PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 27 LTE

Applicant Name: Novatel Wireless Inc. 9645 Scranton Road, Suite 205 San Diego, CA 92121-3030 United States Date of Testing: September 13 - 17, 2010 Test Site/Location: PCTEST Lab., Columbia, MD, USA Test Report Serial No.: 0Y1009131540.PKR

FCC ID: PKRNVWE362

APPLICANT: NOVATEL WIRELESS INC.

Application Type: Certification

FCC Classification: PCS Licensed Transmitter (PCB)

FCC Rule Part(s): §2; §27

EUT Type: 850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module

Model(s): E362

Tx Frequency Range: 779.5MHz - 784.5MHz (5MHz BW LTE - Band 13)

782MHz (10MHz BW LTE - Band 13)

Max. RF Output Power: 233.35mW (23.68dBm) (QPSK - 5MHz BW)

231.74mW (23.65dBm) (16-QAM - 5MHz BW) 232.27mW (23.66dBm) (QPSK - 10MHz BW) 230.67mW (23.63dBm) (16-QAM - 10MHz BW)

Emission Designator(s): 4M49G7D (5MHz BW, QPSK), 4M48W7D (5MHz BW, 16-QAM), 8M92G7D

(10MHz BW, QPSK), 8M94W7D (10MHz BW, 16-QAM)

Test Device Serial No.: identical prototype [S/N: N/A]

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Grant Conditions: Power output listed is conducted for Part 27.

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 1 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 1 01 30

TABLE OF CONTENTS

FCC P	ART 2	7 MEASUREMENT REPORT	3
1.0	INTR	ODUCTION	4
	1.1	SCOPE	2
	1.2	TESTING FACILITY	2
2.0	PRO	DUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.3	LABELING REQUIREMENTS	5
3.0	DES	CRIPTION OF TESTS	6
	3.1	MEASUREMENT PROCEDURE	6
	3.2	OCCUPIED BANDWIDTH EMISSION LIMITS	6
	3.3	BLOCK C FREQUENCY RANGE	6
	3.4	SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	7
	3.5	RADIATED POWER AND RADIATED SPURIOUS EMISSIONS	7
	3.6	FREQUENCY STABILITY / TEMPERATURE VARIATION	7
4.0	TES	FEQUIPMENT CALIBRATION DATA	8
5.0	SAM	PLE CALCULATIONS	9
6.0	TES	Γ RESULTS	10
	6.1	SUMMARY	10
	6.2	TRANSMITTER CONDUCTED OUTPUT POWER	1
	6.3	LTE RADIATED MEASUREMENTS	12
	6.4	LTE RADIATED MEASUREMENTS IN 1559 – 1610MHZ BAND	15
	6.5	LTE FREQUENCY STABILITY MEASUREMENTS	16
7.0	PLO	T(S) OF EMISSIONS – 5MHZ BANDWIDTH	18
8.0	PLO [°]	T(S) OF EMISSIONS – 10MHZ BANDWIDTH	29
9.0	CON	CLUSION	36

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOWNIEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 2 01 30

MEASUREMENT REPORT FCC Part 27

09/13/10

§2.1033 General Information

APPLICANT: Novatel Wireless Inc.

APPLICANT ADDRESS: 9645 Scranton Road, Suite 205

San Diego, CA 92121-3030

TEST SITE: PCTEST ENGINEERING LABORATORY, INC. **TEST SITE ADDRESS:** 6660-B Dobbin Road, Columbia, MD 21045 USA

FCC RULE PART(S): §2; §27 **BASE MODEL:** E362

FCC ID: PKRNVWE362

FCC CLASSIFICATION: PCS Licensed Transmitter (PCB)

EMISSION DESIGNATOR(S): 4M49G7D (5MHz BW, QPSK), 4M48W7D (5MHz BW, 16-QAM), 8M92G7D

(10MHz BW, QPSK), 8M94W7D (10MHz BW, 16-QAM)

MODULATIONS:QPSK, 16-QAM (Uplink)FREQUENCY TOLERANCE:Emission must remain in band

Test Device Serial No.: N/A ☐ Production ☐ Pre-Production ☐ Engineering

DATE(S) OF TEST: September 13 - 17, 2010 **TEST REPORT S/N:** 0Y1009131540.PKR

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab. located in Columbia, MD 21045, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451A-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451A-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

		· · · · · · · · · · · · · · · · · · ·	
FCC ID: PKRNVWE362	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT	Reviewed by:
FCC ID. FRRINVWL302	ENGINEERING LABORATORY, INC.	(CERTIFICATION) NOVATEL WIRELESS.	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage 3 01 30
© 2010 PCTEST Engineering L	ahoratory Inc		REV/ 1 11 TE

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity are, the Baltimore-Washington Internt'l (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on January 28, 2009.

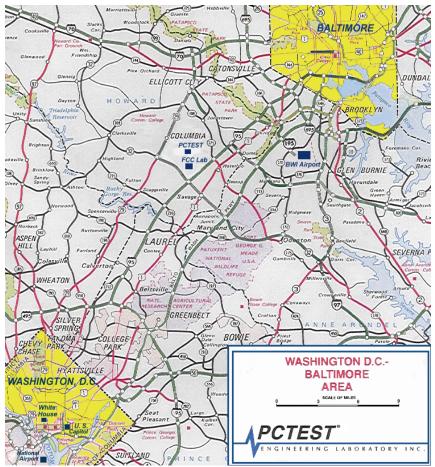


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOWNIEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage 4 01 30

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Novatel 850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO** and **700MHz LTE Module FCC ID: PKRNVWE362**. The test data contained in this report pertains only to the emissions due to the EUT's LTE function. The EUT consisted of the following component(s):

Trade Name / Base Model	FCC ID	Description
Novatel / Model: E362	PKRNVWE362	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module

Table 2-1. EUT Equipment Description

The EUT was set to transmit at full power in each available channel bandwidth of 5MHz and 10MHz with a CMW500 LTE Base Station Simulator. Each available modulation type (i.e. QPSK, 16-QAM) and resource block size configuration was also tested to determine the configuration producing the worst case emissions.

2.2 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

2.3 Labeling Requirements

Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

Per 15.19; Docket 95-19

In addition to this requirement, a device subject to certification shall be labeled as follows:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOWNIEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage 3 of 30

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The radiated spurious measurements were made outdoors at a 3-meter test range (see Figure 3-1). The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This power level was recorded using a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded with the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

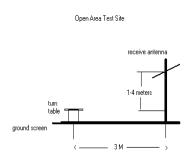


Figure 3-1. Diagram of 3-meter outdoor test range

Deviation from Measurement Procedure.....None

3.2 Occupied Bandwidth Emission Limits §2.1049, §27.53(I)(6)

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth.

3.3 Block C Frequency Range §27.5(b)(3)

Two paired channels of 11 megahertz each are available for assignment in Block C in the 746-757 MHz and 776-787 MHz bands. In the event that no licenses for two channels in this Block C are assigned based on the results of the first auction in which such licenses were offered because the auction results do not satisfy the applicable reserve price, the spectrum in the 746-757 MHz and 776-787 MHz bands will instead be made available for assignment at a subsequent auction as follows: (i) Two paired channels of 6 megahertz each available for assignment in Block C1 in the 746-752 MHz and 776-782 MHz bands. (ii) Two paired channels of 5 megahertz each available for assignment in Block C2 in the 752-757 MHz and 782-787 MHz bands.

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOWNIEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage o or so

3.4 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, §27.53(c)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

3.5 Radiated Power and Radiated Spurious Emissions §2.1053, §27.53(c)

Spurious and harmonic radiated emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This level is then measured with a broadband average power meter. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive average power meter reading. This spurious level is recorded with the power meter. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration. This device was tested under all configurations and the worst case radiated power is reported while transmitting with the maximum number of resource blocks in each channel bandwidth.

3.6 Frequency Stability / Temperature Variation §2.1055, §27.54

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A sufficient stabilization period at each temperature shall be used prior to each frequency requirement.

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOUNTEL WIRELESS	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 7 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage / 01 30

4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	263-10dB	(DC-18GHz) 10 dB Attenuator	N/A		N/A	N/A
-	No.166	(1000-26500MHz) Microwave RF Cable	N/A		N/A	N/A
-	No.167	(100kHz - 100MHz) RG58 Coax Cable	N/A		N/A	N/A
Agilent	11713A	Attenuation/Switch Driver	12/2/2009	Annual	12/2/2010	3439A02645
Agilent	8449B	(1-26.5GHz) Pre-Amplifier	12/2/2009	Annual	12/2/2010	3008A00985
Agilent	85650A	Quasi-Peak Adapter	12/2/2009	Annual	12/2/2010	3303A01872
Agilent	8566B	(100Hz-22GHz) Spectrum Analyzer	12/2/2009	Annual	12/2/2010	3638A08713
Agilent	E4407B	ESA Spectrum Analyzer	3/30/2010	Annual	3/30/2011	US39210313
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/30/2010	Annual	3/30/2011	MY45470194
Agilent	N9020A	MXA Signal Analyzer	10/22/2009	Annual	10/22/2010	US46470561
Anritsu	ML2495A	Power Meter	10/12/2009	Annual	10/12/2010	941001
Espec	ESX-2CA	Environmental Chamber	4/1/2010	Annual	4/1/2011	17620
MiniCircuits	VHF-1300+	High Pass Filter	N/A		N/A	30716
MiniCircuits	VHF-3100+	High Pass Filter	N/A		N/A	30721
Pasternack	PE2208-6	Bidirectional Coupler	N/A		N/A	N/A
Rohde & Schwarz	CMW500	LTE Base Station Simulator	8/30/2010	Annual	8/30/2011	100976
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Rx	7/17/2009	Biennial	7/17/2011	9105-2404
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Tx	7/17/2009	Biennial	7/17/2011	9105-2403
Sunol	DRH-118	Horn Antenna (1 - 18GHz)	5/14/2009	Biennial	5/14/2011	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	7/17/2009	Biennial	7/17/2011	A051107

Table 4-1. Test Equipment

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOWNIEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 8 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage o or so

SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHzG = Phase Modulation 7 = Quantized/Digital Info D = Amplitude/Angle Modulated

16QAM Modulation

Emission Designator = 8M45D7W

LTE BW = 8.45 MHzD = Amplitude/Angle Modulated 7 = Quantized/Digital Info W = Combination (Audio/Data)

Spurious Radiated Emission - LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average receive power meter reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the power meter. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80).

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 9 01 30

6.0 TEST RESULTS

6.1 Summary

Company Name: <u>Novatel Wireless Inc.</u>

FCC ID: PKRNVWE362

FCC Classification: PCS Licensed Transmitter (PCB)

Mode(s): <u>LTE</u>

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER MC	DDE (Tx)				
2.1049	Occupied Bandwidth	N/A		PASS	Sections 7.0, 8.0
2.1051, 27.53(c)(2)	Band Edge / Conducted Spurious Emissions (*)	< 43 + 10log ₁₀ (P[Watts]) < 65 + 10log ₁₀ (P[Watts]) in a 6.25kHz bandwidth for emissions in the 763 – 775MHz and 793 – 805MHz bands	CONDUCTED	PASS	Sections 7.0, 8.0
2.1046	Transmitter Conducted Output Power Measurements	N/A		N/A	Section 6.2
2.1055, 27.54	Frequency Stability	Fundamental emissions must stay within the allotted band		PASS	Section 6.5
2.1053, 27.53(c)(2) 27.53(c)(4)	Undesirable Out-of-Band Emissions	< 43 + 10log ₁₀ (P[Watts]) for all out-of-band emissions		PASS	Section 6.3
2.1053, 27.53(f)	Undesirable Emissions in the 1559 – 1610MHz band	< -40dBm/MHz EIRP (wideband) < -50dBm EIRP (narrowband)	RADIATED	PASS	Section 6.4

Table 6-1. Summary of Test Results

Notes:

- For out of band conducted spurious emissions (including those at the band edges), the emissions of both QPSK and 16-QAM modulations were investigated for 5MHz and 10MHz channel bandwidths. The worst case transmitter emissions are shown in Sections 7.0 and 8.0.
- Radiated spurious emissions were measured with a monopole antenna connected to the RF port
 of the module through an SMA connection.

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 10 01 30

6.2 **Transmitter Conducted Output Power** §2.1046

The Novatel 850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module FCC ID: PKRNVWE362 was connected to a Rohde and Schwarz LTE Base Station Simulator (Model: CMW500). The EUT was configured through the CMW500 to produce all required combinations of modulations, channel bandwidths, and resource block sizes to determine the configuration producing the worst case emissions.

	Modulation	Channel Bandwidth [MHz]	RB Size	RB Offset	Maximum Avg. Power [dBm]
	QPSK	5	1	0	23.14
	16-QAM	5	1	0	23.11
Į,	QPSK	5	1	24	23.66
Ν	16-QAM	5	1	24	23.59
779.5MHz	QPSK	5	12	6	23.57
7.2	16-QAM	5	12	6	23.65
	QPSK	5	25	0	23.65
	16-QAM	5	25	0	23.64

	Modulation	Channel Bandwidth [MHz]	RB Size	RB Offset	Maximum Avg. Power [dBm]
	QPSK	5	1	0	23.64
	16-QAM	5	1	0	23.47
Hz	QPSK	5	1	24	23.58
.5M	16-QAM	5	1	24	23.41
784.5.5MHz	QPSK	5	12	6	23.68
28,	16-QAM	5	12	6	23.64
	QPSK	5	25	0	23.59
	16-QAM	5	25	0	23.59

Table 6-2. Maximum Average Conducted Output Power (5MHz Bandwidth)

	Modulation	Channel Bandwidth [MHz]	RB Size	RB Offset	Maximum Avg. Power [dBm]
	QPSK	10	1	0	23.27
	16-QAM	10	1	0	23.26
N	QPSK	10	1	49	23.53
782MHz	16-QAM	10	1	49	23.31
821	QPSK	10	25	12	23.66
7	16-QAM	10	25	12	23.63
	QPSK	10	50	0	23.62
	16-QAM	10	50	0	23.45

Table 6-3. Maximum Average Conducted Output Power (10MHz Bandwidth)

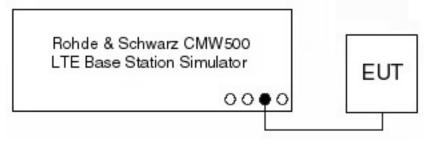


Figure 6-1. Conducted Output Power Test Setup Diagram

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Page 11 01 30

6.3 LTE Radiated Measurements §2.1053, §27.53(c)(2)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 779.50 MHz
BANDWIDTH: 5 MHz

MODULATION SIGNAL: QPSK

DISTANCE: 3 meters
LIMIT: -13 dBm

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	MARGIN (dB)
2338.50	-73.86	8.84	-65.02	Н	-52.02
3118.00	-74.28	9.70	-64.58	Н	-51.58
3897.50	-94.09	9.30	-84.79	Н	-71.79
4677.00	-94.98	11.20	-83.78	Н	-70.78

Table 6-4. Radiated Spurious Data (QPSK Modulation)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all configurations and the worst case radiated power is reported while transmitting with the maximum number of resource blocks in each channel bandwidth. This unit was tested while set into a circuit board powered by a DC power supply. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case test configuration was found with the EUT in the horizontal setup while connected to the USB port of the laptop PC through a short USB cable. The data reported in the table above was measured in this test setup.

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 12 01 30

LTE Radiated Measurements (Cont'd) §2.1053, §27.53(c)(2)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 784.50 MHz
BANDWIDTH: 5 MHz

MODULATION SIGNAL: QPSK

DISTANCE: 3 meters
LIMIT: -13 dBm

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	MARGIN (dB)
2357.79	-72.94	8.85	-64.09	Н	-51.09
3142.29	-72.46	9.70	-62.76	Н	-49.76
3926.79	-91.65	9.27	-82.38	Н	-69.38
4711.29	-92.24	11.20	-81.04	Н	-68.04

Table 6-5. Radiated Spurious Data (QPSK Modulation)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all configurations and the worst case radiated power is reported while transmitting with the maximum number of resource blocks in each channel bandwidth. This unit was tested while set into a circuit board powered by a DC power supply. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case test configuration was found with the EUT in the horizontal setup while connected to the USB port of the laptop PC through a short USB cable. The data reported in the table above was measured in this test setup.

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 13 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage 13 01 30

LTE Radiated Measurements (Cont'd) §2.1053, §27.53(c)(2)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 782.00 MHz BANDWIDTH: 10 MHz

MODULATION SIGNAL: **QPSK**

> 3 DISTANCE: meters -13 LIMIT: dBm

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	MARGIN (dB)
2346.00	-73.50	8.84	-64.65	Н	-51.65
3128.00	-74.34	9.70	-64.64	Н	-51.64
3910.00	-94.02	9.29	-84.74	Н	-71.74
4692.00	-94.92	11.20	-83.72	Н	-70.72

Table 6-6. Radiated Spurious Data (QPSK Modulation)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all configurations and the worst case radiated power is reported while transmitting with the maximum number of resource blocks in each channel bandwidth. This unit was tested while set into a circuit board powered by a DC power supply. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case test configuration was found with the EUT in the horizontal setup while connected to the USB port of the laptop PC through a short USB cable. The data reported in the table above was measured in this test setup.

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 14 01 30

6.4 LTE Radiated Measurements in 1559 – 1610MHz Band §2.1053, §27.53(f)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 782.00 MHz

BANDWIDTH: 10 MHz

MODULATION SIGNAL: QPSK

DISTANCE: 3 meters

NARROWBAND EMISSION LIMIT: ________ dBm

WIDEBAND EMISSION LIMIT: -40 dBm/MHz

FREQUENCY (MHz)	EMISSION TYPE	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	MARGIN (dB)
1572.91	WIDEBAND	-60.86	8.53	-52.33	Н	-12.33

Table 6-7. Radiated Spurious Data

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all configurations and the worst case radiated power is reported while transmitting with the maximum number of resource blocks in each channel bandwidth. This unit was tested while set into a circuit board powered by a DC power supply. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case test configuration was found with the EUT in the horizontal setup while connected to the USB port of the laptop PC through a short USB cable. The data reported in the table above was measured in this test setup.

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage 13 01 30

6.5 LTE Frequency Stability Measurements §2.1055, §27.54

OPERATING FREQUENCY: 784,500,000 Hz

REFERENCE VOLTAGE: 3.3 VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.30	+ 20 (Ref)	784,499,987	-13	-0.000002
100 %		- 30	784,499,974	-26	-0.000003
100 %		- 20	784,499,985	-15	-0.000002
100 %		- 10	784,500,014	14	0.000002
100 %		0	784,500,017	17	0.000002
100 %		+ 10	784,499,995	-5	-0.000001
100 %		+ 20	784,499,978	-22	-0.000003
100 %		+ 30	784,500,028	28	0.000004
100 %		+ 40	784,500,013	13	0.000002
100 %		+ 50	784,499,983	-17	-0.000002
115 %	3.80	+ 20	784,499,996	-4	-0.000001
85 %	2.81	+ 20	784,500,012	12	0.000002

Table 6-8. Frequency Stability Data

Note:

The frequency deviation was measured to ensure that the channel emissions remained within the authorized band with varying temperature and voltage.

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 16 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage 10 01 30

LTE Frequency Stability Measurements (Cont'd) §2.1055, §27.54

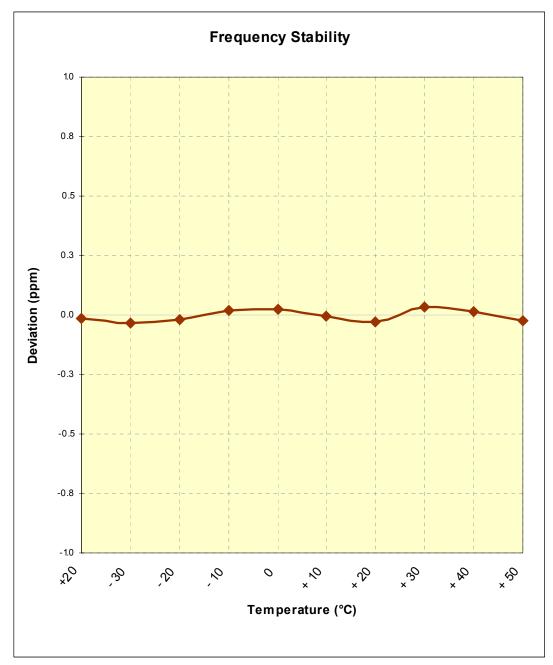


Figure 6-2. Frequency Stability Graph

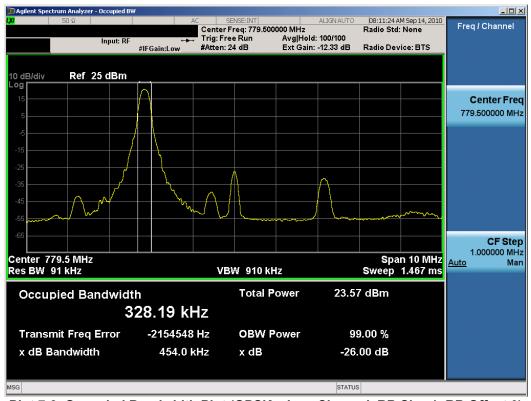
Note:


The frequency deviation was measured to ensure that the channel emissions remained within the authorized band with varying temperature and voltage.

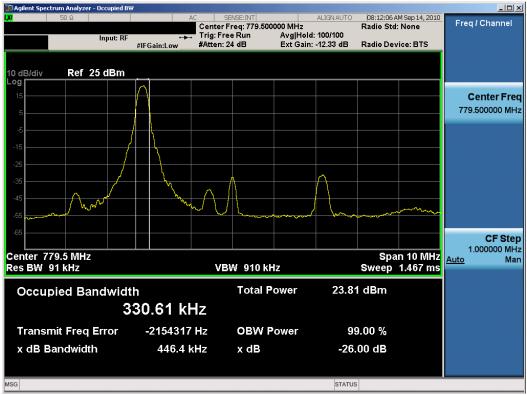
FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOWNIEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 17 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage 17 01 30

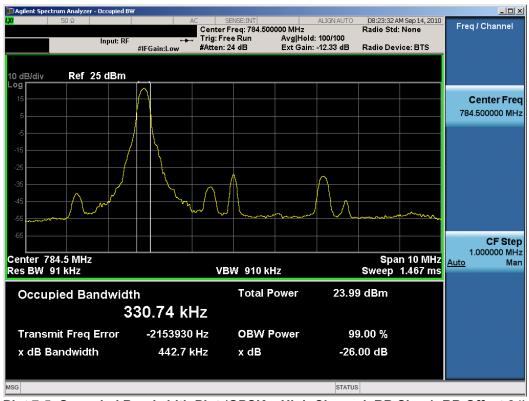
PLOT(S) OF EMISSIONS - 5MHZ BANDWIDTH

For all plots in Sections 7.0 and 8.0 showing emissions in the 763 – 775MHz and 793 – 805MHz band, the FCC limit is $65 + 10log_{10}(P_{[Watts]}) = -35dBm$ in a 6.25kHz bandwidth. Since it was not possible to set the resolution bandwidth to 6.25kHz with the available equipment, a bandwidth of 10kHz was used instead to show compliance. By using a 10kHz bandwidth, the limit was adjusted by 10log₁₀(10kHz/6.25kHz) = 2.04dB. Thus, the limit shown in all plots in the 763 - 775MHz and 793 - 805MHz bands for all available modulation types was -35dBm + 2.04dB = -32.96dBm.

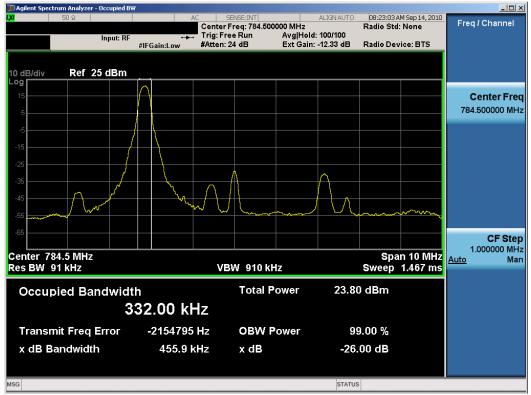

Plot 7-1. Lower Band Edge Plot (16-QAM – Low Channel, RB Size 25)

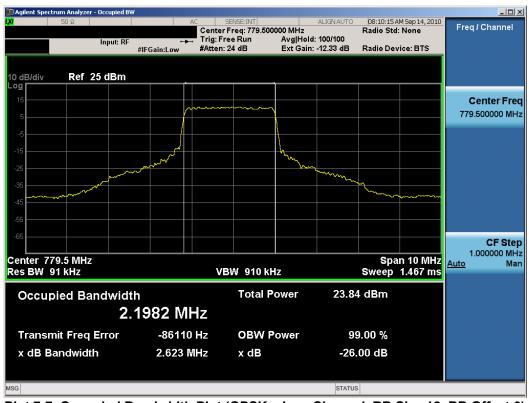
FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 10 01 30


Plot 7-2. Lower Emission Mask (763 – 775MHz) Plot (16-QAM – Low Channel, RB Size 25)

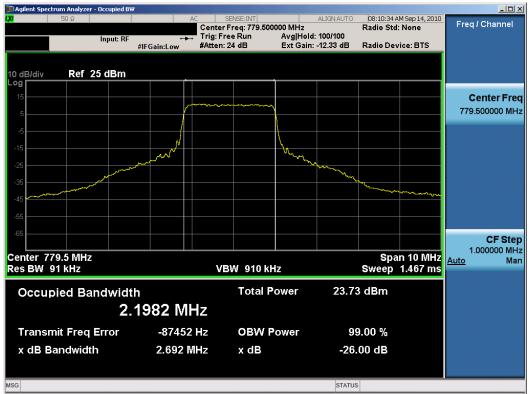

Plot 7-3. Occupied Bandwidth Plot (QPSK - Low Channel, RB Size 1, RB Offset 0)

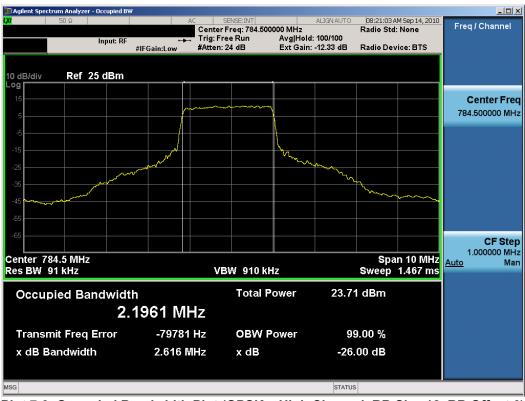
FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage 19 01 30


Plot 7-4. Occupied Bandwidth Plot (16-QAM - Low Channel, RB Size 1, RB Offset 0)

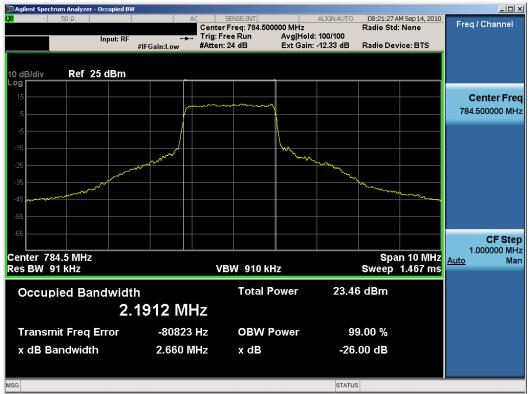

Plot 7-5. Occupied Bandwidth Plot (QPSK - High Channel, RB Size 1, RB Offset 24)

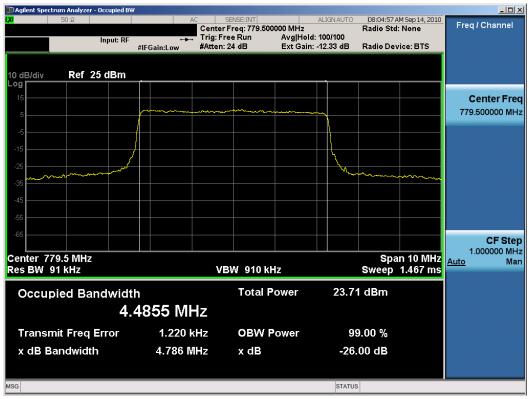
FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 20 01 30


Plot 7-6. Occupied Bandwidth Plot (16-QAM - High Channel, RB Size 1, RB Offset 24)


Plot 7-7. Occupied Bandwidth Plot (QPSK - Low Channel, RB Size 12, RB Offset 6)

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WITELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 21 01 30


Plot 7-8. Occupied Bandwidth Plot (16-QAM - Low Channel, RB Size 12, RB Offset 6)


Plot 7-9. Occupied Bandwidth Plot (QPSK - High Channel, RB Size 12, RB Offset 6)

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 22 01 30

Plot 7-10. Occupied Bandwidth Plot (16-QAM - High Channel, RB Size 12, RB Offset 6)

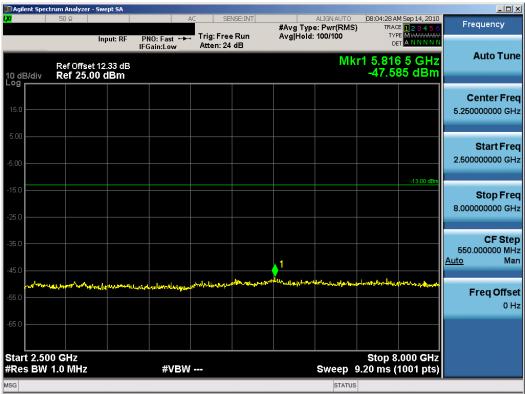
Plot 7-11. Occupied Bandwidth Plot (QPSK - Low Channel, RB Size 25)

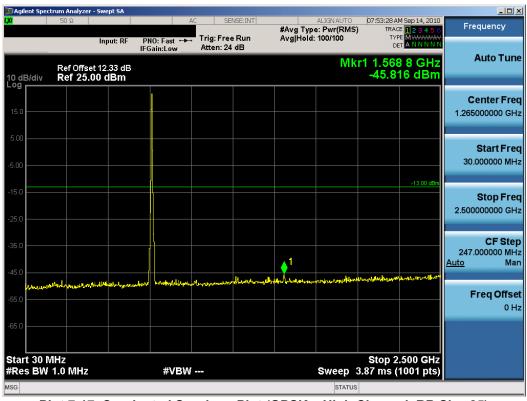
FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOWNIEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Faye 23 01 30

Plot 7-12. Occupied Bandwidth Plot (16-QAM - Low Channel, RB Size 25)

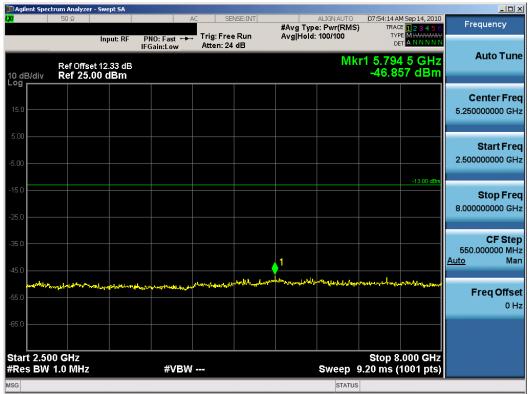
Plot 7-13. Occupied Bandwidth Plot (QPSK - High Channel, RB Size 25)

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOWNEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Faye 24 01 30


Plot 7-14. Occupied Bandwidth Plot (16-QAM - High Channel, RB Size 25)


Plot 7-15. Conducted Spurious Plot (QPSK - Low Channel, RB Size 25)

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 23 01 30


Plot 7-16. Conducted Spurious Plot (QPSK - Low Channel, RB Size 25)

Plot 7-17. Conducted Spurious Plot (QPSK - High Channel, RB Size 25)

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOWNIEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Faye 20 01 30

Plot 7-18. Conducted Spurious Plot (QPSK – High Channel, RB Size 25)

Plot 7-19. Upper Band Edge Plot (16-QAM - High Channel, RB Size 25)

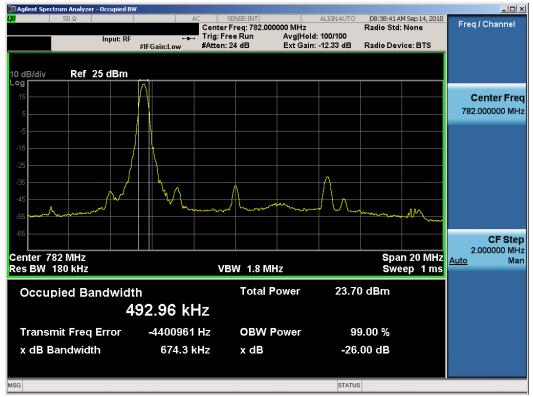
FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 27 01 30



Plot 7-20. Upper Emission Mask (793 – 805MHz) Plot (16-QAM – High Channel, RB Size 25)

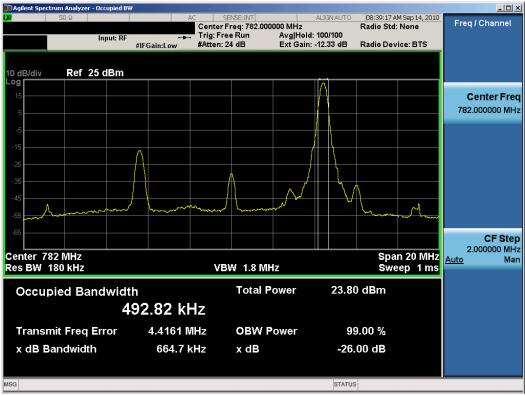
FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WITELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 28 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 20 01 30

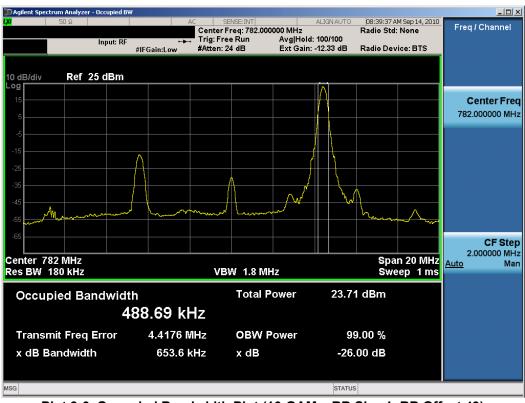
PLOT(S) OF EMISSIONS - 10MHZ BANDWIDTH


Plot 8-1. Lower Band Edge Plot (16-QAM – RB Size 50)


Plot 8-2. Lower Emission Mask (763 - 775MHz) Plot (16-QAM - RB Size 50)

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Faye 29 01 30


Plot 8-3. Occupied Bandwidth Plot (QPSK - RB Size 1, RB Offset 0)

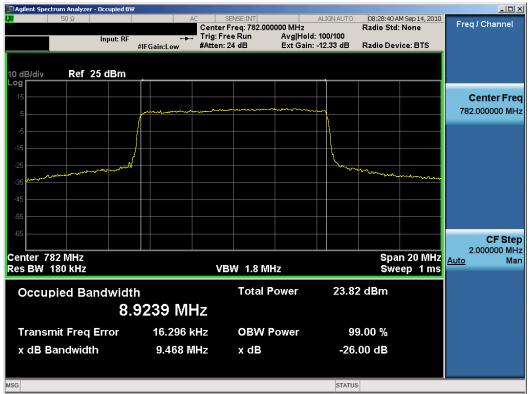

Plot 8-4. Occupied Bandwidth Plot (16-QAM - RB Size 1, RB Offset 0)

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage 30 of 30

Plot 8-5. Occupied Bandwidth Plot (QPSK - RB Size 1, RB Offset 49)

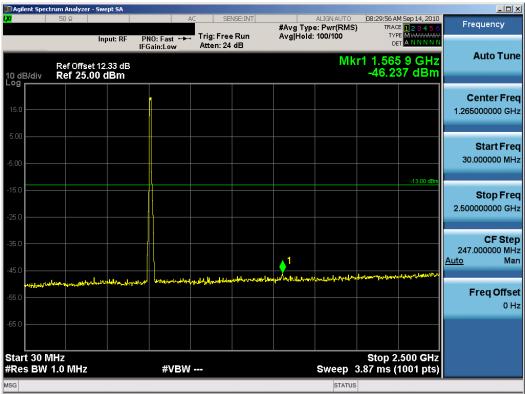
Plot 8-6. Occupied Bandwidth Plot (16-QAM - RB Size 1, RB Offset 49)

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOWNIEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 31 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage 31 01 30


Plot 8-7. Occupied Bandwidth Plot (QPSK - RB Size 25, RB Offset 12)

Plot 8-8. Occupied Bandwidth Plot (16-QAM - RB Size 25, RB Offset 12)

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WITELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 32 01 30


Plot 8-9. Occupied Bandwidth Plot (QPSK - RB Size 50)

Plot 8-10. Occupied Bandwidth Plot (16-QAM - RB Size 50)

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WITELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	rage 33 01 30

Plot 8-11. Conducted Spurious Plot (QPSK - RB Size 50)

Plot 8-12. Conducted Spurious Plot (QPSK - RB Size 50)

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOVATEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Faye 34 01 30

Plot 8-13. Upper Band Edge Plot (16-QAM - RB Size 50)

Plot 8-14. Upper Emission Mask (793 - 805MHz) Plot (16-QAM - RB Size 50)

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOWNIEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 33 01 30

9.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Novatel 850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO** and **700MHz LTE Module FCC ID: PKRNVWE362** complies with all the requirements of Parts 2 and 27 of the FCC rules.

FCC ID: PKRNVWE362	PCTEST° ENGINEERING LABORATORY, INC.	FCC Pt. 27 LTE MEASUREMENT REPORT (CERTIFICATION) NOWNEL WIRELESS.	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 36
0Y1009131540.PKR	September 13 - 17, 2010	850/1900 GSM/GPRS/EDGE/WCDMA/CDMA/EvDO and 700MHz LTE Module	Fage 30 01 30