



# RF TEST REPORT

FCC ID: PJZ5228XG

Test Report No.: RF240730014-01-001

Product(s) Name: XGSPON ONT

Model(s): 5228XG

Trade Mark:



Applicant: DZS Inc.

Address: 5700 Tennyson Parkway, Plano, TX 75024 USA

Receipt Date: 2024.07.31

Test Date: 2024.08.02~2024.08.09

Issued Date: 2024.08.12

Standards: 47 CFR FCC Part 15, Subpart C(Section 15.247);  
ANSI C63.10:2013

Testing Laboratory: Shenzhen Haiyun Standard Technical Co., Ltd.

| Prepared By: | Checked By: | Approved By: |  |
|--------------|-------------|--------------|--|
| Black Ding   | Tim Zhang   | Misue Su     |  |
| Black Ding   | Tim Zhang   | Misue Su     |  |

# Table of Contents

|                                                    |           |
|----------------------------------------------------|-----------|
| <b>History of this test report.....</b>            | <b>4</b>  |
| <b>1. General Information.....</b>                 | <b>5</b>  |
| 1.1 Applicant.....                                 | 5         |
| 1.2 Manufacturer .....                             | 5         |
| 1.3 Basic Description of Equipment Under Test..... | 5         |
| 1.4 Transmit Operating Mode.....                   | 6         |
| <b>2. Summary of Test Results .....</b>            | <b>7</b>  |
| 2.1 Summary of Test Items .....                    | 7         |
| 2.2 Application of Standard .....                  | 7         |
| 2.3 Test Instruments.....                          | 8         |
| 2.4 Test Mode.....                                 | 8         |
| 2.5 Test Condition .....                           | 8         |
| 2.6 Duty Cycle of Test Signal .....                | 9         |
| 2.7 Measurement Uncertainty .....                  | 9         |
| 2.8 Description of Support Units.....              | 9         |
| 2.9 Test Location .....                            | 9         |
| <b>3. Test Procedure And Results .....</b>         | <b>10</b> |
| 3.1 AC Power Line Conducted Emission.....          | 10        |
| 3.1.1 Limit .....                                  | 10        |
| 3.1.2 Test Procedure .....                         | 10        |
| 3.1.3 Test Setup .....                             | 10        |
| 3.1.4 Test Result .....                            | 11        |
| 3.2 Radiated Emission and Band Edge.....           | 15        |
| 3.2.1 Limit .....                                  | 15        |
| 3.2.2 Test Procedure .....                         | 15        |
| 3.2.3 Test Setup .....                             | 16        |
| 3.2.4 Test Result .....                            | 18        |
| 3.3 Spurious Emission at Antenna Port.....         | 23        |



|                                         |    |
|-----------------------------------------|----|
| 3.3.1 Limit .....                       | 23 |
| 3.3.2 Test Procedure .....              | 23 |
| 3.3.3 Test Setup .....                  | 24 |
| 3.3.4 The Result .....                  | 24 |
| 3.4 6dB Bandwidth .....                 | 25 |
| 3.4.1 Limit .....                       | 25 |
| 3.4.2 Test Procedure .....              | 25 |
| 3.4.3 Test Setup .....                  | 25 |
| 3.4.4 Test Result .....                 | 26 |
| 3.5 Maximum conducted output power..... | 27 |
| 3.5.1 Limit .....                       | 27 |
| 3.5.2 Test Procedure .....              | 27 |
| 3.5.3 Test Setup .....                  | 27 |
| 3.5.4 The Result .....                  | 27 |
| 3.6 Power Spectral Density .....        | 28 |
| 3.6.1 Limit .....                       | 28 |
| 3.6.2 Test Procedure .....              | 28 |
| 3.6.3 Test Setup .....                  | 28 |
| 3.6.4 The Result .....                  | 29 |

## History of this test report

Amendment Report Issue Date: 2024.08.12

- No additional attachment
- Additional attachments were issued following record

| Attachment No.     | Issue Date | Description                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR332120A          | 2023.05.24 | Original report                                                                                                                                                                                                                                                                                                                                                                                         |
| RF240730014-01-001 | 2024.08.12 | <p>Compared with original report (FR332120A), reduce one heat sink, change size of remaining two heat sinks and appearance of product.</p> <p>Please see the following table for details.</p> <p>The radiated emissions the worst case have been re-evaluated.</p> <p>In this report only updated the test results for radiated emissions and ac power conducted emissions, other are kept the same</p> |
|                    |            |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |            |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |            |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |            |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |            |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |            |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |            |                                                                                                                                                                                                                                                                                                                                                                                                         |

## 1. General Information

### 1.1 Applicant

DZS Inc.

5700 Tennyson Parkway, Plano, TX 75024 USA

### 1.2 Manufacturer

DZS Inc.

5700 Tennyson Parkway, Plano, TX 75024 USA

### 1.3 Basic Description of Equipment Under Test

| Product No.                                           | POC240730014-S001                                                                                                                                                                                                                                                                                                                                                         |                                               |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------|--|--------|--------|--------|-------------------------|---|---|---|-----------------------------|---|---|---|----------------------------------|---|---|---|
| Equipment Name                                        | XGSPON ONT                                                                                                                                                                                                                                                                                                                                                                |                                               |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| Model Name                                            | 5228XG                                                                                                                                                                                                                                                                                                                                                                    |                                               |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| Trade Mark                                            |                                                                                                                                                                                                                                                                                          |                                               |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| Power Supply                                          | DC 12V from adapter or DC 12V from 8 pin PSU                                                                                                                                                                                                                                                                                                                              |                                               |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| Adapter Information                                   | Model: RD1203000-C55-195MG<br>Input: 100-240V~ 50/60Hz 1.5A Max<br>Output: 12V---3.0A                                                                                                                                                                                                                                                                                     |                                               |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| Operate temperature                                   | 0°C-45°C                                                                                                                                                                                                                                                                                                                                                                  |                                               |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| EUT Stage                                             | <input type="radio"/> Product Unit                                                                                                                                                                                                                                                                                                                                        | <input checked="" type="radio"/> Final-Sample |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| Operating Band and Conducted Output Power (Max power) | 2400MHz ~ 2483.5MHz                                                                                                                                                                                                                                                                                                                                                       | • IEEE 802.11b:29.77dBm(0.9484W)              |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| Antenna Function Description                          | <table border="1"> <thead> <tr> <th></th><th>Ant. 0</th><th>Ant. 1</th><th>Ant. 2</th></tr> </thead> <tbody> <tr> <td>802.11 b/g/n/ax<br/>SISO</td><td>✓</td><td>✓</td><td>✓</td></tr> <tr> <td>802.11 b/g/n/ax<br/>CDD 1S3T</td><td>✓</td><td>✓</td><td>✓</td></tr> <tr> <td>802.11 ax<br/>Tx Beamforming 1S3T</td><td>✓</td><td>✓</td><td>✓</td></tr> </tbody> </table> |                                               |        |  | Ant. 0 | Ant. 1 | Ant. 2 | 802.11 b/g/n/ax<br>SISO | ✓ | ✓ | ✓ | 802.11 b/g/n/ax<br>CDD 1S3T | ✓ | ✓ | ✓ | 802.11 ax<br>Tx Beamforming 1S3T | ✓ | ✓ | ✓ |
|                                                       | Ant. 0                                                                                                                                                                                                                                                                                                                                                                    | Ant. 1                                        | Ant. 2 |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| 802.11 b/g/n/ax<br>SISO                               | ✓                                                                                                                                                                                                                                                                                                                                                                         | ✓                                             | ✓      |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| 802.11 b/g/n/ax<br>CDD 1S3T                           | ✓                                                                                                                                                                                                                                                                                                                                                                         | ✓                                             | ✓      |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| 802.11 ax<br>Tx Beamforming 1S3T                      | ✓                                                                                                                                                                                                                                                                                                                                                                         | ✓                                             | ✓      |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| Nominal Bandwidth                                     | 20MHz / 40MHz                                                                                                                                                                                                                                                                                                                                                             |                                               |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| Modulation                                            | IEEE 802.11b: DSSS<br>IEEE 802.11g/n: OFDM<br>IEEE 802.11ax: OFDMA                                                                                                                                                                                                                                                                                                        |                                               |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| Antenna gain                                          | Ant0: 3.51dBi, Ant1: 3.67dBi, Ant2: 3.47dBi                                                                                                                                                                                                                                                                                                                               |                                               |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |
| Antenna type                                          | PCB antenna                                                                                                                                                                                                                                                                                                                                                               |                                               |        |  |        |        |        |                         |   |   |   |                             |   |   |   |                                  |   |   |   |

Eleven channels are provided for 802.11b, 802.11g, 802.11n20, 802.11ax20:

| Frequency Band       | Channel No. | Frequency | Channel No. | Frequency |
|----------------------|-------------|-----------|-------------|-----------|
| 2400MHz ~ 2483.5 MHz | 01          | 2412MHz   | 07          | 2442MHz   |
|                      | 02          | 2417MHz   | 08          | 2447MHz   |
|                      | 03          | 2422MHz   | 09          | 2452MHz   |
|                      | 04          | 2427MHz   | 10          | 2457MHz   |
|                      | 05          | 2432MHz   | 11          | 2462MHz   |
|                      | 06          | 2437MHz   | /           | /         |

Seven channels are provided for 802.11n40, 802.11ax40:

| Frequency Band       | Channel No. | Frequency | Channel No. | Frequency |
|----------------------|-------------|-----------|-------------|-----------|
| 2400MHz ~ 2483.5 MHz | 03          | 2422 MHz  | 07          | 2442MHz   |
|                      | 04          | 2427MHz   | 08          | 2447MHz   |
|                      | 05          | 2432MHz   | 09          | 2452MHz   |
|                      | 06          | 2437MHz   | /           | /         |

Note:

1. For SISO&MIMO mode, the whole testing has assessed only MIMO mode by referring to their higher conducted power.
2. For 802.11n/ax 20/40MHz mode, the power setting of 802.11n 20/40MHz mode is the same or lower than 802.11ax 20/40MHz mode. Therefore, the whole testing has assessed only 802.11axHE20/HE40 mode.
3. The device supports 1S3T for MIMO(CDD&TxBF) mode. 1S3T means NSS=1, MIMO 3Tx.
4. 802.11ax support Tx Beamforming mode, and the Tx Beamforming power/EIRP is not greater than CDD mode, so we only evaluate CDD mode by referring to their maximum conducted power.
5. The device does not support partial RU tone for 802.11ax mode

## 1.4 Transmit Operating Mode

Please refer to original report(FR332120A)

## 2. Summary of Test Results

### 2.1 Summary of Test Items

| 47 CFR FCC Part 15, Subpart C (Section 15.247) |                          |            |         |
|------------------------------------------------|--------------------------|------------|---------|
| Test item                                      | FCC Clause               | Results    | Remarks |
| AC Power Conducted Emission                    | 15.207                   | Pass       | /       |
| Radiated Emission and Band Edge Measurement    | 15.205/15.209 /15.247(d) | Pass       | Note3   |
| Spurious Emission at Antenna Port              | 15.247(d)                | Pass       | Note2   |
| 6dB Bandwidth                                  | 15.247(a)(2)             | Pass       | Note2   |
| Maximum Conducted Power                        | 15.247(b)                | Pass       | Note2   |
| Power Spectral Density                         | 15.247(e)                | Pass       | Note2   |
| Antenna Requirements                           | 15.203                   | Compliance | Note1   |

Note:

1. The EUT has 3 PCB Antennas arrangement which was permanently attached.
2. For test item: 6dB Bandwidth, Spurious Emission at Antenna Port, Maximum Conducted Power and Power Spectral Density, Please refer to original report(FR332120A)
3. Worst case for Radiated Emission and Band Edge were recorded.

### 2.2 Application of Standard

47 CFR FCC Part 15, Subpart C (Section 15.247)

KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

ANSI C63.10:2013

## 2.3 Test Instruments

| Radiated Emissions |                          |                           |                    |             |               |                        |                            |
|--------------------|--------------------------|---------------------------|--------------------|-------------|---------------|------------------------|----------------------------|
| No.                | Equipment                | Manufacturer              | Type No.           | Serial No.  | Inventory No. | Cal. date (yyyy/mm/dd) | Cal. Due date (yyyy/mm/dd) |
| 1                  | Test receiver            | Rohde&Schwarz             | ESU                | 100184      | JLE011        | 2024/4/24              | 2025/4/23                  |
| 2                  | Log periodic antenna     | Schwarzbeck               | VULB 9168          | 1151        | JLE012        | 2024/4/20              | 2025/4/19                  |
| 3                  | Low frequency amplifier  | /                         | LNA 0920N          | 2014        | JLE023        | 2024/4/24              | 2025/4/23                  |
| 4                  | High frequency amplifier | Schwarzbeck               | BBV 9718           | 284         | JLE024        | 2024/4/24              | 2025/4/23                  |
| 5                  | Horn Antenna             | SCHWARZBEC K              | BBHA 9120 D        | 9120D-1273  | JLE028        | 2024/4/20              | 2025/4/19                  |
| 6                  | Temp&Humidity Recorder   | Meideshi                  | JR900              | /           | JLE021        | 2024/4/24              | 2025/4/23                  |
| 7                  | Horn Antenna             | SCHWARZBEC K              | BBHA 9170          | 9170#685    | JLE029        | 2024/7/15              | 2025/7/14                  |
| 8                  | Loop Antenna             | SCHWARZBEC K              | FMZB15 19B         | 00029       | JLE030        | 2024/7/15              | 2025/7/14                  |
| 9                  | Broadband preamplifier   | Schwarzbeck               | BBV9721            | 9721-019    | JLE025        | 2024/4/24              | 2025/4/23                  |
| 10                 | MXA Signal Analyzer      | Keysight                  | N9010A             | MY51440 158 | JLE076        | 2024/4/20              | 2025/4/19                  |
| 11                 | Test software            | Farad Technology Co., Ltd | EZ-EMC Ver.TW-03A2 |             |               |                        |                            |
| Conducted Emission |                          |                           |                    |             |               |                        |                            |
| 1                  | LISN                     | Rohde&Schwarz             | ENV216             | 100075      | JLE002        | 2024/4/24              | 2025/4/23                  |
| 2                  | ISN                      | Schwarzbeck               | CATE 5 8158        | #171        | JLE003        | 2024/4/24              | 2025/4/23                  |
| 3                  | Test receiver            | Rohde&Schwarz             | ESCI               | 100718      | JLE010        | 2024/4/24              | 2025/4/23                  |
| 4                  | Pulse limiter            | Rohde&Schwarz             | ESH3-Z2            | 102299      | JLE047        | 2024/4/24              | 2025/4/23                  |
| 5                  | Temp&Humidity Recorder   | Meideshi                  | JR900              | /           | JLE020        | 2024/4/24              | 2025/4/23                  |
| 6                  | Test software            | Farad Technology Co., Ltd | EZ-EMC Ver.TW-03A2 |             |               |                        |                            |

## 2.4 Test Mode

Please refer to original report(FR332120A)

## 2.5 Test Condition

| Applicable to                               | Environmental conditions | Input Power  | Tested by |
|---------------------------------------------|--------------------------|--------------|-----------|
| AC Power Conducted Emission                 | 23.2°C, 54% RH           | AC 120V/60Hz | Lemon He  |
| Radiated Emission and Band Edge Measurement | 23.8°C, 53% RH           | AC 120V/60Hz | Lemon He  |

Note: Adapter supply voltage AC 120V/60Hz.



## 2.6 Duty Cycle of Test Signal

Please refer to original report(FR332120A)

## 2.7 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

| Uncertainty                            |             |
|----------------------------------------|-------------|
| Parameter                              | Uncertainty |
| Occupied Channel Bandwidth             | ±102kHz     |
| Power Spectral Density                 | ±0.377dB    |
| Conducted Spurious Emission            | ±0.743dB    |
| RF power conducted                     | ±1.328dB    |
| Conducted emission(9kHz~30MHz) AC main | ±2.68dB     |
| Radiated emission(9kHz~30MHz)          | ±2.74dB     |
| Radiated emission (30MHz~1GHz)         | ±4.22dB     |
| Radiated emission (1GHz~18GHz)         | ±5.06dB     |
| Radiated emission (18GHz~40GHz)        | ±4.98dB     |

## 2.8 Description of Support Units

| No. | Equipment              | Model Name   | Manufacturer | Remarks  |
|-----|------------------------|--------------|--------------|----------|
| 1   | Telephone 1            | /            | /            | /        |
| 2   | Telephone 2            | /            | /            | /        |
| 3   | Microcomputer          | TY510S-07IAB | LENOVO       | YLX2QPQJ |
| 4   | Microcomputer          | TY510S-07IAB | LENOVO       | YLX2QPM7 |
| 5   | Microcomputer          | M4600t-N000  | LENOVO       | M703V3VF |
| 6   | Notebook               | L450         | Think        | /        |
| 7   | Notebook               | L450         | Think        | /        |
| 8   | USB Disk               | /            | Kingston     | /        |
| 9   | Optical local terminal | C300         | /            | /        |
| 10  | 8 pin PSU              | /            | /            | /        |

## 2.9 Test Location

|                           |                                                                                             |
|---------------------------|---------------------------------------------------------------------------------------------|
| Company:                  | Shenzhen Haiyun Standard Technical CO., Ltd.                                                |
| Address:                  | No. 110-113, 115, 116, Block B, Jinyuan Business Building, Bao'an District, Shenzhen, China |
| CNAS Registration Number: | CNAS L18252                                                                                 |
| CAB identifier            | CN0145                                                                                      |
| A2LA Certificate Number   | 6823.01                                                                                     |
| Telephone:                | 0755-26024411                                                                               |

### 3. Test Procedure And Results

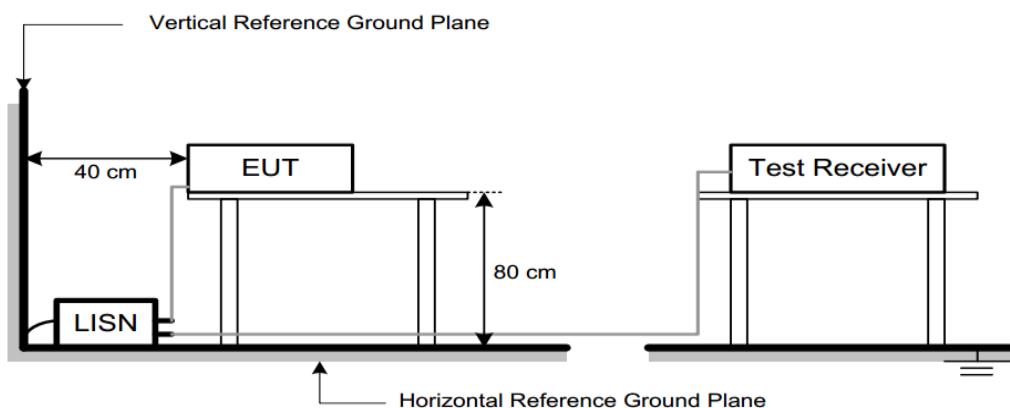
#### 3.1 AC Power Line Conducted Emission

##### 3.1.1 Limit

| Frequency       | Maximum RF Line Voltage    |                         |
|-----------------|----------------------------|-------------------------|
|                 | Quasi-Peak Level<br>dB(μV) | Average Level<br>dB(μV) |
| 150kHz ~ 500kHz | 66 ~ 56*                   | 56 ~ 46*                |
| 500kHz ~ 5MHz   | 56                         | 46                      |
| 5MHz ~ 30MHz    | 60                         | 50                      |

Notes: 1. \* Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.


##### 3.1.2 Test Procedure

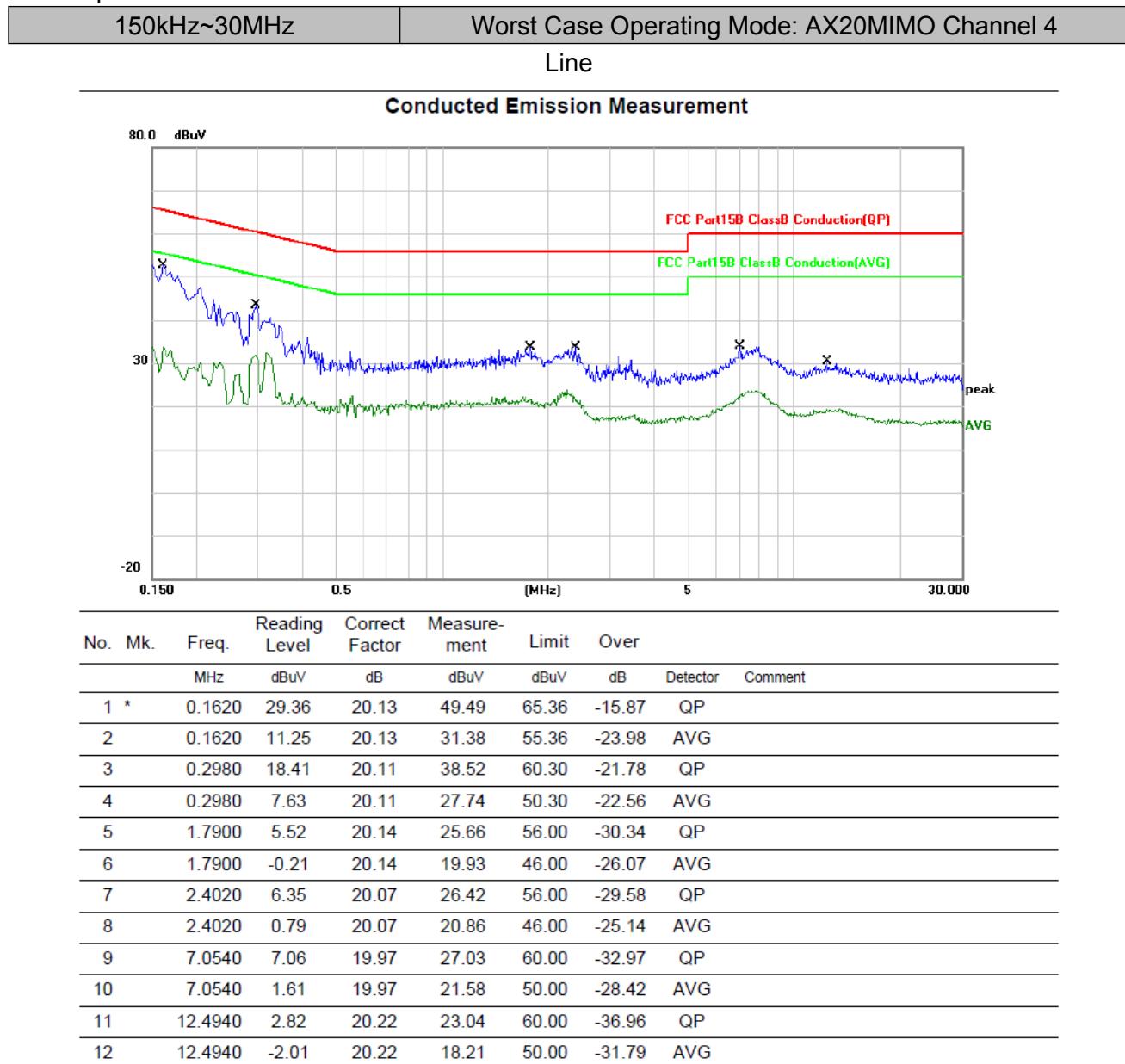
| Test Method                          |                                                       |
|--------------------------------------|-------------------------------------------------------|
| ● Conducted Measurement              | <input checked="" type="radio"/> Radiated Measurement |
| Test Channels                        |                                                       |
| ○ Lowest, Middle and Highest Channel | <input type="radio"/> Lowest and Highest Channel      |
| Environmental conditions             |                                                       |
| ● Normal                             | <input type="radio"/> Normal and Extreme              |

Note: ● : Test    ○ : No Test

- The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.

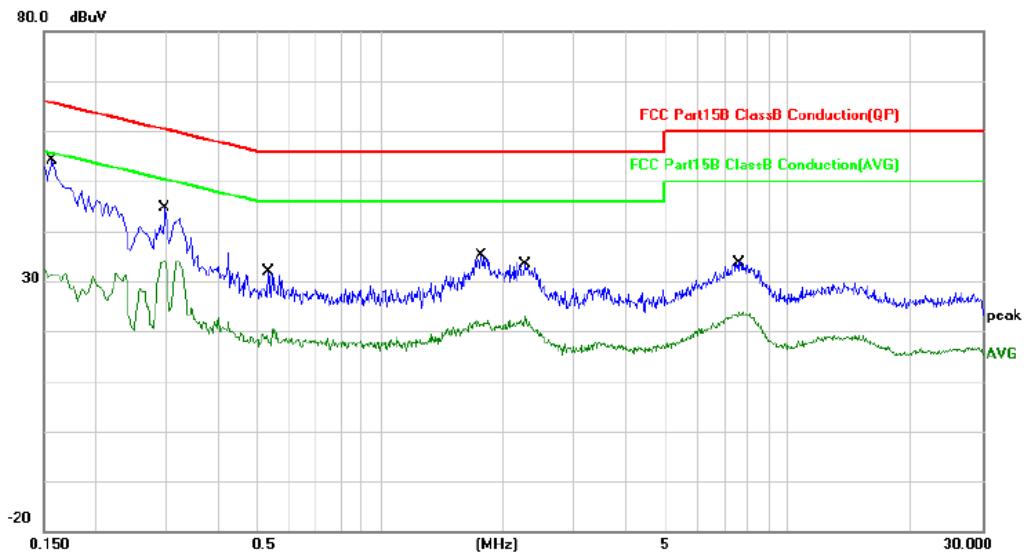
##### 3.1.3 Test Setup




### 3.1.4 Test Result

**Note:**

1. Correct Factor = LISN Factor + Cable Loss + Pulse Limiter Factor, the value was added to Original Receiver Reading by the software automatically.
2. Measurement = Reading + Correct Factor.
3. Over = Measurement – Limit


We only recorded the data of the worst mode. Please see the following:

For adapter



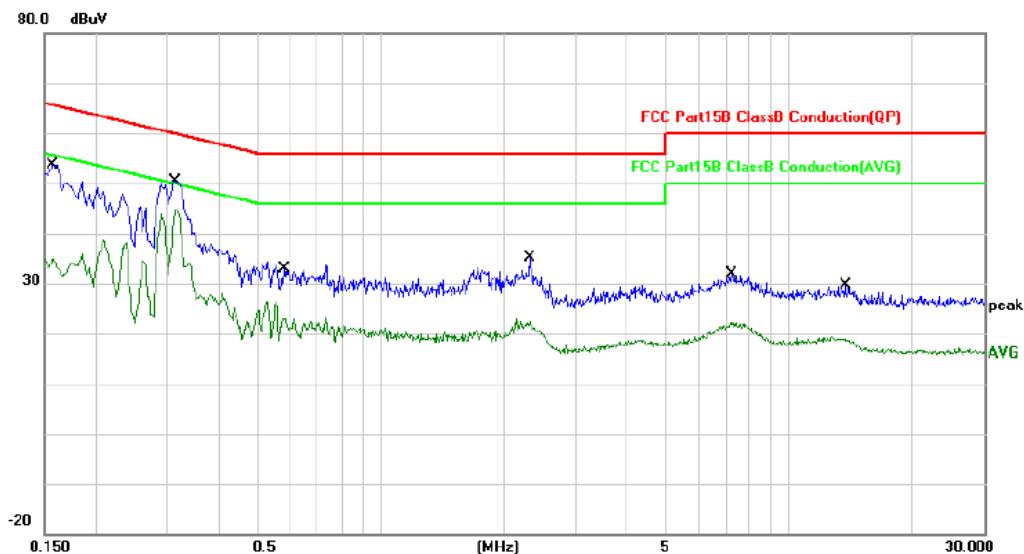


Conducted Emission Measurement



| No. | Mk. | Freq.  | Reading | Correct | Measure- | Limit | Over   | Detector | Comment |
|-----|-----|--------|---------|---------|----------|-------|--------|----------|---------|
|     |     |        | Level   | Factor  | ment     |       |        |          |         |
|     |     | MHz    | dBuV    | dB      | dBuV     | dB    |        |          |         |
| 1   |     | 0.1580 | 27.40   | 20.32   | 47.72    | 65.57 | -17.85 | QP       |         |
| 2   |     | 0.1580 | 9.92    | 20.32   | 30.24    | 55.57 | -25.33 | AVG      |         |
| 3   |     | 0.2980 | 19.88   | 20.13   | 40.01    | 60.30 | -20.29 | QP       |         |
| 4 * |     | 0.2980 | 13.22   | 20.13   | 33.35    | 50.30 | -16.95 | AVG      |         |
| 5   |     | 0.5340 | 2.24    | 20.09   | 22.33    | 56.00 | -33.67 | QP       |         |
| 6   |     | 0.5340 | -1.75   | 20.09   | 18.34    | 46.00 | -27.66 | AVG      |         |
| 7   |     | 1.7780 | 5.18    | 20.36   | 25.54    | 56.00 | -30.46 | QP       |         |
| 8   |     | 1.7780 | -0.29   | 20.36   | 20.07    | 46.00 | -25.93 | AVG      |         |
| 9   |     | 2.3060 | 8.35    | 20.29   | 28.64    | 56.00 | -27.36 | QP       |         |
| 10  |     | 2.3060 | 1.28    | 20.29   | 21.57    | 46.00 | -24.43 | AVG      |         |
| 11  |     | 7.6140 | 7.69    | 20.27   | 27.96    | 60.00 | -32.04 | QP       |         |
| 12  |     | 7.6140 | 2.48    | 20.27   | 22.75    | 50.00 | -27.25 | AVG      |         |

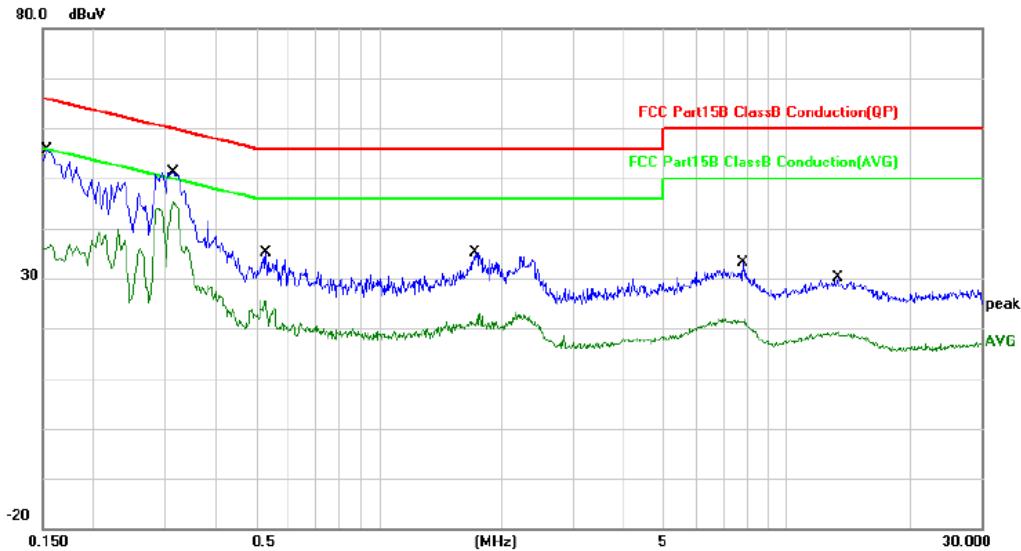



For 8 pin PSU

150kHz~30MHz

Worst Case Operating Mode: AX20MIMO Channel 4

Line


Conducted Emission Measurement



| No. | Mk. | Freq.<br>MHz | Reading<br>Level<br>dBuV | Correct<br>Factor<br>dB | Measure-<br>ment<br>dBuV | Limit<br>dBuV | Over<br>dB | Detector | Comment |
|-----|-----|--------------|--------------------------|-------------------------|--------------------------|---------------|------------|----------|---------|
| 1   |     | 0.1580       | 30.16                    | 20.11                   | 50.27                    | 65.57         | -15.30     | QP       |         |
| 2   |     | 0.1580       | 13.66                    | 20.11                   | 33.77                    | 55.57         | -21.80     | AVG      |         |
| 3   |     | 0.3140       | 29.27                    | 20.09                   | 49.36                    | 59.86         | -10.50     | QP       |         |
| 4 * |     | 0.3140       | 24.37                    | 20.09                   | 44.46                    | 49.86         | -5.40      | AVG      |         |
| 5   |     | 0.5820       | 8.01                     | 20.07                   | 28.08                    | 56.00         | -27.92     | QP       |         |
| 6   |     | 0.5820       | 2.65                     | 20.07                   | 22.72                    | 46.00         | -23.28     | AVG      |         |
| 7   |     | 2.3100       | 6.96                     | 20.11                   | 27.07                    | 56.00         | -28.93     | QP       |         |
| 8   |     | 2.3100       | 1.45                     | 20.11                   | 21.56                    | 46.00         | -24.44     | AVG      |         |
| 9   |     | 7.2180       | 6.05                     | 19.99                   | 26.04                    | 60.00         | -33.96     | QP       |         |
| 10  |     | 7.2180       | 0.95                     | 19.99                   | 20.94                    | 50.00         | -29.06     | AVG      |         |
| 11  |     | 13.7540      | 2.38                     | 20.20                   | 22.58                    | 60.00         | -37.42     | QP       |         |
| 12  |     | 13.7540      | -2.38                    | 20.20                   | 17.82                    | 50.00         | -32.18     | AVG      |         |



Conducted Emission Measurement



| No. | Mk. | Freq.<br>MHz | Reading<br>Level<br>dBuV | Correct<br>Factor<br>dB | Measure-<br>ment<br>dBuV | Limit<br>dB | Over<br>Detector | Comment |
|-----|-----|--------------|--------------------------|-------------------------|--------------------------|-------------|------------------|---------|
| 1   |     | 0.1540       | 28.64                    | 20.33                   | 48.97                    | 65.78       | -16.81           | QP      |
| 2   |     | 0.1540       | 14.17                    | 20.33                   | 34.50                    | 55.78       | -21.28           | AVG     |
| 3   |     | 0.3140       | 29.80                    | 20.11                   | 49.91                    | 59.86       | -9.95            | QP      |
| 4 * |     | 0.3140       | 24.86                    | 20.11                   | 44.97                    | 49.86       | -4.89            | AVG     |
| 5   |     | 0.5300       | 8.44                     | 20.08                   | 28.52                    | 56.00       | -27.48           | QP      |
| 6   |     | 0.5300       | 3.93                     | 20.08                   | 24.01                    | 46.00       | -21.99           | AVG     |
| 7   |     | 1.7220       | 6.66                     | 20.35                   | 27.01                    | 56.00       | -28.99           | QP      |
| 8   |     | 1.7220       | 0.23                     | 20.35                   | 20.58                    | 46.00       | -25.42           | AVG     |
| 9   |     | 7.8420       | 4.76                     | 20.27                   | 25.03                    | 60.00       | -34.97           | QP      |
| 10  |     | 7.8420       | -0.14                    | 20.27                   | 20.13                    | 50.00       | -29.87           | AVG     |
| 11  |     | 13.3780      | 2.53                     | 20.27                   | 22.80                    | 60.00       | -37.20           | QP      |
| 12  |     | 13.3780      | -2.29                    | 20.27                   | 17.98                    | 50.00       | -32.02           | AVG     |

## 3.2 Radiated Emission and Band Edge

### 3.2.1 Limit

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

| Frequency<br>(MHz) | Distance<br>Meters(m) | Field Strength Limit                            |          |
|--------------------|-----------------------|-------------------------------------------------|----------|
|                    |                       | μV/m                                            | dB(μV)/m |
| 0.009 – 0.49       | 300                   | 2400/F(kHz)                                     | -        |
| 0.490 – 1.705      | 30                    | 24000/F(kHz)                                    | -        |
| 1.705 – 30         | 30                    | 30                                              | -        |
| 30~88              | 3                     | 100                                             | 40.0     |
| 88~216             | 3                     | 150                                             | 43.5     |
| 216~960            | 3                     | 200                                             | 46.0     |
| 960~1000           | 3                     | 500                                             | 54.0     |
| Above 1000         | 3                     | 74.0 dB(μV)/m (Peak)<br>54.0 dB(μV)/m (Average) |          |

Note: (1) Emission level  $dB\mu V = 20 \log Emission\ level\ \mu V/m$

(2) The smaller limit shall apply at the cross point between two frequency bands.

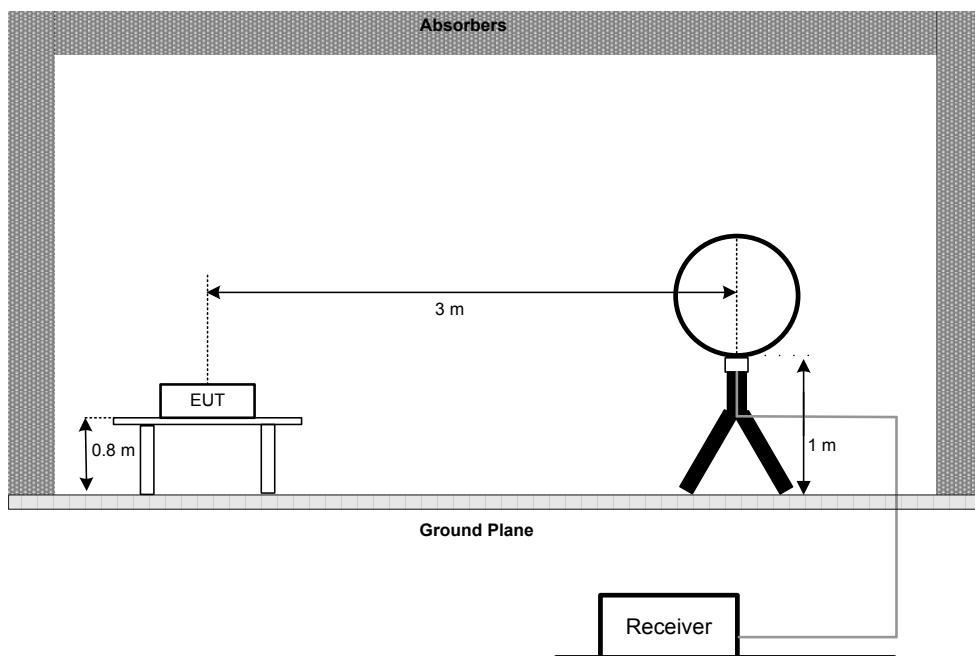
(3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

### 3.2.2 Test Procedure

| Test Method                                                         |                                                       |
|---------------------------------------------------------------------|-------------------------------------------------------|
| <input type="radio"/> Conducted Measurement                         | <input checked="" type="radio"/> Radiated Measurement |
| Test Channels                                                       |                                                       |
| <input checked="" type="radio"/> Lowest, Middle and Highest Channel | <input type="radio"/> Lowest and Highest Channel      |
| Environmental conditions                                            |                                                       |
| <input checked="" type="radio"/> Normal                             | <input type="radio"/> Normal and Extreme              |

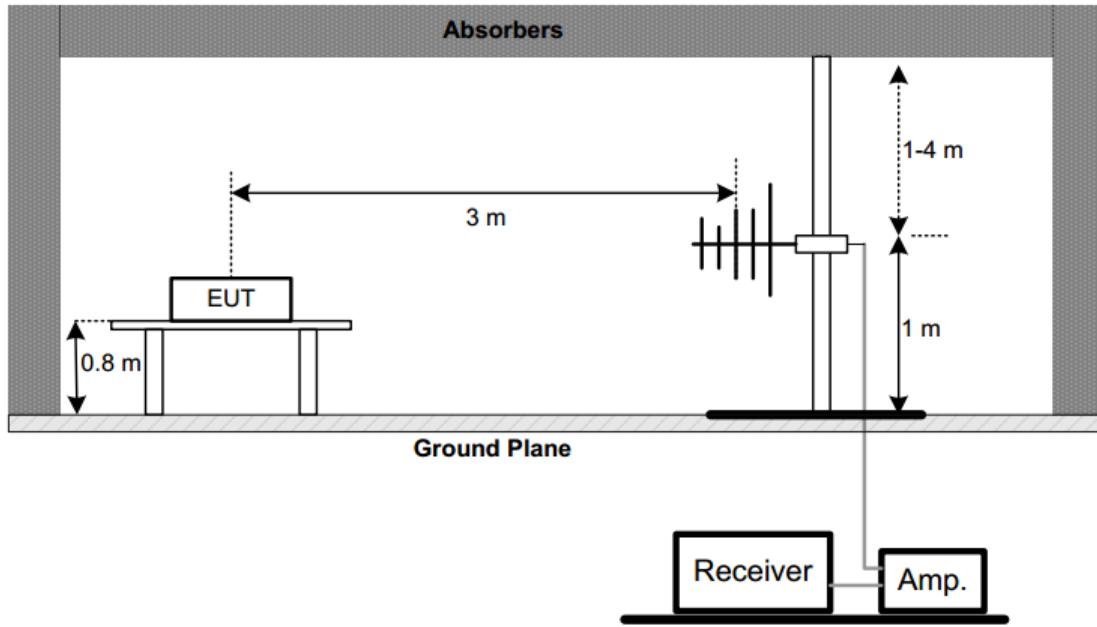
Note: ● : Test    ○ : No Test

- The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- The measuring distance of 3 m or 1.5m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of

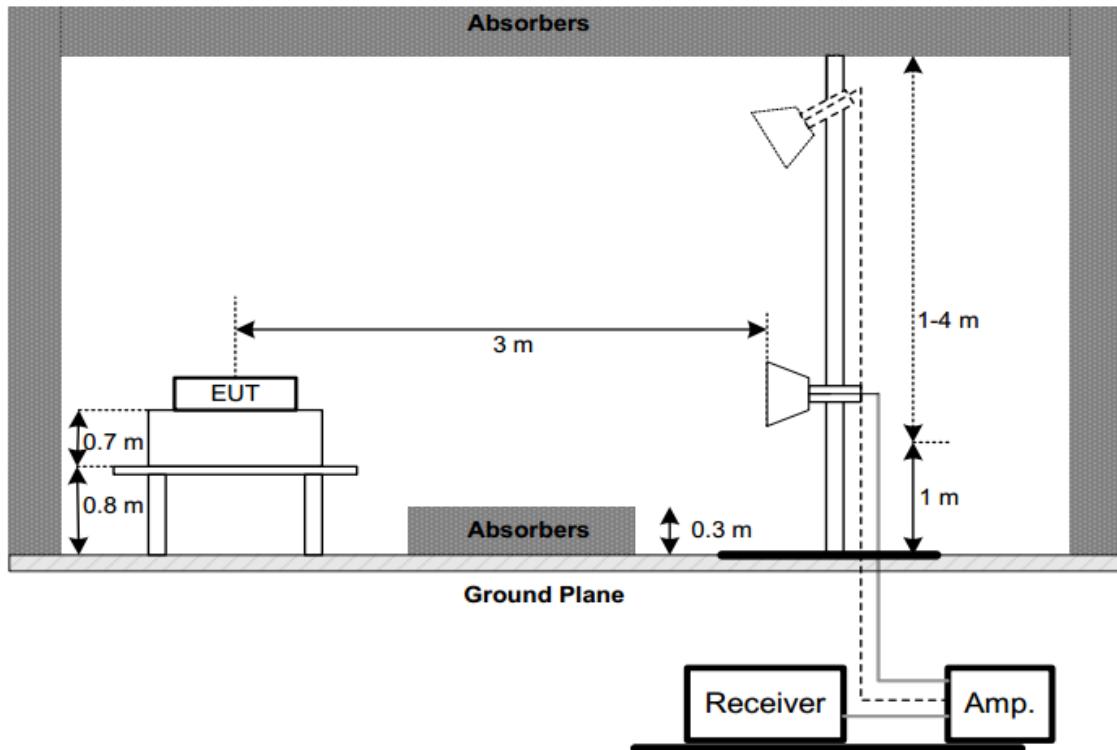



the antenna are set to make the measurement.

- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e) The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f) The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g) All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h) All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i) For the actual test configuration, please refer to the related Item -EUT Test Photos.


### 3.2.3 Test Setup

#### (A) Radiated Emission Test Set-Up Frequency Below 30 MHz






(B) Radiated Emission Test Set-Up Frequency 30 MHz-1000 MHz



(C) Radiated Emission Test Set-Up Frequency Above 1 GHz





### 3.2.4 Test Result

#### 1) Radiated emission: 9kHz-30MHz

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not recorded in this report.

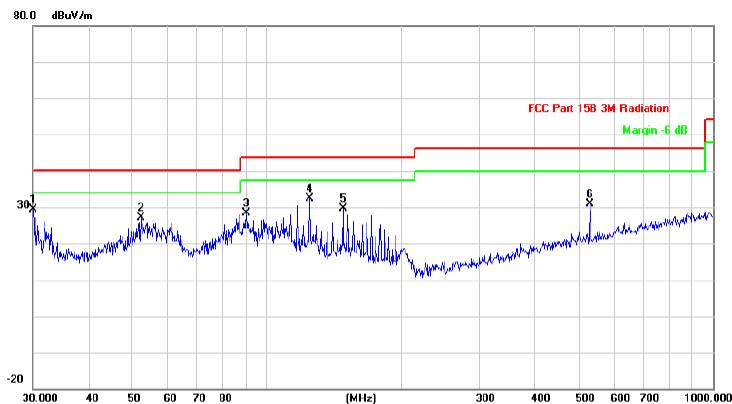
#### 2) Radiated emission: 30MHz-1G

##### Note:

1. Measurement = Reading + Correct Factor.
2. Over = Measurement – Limit

We only recorded the data of the worst mode. Please see the following:

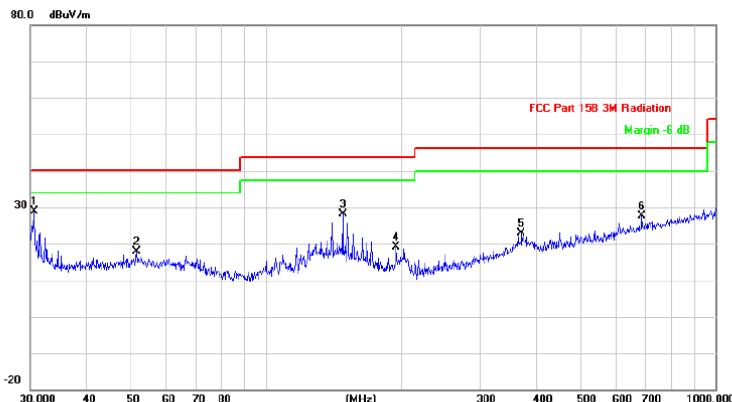



For adapter

Below 1G (30MHz~1GHz)

Worst Case Operating Mode: AX20MIMO Channel 4

VERTICAL


Radiated Emission



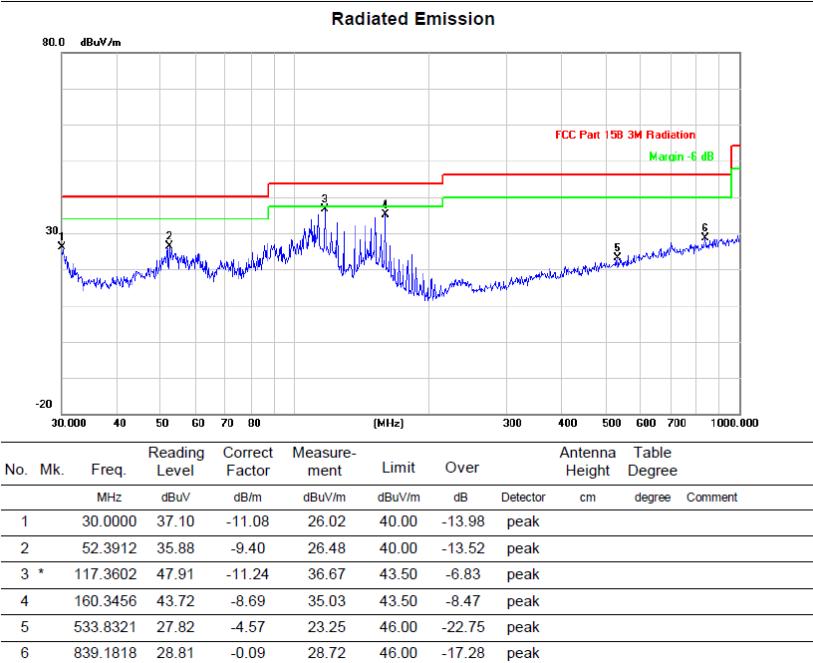
| No. | Mk. | Freq.    | Reading | Correct | Measure- | Limit | Over     | Antenna | Table  | Degree  |
|-----|-----|----------|---------|---------|----------|-------|----------|---------|--------|---------|
|     |     |          | Level   | Factor  |          |       |          |         |        |         |
| MHz |     | dBuV     | dB/m    | dBuV/m  | dBuV/m   | dB    | Detector | cm      | degree | Comment |
| 1 * |     | 30.1054  | 40.35   | -11.06  | 29.29    | 40.00 | -10.71   | peak    |        |         |
| 2   |     | 52.3912  | 36.55   | -9.40   | 27.15    | 40.00 | -12.85   | peak    |        |         |
| 3   |     | 90.2205  | 42.15   | -13.88  | 28.27    | 43.50 | -15.23   | peak    |        |         |
| 4   |     | 125.0066 | 42.73   | -10.33  | 32.40    | 43.50 | -11.10   | peak    |        |         |
| 5   |     | 148.4410 | 38.54   | -8.79   | 29.75    | 43.50 | -13.75   | peak    |        |         |
| 6   |     | 530.1014 | 35.61   | -4.73   | 30.88    | 46.00 | -15.12   | peak    |        |         |

HORIZONTAL

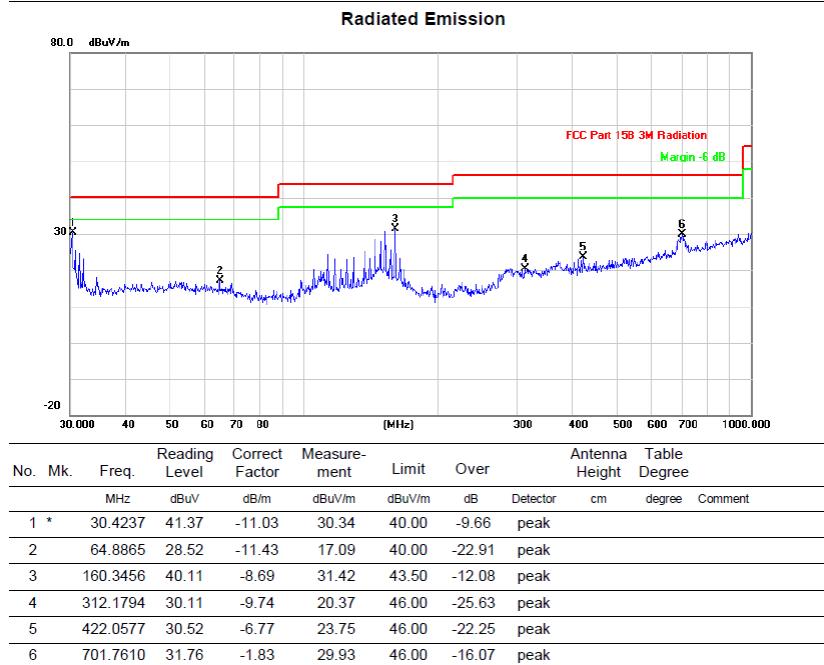
Radiated Emission



| No. | Mk. | Freq.    | Reading | Correct | Measure- | Limit | Over     | Antenna | Table  | Degree  |
|-----|-----|----------|---------|---------|----------|-------|----------|---------|--------|---------|
|     |     |          | Level   | Factor  |          |       |          |         |        |         |
| MHz |     | dBuV     | dB/m    | dBuV/m  | dBuV/m   | dB    | Detector | cm      | degree | Comment |
| 1 * |     | 30.6378  | 39.78   | -11.01  | 28.77    | 40.00 | -11.23   | peak    |        |         |
| 2   |     | 51.6615  | 27.38   | -9.44   | 17.94    | 40.00 | -22.06   | peak    |        |         |
| 3   |     | 148.4410 | 36.88   | -8.79   | 28.09    | 43.50 | -15.41   | peak    |        |         |
| 4   |     | 195.1363 | 31.90   | -12.72  | 19.18    | 43.50 | -24.32   | peak    |        |         |
| 5   |     | 370.7023 | 31.03   | -8.18   | 22.85    | 46.00 | -23.15   | peak    |        |         |
| 6   |     | 687.1506 | 29.67   | -2.08   | 27.59    | 46.00 | -18.41   | peak    |        |         |




For 8 pin PSU


Below 1G (30MHz~1GHz)

Worst Case Operating Mode: AX20MIMO Channel 4

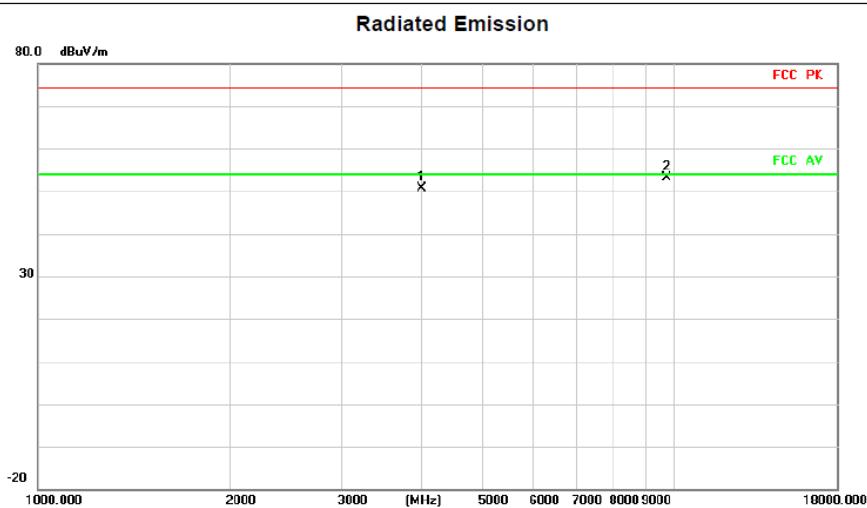
VERTICAL



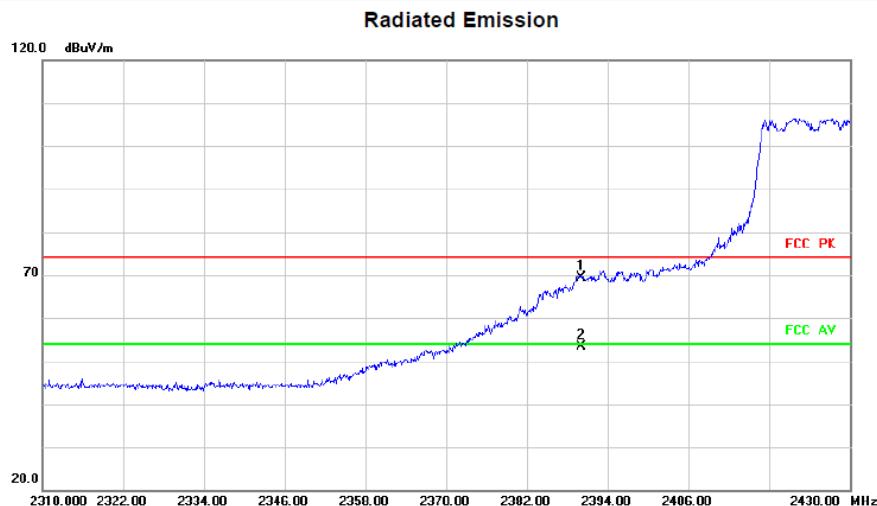
HORIZONTAL






### 3) Radiated emission: Above 1G

#### Note:

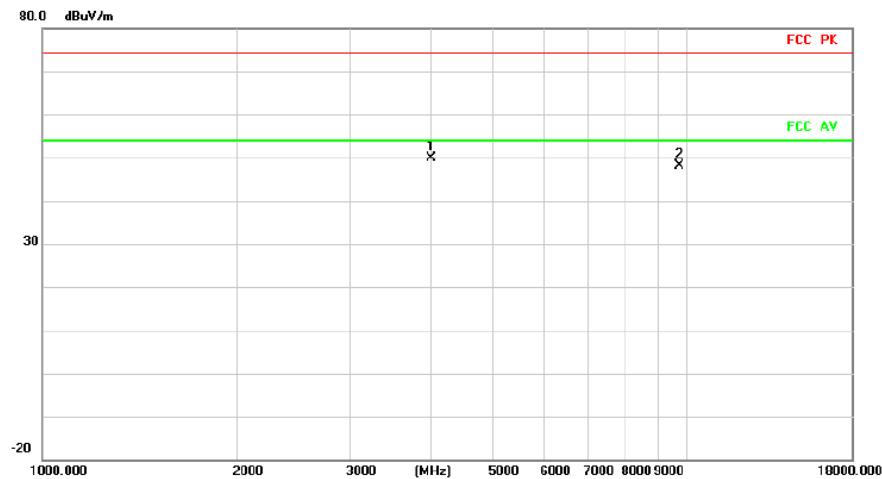

1. Measurement = Reading + Correct Factor.
2. Over = Measurement – Limit
3. We only recorded the data of the worst mode. Please see the following:

| Above 1G (1GHz~18GHz) | Test mode: AX20MIMO | Test Channel:4 |
|-----------------------|---------------------|----------------|
|-----------------------|---------------------|----------------|

VERTICAL

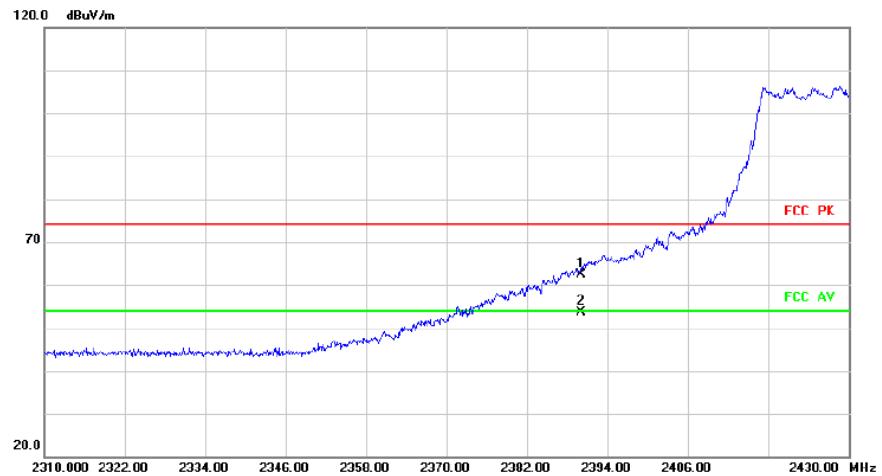


| No. | Mk. | Freq.    | Reading Level | Correct Factor | Measure-ment | Limit  | Over   | Antenna Height | Table Degree | Comment |         |
|-----|-----|----------|---------------|----------------|--------------|--------|--------|----------------|--------------|---------|---------|
|     |     | MHz      | dBuV          | dB/m           | dBuV/m       | dBuV/m | dB     | Detector       | cm           | degree  | Comment |
| 1   |     | 4000.000 | 57.93         | -7.29          | 50.64        | 74.00  | -23.36 | peak           |              |         |         |
| 2 * |     | 9708.000 | 47.80         | 5.44           | 53.24        | 74.00  | -20.76 | peak           |              |         |         |




| No. | Mk. | Freq.    | Reading Level | Correct Factor | Measure-ment | Limit  | Over  | Antenna Height | Table Degree | Comment |         |
|-----|-----|----------|---------------|----------------|--------------|--------|-------|----------------|--------------|---------|---------|
|     |     | MHz      | dBuV          | dB/m           | dBuV/m       | dBuV/m | dB    | Detector       | cm           | degree  | Comment |
| 1   |     | 2390.000 | 61.02         | 8.46           | 69.48        | 74.00  | -4.52 | peak           |              |         |         |
| 2 * |     | 2390.000 | 44.81         | 8.46           | 53.27        | 54.00  | -0.73 | AVG            |              |         |         |




## HORIZONTAL

### Radiated Emission



| No. | Mk. | Freq.    | Reading Level | Correct Factor | Measure-ment | Limit  | Over   | Antenna Height | Table Degree | Comment |         |
|-----|-----|----------|---------------|----------------|--------------|--------|--------|----------------|--------------|---------|---------|
|     |     | MHz      | dBuV          | dB/m           | dBuV/m       | dBuV/m | dB     | Detector       | cm           | degree  | Comment |
| 1   | *   | 4000.000 | 57.15         | -7.29          | 49.86        | 74.00  | -24.14 | peak           |              |         |         |
| 2   |     | 9708.000 | 42.57         | 5.44           | 48.01        | 74.00  | -25.99 | peak           |              |         |         |

### Radiated Emission



| No. | Mk. | Freq.    | Reading Level | Correct Factor | Measure-ment | Limit  | Over   | Antenna Height | Table Degree | Comment |         |
|-----|-----|----------|---------------|----------------|--------------|--------|--------|----------------|--------------|---------|---------|
|     |     | MHz      | dBuV          | dB/m           | dBuV/m       | dBuV/m | dB     | Detector       | cm           | degree  | Comment |
| 1   |     | 2390.000 | 54.00         | 8.46           | 62.46        | 74.00  | -11.54 | peak           |              |         |         |
| 2   | *   | 2390.000 | 45.08         | 8.46           | 53.54        | 54.00  | -0.46  | AVG            |              |         |         |

The high frequency, which started from 18GHz to 26.5GHz, was pre-scanned and the result which was 20dB lower than the limit line was not recorded in this report.

### 3.3 Spurious Emission at Antenna Port

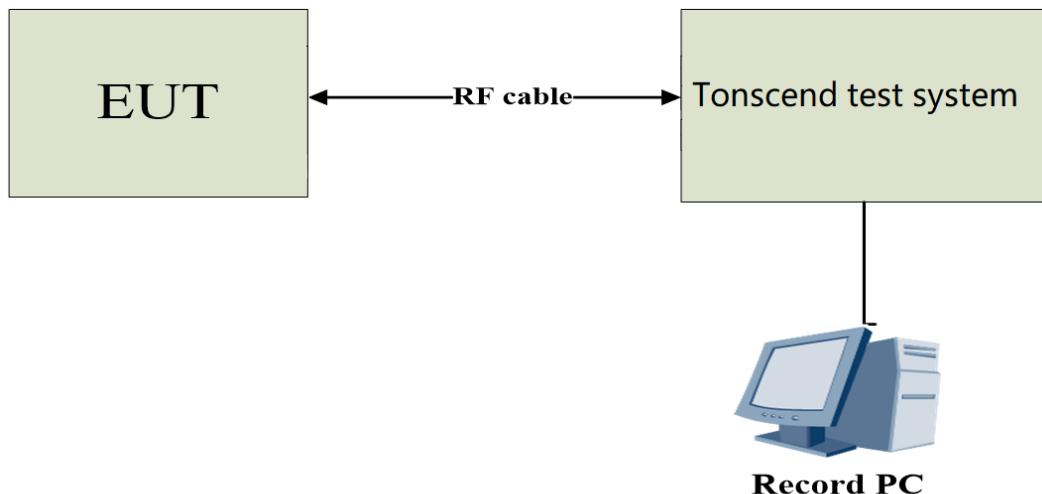
#### 3.3.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

#### 3.3.2 Test Procedure

| Test Method                          |                                                  |
|--------------------------------------|--------------------------------------------------|
| ● Conducted Measurement              | <input type="radio"/> Radiated Measurement       |
| Test Channels                        |                                                  |
| ● Lowest, Middle and Highest Channel | <input type="radio"/> Lowest and Highest Channel |
| Environmental conditions             |                                                  |
| ● Normal                             | <input type="radio"/> Normal and Extreme         |

Note: ● : Test    ○ : No Test


a) The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below.

b) Spectrum Setting as below:

|                     |                                                |
|---------------------|------------------------------------------------|
| Centre Frequency    | The centre frequency of the channel under test |
| Spectrum Parameters | Setting                                        |
| Start Frequency     | 30 MHz                                         |
| Stop Frequency      | 26.5 GHz                                       |
| RBW                 | 100 kHz                                        |
| VBW                 | 300 kHz                                        |
| Detector            | Peak                                           |
| Trace               | Max Hold                                       |
| Sweep Time          | Auto                                           |



### 3.3.3 Test Setup



2

### 3.3.4 The Result

Test result: PASS

Note: For test data, please refer to original report(FR332120A).

### 3.4 6dB Bandwidth

#### 3.4.1 Limit

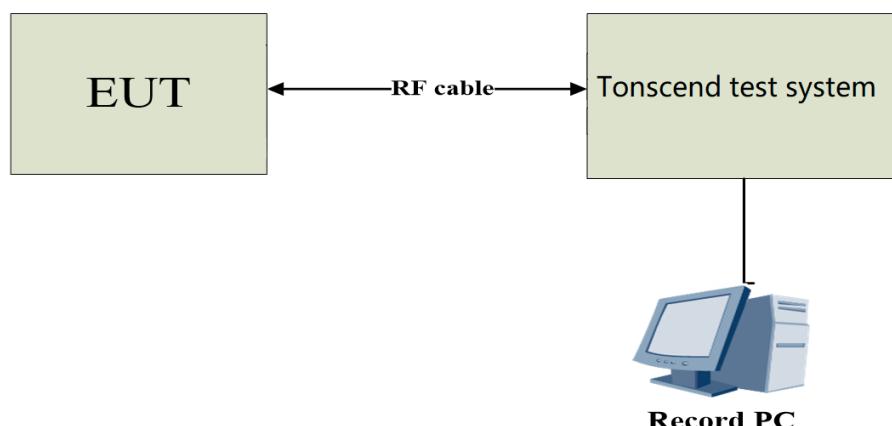
For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

#### 3.4.2 Test Procedure

| Test Method                          |                                                  |
|--------------------------------------|--------------------------------------------------|
| ● Conducted Measurement              | <input type="radio"/> Radiated Measurement       |
| Test Channels                        |                                                  |
| ● Lowest, Middle and Highest Channel | <input type="radio"/> Lowest and Highest Channel |
| Environmental conditions             |                                                  |
| ● Normal                             | <input type="radio"/> Normal and Extreme         |

Note: ● : Test    ○ : No Test

a) The EUT was connected to the tonscend test system, and the spectrum analyser is set as follow:


|                  |                                                |
|------------------|------------------------------------------------|
| Centre Frequency | The centre frequency of the channel under test |
| RBW              | 100kHz                                         |
| VBW              | 300kHz                                         |
| Frequency span   | 2x Nominal Channel Bandwidth                   |
| Detector Mode    | Peak                                           |
| Trace Mode       | Max Hold                                       |
| Sweep Time       | Auto Couple                                    |

b) Wait for the trace to stabilize then find the peak value of the trace and place the analyser marker on this peak.

c) Use the -6dB bandwidth function of the spectrum analyser to measure the 6dB Bandwidth of the EUT. This value shall be recorded.

d) Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement.

#### 3.4.3 Test Setup





### 3.4.4 Test Result

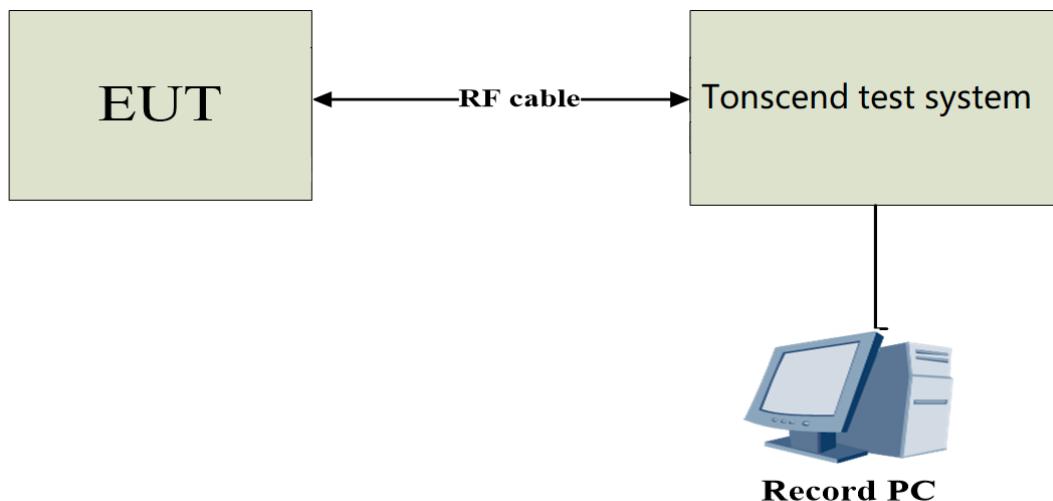
Test result: PASS

Note: For test data, please refer to original report(FR332120A).

### 3.5 Maximum conducted output power

#### 3.5.1 Limit

For systems using digital modulation in the 2400~2483.5MHz, The Maximum output Power shall not exceed 1W(30dBm)


#### 3.5.2 Test Procedure

| Test Method                          |                                                  |
|--------------------------------------|--------------------------------------------------|
| ● Conducted Measurement              | <input type="radio"/> Radiated Measurement       |
| Test Channels                        |                                                  |
| ● Lowest, Middle and Highest Channel | <input type="radio"/> Lowest and Highest Channel |
| Environmental conditions             |                                                  |
| ● Normal                             | <input type="radio"/> Normal and Extreme         |

Note: ● : Test    ○ : No Test

- The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below.
- The maximum conducted output power was performed in accordance with method 11.9.2.3 (for average power) of ANSI C63.10-2013 and FCC KDB 662911 D01 v02r01 Multiple Transmitter Output.

#### 3.5.3 Test Setup



#### 3.5.4 The Result

Test result: PASS

Note: For test data, please refer to original report(FR332120A).

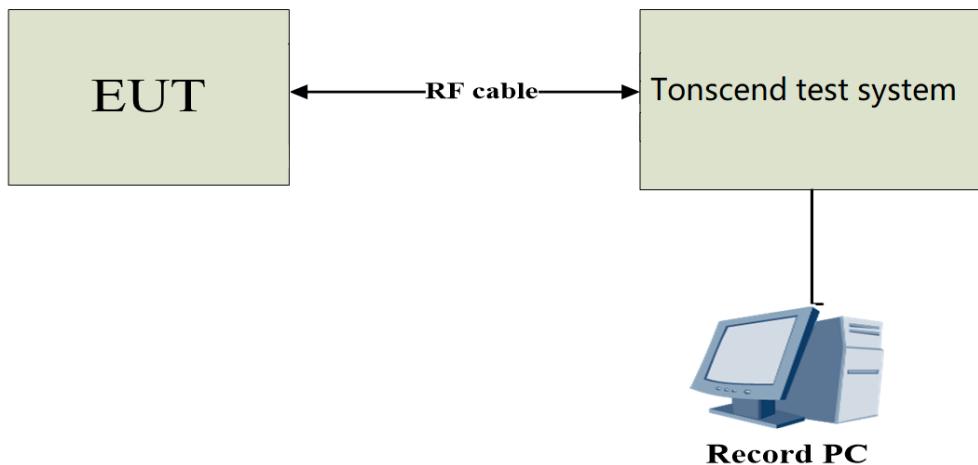
## 3.6 Power Spectral Density

### 3.6.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmitting.

### 3.6.2 Test Procedure

| Test Method                          |                                                  |
|--------------------------------------|--------------------------------------------------|
| ● Conducted Measurement              | <input type="radio"/> Radiated Measurement       |
| Test Channels                        |                                                  |
| ● Lowest, Middle and Highest Channel | <input type="radio"/> Lowest and Highest Channel |
| Environmental conditions             |                                                  |
| ● Normal                             | <input type="radio"/> Normal and Extreme         |


Note: ● : Test    ○ : No Test

a) The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below.

b) Spectrum analyser settings as following:

| Spectrum Parameters | Setting                     |
|---------------------|-----------------------------|
| Span Frequency      | 1.5 times the DTS bandwidth |
| RBW                 | 3 kHz                       |
| VBW                 | 10 kHz                      |
| Detector            | Average                     |
| Trace               | Max Hold                    |
| Sweep Time          | Auto                        |

### 3.6.3 Test Setup





### 3.6.4 The Result

Test result: PASS

Note: For test data, please refer to original report(FR332120A).

## Statement

1. The report is invalid without the official seal or special seal of Shenzhen Haiyun Standard Technology Co., Ltd. (hereinafter referred to as the unit).
2. The report is invalid without the signature of the approver.
3. The report is invalid if altered arbitrarily.
4. The report shall not be partially copied without the written approval of the unit.
5. The reported test results are only valid for the tested samples.
6. If there is any objection to the test report, it shall be submitted to the test unit within 15 days from the date of receiving the report, and the overdue shall not be accepted.

## Shenzhen Haiyun Standard Technology Co., Ltd.

Address: Room 110, 111, 112, 113, 115, 116, Block B, Jinyuan Business Building, No. 302, Xixiang Avenue, Labor Community, Xixiang Street, Baoan District, Shenzhen, China

Tel: 0755-26024411

Email: [service@hy-lab.cn](mailto:service@hy-lab.cn)

## End of Test Report