Date: 18th July 2002

Federal Communications Commission

Authorization and Evaluation Division

7435 Oakland Mills Road

Columbia, MD 21046

Cambridge Technology Centre Melbourn Herts SG8 6DP United Kingdom

Tel: +44 1763 262222 Fax: +44 1763 260023 www.ubinetics.com

FCC ID: PK5GM401 MPE Calculation

The PK5GM401 has a measured output power of 860mW with a worst case antenna gain of 3.6dBi. The equipment operates in the PCS1900 band. The equipment is proposed as being safe for use at 20cm.

The wavelength of the equipment is:

$$3x10^8 = 0.16m$$

Thus, the far field region is defined as being:

$$\frac{\lambda}{2}$$
 = $\frac{0.16}{6.283}$ = 0.025cm or 25mm

At 20cm, the equipment is operating in the far field:

Thus, predicting the worst case RF Power Density at 20cm from the antenna would be:

$$S = P \times G = 860 \times 2.29 = 0.392 \text{mW/cm}^2$$

 $4 R^2 = 12.57 \times 20^2$

where:

P = power measured in mW

G = antenna gain as numeric gain, (2.29 numeric / 3.6dBi)

R = distance in cm

MPE for Occupational/Controlled Exposure at 1900MHz is 5mW/cm²

MPE for General Population/Uncontrolled Exposure at 1900MHz is 1mW/cm²

Therefore the RF power density at 20cm is less than both the General Population and Occupational exposure limits.

Sincerely

Kevin Spalding

Design Validation Manager

Telephone: +441763262222

Fax: +441763267320