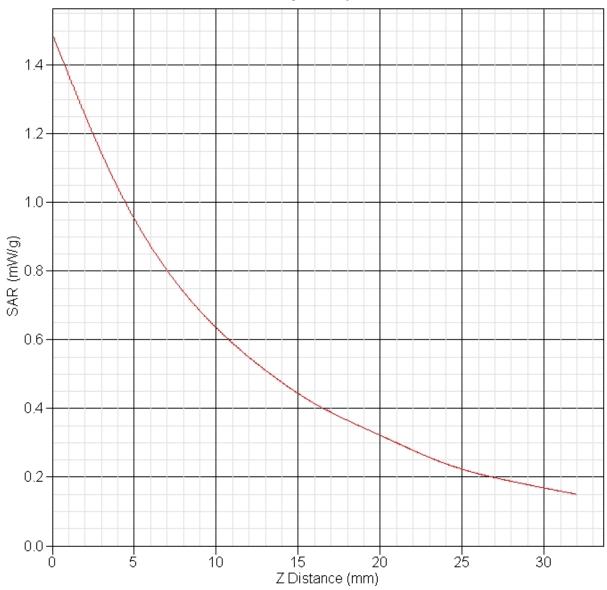


Measurement Data Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 25.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:21:48 AM
Area Scan : 5x7x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data


DUT Position : Touch Separation : 15 mm Channel : Mid



1 gram SAR value : 0.958 W/kg 10 gram SAR value : 0.604 W/kg Area Scan Peak SAR: 1.038 W/kg Zoom Scan Peak SAR: 1.491 W/kg

SAR-Z Axis

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 09:33:41 AM End Time : 23-Nov-2010 09:47:00 AM Scanning Time : 799 secs

Product Data

Product Data

Device Name : Validation

Serial No. : 1900

Type : Dipole

Model : ALS-D-1900-S-2

Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 68 mm
Width : 3.6 mm
Depth : 39.5 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 4.265 W/kg Power Drift-Finish: 4.284 W/kg Power Drift (%) : 0.453

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

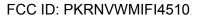
Humidity : 49.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle


Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Measurement Data

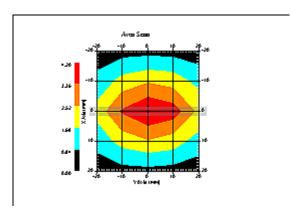
Crest Factor : 1

Scan Type : Complete

Tissue Temp. : 20.00 °C

Ambient Temp. : 23.00 °C

Set-up Date : 23-Nov-2010

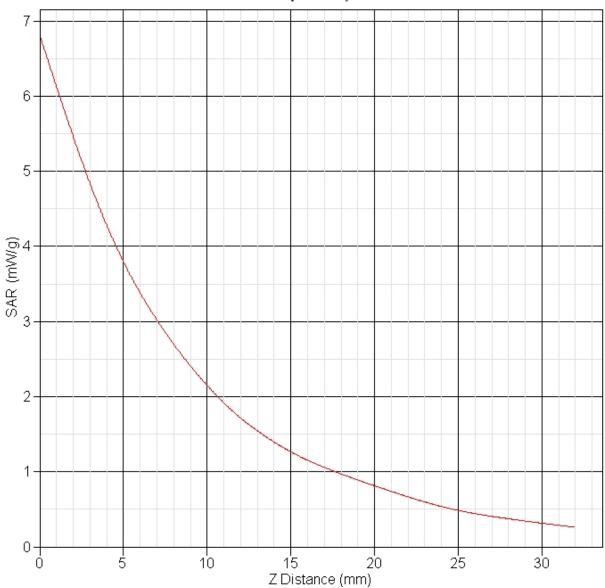

Set-up Time : 8:39:41 AM

Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 10 mm Channel : Mid



1 gram SAR value : 4.118 W/kg 10 gram SAR value : 1.983 W/kg Area Scan Peak SAR: 4.264 W/kg Zoom Scan Peak SAR: 6.872 W/kg

SAR-Z Axis

at Hotspot x:0.25 y:-0.17

SAR Test Report

By Operator : Jay

Measurement Date : 29-Nov-2010

Starting Time : 29-Nov-2010 07:59:21 AM End Time : 29-Nov-2010 08:12:20 AM Scanning Time : 779 secs

Product Data

Product Data
Device Name : Validation
Serial No. : 2450
Type : Dipole
Model : ALS-D-2450-S-2
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 51.5 mm
Width : 3.6 mm
Depth : 30.4 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 6.280 W/kg Power Drift-Finish: 6.193 W/kg Power Drift (%) : -1.375

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

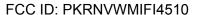
Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 29-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 52.17 F/m

Sigma : 1.97 S/m

Density : 1000.00 kg/cu. m

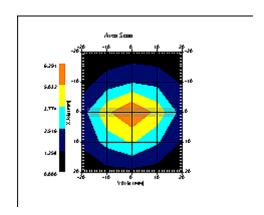

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

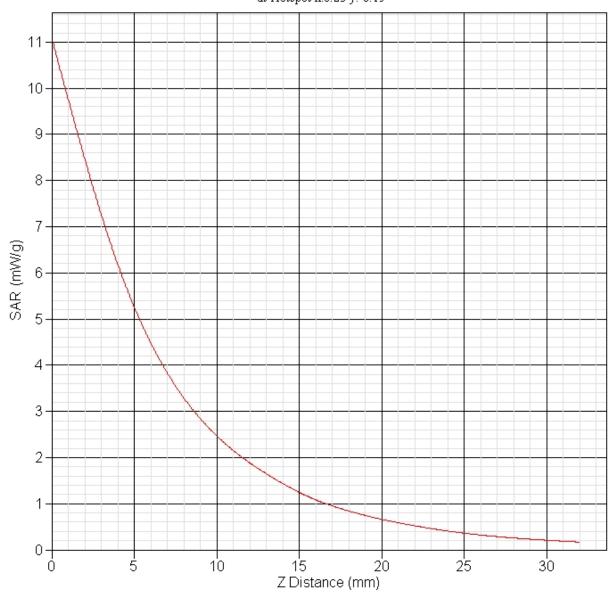
Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 29-Nov-2010
Set-up Time : 7:40:13 AM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 10 mm Channel : Mid



1 gram SAR value : 5.324 W/kg 10 gram SAR value : 2.414 W/kg Area Scan Peak SAR: 6.291 W/kg Zoom Scan Peak SAR: 11.090 W/kg

SAR-Z Axis

at Hotspot x:0.23 y:-0.15

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 07:40:41 AM End Time : 30-Nov-2010 07:55:49 AM Scanning Time : 908 secs

Product Data

Product Data
Device Name : Validation
Serial No. : 750
Type : Dipole
Model : ALS-D-750-S-2
Frequency : 750.00 MHz Max. Transmit Pwr : 0.1 W

Drift Time : 0 min(s)
Length : 180.2 mm
Width : 3.6 mm
Depth : 97 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 0.999 W/kg Power Drift-Finish: 0.972 W/kg Power Drift (%) : -2.646

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 49.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

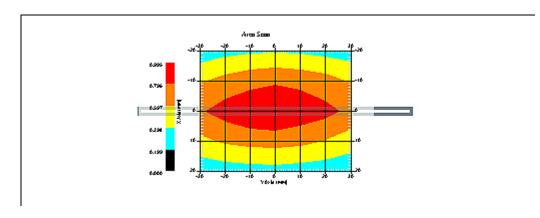
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

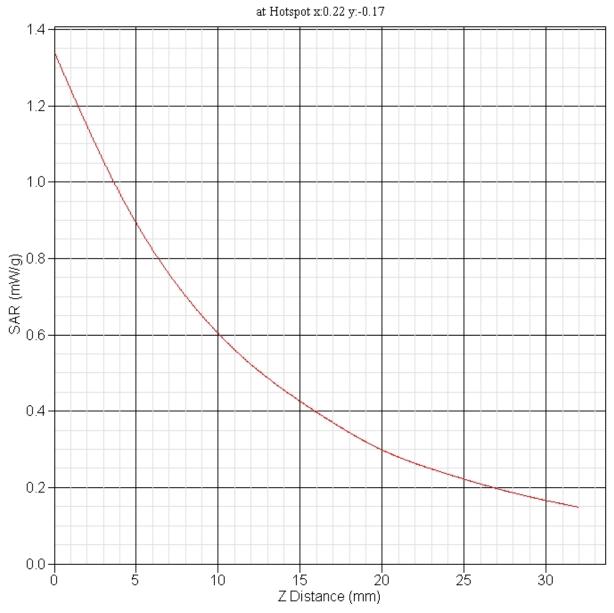
Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Measurement Data Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 25.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 9:21:48 AM
Area Scan : 5x7x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data


DUT Position : Touch Separation : 15 mm Channel : Mid

1 gram SAR value : 0.907 W/kg 10 gram SAR value : 0.570 W/kg Area Scan Peak SAR: 0.994 W/kg Zoom Scan Peak SAR: 1.341 W/kg

SAR-Z Axis

Appendix B – SAR Test Data Plots

Note: In all data sheets in Appendix B, the frequency noted in the 'Product Data' section is the frequency band which the device was transmitting. This frequency does not refer to the actual frequency and channel of the test. The channel is listed in the 'Other Data' section of the data sheet as Low, Mid or High. The actual test frequency is listed in Section 12 in each of the data summary sheets.

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 04:54:32 PM End Time : 23-Nov-2010 05:17:10 PM Scanning Time : 1358 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 835.00 MHz Max. Transmit Pwr : 0.282 W Drift Time : 0 min(s)
Length : 60 mm
Width : 90 mm
Depth : 12 mm
Antenna Type : Internal
Orientation : Top Face Power Drift-Start : 1.112 W/kg Power Drift-Finish: 1.118 W/kg

Power Drift (%) : 0.550

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.01 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

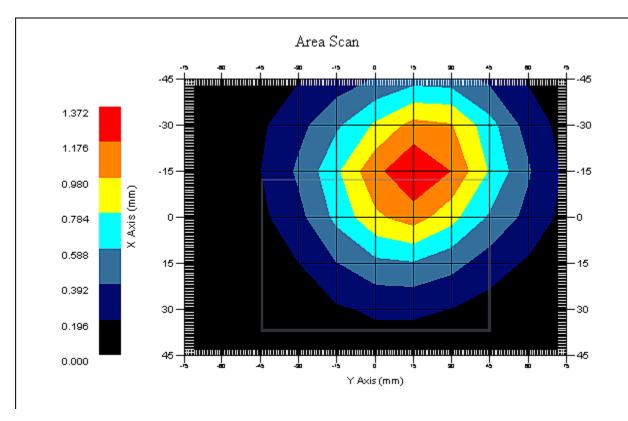
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 4:23:50 PM

Area Scan : 7x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face Separation : 12 mm Channel : Low

1 gram SAR value : 1.275 W/kg 10 gram SAR value : 0.871 W/kg Area Scan Peak SAR : 1.369 W/kg Zoom Scan Peak SAR : 1.731 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 04:23:55 PM End Time : 23-Nov-2010 04:46:48 PM Scanning Time : 1373 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 835.00 MHz Max. Transmit Pwr : 0.282 W Drift Time : 0 min(s)
Length : 60 mm
Width : 90 mm
Depth : 12 mm
Antenna Type : Internal
Orientation : Top Face Power Drift-Start : 1.137 W/kg Power Drift-Finish: 1.159 W/kg Power Drift (%) : 1.886

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.01 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

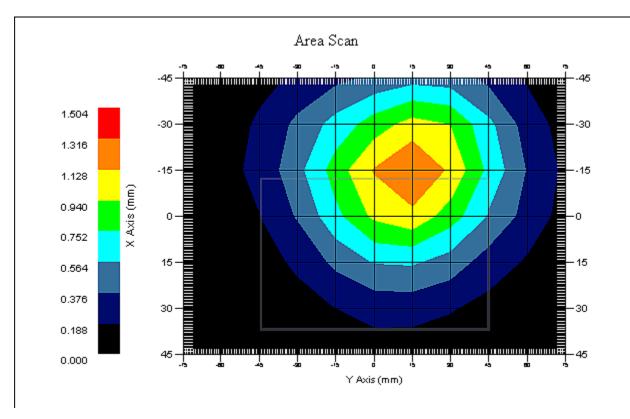
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 4:23:50 PM

Area Scan : 7x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face Separation : 12 mm Channel : Mid

1 gram SAR value : 1.275 W/kg 10 gram SAR value : 0.899 W/kg Area Scan Peak SAR : 1.318 W/kg Zoom Scan Peak SAR : 1.691 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 05:18:37 PM End Time : 23-Nov-2010 05:41:17 PM Scanning Time : 1360 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 835.00 MHz Max. Transmit Pwr : 0.282 W Drift Time : 0 min(s)
Length : 60 mm
Width : 90 mm
Depth : 12 mm
Antenna Type : Internal
Orientation : Top Face Power Drift-Start : 0.780 W/kg Power Drift-Finish: 0.795 W/kg

Power Drift (%) : 1.903

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.01 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

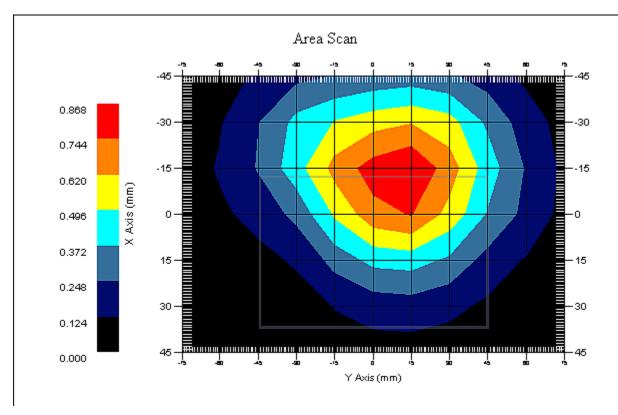
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 4:23:50 PM

Area Scan : 7x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face Separation : 12 mm Channel : High

1 gram SAR value : 0.811 W/kg 10 gram SAR value : 0.575 W/kg Area Scan Peak SAR : 0.865 W/kg Zoom Scan Peak SAR : 1.071 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 06:07:54 PM End Time : 23-Nov-2010 06:30:38 PM Scanning Time : 1364 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 835.00 MHz Max. Transmit Pwr : 0.282 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal
Orientation : Bottom Face Power Drift-Start: 0.929 W/kg Power Drift-Finish: 0.927 W/kg Power Drift (%) : -0.190

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.01 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

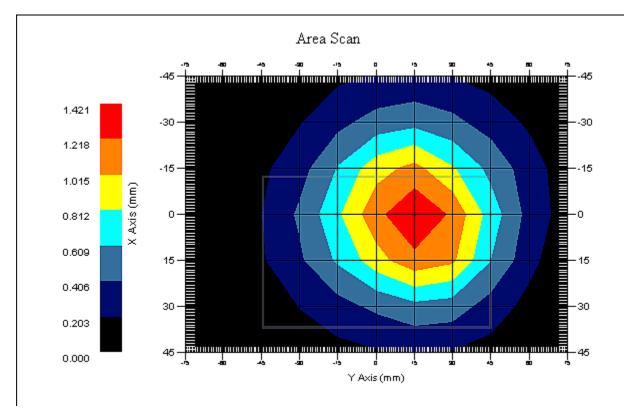
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 4:23:50 PM

Area Scan : 7x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face

Separation : 12 mm Channel : Low

1 gram SAR value : 1.281 W/kg 10 gram SAR value : 0.839 W/kg Area Scan Peak SAR : 1.418 W/kg Zoom Scan Peak SAR : 1.811 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 05:43:36 PM End Time : 23-Nov-2010 06:06:15 PM Scanning Time : 1359 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 835.00 MHz Max. Transmit Pwr : 0.282 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal
Orientation : Bottom Face Power Drift-Start: 0.959 W/kg Power Drift-Finish: 0.971 W/kg Power Drift (%) : 1.228

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.01 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

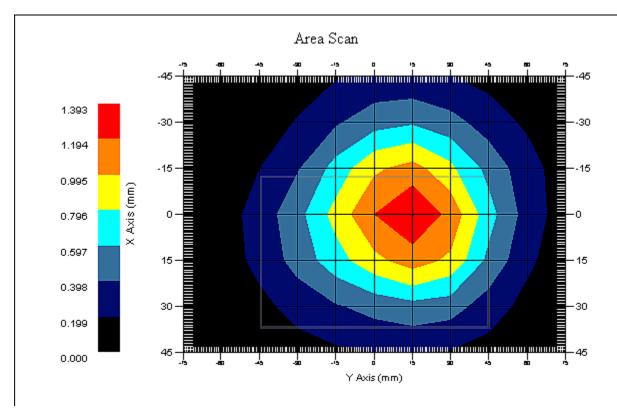
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

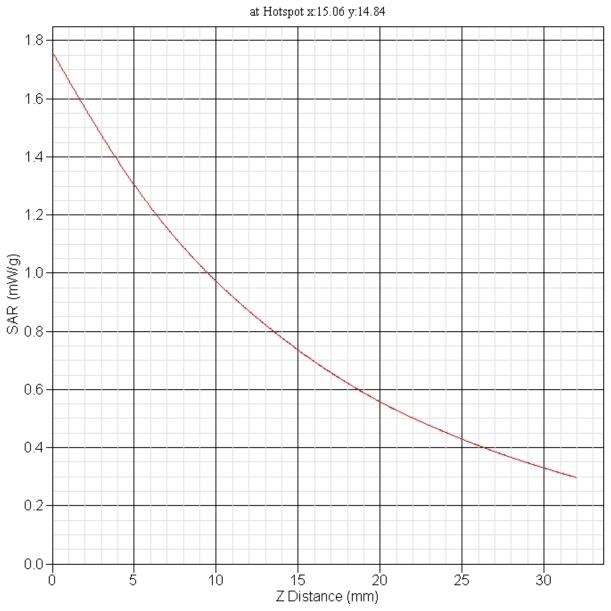

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 4:23:50 PM

Area Scan : 7x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face

Separation : 12 mm Channel : Mid



1 gram SAR value : 1.314 W/kg 10 gram SAR value : 0.922 W/kg Area Scan Peak SAR : 1.393 W/kg Zoom Scan Peak SAR : 1.761 W/kg

SAR-Z Axis

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 06:32:01 PM End Time : 23-Nov-2010 06:54:35 PM Scanning Time : 1354 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 835.00 MHz Max. Transmit Pwr : 0.282 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal
Orientation : Bottom Face Power Drift-Start: 0.608 W/kg Power Drift-Finish: 0.610 W/kg

Power Drift (%) : 0.348

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

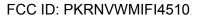
Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.01 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

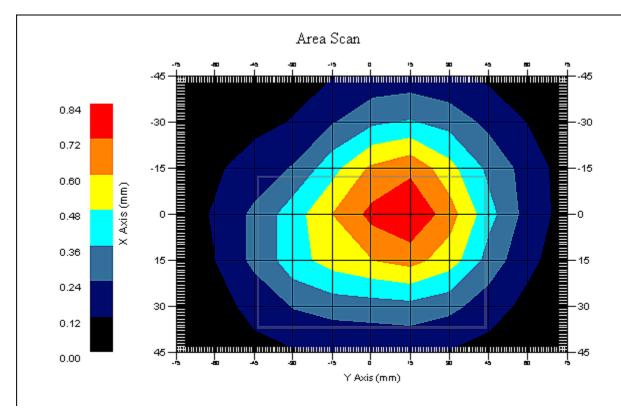

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 4:23:50 PM

Area Scan : 7x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face

Separation : 12 mm Channel : High

1 gram SAR value : 0.796 W/kg 10 gram SAR value : 0.561 W/kg Area Scan Peak SAR : 0.839 W/kg Zoom Scan Peak SAR : 1.061 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 08:24:42 PM End Time : 23-Nov-2010 08:39:21 PM Scanning Time : 879 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : Rev 0

Model : 4510L

Frequency : 835.00 MHz Max. Transmit Pwr : 0.282 W Drift Time : 0 min(s)
Length : 12 mm
Width : 60 mm
Depth : 90 mm
Antenna Type : Internal
Orientation : Side 'D' Power Drift-Start : 0.308 W/kg Power Drift-Finish: 0.293 W/kg Power Drift (%) : -4.870

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.01 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

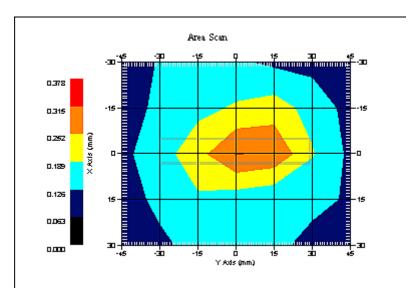
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 4:23:50 PM

Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'D' Separation : 12 mm Channel : Mid

1 gram SAR value : 0.316 W/kg 10 gram SAR value : 0.183 W/kg Area Scan Peak SAR : 0.317 W/kg Zoom Scan Peak SAR : 0.570 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 06:58:16 PM End Time : 23-Nov-2010 07:16:50 PM Scanning Time : 1114 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 835.00 MHz Max. Transmit Pwr : 0.282 W Drift Time : 0 min(s)
Length : 12 mm
Width : 90 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side 'A' Power Drift-Start : 0.778 W/kg Power Drift-Finish: 0.788 W/kg

Power Drift (%) : 1.275

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.01 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

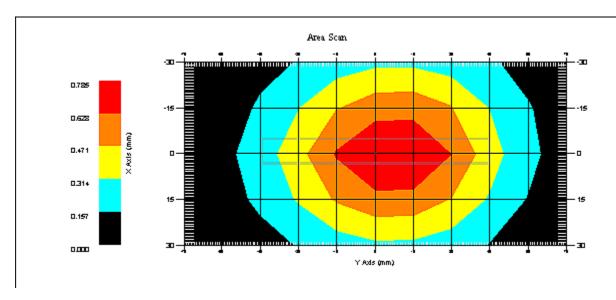
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 4:23:50 PM

Area Scan : 5x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'A'
Separation : 12 mm
Channel : Mid

1 gram SAR value : 0.761 W/kg 10 gram SAR value : 0.536 W/kg Area Scan Peak SAR : 0.784 W/kg Zoom Scan Peak SAR : 1.020 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 07:19:02 PM End Time : 23-Nov-2010 07:37:32 PM Scanning Time : 1110 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 835.00 MHz Max. Transmit Pwr : 0.282 W Drift Time : 0 min(s)
Length : 12 mm
Width : 90 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side 'B' Power Drift-Start : 0.468 W/kg Power Drift-Finish: 0.469 W/kg Power Drift (%) : 0.216

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.01 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

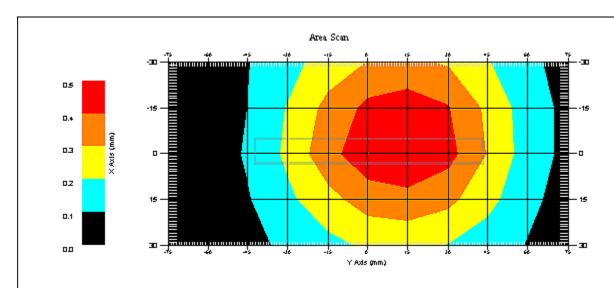
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 4:23:50 PM

Area Scan : 5x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'B' Separation : 12 mm Channel : Mid

1 gram SAR value : 0.484 W/kg 10 gram SAR value : 0.352 W/kg Area Scan Peak SAR : 0.500 W/kg Zoom Scan Peak SAR : 0.650 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 08:42:01 PM End Time : 23-Nov-2010 09:02:06 PM Scanning Time : 1205 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev A
Model : 4510L
Frequency : 835.00 MHz Max. Transmit Pwr : 0.282 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal
Orientation : Bottom Face Power Drift-Start: 0.975 W/kg Power Drift-Finish: 0.968 W/kg Power Drift (%) : -0.697

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.01 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

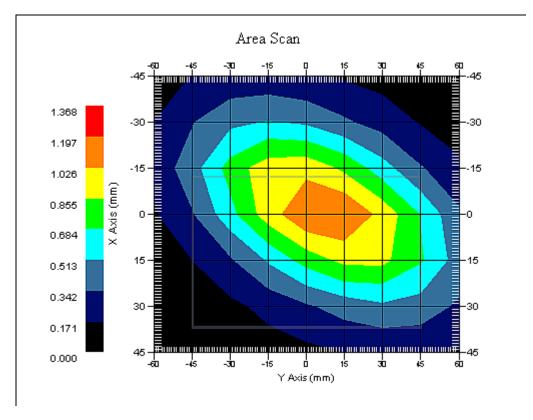
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 4:23:50 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face

Separation : 12 mm Channel : Mid

1 gram SAR value : 1.160 W/kg 10 gram SAR value : 0.805 W/kg Area Scan Peak SAR : 1.200 W/kg Zoom Scan Peak SAR : 1.621 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 01:44:34 PM End Time : 23-Nov-2010 02:07:17 PM Scanning Time : 1363 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 1900.00 MHz Max. Transmit Pwr : 0.279 W Drift Time : 0 min(s)
Length : 60 mm
Width : 90 mm
Depth : 12 mm
Antenna Type : Internal
Orientation : Top Face Power Drift-Start : 0.286 W/kg

Power Drift (%) : 3.495

Power Drift-Finish: 0.296 W/kg

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

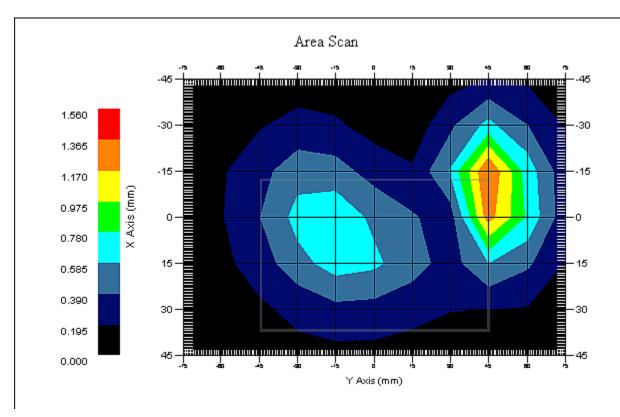
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:01:40 AM

Area Scan : 7x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face Separation : 12 mm Channel : Low

1 gram SAR value : 1.299 W/kg 10 gram SAR value : 0.707 W/kg Area Scan Peak SAR : 1.367 W/kg Zoom Scan Peak SAR : 2.201 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 01:20:01 PM End Time : 23-Nov-2010 01:42:45 PM Scanning Time : 1364 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 1900.00 MHz Max. Transmit Pwr : 0.279 W Drift Time : 0 min(s)
Length : 60 mm
Width : 90 mm
Depth : 12 mm
Antenna Type : Internal
Orientation : Top Face

Power Drift-Start : 0.229 W/kg Power Drift-Finish: 0.240 W/kg

Power Drift (%) : 4.807

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

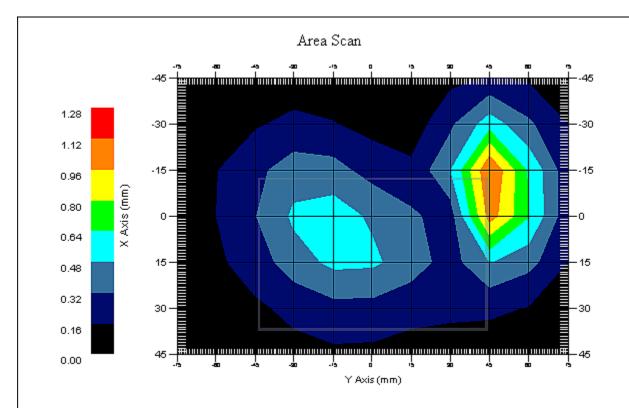
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:01:40 AM

Area Scan : 7x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face Separation : 12 mm Channel : Mid

1 gram SAR value : 1.118 W/kg 10 gram SAR value : 0.599 W/kg Area Scan Peak SAR : 1.122 W/kg Zoom Scan Peak SAR : 1.971 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 02:08:52 PM End Time : 23-Nov-2010 02:31:35 PM Scanning Time : 1363 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 1900.00 MHz Max. Transmit Pwr : 0.279 W Drift Time : 0 min(s)
Length : 60 mm
Width : 90 mm
Depth : 12 mm
Antenna Type : Internal
Orientation : Top Face

Power Drift-Start : 0.256 W/kg Power Drift-Finish: 0.265 W/kg

Power Drift (%) : 3.510

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

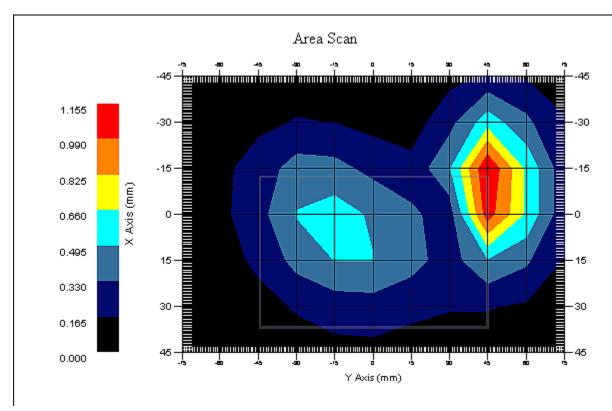
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:01:40 AM

Area Scan : 7x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face Separation : 12 mm Channel : High

1 gram SAR value : 1.089 W/kg 10 gram SAR value : 0.589 W/kg Area Scan Peak SAR : 1.152 W/kg Zoom Scan Peak SAR : 1.861 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 02:59:05 PM End Time : 23-Nov-2010 03:21:46 PM Scanning Time : 1361 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 1900.00 MHz Max. Transmit Pwr : 0.279 W Drift Time : 0 min(s)
Length : 60 mm
Width : 90 mm
Depth : 12 mm
Antenna Type : Internal
Orientation : Bottom Face Power Drift-Start: 0.481 W/kg Power Drift-Finish: 0.493 W/kg

Power Drift (%) : 2.370

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

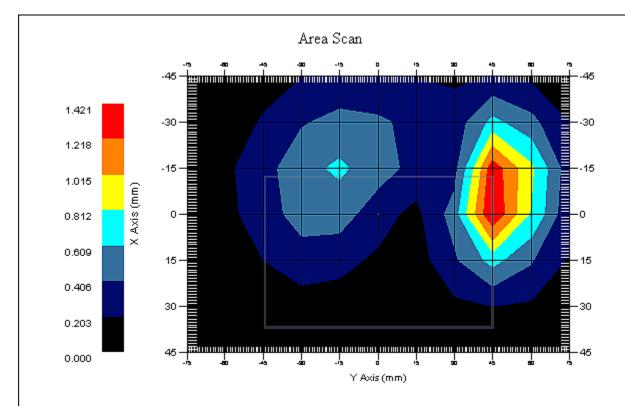
Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Measurement Data Crest Factor : 1


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:01:40 AM

Area Scan : 7x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face

Separation : 12 mm Channel : Low

1 gram SAR value : 1.408 W/kg 10 gram SAR value : 0.772 W/kg Area Scan Peak SAR : 1.418 W/kg Zoom Scan Peak SAR : 2.522 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 02:34:23 PM End Time : 23-Nov-2010 02:57:01 PM Scanning Time : 1358 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 1900.00 MHz Max. Transmit Pwr : 0.279 W Drift Time : 0 min(s)
Length : 60 mm
Width : 90 mm
Depth : 12 mm
Antenna Type : Internal
Orientation : Bottom Face Power Drift-Start: 0.373 W/kg Power Drift-Finish: 0.383 W/kg

Power Drift (%) : 2.688

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

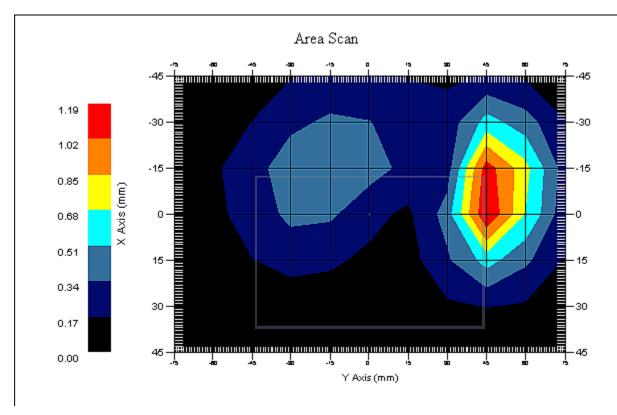
Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Measurement Data Crest Factor : 1


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:01:40 AM

Area Scan : 7x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face

Separation : 12 mm Channel : Mid

1 gram SAR value : 1.160 W/kg 10 gram SAR value : 0.645 W/kg Area Scan Peak SAR : 1.189 W/kg Zoom Scan Peak SAR : 2.031 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 03:23:18 PM End Time : 23-Nov-2010 03:46:09 PM Scanning Time : 1371 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 1900.00 MHz Max. Transmit Pwr : 0.279 W Drift Time : 0 min(s)
Length : 60 mm
Width : 90 mm
Depth : 12 mm
Antenna Type : Internal
Orientation : Bottom Face Power Drift-Start: 0.378 W/kg Power Drift-Finish: 0.378 W/kg

Power Drift (%) : 0.080

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

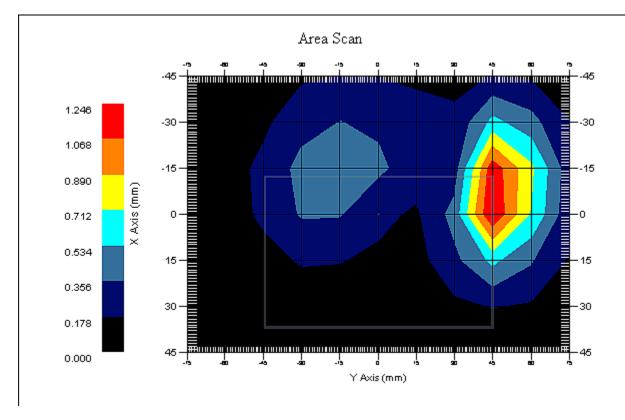
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:01:40 AM

Area Scan : 7x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face

Separation : 12 mm Channel : High

1 gram SAR value : 1.183 W/kg 10 gram SAR value : 0.654 W/kg Area Scan Peak SAR : 1.245 W/kg Zoom Scan Peak SAR : 2.041 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 11:24:30 AM End Time : 23-Nov-2010 11:39:10 AM Scanning Time : 880 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 1900.00 MHz Max. Transmit Pwr : 0.279 W Drift Time : 0 min(s)
Length : 12 mm
Width : 60 mm
Depth : 90 mm
Antenna Type : Internal
Orientation : Side 'D' Power Drift-Start: 1.347 W/kg Power Drift-Finish: 1.387 W/kg

Power Drift (%) : 2.991

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

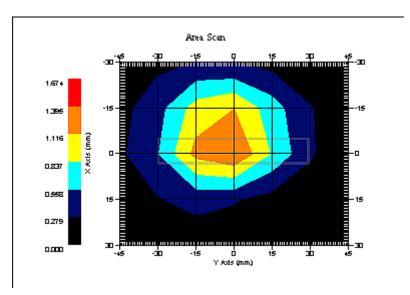
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:01:40 AM

Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'D' Separation : 12 mm Channel : Low

1 gram SAR value : 1.339 W/kg 10 gram SAR value : 0.747 W/kg Area Scan Peak SAR : 1.397 W/kg Zoom Scan Peak SAR : 2.172 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 10:58:45 AM End Time : 23-Nov-2010 11:13:09 AM Scanning Time : 864 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 1900.00 MHz Max. Transmit Pwr : 0.279 W Drift Time : 0 min(s)
Length : 12 mm
Width : 60 mm
Depth : 90 mm
Antenna Type : Internal
Orientation : Side 'D' Power Drift-Start: 1.387 W/kg Power Drift-Finish: 1.370 W/kg Power Drift (%) : -1.188

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

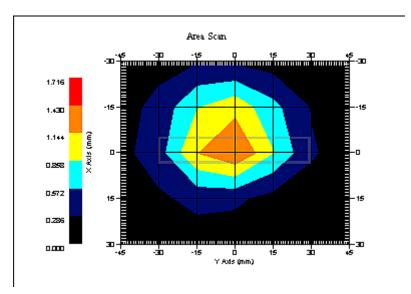
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:01:40 AM

Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'D'
Separation : 12 mm
Channel : Mid

1 gram SAR value : 1.333 W/kg 10 gram SAR value : 0.741 W/kg Area Scan Peak SAR : 1.431 W/kg Zoom Scan Peak SAR : 2.262 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 10:42:10 AM End Time : 23-Nov-2010 10:56:42 AM Scanning Time : 872 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : Rev 0

Model : 4510L

Frequency : 1900.00 MHz Max. Transmit Pwr : 0.279 W Drift Time : 0 min(s)
Length : 12 mm
Width : 60 mm
Depth : 90 mm
Antenna Type : Internal
Orientation : Side 'D' Power Drift-Start : 1.227 W/kg

Power Drift-Finish: 1.240 W/kg

Power Drift (%) : 1.052

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

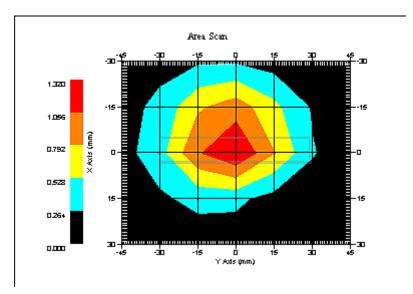
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

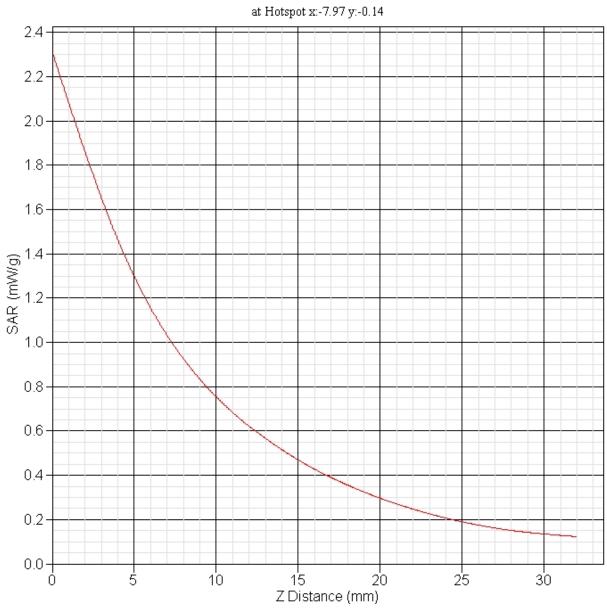
Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:01:40 AM

Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data


DUT Position : Side 'D' Separation : 12 mm Channel : High

1 gram SAR value : 1.417 W/kg 10 gram SAR value : 0.774 W/kg Area Scan Peak SAR : 1.320 W/kg Zoom Scan Peak SAR : 2.312 W/kg

SAR-Z Axis

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 12:17:15 PM End Time : 23-Nov-2010 12:35:40 PM Scanning Time : 1105 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 1900.00 MHz Max. Transmit Pwr : 0.279 W Drift Time : 0 min(s)
Length : 12 mm
Width : 90 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side 'A' Power Drift-Start : 0.142 W/kg Power Drift-Finish: 0.142 W/kg Power Drift (%) : -0.214

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

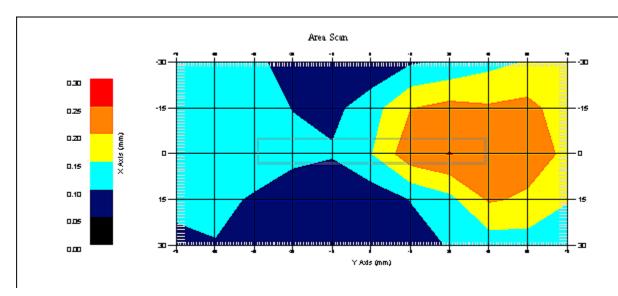
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:01:40 AM

Area Scan : 5x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'A'
Separation : 12 mm
Channel : Mid

1 gram SAR value : 0.272 W/kg 10 gram SAR value : 0.172 W/kg Area Scan Peak SAR : 0.252 W/kg Zoom Scan Peak SAR : 0.460 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 12:56:26 PM End Time : 23-Nov-2010 01:14:59 PM Scanning Time : 1113 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev 0
Model : 4510L
Frequency : 1900.00 MHz Max. Transmit Pwr : 0.279 W Drift Time : 0 min(s)
Length : 12 mm
Width : 90 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side 'B'

Power Drift-Start : 0.809 W/kg Power Drift-Finish: 0.812 W/kg

Power Drift (%) : 0.368

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

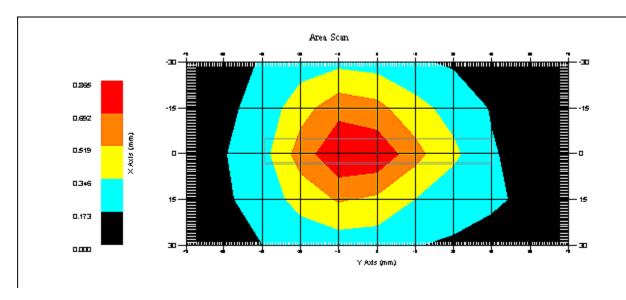
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:01:40 AM

Area Scan : 5x11x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'B' Separation : 12 mm Channel : Mid

1 gram SAR value : 0.794 W/kg 10 gram SAR value : 0.490 W/kg Area Scan Peak SAR : 0.863 W/kg Zoom Scan Peak SAR : 1.191 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Nov-2010

Starting Time : 23-Nov-2010 03:48:44 PM End Time : 23-Nov-2010 04:03:48 PM Scanning Time : 904 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : Rev A
Model : 4510L
Frequency : 1900.00 MHz Max. Transmit Pwr : 0.279 W Drift Time : 0 min(s)
Length : 12 mm
Width : 60 mm
Depth : 90 mm
Antenna Type : Internal
Orientation : Side 'D' Power Drift-Start : 1.306 W/kg Power Drift-Finish: 1.264 W/kg Power Drift (%) : -3.159

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 23-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.17 F/m

Sigma : 1.54 S/m

Density : 1000.00 kg/cu. m

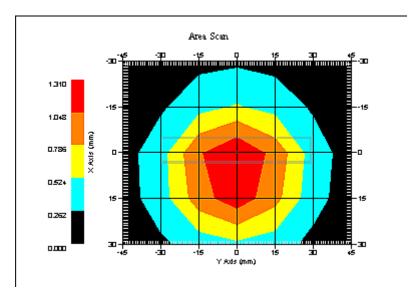
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Nov-2010
Set-up Time : 9:01:40 AM

Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'D' Separation : 12 mm Channel : High

1 gram SAR value : 1.370 W/kg 10 gram SAR value : 0.774 W/kg Area Scan Peak SAR : 1.309 W/kg Zoom Scan Peak SAR : 2.242 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 29-Nov-2010

Starting Time : 29-Nov-2010 02:44:30 PM End Time : 29-Nov-2010 03:05:06 PM Scanning Time : 1236 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : 802.11b
Model : 4510L
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.04 W Drift Time : 0 min(s)
Length : 60 mm
Width : 90 mm
Depth : 12 mm
Antenna Type : Internal
Orientation : Top Face Power Drift-Start : 0.177 W/kg Power Drift-Finish: 0.181 W/kg

Power Drift (%) : 2.678

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 29-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 46.00 RH%

Epsilon : 52.17 F/m

Sigma : 1.97 S/m

Density : 1000.00 kg/cu. m

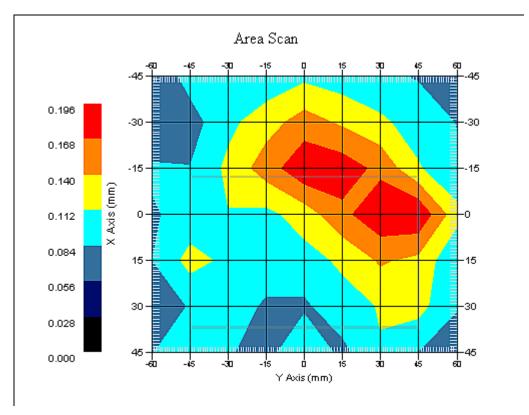
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

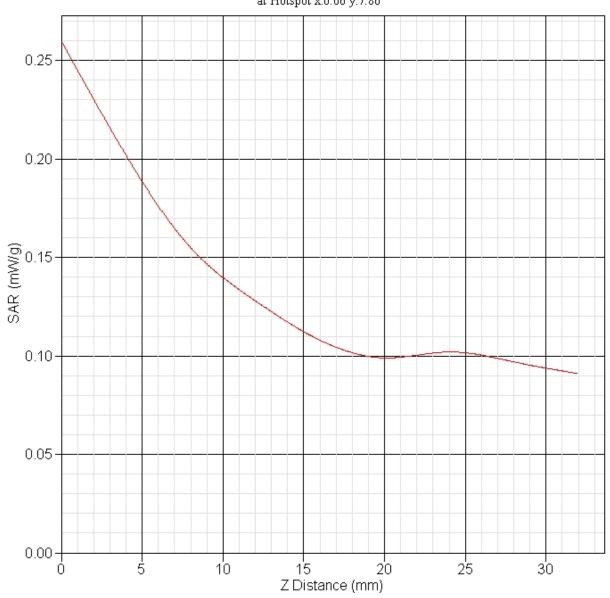


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 29-Nov-2010
Set-up Time : 1:35:32 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face Separation : 12 mm Channel : Mid



1 gram SAR value : 0.182 W/kg 10 gram SAR value : 0.130 W/kg Area Scan Peak SAR : 0.193 W/kg Zoom Scan Peak SAR : 0.260 W/kg

SAR-Z Axis at Hotspot x:0.06 y:7.86

SAR Test Report

By Operator : Jay

Measurement Date : 29-Nov-2010

Starting Time : 29-Nov-2010 03:09:05 PM End Time : 29-Nov-2010 03:29:42 PM Scanning Time : 1237 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : 802.11b
Model : 4510L
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.04 W Drift Time : 0 min(s)
Length : 60 mm
Width : 90 mm
Depth : 12 mm
Antenna Type : Internal
Orientation : Bottom Face Power Drift-Start: 0.126 W/kg Power Drift-Finish: 0.127 W/kg

Power Drift (%) : 0.794

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 29-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 46.00 RH%

Epsilon : 52.17 F/m

Sigma : 1.97 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 29-Nov-2010
Set-up Time : 1:35:32 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.143 W/kg 10 gram SAR value : 0.083 W/kg Area Scan Peak SAR : 0.173 W/kg Zoom Scan Peak SAR : 0.310 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 29-Nov-2010

Starting Time : 29-Nov-2010 04:08:32 PM End Time : 29-Nov-2010 04:25:28 PM Scanning Time : 1016 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : 802.11b
Model : 4510L
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.04 W Drift Time : 0 min(s)
Length : 12 mm
Width : 90 mm
Depth : 60 mm
Antenna Type : Internal
Orientation : Side 'A' Power Drift-Start : 0.211 W/kg Power Drift-Finish: 0.221 W/kg

Power Drift (%) : 4.689

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

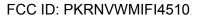
Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 29-Nov-2010 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 46.00 RH%

Epsilon : 52.17 F/m

Sigma : 1.97 S/m

Density : 1000.00 kg/cu. m

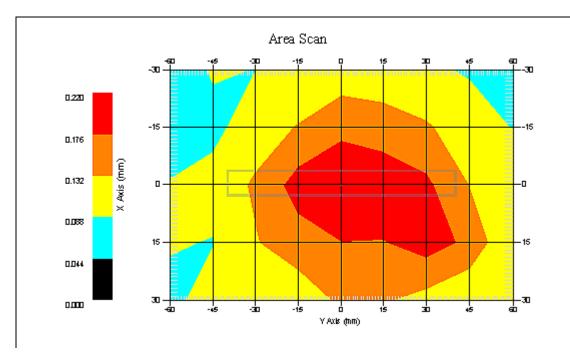

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 29-Nov-2010
Set-up Time : 1:35:32 PM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'A'
Separation : 12 mm
Channel : Mid

1 gram SAR value : 0.181 W/kg 10 gram SAR value : 0.127 W/kg Area Scan Peak SAR : 0.219 W/kg Zoom Scan Peak SAR : 0.270 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 10:36:03 AM End Time : 30-Nov-2010 10:56:42 AM Scanning Time : 1239 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : QPSK 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal

Orientation : Top Face RB Size - 25 RB Offset - 13

Power Drift-Start : 0.326 W/kg Power Drift-Finish: 0.314 W/kg Power Drift (%) : -3.616

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

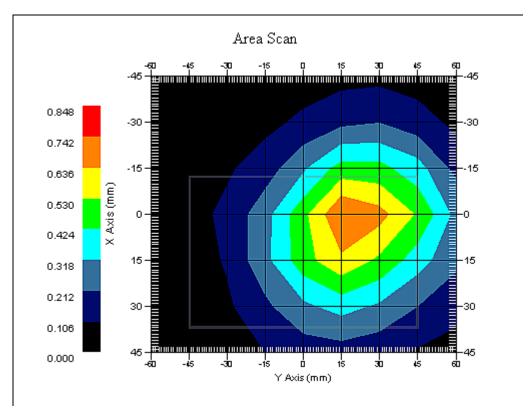
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi
Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 10:35:59 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face RB Size - 25 RB Offset - 13

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.675 W/kg 10 gram SAR value : 0.463 W/kg Area Scan Peak SAR : 0.744 W/kg Zoom Scan Peak SAR : 0.940 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 11:20:45 AM End Time : 30-Nov-2010 11:41:23 AM Scanning Time : 1238 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : QPSK 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal

Orientation : Top Face RB Size - 1 RB Offset - 0

Power Drift-Start : 0.256 W/kg Power Drift-Finish: 0.244 W/kg Power Drift (%) : -4.686

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

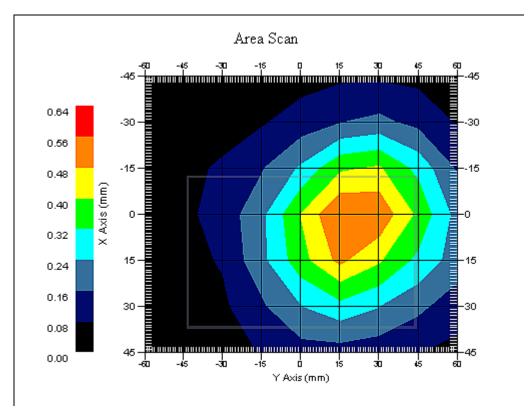
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi
Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 10:35:59 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face RB Size - 1 RB Offset - 0

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.535 W/kg 10 gram SAR value : 0.363 W/kg Area Scan Peak SAR : 0.561 W/kg Zoom Scan Peak SAR : 0.760 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 01:00:11 PM End Time : 30-Nov-2010 01:19:17 PM Scanning Time : 1146 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : QPSK 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal

Orientation : Top Face RB Size - 1 RB Offset - 49

Power Drift-Start : 0.376 W/kg Power Drift-Finish: 0.379 W/kg

Power Drift (%) : 0.923

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

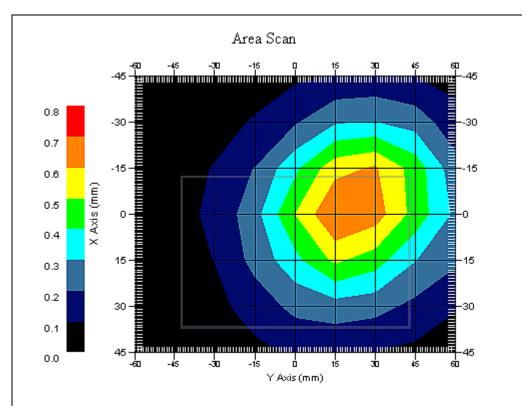
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi
Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 12:13:08 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face RB Size - 1 RB Offset - 49

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.649 W/kg 10 gram SAR value : 0.448 W/kg Area Scan Peak SAR : 0.701 W/kg Zoom Scan Peak SAR : 0.960 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 01:41:24 PM End Time : 30-Nov-2010 02:00:28 PM Scanning Time : 1144 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : QPSK 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal

Orientation : Bottom Face RB Size - 25 RB Offset - 13

Power Drift-Start: 0.418 W/kg Power Drift-Finish: 0.422 W/kg

Power Drift (%) : 1.155

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

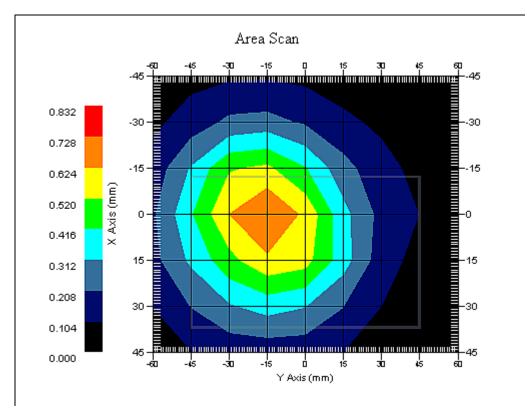
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi
Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

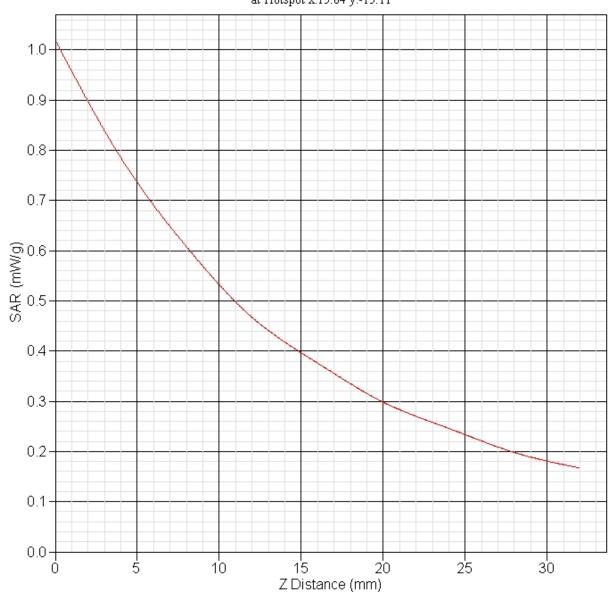
Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 12:13:08 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face RB Size - 25 RB Offset - 13


Separation : 12 mm Channel : Mid

1 gram SAR value : 0.735 W/kg 10 gram SAR value : 0.504 W/kg Area Scan Peak SAR : 0.730 W/kg Zoom Scan Peak SAR : 1.020 W/kg

SAR-Z Axis at Hotspot x:15.04 y:-15.11

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 02:39:24 PM End Time : 30-Nov-2010 02:58:24 PM Scanning Time : 1140 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : QPSK 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal

Orientation : Bottom Face RB Size - 1 RB Offset - 0

Power Drift-Start: 0.378 W/kg Power Drift-Finish: 0.383 W/kg

Power Drift (%) : 1.235

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

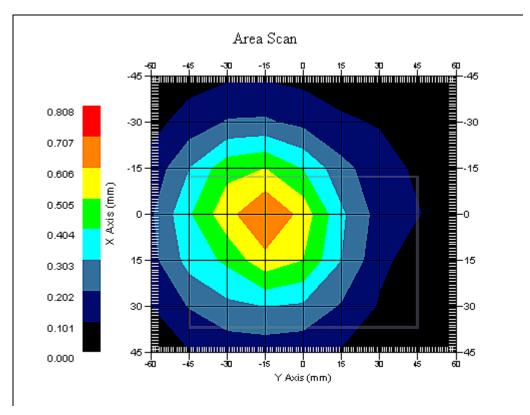
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi
Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 2:18:29 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face RB Size - 1 RB Offset - 0

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.669 W/kg 10 gram SAR value : 0.463 W/kg Area Scan Peak SAR : 0.709 W/kg Zoom Scan Peak SAR : 0.910 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 03:20:34 PM End Time : 30-Nov-2010 03:39:49 PM Scanning Time : 1155 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : QPSK 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal

Orientation : Bottom Face RB Size - 1 RB Offset - 49

Power Drift-Start: 0.434 W/kg Power Drift-Finish: 0.418 W/kg Power Drift (%) : -3.681

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

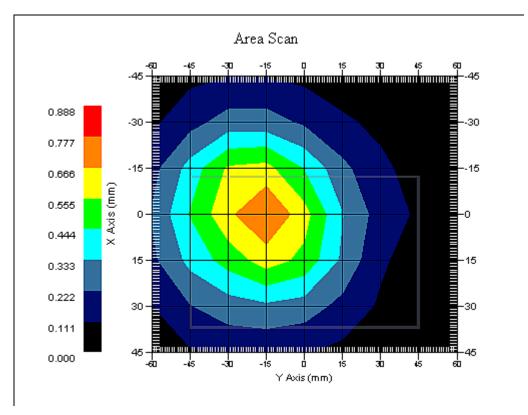
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 2:18:29 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face RB Size - 1 RB Offset - 49

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.675 W/kg 10 gram SAR value : 0.462 W/kg Area Scan Peak SAR : 0.779 W/kg Zoom Scan Peak SAR : 0.970 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 04:16:03 PM End Time : 30-Nov-2010 04:30:19 PM Scanning Time : 856 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : QPSK 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 60 mm

Depth : 90 mm

Antenna Type : Internal

Orientation : Side 'D' RB Size - 25 RB Offset - 13

Power Drift-Start: 0.158 W/kg Power Drift-Finish: 0.155 W/kg Power Drift (%) : -1.898

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

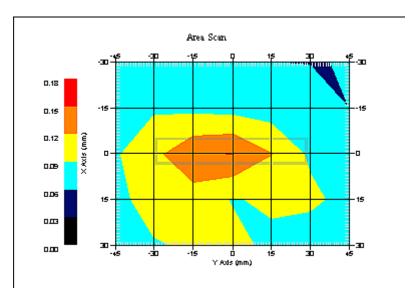
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 2:18:29 PM

Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'D' RB Size - 25 RB Offset - 13

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.140 W/kg 10 gram SAR value : 0.096 W/kg Area Scan Peak SAR : 0.151 W/kg Zoom Scan Peak SAR : 0.210 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 04:48:47 PM End Time : 30-Nov-2010 05:02:50 PM Scanning Time : 843 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : QPSK 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 60 mm

Depth : 90 mm

Antenna Type : Internal

Orientation : Side 'D' RB Size - 1 RB Offset - 0

Power Drift-Start: 0.132 W/kg Power Drift-Finish: 0.134 W/kg

Power Drift (%) : 1.453

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

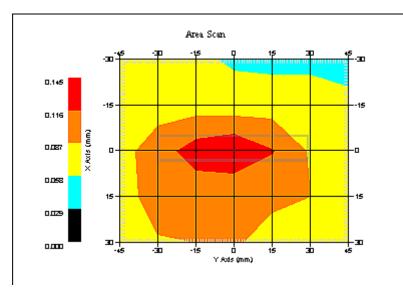
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 4:33:15 PM

Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'D' RB Size - 1 RB Offset - 0

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.131 W/kg 10 gram SAR value : 0.089 W/kg Area Scan Peak SAR : 0.144 W/kg Zoom Scan Peak SAR : 0.170 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 05:32:42 PM End Time : 30-Nov-2010 05:46:48 PM Scanning Time : 846 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : QPSK 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 60 mm

Depth : 90 mm

Antenna Type : Internal

Orientation : Side 'D' RB Size - 1 RB Offset - 49

Power Drift-Start: 0.150 W/kg Power Drift-Finish: 0.152 W/kg

Power Drift (%) : 1.339

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 5:32:13 PM

Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'D' RB Size - 1 RB Offset - 49

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.142 W/kg 10 gram SAR value : 0.097 W/kg Area Scan Peak SAR : 0.161 W/kg Zoom Scan Peak SAR : 0.190 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 06:09:50 PM End Time : 30-Nov-2010 06:25:52 PM Scanning Time : 962 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : QPSK 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 90 mm

Depth : 60 mm

Antenna Type : Internal

Orientation : Side 'A' RB Size - 25 RB Offset - 13

Power Drift-Start: 0.246 W/kg Power Drift-Finish: 0.244 W/kg Power Drift (%) : -0.681

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

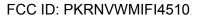
Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

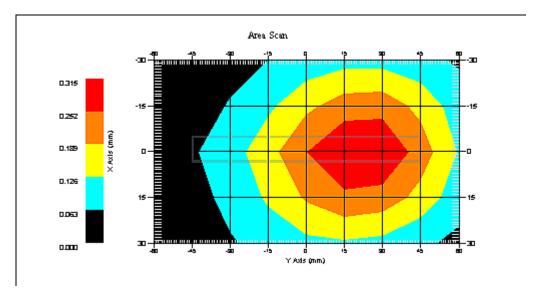

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 5:32:13 PM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'A' RB Size - 25 RB Offset - 13

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.309 W/kg 10 gram SAR value : 0.216 W/kg Area Scan Peak SAR : 0.315 W/kg Zoom Scan Peak SAR : 0.420 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 06:59:24 PM End Time : 30-Nov-2010 07:15:24 PM Scanning Time : 960 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : QPSK 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 90 mm

Depth : 60 mm

Antenna Type : Internal

Orientation : Side 'A' RB Size - 1 RB Offset - 0

Power Drift-Start: 0.209 W/kg Power Drift-Finish: 0.213 W/kg

Power Drift (%) : 1.538

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

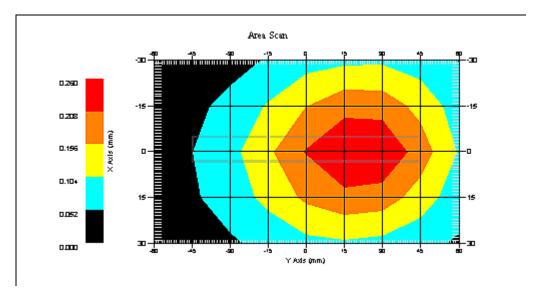
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 6:58:28 PM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'A' RB Size - 1 RB Offset - 0

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.256 W/kg 10 gram SAR value : 0.180 W/kg Area Scan Peak SAR : 0.259 W/kg Zoom Scan Peak SAR : 0.340 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 07:34:08 PM End Time : 30-Nov-2010 07:50:01 PM Scanning Time : 953 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : QPSK 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 90 mm

Depth : 60 mm

Antenna Type : Internal

Orientation : Side 'A' RB Size - 1 RB Offset - 49

Power Drift-Start: 0.259 W/kg Power Drift-Finish: 0.262 W/kg

Power Drift (%) : 1.248

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

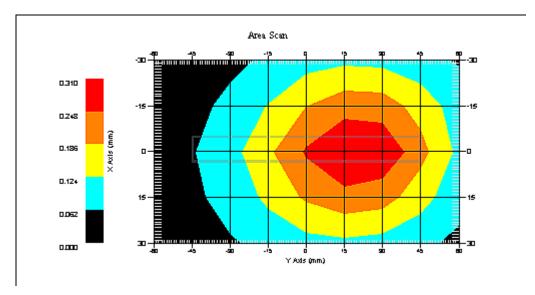
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 6:58:28 PM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'A' RB Size - 1 RB Offset - 49

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.301 W/kg 10 gram SAR value : 0.212 W/kg Area Scan Peak SAR : 0.309 W/kg Zoom Scan Peak SAR : 0.400 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 08:10:39 PM End Time : 30-Nov-2010 08:26:12 PM Scanning Time : 933 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : QPSK 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 90 mm

Depth : 60 mm

Antenna Type : Internal

Orientation : Side 'B' RB Size - 25 RB Offset - 13

Power Drift-Start: 0.208 W/kg Power Drift-Finish: 0.217 W/kg

Power Drift (%) : 4.321

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

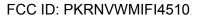
Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

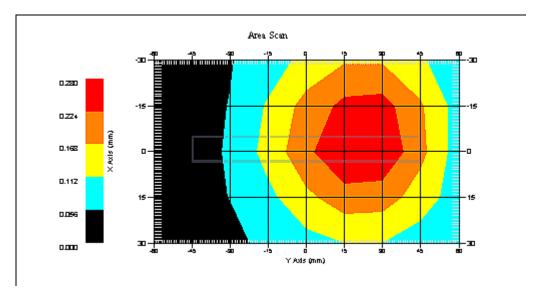

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 6:58:28 PM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'B' RB Size - 25 RB Offset - 13

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.273 W/kg 10 gram SAR value : 0.196 W/kg Area Scan Peak SAR : 0.278 W/kg Zoom Scan Peak SAR : 0.400 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 09:48:11 PM End Time : 30-Nov-2010 10:04:12 PM Scanning Time : 961 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : QPSK 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 90 mm

Depth : 60 mm

Antenna Type : Internal

Orientation : Side 'B' RB Size - 1 RB Offset - 0

Power Drift-Start: 0.245 W/kg Power Drift-Finish: 0.246 W/kg

Power Drift (%) : 0.502

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

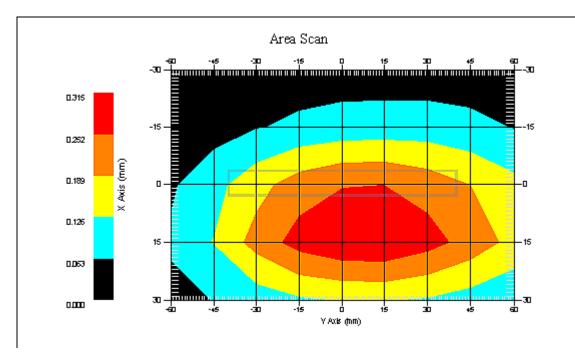
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 9:47:54 PM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'B' RB Size - 1 RB Offset - 0

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.317 W/kg 10 gram SAR value : 0.206 W/kg Area Scan Peak SAR : 0.315 W/kg Zoom Scan Peak SAR : 0.490 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 10:29:51 PM End Time : 30-Nov-2010 10:46:45 PM Scanning Time : 1014 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : QPSK 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 90 mm

Depth : 60 mm

Antenna Type : Internal

Orientation : Side 'B' RB Size - 1 RB Offset - 49

Power Drift-Start: 0.261 W/kg Power Drift-Finish: 0.249 W/kg Power Drift (%) : -4.470

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

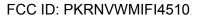
Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

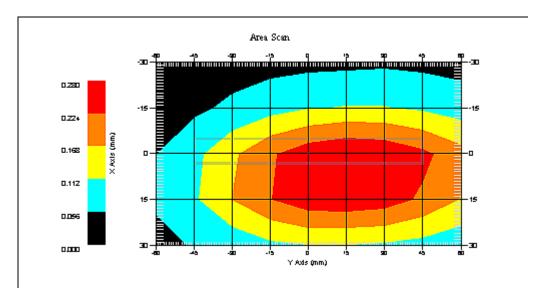

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 7:56:42 AM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'B' RB Size - 1 RB Offset - 49

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.308 W/kg 10 gram SAR value : 0.197 W/kg Area Scan Peak SAR : 0.279 W/kg Zoom Scan Peak SAR : 0.470 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 10:58:27 AM End Time : 30-Nov-2010 11:19:05 AM Scanning Time : 1238 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : 16QAM 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal

Orientation : Top Face RB Size - 25 RB Offset - 13

Power Drift-Start : 0.322 W/kg Power Drift-Finish: 0.309 W/kg Power Drift (%) : -3.876

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

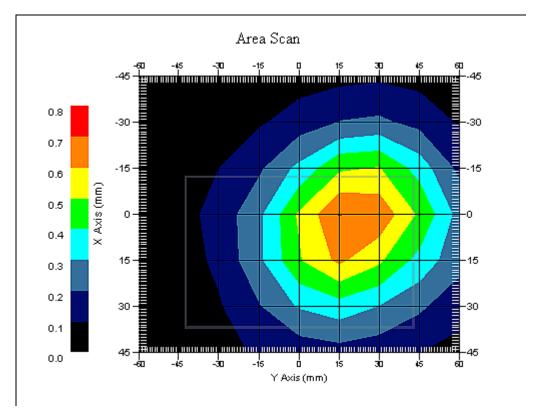
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 10:35:59 AM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face RB Size - 25 RB Offset - 13

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.687 W/kg 10 gram SAR value : 0.466 W/kg Area Scan Peak SAR : 0.703 W/kg Zoom Scan Peak SAR : 0.940 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 12:37:26 PM End Time : 30-Nov-2010 12:56:48 PM Scanning Time : 1162 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : 16QAM 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal

Orientation : Top Face RB Size - 1 RB Offset - 0

Power Drift-Start : 0.323 W/kg Power Drift-Finish: 0.313 W/kg Power Drift (%) : -3.091

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

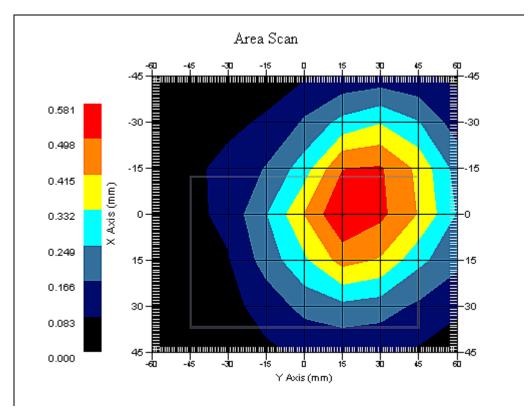
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 12:13:08 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face RB Size - 1 RB Offset - 0

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.599 W/kg 10 gram SAR value : 0.400 W/kg Area Scan Peak SAR : 0.581 W/kg Zoom Scan Peak SAR : 0.910 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 01:20:34 PM End Time : 30-Nov-2010 01:39:45 PM Scanning Time : 1151 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : 16QAM 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal

Orientation : Top Face RB Size - 1 RB Offset - 49

Power Drift-Start : 0.339 W/kg Power Drift-Finish: 0.331 W/kg Power Drift (%) : -2.467

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

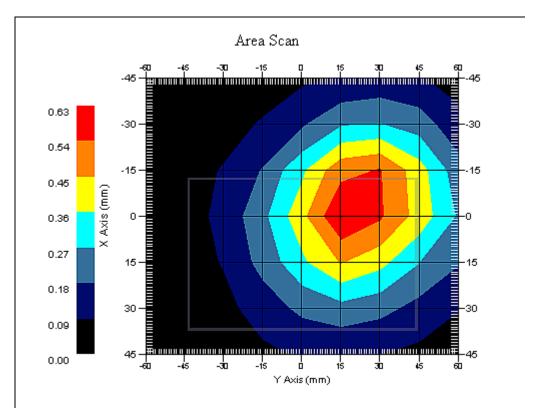
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 12:13:08 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Top Face RB Size - 1 RB Offset - 49

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.587 W/kg 10 gram SAR value : 0.397 W/kg Area Scan Peak SAR : 0.630 W/kg Zoom Scan Peak SAR : 0.910 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 02:18:52 PM End Time : 30-Nov-2010 02:38:05 PM Scanning Time : 1153 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : 16QAM 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal

Orientation : Bottom Face RB Size - 25 RB Offset - 13

Power Drift-Start: 0.424 W/kg Power Drift-Finish: 0.430 W/kg

Power Drift (%) : 1.361

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

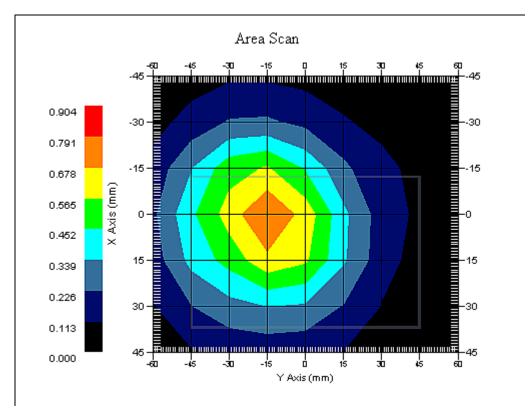
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

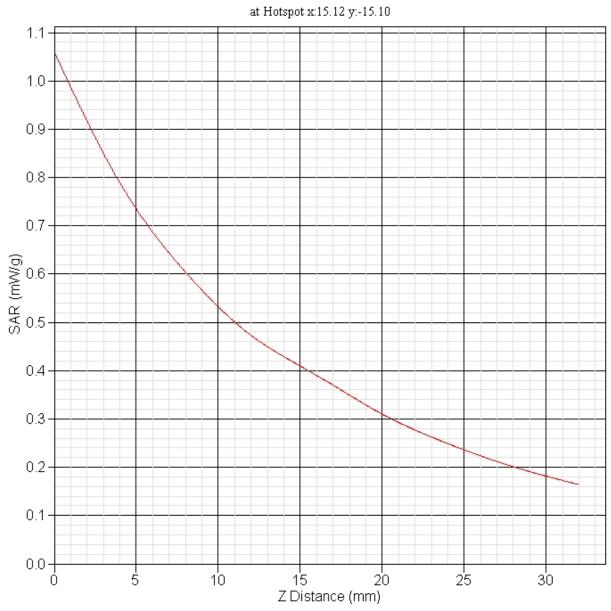
Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 2:18:29 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face RB Size - 25 RB Offset - 13


Separation : 12 mm Channel : Mid

1 gram SAR value : 0.746 W/kg 10 gram SAR value : 0.514 W/kg Area Scan Peak SAR : 0.792 W/kg Zoom Scan Peak SAR : 1.060 W/kg

SAR-Z Axis

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 03:00:09 PM End Time : 30-Nov-2010 03:19:13 PM Scanning Time : 1144 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : 16QAM 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal

Orientation : Bottom Face RB Size - 1 RB Offset - 0

Power Drift-Start: 0.400 W/kg Power Drift-Finish: 0.389 W/kg Power Drift (%) : -2.759

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

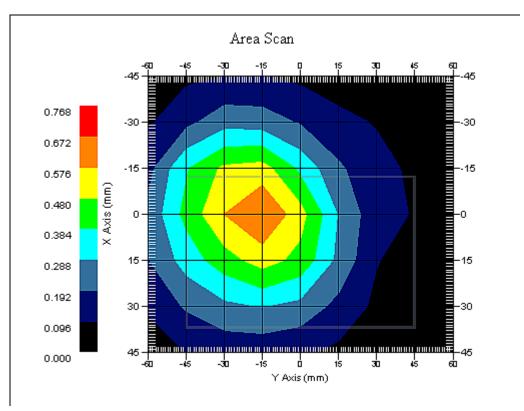
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 2:18:29 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face RB Size - 1 RB Offset - 0

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.679 W/kg 10 gram SAR value : 0.472 W/kg Area Scan Peak SAR : 0.674 W/kg Zoom Scan Peak SAR : 0.910 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 03:41:04 PM End Time : 30-Nov-2010 04:00:05 PM Scanning Time : 1141 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : 16QAM 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 60 mm

Width : 90 mm

Depth : 12 mm

Antenna Type : Internal

Orientation : Bottom Face RB Size - 1 RB Offset - 49

Power Drift-Start: 0.355 W/kg Power Drift-Finish: 0.361 W/kg

Power Drift (%) : 1.581

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

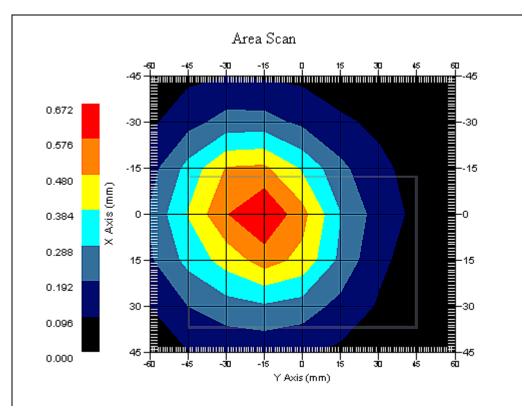
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 2:18:29 PM

Area Scan : 7x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Bottom Face RB Size - 1 RB Offset - 49

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.592 W/kg 10 gram SAR value : 0.405 W/kg Area Scan Peak SAR : 0.670 W/kg Zoom Scan Peak SAR : 0.850 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 04:33:22 PM End Time : 30-Nov-2010 04:47:28 PM Scanning Time : 846 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : 16QAM 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 60 mm

Depth : 90 mm

Antenna Type : Internal

Orientation : Side 'D' RB Size - 25 RB Offset - 13

Power Drift-Start: 0.140 W/kg Power Drift-Finish: 0.140 W/kg Power Drift (%) : -0.205

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

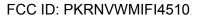
Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

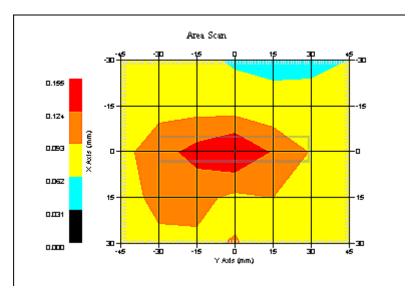

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 4:33:15 PM

Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'D' RB Size - 25 RB Offset - 13

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.135 W/kg
10 gram SAR value : 0.093 W/kg
Area Scan Peak SAR : 0.155 W/kg
Zoom Scan Peak SAR : 0.180 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 05:06:28 PM End Time : 30-Nov-2010 05:20:42 PM Scanning Time : 854 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : 16QAM 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 60 mm

Depth : 90 mm

Antenna Type : Internal

Orientation : Side 'D' RB Size - 1 RB Offset - 0

Power Drift-Start: 0.127 W/kg Power Drift-Finish: 0.131 W/kg

Power Drift (%) : 3.143

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

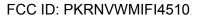
Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

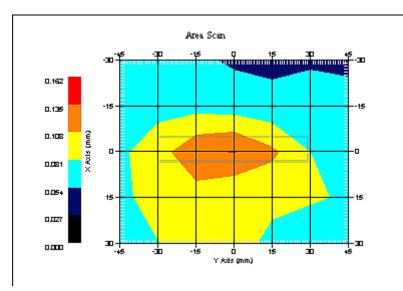

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 5:06:23 PM

Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'D' RB Size - 1 RB Offset - 0

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.122 W/kg 10 gram SAR value : 0.084 W/kg Area Scan Peak SAR : 0.136 W/kg Zoom Scan Peak SAR : 0.170 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 05:48:09 PM End Time : 30-Nov-2010 06:02:01 PM Scanning Time : 832 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : 16QAM 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 60 mm

Depth : 90 mm

Antenna Type : Internal

Orientation : Side 'D' RB Size - 1 RB Offset - 49

Power Drift-Start: 0.149 W/kg Power Drift-Finish: 0.153 W/kg

Power Drift (%) : 2.689

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

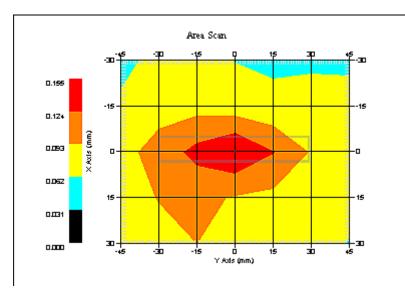
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 5:32:13 PM

Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'D' RB Size - 1 RB Offset - 49

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.138 W/kg 10 gram SAR value : 0.094 W/kg Area Scan Peak SAR : 0.155 W/kg Zoom Scan Peak SAR : 0.210 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 06:30:42 PM End Time : 30-Nov-2010 06:46:30 PM Scanning Time : 948 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : 16QAM 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 60 mm

Depth : 90 mm

Antenna Type : Internal

Orientation : Side 'A' RB Size - 25 RB Offset - 13

Power Drift-Start: 0.252 W/kg Power Drift-Finish: 0.248 W/kg Power Drift (%) : -1.584

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

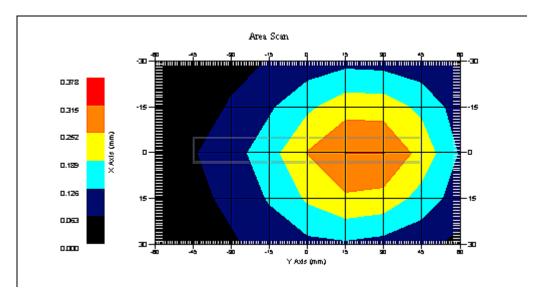
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 6:30:36 PM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'A' RB Size - 25 RB Offset - 13

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.298 W/kg 10 gram SAR value : 0.208 W/kg Area Scan Peak SAR : 0.316 W/kg Zoom Scan Peak SAR : 0.380 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 07:16:53 PM End Time : 30-Nov-2010 07:32:37 PM Scanning Time : 944 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : 16QAM 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 60 mm

Depth : 90 mm

Antenna Type : Internal

Orientation : Side 'A' RB Size - 1 RB Offset - 0

Power Drift-Start: 0.202 W/kg Power Drift-Finish: 0.207 W/kg

Power Drift (%) : 2.083

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

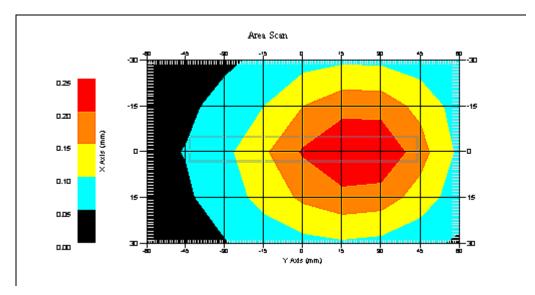
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 6:58:28 PM

Area Scan : $5 \times 9 \times 1$: Measurement x=15 mm, y=15 mm, z=4 mm Zoom Scan : $5 \times 5 \times 8$: Measurement x=8 mm, y=8 mm, z=4 mm

Other Data

DUT Position : Side 'A' RB Size - 1 RB Offset - 0

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.249 W/kg 10 gram SAR value : 0.171 W/kg Area Scan Peak SAR : 0.248 W/kg Zoom Scan Peak SAR : 0.340 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 07:52:58 PM End Time : 30-Nov-2010 08:08:46 PM Scanning Time : 948 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : 16QAM 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 90 mm

Depth : 60 mm

Antenna Type : Internal

Orientation : Side 'A' RB Size - 1 RB Offset - 49

Power Drift-Start: 0.240 W/kg Power Drift-Finish: 0.240 W/kg

Power Drift (%) : 0.256

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

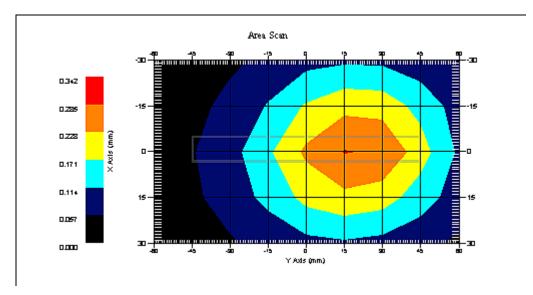
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 6:58:28 PM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'A' RB Size - 1 RB Offset - 49

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.260 W/kg 10 gram SAR value : 0.179 W/kg Area Scan Peak SAR : 0.287 W/kg Zoom Scan Peak SAR : 0.370 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 08:27:38 PM End Time : 30-Nov-2010 08:43:23 PM Scanning Time : 945 secs

Product Data

Product Data

Device Name : Novatel Wireless

Serial No. : 148

Mode : 16QAM 10 MHz

Model : 4510L

Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 90 mm

Depth : 60 mm

Antenna Type : Internal

Orientation : Side 'B' RB Size - 25 RB Offset - 13

Power Drift-Start: 0.219 W/kg Power Drift-Finish: 0.213 W/kg Power Drift (%) : -2.730

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

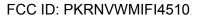
Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

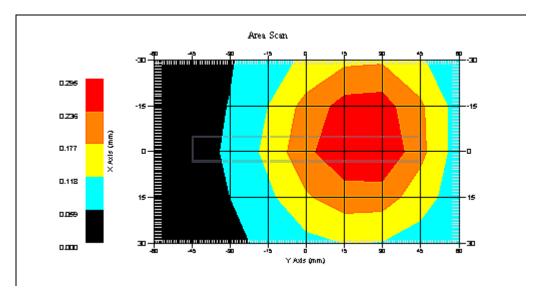

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 6:58:28 PM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'B' RB Size - 25 RB Offset - 13

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.251 W/kg 10 gram SAR value : 0.165 W/kg Area Scan Peak SAR : 0.293 W/kg Zoom Scan Peak SAR : 0.370 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 10:09:47 PM End Time : 30-Nov-2010 10:26:44 PM Scanning Time : 1017 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : 16QAM 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 90 mm

Depth : 60 mm

Antenna Type : Internal

Orientation : Side 'B' RB Size - 1 RB Offset - 0

Power Drift-Start: 0.263 W/kg Power Drift-Finish: 0.250 W/kg Power Drift (%) : -4.947

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

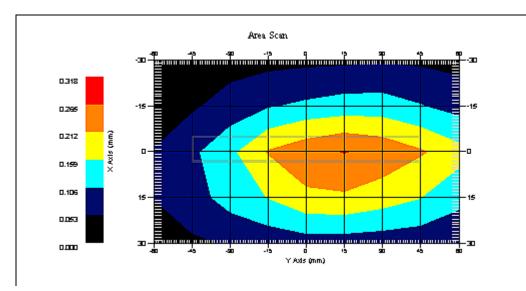
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 7:56:42 AM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'B' RB Size - 1 RB Offset - 0

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.274 W/kg 10 gram SAR value : 0.173 W/kg Area Scan Peak SAR : 0.267 W/kg Zoom Scan Peak SAR : 0.440 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 30-Nov-2010

Starting Time : 30-Nov-2010 10:48:26 PM End Time : 30-Nov-2010 11:05:22 PM Scanning Time : 1016 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : 148
Mode : 16QAM 10 MHz
Model : 4510L
Frequency : 750.00 MHz Max. Transmit Pwr : 0.283 W Drift Time : 0 min(s)

Length : 12 mm

Width : 90 mm

Depth : 60 mm

Antenna Type : Internal

Orientation : Side 'B' RB Size - 1 RB Offset - 49

Power Drift-Start: 0.289 W/kg Power Drift-Finish: 0.285 W/kg Power Drift (%) : -1.386

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 782
Frequency : 782.00 MHz
Last Calib. Date : 30-Nov-2010 Temperature : 23.00 °C Ambient Temp. : 22.00 °C

Humidity : 42.00 RH%

Epsilon : 53.63 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

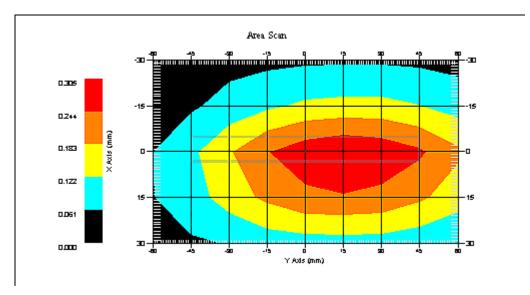
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 215

Last Calib. Date: 22-Sep-2010 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Nov-2010
Set-up Time : 7:56:42 AM

Area Scan : 5x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side 'B' RB Size - 1 RB Offset - 49

Separation : 12 mm Channel : Mid

1 gram SAR value : 0.306 W/kg 10 gram SAR value : 0.194 W/kg Area Scan Peak SAR : 0.303 W/kg Zoom Scan Peak SAR : 0.470 W/kg

Appendix D – Probe Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-1156

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 835 MHz

Manufacturer: APREL Laboratories

Model No.: E-020 Serial No.: 215

Body Calibration

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2

Project No: RFEL-E-020-Cal-5539

Calibrated: 22 September 2010 Released on: 27 September 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary
This calibration has been conducted in line with the SCC SO-IEC 17025 Scope of Accreditation
Accredited Laboratory Number 48

Released By:

NCL CALIBRATION LABORATORIES

!7 Bentley Ave NEPEAN, ONTARIO CANADA K2E 6T7 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 215.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

IEEE 1309 "IEEE Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9 KHz to 40 GHz" 2005

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from handheld and body-mounted wireless communication devices –Human models, instrumentation and procedures Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for handheld devices used in close proximity of the ear (frequency range of 200MHz to 3GHz)"

Conditions

Probe 215 was a re-calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 215

Frequency: 835 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Body Tissue Measured

Frequency: 835 MHz

Epsilon: 53.7 (+/-5%) **Sigma:** 0.96 S/m (+/-5%)

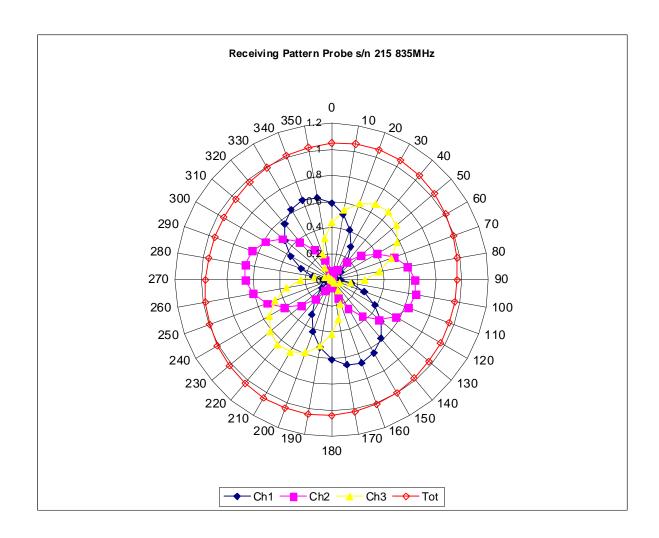
ConvF

Channel X: 6.3

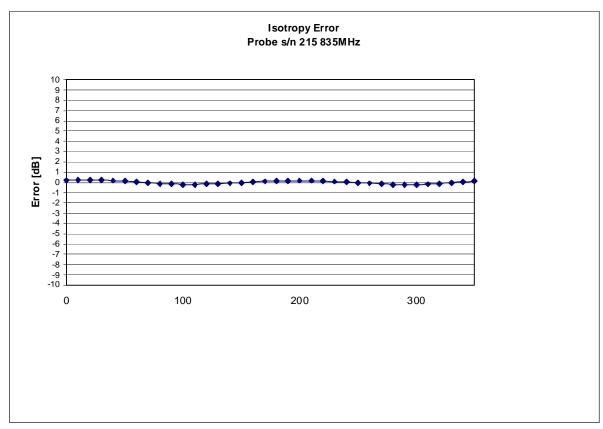
Channel Y: 6.3

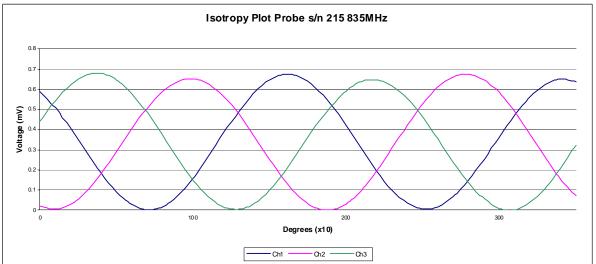
Channel Z: 6.3

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

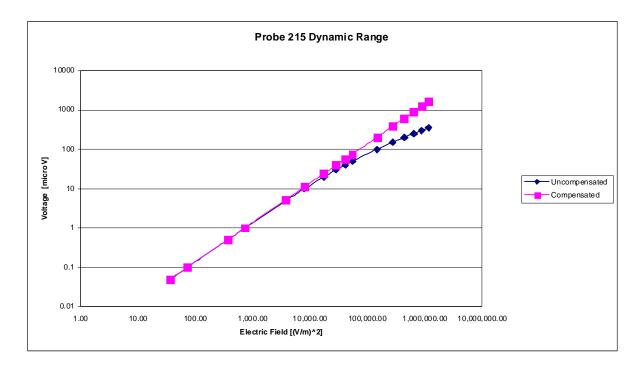
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

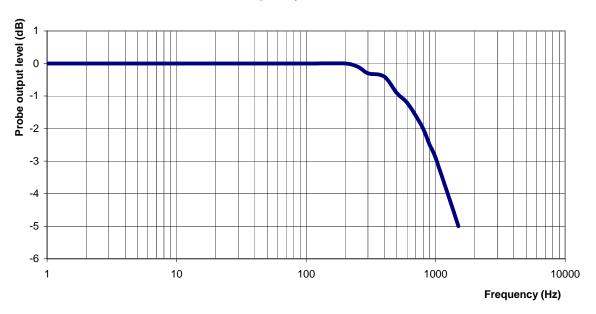

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 835 MHz (Air)

Isotropy Error 835 MHz (Air)



Isotropicity Tissue:


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment Measured

Sensitivity in Body Tissue

Frequency: 835 MHz

Epsilon: 53.7 (+/-5%) **Sigma:** 0.96 S/m (+/-5%)

ConvF

Channel X: 6.3 7%(K=2)

Channel Y: 6.3 7%(K=2)

Channel Z: 6.3 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.5mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010

_

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-1162

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 1900 MHz

Manufacturer: APREL Laboratories

Model No.: E-020 Serial No.: 215

Body Calibration

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2

Project No: RFEL-E-020-Cal-5539

Calibrated: 22 September 2010 Released on: 27 September 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary
This calibration has been conducted in line with the SCC SO-IEC 17025 Scope of Accreditation
Accredited Laboratory Number 48

Released By:

NCL CALIBRATION LABORATORIES

!7 Bentley Ave NEPEAN, ONTARIO CANADA K2E 6T7 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 215.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

IEEE 1309 "IEEE Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9 KHz to 40 GHz" 2005

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from handheld and body-mounted wireless communication devices –Human models, instrumentation and procedures Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for handheld devices used in close proximity of the ear (frequency range of 200MHz to 3GHz)"

Conditions

Probe 215 was a re-calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 215

Frequency: 1900 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Body Tissue Measured

Frequency: 1900 MHz

Epsilon: 51.9 (+/-5%) **Sigma:** 1.56 S/m (+/-5%)

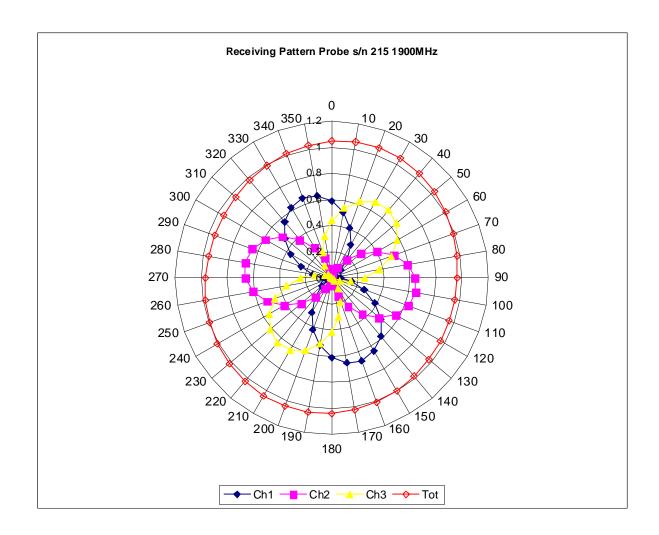
ConvF

Channel X: 5.0

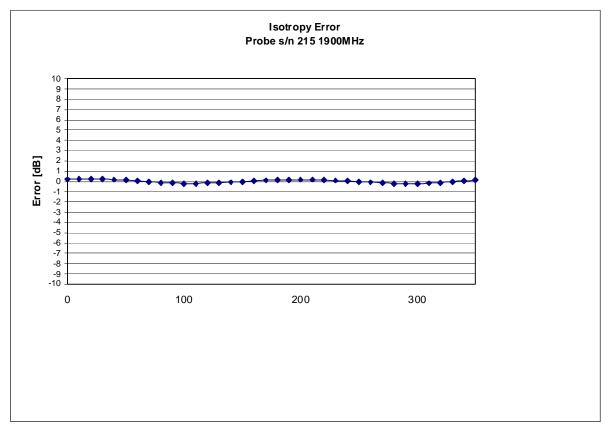
Channel Y: 5.0

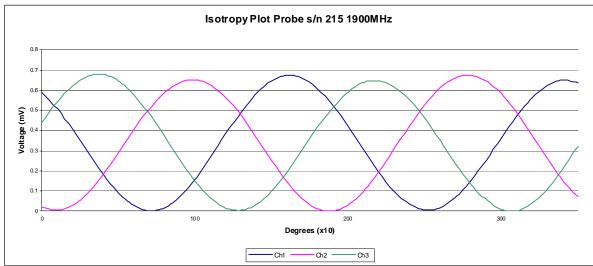
Channel Z: 5.0

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

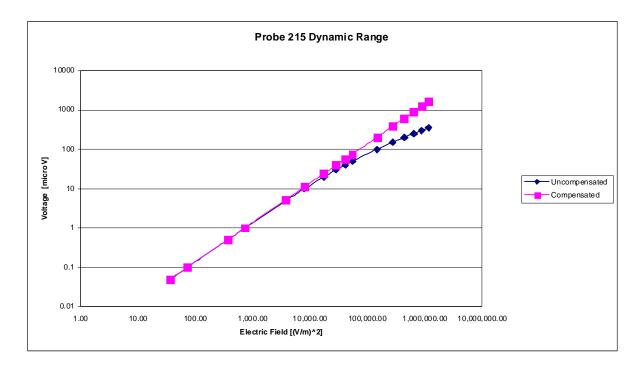
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

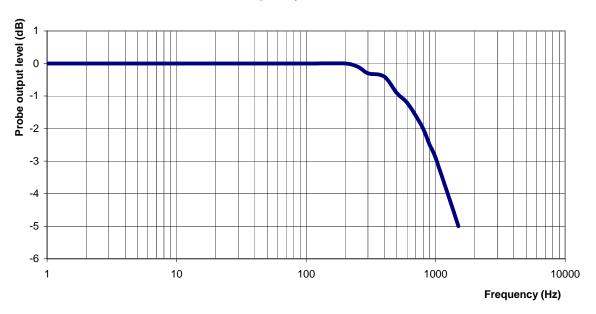

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 1900 MHz (Air)

Isotropy Error 1900 MHz (Air)



Isotropicity Tissue:


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment Measured

Sensitivity in Body Tissue

Frequency: 1900 MHz

Epsilon: 51.9 (+/-5%) **Sigma:** 1.56 S/m (+/-5%)

ConvF

Channel X: 5.0 7%(K=2)

Channel Y: 5.0 7%(K=2)

Channel Z: 5.0 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.5mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-1164

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 2450 MHz

Manufacturer: APREL Laboratories

Model No.: E-020 Serial No.: 215

Body Calibration

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2

Project No: RFEL-E-020-Cal-5539

Calibrated: 22 September 2010 Released on: 27 September 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary
This calibration has been conducted in line with the SCC SO-IEC 17025 Scope of Accreditation
Accredited Laboratory Number 48

Released By:

NCL CALIBRATION LABORATORIES

!7 Bentley Ave NEPEAN, ONTARIO CANADA K2E 6T7 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 215.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

IEEE 1309 "IEEE Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9 KHz to 40 GHz" 2005

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from handheld and body-mounted wireless communication devices –Human models, instrumentation and procedures Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for handheld devices used in close proximity of the ear (frequency range of 200MHz to 3GHz)"

Conditions

Probe 215 was a re-calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5 °C Temperature of the Tissue: 21 °C +/- 0.5 °C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 215

Frequency: 2450 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Body Tissue Measured

Frequency: 2450 MHz

Epsilon: 53.0 (+/-5%) **Sigma:** 1.98 S/m (+/-5%)

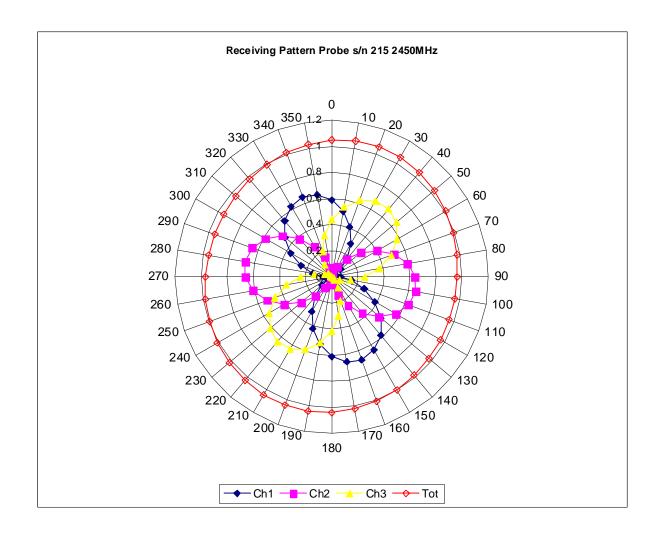
ConvF

Channel X: 4.5

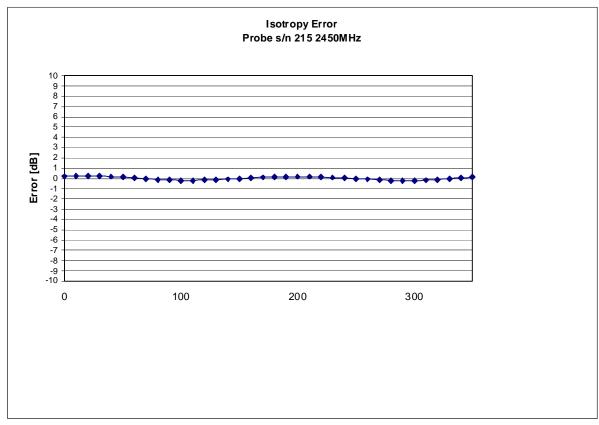
Channel Y: 4.5

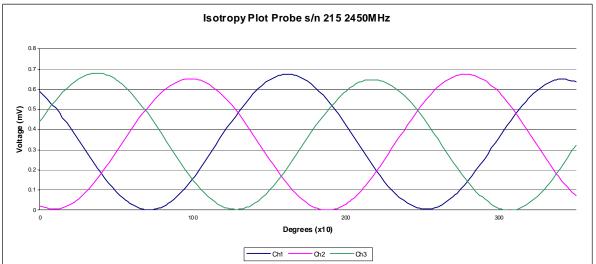
Channel Z: 4.5

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

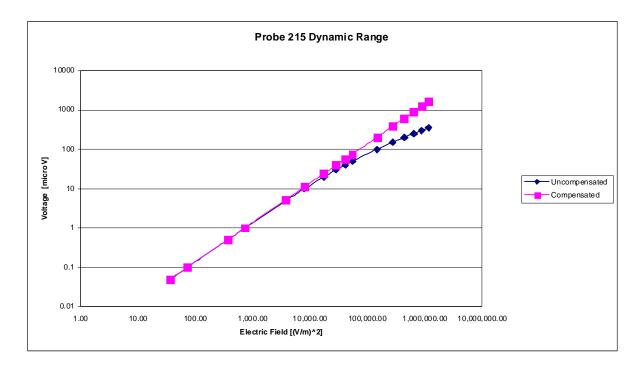
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

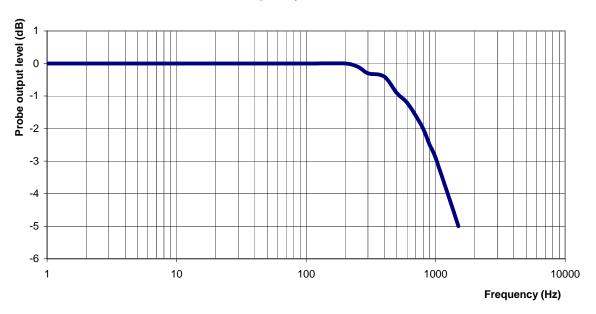

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 2450 MHz (Air)

Isotropy Error 2450 MHz (Air)



Isotropicity Tissue:


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment

Sensitivity in Body Tissue

Frequency: 2450 MHz

Epsilon: 53.0 (+/-5%) **Sigma:** 1.98 S/m (+/-5%)

ConvF

Channel X: 4.5 7%(K=2)

Channel Y: 4.5 7%(K=2)

Channel Z: 4.5 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.5mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

Appendix E – Dipole Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1178
Project Number: RFEL-DC-750B-5548

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories
Part number: ALS-D-750-S-2
Frequency: 750 MHz

Serial No: 177-00501

Customer: RFEL Body Calibration

Calibrated: 15th November 2010 Released on: 16th November 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole 177-00501 was a new calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

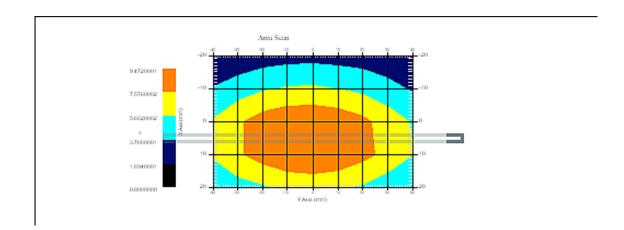
Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length: 180.2 mm **Height:** 97.0 mm

Electrical Specification

SWR: 1.098U Return Loss: -27.875 dB Impedance: 52.754Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
750 MHz	8.7	5.64	12.9

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 177-00501. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 2225.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure
SSI-TP-016 Tissue Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless
Communications Devices: Experimental Techniques"

Conditions

Dipole 177-00501 was a new calibration.

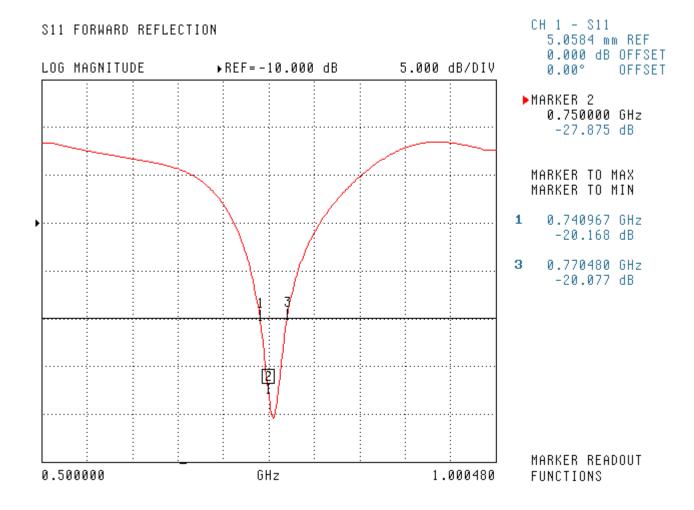
Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$

Dipole Calibration Results

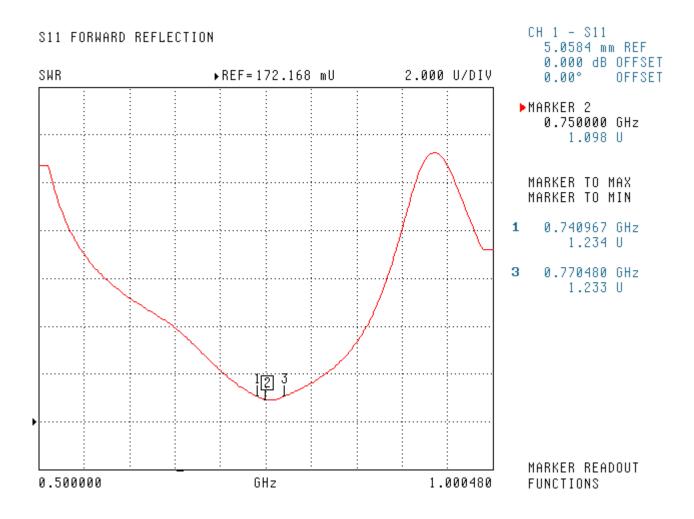
Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
180.0 mm	97.8 mm	180.2 mm	97.0 mm

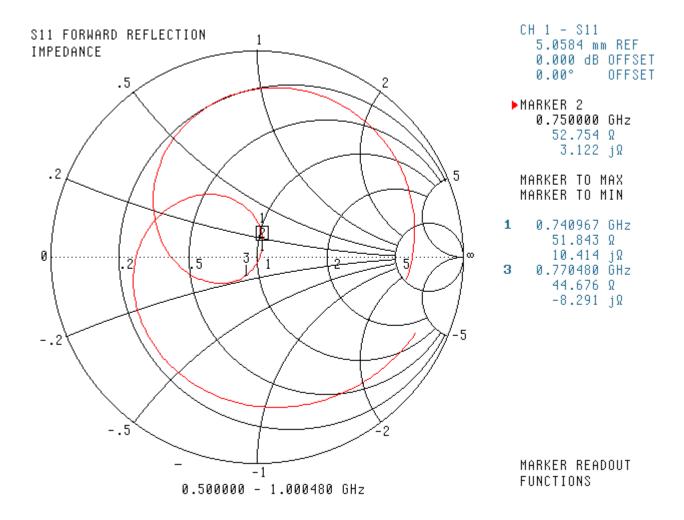
Tissue Validation


Body Tissue 750MHz	Measured
Dielectric constant, ε _r	57.07
Conductivity, σ [S/m]	1.02

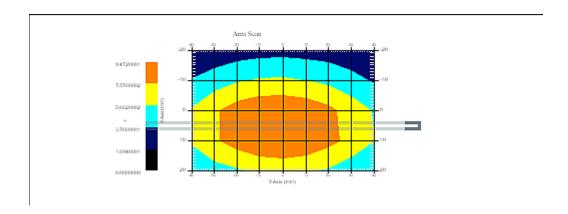
Electrical Calibration


Test	Result
S11 RL	-27.875dB
SWR	1.098U
Impedance	52.754 Ω

The Following Graphs are the results as displayed on the Vector Network Analyzer.


S11 Parameter Return Loss

SWR



Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Body Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
750 MHz	8.7	5.64	12.9

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1179
Project Number: RFEL-DC-835B-5549

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories Part number: ALS-D-835-S-2 Frequency: 835 MHz

Serial No: 180-00561

Customer: RFEL Body Calibration

Calibrated: 16th November 2010 Released on: 16th November 2010

This Calibration Certificate is Incomplete Unless Accompleted with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole 180-00561 was a new calibration.

Ambient Temperature of the Laboratory: 22
Temperature of the Tissue: 22

22 °C +/- 0.5°C

21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

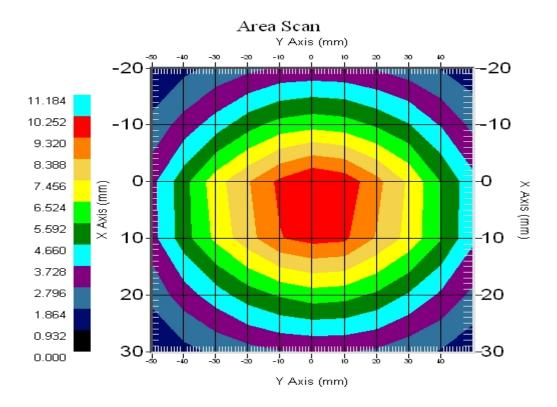
Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length: 161.0 mm **Height:** 89.8 mm

Electrical Specification

SWR: 1.143U **Return Loss:** -24.058 dB **Impedance:** 55.519 Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
835 MHz	9.81	6.3	14.87

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 180-00561. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 2225.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure
SSI-TP-016 Tissue Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless
Communications Devices: Experimental Techniques"

Conditions

Dipole 180-00561 was a new calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$

Dipole Calibration Results

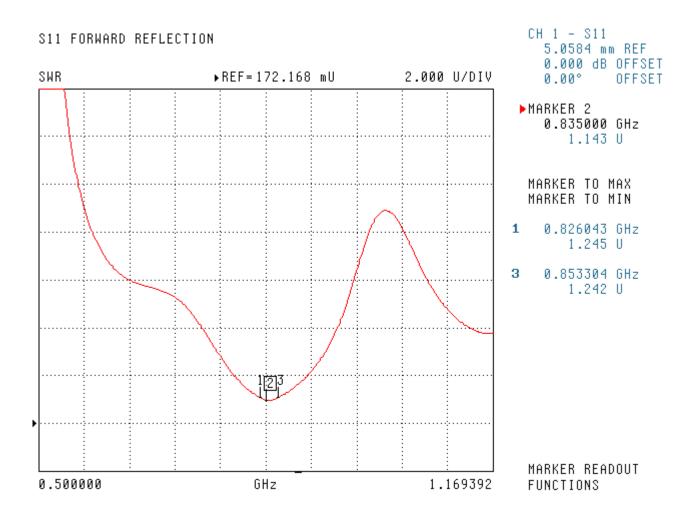
Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
161.0 mm	89.8 mm	162.1 mm	89.8 mm

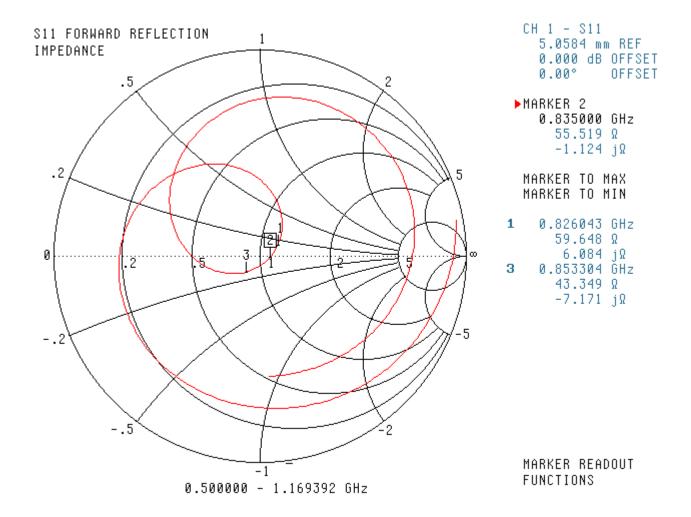
Tissue Validation


Body Tissue 835MHz	Measured
Dielectric constant, ε _r	57.19
Conductivity, σ [S/m]	0.97

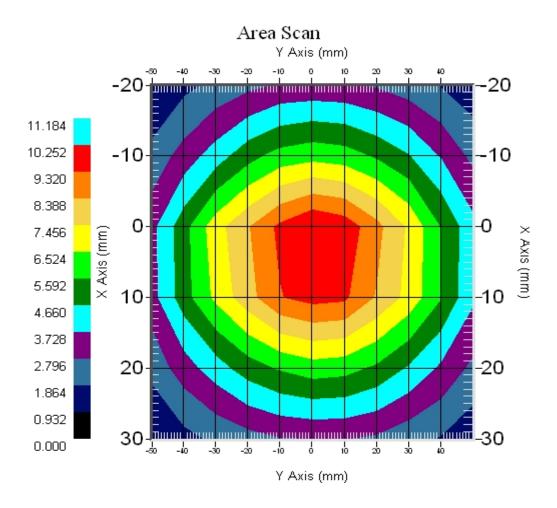
Electrical Calibration


Test	Result
S11 RL	-24.058dB
SWR	1.143U
Impedance	55.519 Ω

The Following Graphs are the results as displayed on the Vector Network Analyzer.


S11 Parameter Return Loss

SWR



Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Body Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
835 MHz	9.81	6.3	14.87

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1180
Project Number: RFEL-DC-1900B-5550

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories
Part number: ALS-D-1900-S-2
Frequency: 1900 MHz
Serial No: 210-00713

Customer: RFEL Body Calibration

Calibrated: 16 November 2010 Released on: 16th November 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole 210-00713 was new and taken from stock prior to calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

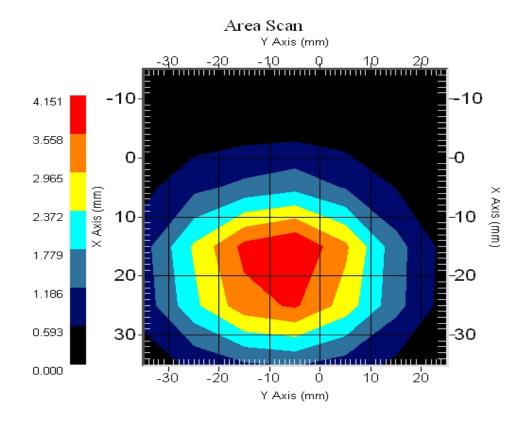
Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length: 67.1 mm **Height:** 38.9 mm

Electrical Specification

SWR:1.122UReturn Loss:-24.913dBImpedance: 53.469Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
1900 MHz	40.9	20.9	71.7

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 210-00713. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 226.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure
SSI-TP-016 Tissue Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless
Communications Devices: Experimental Techniques"

Conditions

Dipole 210-00713 was new taken from stock.

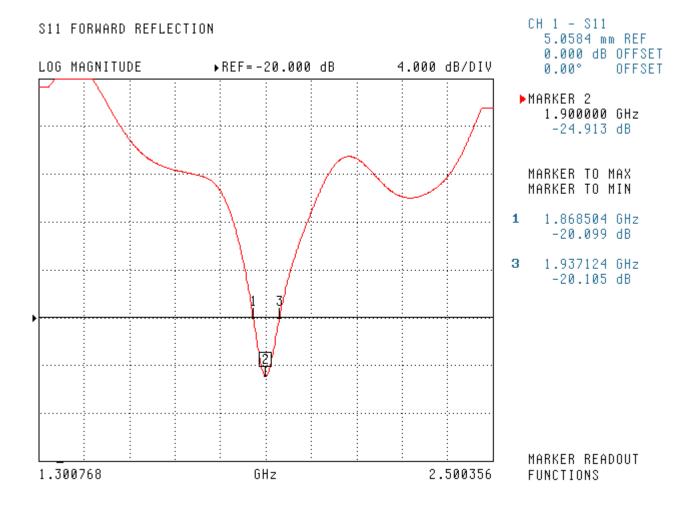
Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$

Dipole Calibration Results

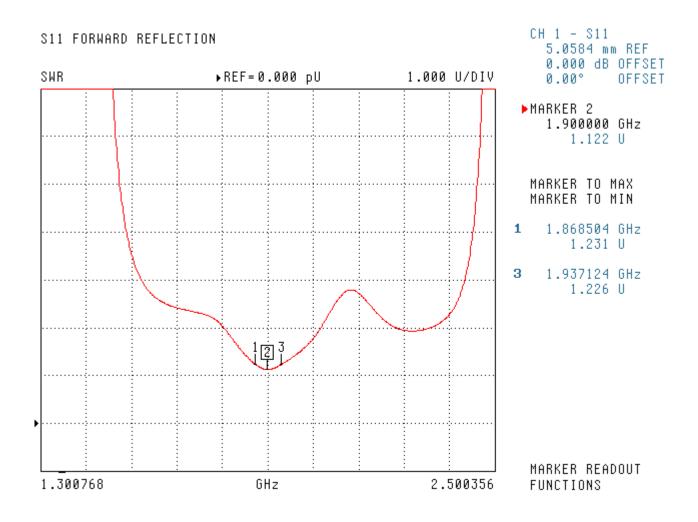
Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
68.0 mm	39.5 mm	67.1mm	38.9 mm

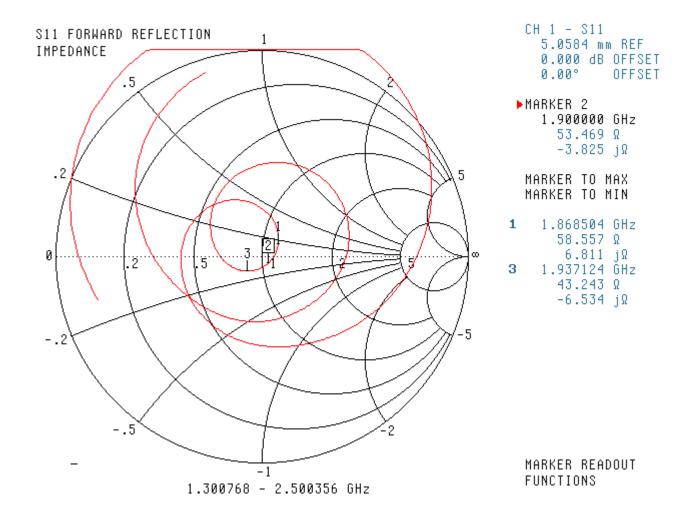
Tissue Validation


Body Tissue 1900 MHz	Measured
Dielectric constant, ε _r	53.87
Conductivity, σ [S/m]	1.55

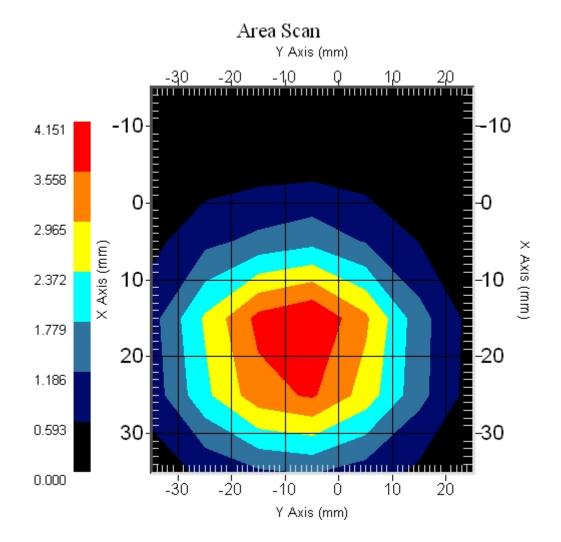
Electrical Calibration


Test	Result	
S11 R/L	-24.913dB	
SWR	1.122U	
Impedance	53.469 Ω	

The Following Graphs are the results as displayed on the Vector Network Analyzer.


S11 Parameter Return Loss

SWR



Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Body Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
1900 MHz	40.9	20.9	71.7

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List 2010.

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1182 Project Number: RFEB-5552

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories
Part number: ALS-D-2450-S-2
Frequency: 2450 MHz
Serial No: RFE-278

Customer: RFEL Body Calibration

Calibrated: 18th November 2010 Released on: 19th November 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole RFE-278 was a new calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

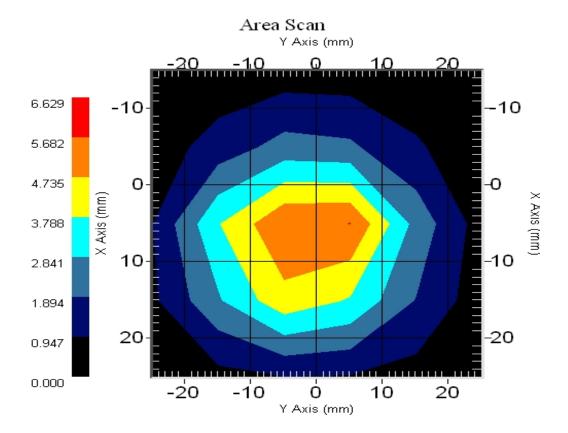
Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length: 51.5 mm **Height:** 30.4 mm

Electrical Specification

SWR: 1.249 U Return Loss: -19.170 dB Impedance: 42.223 Ω

System Validation Results @ 100mW

Frequency	1 Gram	10 Gram	Peak
2450 MHz	5.15	2.31	10.01

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole RFE-278. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 226.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure
SSI-TP-016 Tissue Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless
Communications Devices: Experimental Techniques"

Conditions

Dipole RFE-278 was a re-calibration.

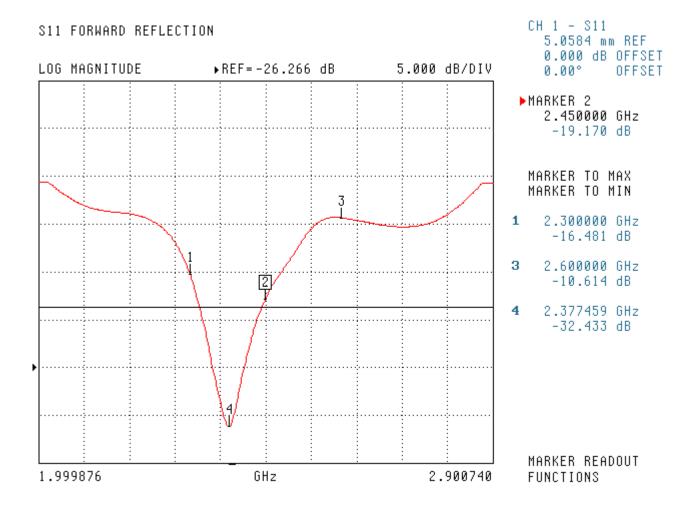
Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$

Dipole Calibration Results

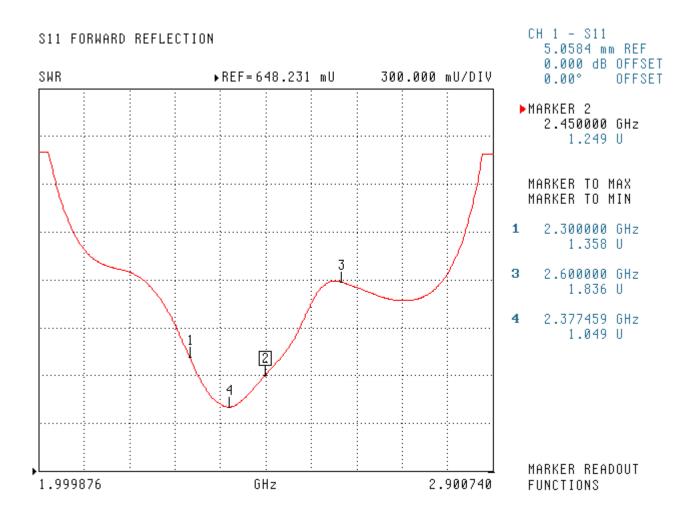
Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
51.5 mm	30.4 mm	52.1 mm	31.0 mm

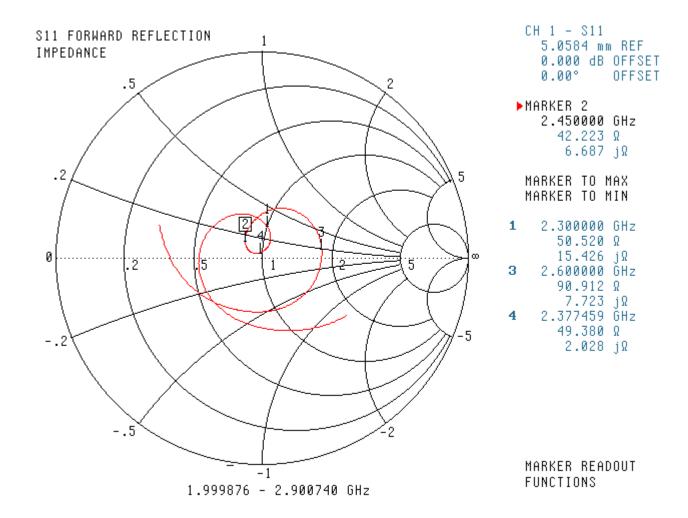
Tissue Validation


Body Tissue 2450 MHz	Measured
Dielectric constant, ε _r	52.0
Conductivity, σ [S/m]	1.92

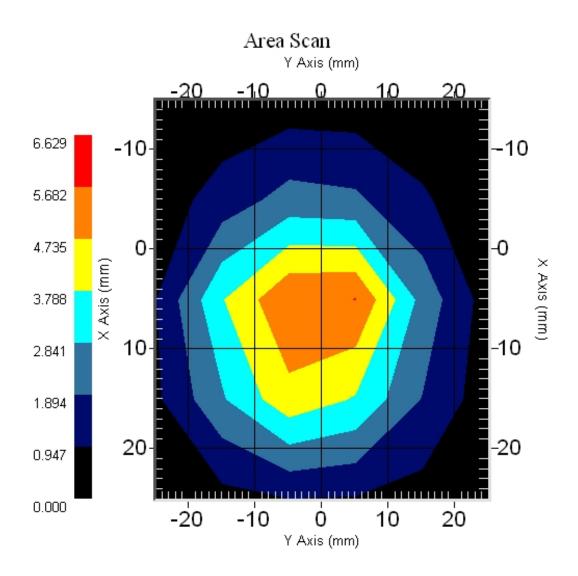
Electrical Calibration


Test	Result	
S11 R/L	-19.170 dB	
SWR	1.249 U	
Impedance	42.223 Ω	

The Following Graphs are the results as displayed on the Vector Network Analyzer.


S11 Parameter Return Loss

SWR


Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Results @ 100mW

Body Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
2450 MHz	5.15	2.31	10.01

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

Appendix F – Phantom Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: RFE-273

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to National Standards.

Thickness of the UniPhantom is 2 mm ± 10% Pinna thickness is 6 mm ± 10%

Resolution:

0.01 mm

Calibrated to: 0.0 mm

Stability:

OK

Accuracy:

< 0.1 mm

Calibrated By: Raven K Feb 17/04.

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161