

Accredited testing-laboratory

DAR registration number: DAT-P-176/94-D1

Federal Motor Transport Authority (KBA)
DAR registration number: KBA-P 00070-97

Recognized by the Federal Communications Commission
Anechoic chamber registration no.: 90462 (FCC)
Anechoic chamber registration no.: 3462C-1 (IC)

Certification ID: DE 0001
Accreditation ID: DE 0002

Accredited Bluetooth® Test Facility (BQTF)
The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Cetecom ICT is under license

Test report no. : 2-4900-01-09/08
Type identification : MBR W30
Applicant : Ericsson AB
FCC ID : PJWMBRW30
IC Certification No : 287X-MBRW30
Test standards : 47 CFR Part 2
47 CFR Part 22
47 CFR Part 24
RSS - 132 Issue 2
RSS - 133 Issue 4

Table of contents

1 General information.....	4
1.1 Notes	4
1.2 Testing laboratory	5
1.3 Details of applicant	5
1.4 Application details	5
2 Test standard/s:.....	6
3 Technical tests	7
3.1 Details of manufacturer.....	7
3.1.1 Test item.....	8
3.2 Test Setup.....	9
4 Statement of Compliance.....	10
4.1 Summary of Measurement Results.....	10
4.1.1 Labeling requirements.....	10
4.1.2 PCS 1900.....	10
4.1.3 GSM 850	10
4.1.4 UMTS Band II.....	11
4.1.5 UMTS Band V	11
4.1.6 Receiver	11
5 Measurements and results	12
5.1 Labeling	12
5.2 PART PCS 1900	13
5.2.1 RF Power Output.....	13
5.2.2 Frequency Stability	17
5.2.3 Radiated Emissions	20
5.2.4 Conducted Spurious Emissions	25
5.2.5 Block Edge Compliance.....	29
5.2.6 Occupied Bandwidth.....	32
5.3 PART GSM 850.....	39
5.3.1 RF Power Output.....	39
5.3.2 Frequency Stability	43
5.3.3 Radiated Emissions	46
5.3.4 Conducted Spurious Emissions	51
5.3.5 Block Edge Compliance.....	55
5.3.6 Occupied Bandwidth.....	58
5.4 PART UMTS Band II	65
5.4.1 RF Power Output.....	65
5.4.2 Frequency Stability	70
5.4.3 Radiated Emissions	73
5.4.4 Conducted Spurious Emissions	78
5.4.5 Block Edge Compliance.....	82
5.4.6 Occupied Bandwidth.....	84
5.5 PART UMTS Band V	88
5.5.1 RF Power Output.....	88
5.5.2 Frequency Stability	93
5.5.3 Radiated Emissions	96
5.5.4 Conducted Spurious Emissions	101
5.5.5 Block Edge Compliance.....	105
5.5.6 Occupied Bandwidth.....	107
5.6 Receiver	111
5.6.1 Receiver Radiated Emissions	111
6 Test equipment and ancillaries used for tests.....	116

7 Annex A: MPE calculation	120
7.1 Antenna configurations	120
7.2 MPE calculation	121
7.2.1 RF Technical Brief Cover Sheet acc. To RSS-102	122
7.3 Data sheets	123
7.3.1 Window antenna.....	123
7.3.2 Roof antenna	124
7.3.3 Attenuator.....	126
7.3.4 Antenna cable.....	128

1 General information

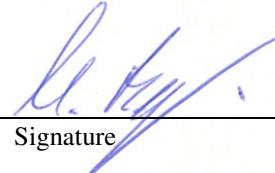
1.1 Notes

The test results of this test report relate exclusively to the test item specified in 3.1.1. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Test laboratory manager:

2009-02-11 **Marco Bertolino**
Date Name

Signature


2009-02-11 **Stefan Bös**
Date Name

Signature

Technical responsibility for area of testing:

2009-02-11 **Michael Berg**
Date Name

Signature

1.2 Testing laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 - 10

66117 Saarbrücken

Germany

Phone: + 49 681 5 98 - 0

Fax: + 49 681 5 98 - 9075

e-mail: info@ICT.cetecom.de

Internet: <http://www.cetecom-ict.de>

State of accreditation: The test laboratory (area of testing) is accredited according to
DIN EN ISO/IEC 17025
DAR registration number: DAT-P-176/94-D1

Accredited by: Federal Motor Transport Authority (KBA)
DAR registration number: KBA-P 00070-97

Testing location, if different from CETECOM ICT Services GmbH:

Name :

Street :

Town :

Country :

Phone :

Fax :

1.3 Details of applicant

Name:	Ericsson AB PDU RAN Transmission & Home
Street:	Datalinjen 3
Town:	58112 Linköping
Country:	Sweden
Telephone:	+46-13-322064
Fax:	+46 10 711 5089
Contact:	Anders Svensson
E-mail:	anders.b.svensson@ericsson.com
Telephone:	+46 10 711 5064

1.4 Application details

Date of receipt of order: 2008-04-17

Date of receipt of test item: 2008-12-02

Date of start test: 2008-12-02

Date of end test: 2009-02-11

**Persons(s) who have been
present during the test:** -/-

2 Test standard/s:

47 CFR Part 2	2006-10	Title 47 of the Code of Federal Regulations; Chapter I-Federal Communications Commission Frequency allocations and radio treaty matters; general rules and regulations
47 CFR Part 22	2006-10	Title 47 of the Code of Federal Regulations; Chapter I-Federal Communications Commission subchapter B - common carrier services, Part 22-Public mobile services
47 CFR Part 24	2006-10	Title 47 of the Code of Federal Regulations; Chapter I-Federal Communications Commission subchapter B - common carrier services, Part 24-Personal communications services
RSS - 132 Issue 2	2005-09	Spectrum Management and Telecommunications Policy - Radio Standards Specifications Cellular Telephones Employing New Technologies Operating in the Bands 824-849 MHz and 869-894 MHz
RSS - 133 Issue 4	2008-02	Spectrum Management and Telecommunications Policy - Radio Standards Specifications 2 GHz Personal Communication Services

3 Technical tests

3.1 Details of manufacturer

Name:	Ericsson AB PDU RAN Transmission & Home
Street:	Datalinjen 3
Town:	58112 Linköping
Country:	Sweden

3.1.1 Test item

Kind of test item	:	Mobile Broadband Router with Module F3507
Type identification	:	MBR W30
Serial Number	:	T710443509
Frequency	:	1850.2 – 1909.8 MHz and 824.2 – 848.8 MHz
Type of modulation	:	GMSK; 8-PSK; QPSK
Emission Designator for GSM 1900	:	GMSK: 306KGXW 8-PSK: 317KG7W
Emission Designator for GSM 850	:	GMSK: 301KGXW 8-PSK: 317KG7W
Emission Designator for WCDMA 1900	:	QPSK: 4M82F9W
Emission Designator for WCDMA 850	:	QPSK: 4M83F9W
Number of channels	:	300 (PCS1900) and 125 (PCS850) 103 (FDD V) / 278 (FDD II)
Antenna Type	:	Internal antenna and external connector Optional window antenna KRE 105 179 Ericsson Optional roof antenna LPDA-A0021_BROC Smarteq
Power supply (normal)	:	DC power supply or Accu-pack
Output power GSM 850 / GMSK	:	cond.: 32.5dBm ERP: 32.3dBm
Output power GSM 1900 / GMSK	:	cond : 29.2 dBm EIRP: 29.7 dBm
Output power GSM 850 / 8-PSK	:	cond.: 27.8 dBm ERP: 27.5 dBm
Output power GSM 1900 / 8-PSK	:	cond : 26.4 dBm EIRP: 26.9 dBm
Output power UMTS 850 / WCDMA	:	cond.: 22.5 dBm ERP: 22.2 dBm
Output power UMTS 1900 / WCDMA	:	cond : 22.2 dBm EIRP: 22.8 dBm
Transmitter Spurious (worst case)	:	0.00004 mW / -44 dBm
Receiver Spurious (worst case)	:	125 µV/m @ 3 m
FCC ID	:	PJWMBRW30
Certification No. IC	:	287X-MBRW30
Open Area Test Site IC No.	:	IC 3462C-1
IC Standards	:	RSS132, Issue 2, RSS133, Issue 4

ATTESTATION:**DECLARATION OF COMPLIANCE:**

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Laboratory Manager:

2009-02-11

Stefan Bös

Date

Name

Signature

3.2 Test Setup

Hardware	:	R1A
Software	:	R12A

Mobile; (cond. measurements)	:	T710443509
Mobile; (rad. measurements)	:	T710443509

The EUT include a certified GSM/WCDMA-module.

Type:	F3507
SW-Version:	R1B/1
HW-Version:	R1
Model:	13114/02
FCC-ID:	VV7-MBMF3507G
IC-Nr:	287AG-MBMF3507G

The radiated measurements were performed with Standard world wide charger.

4 Statement of Compliance

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

4.1 Summary of Measurement Results

- No deviations from the technical specifications were ascertained**
- There were deviations from the technical specifications ascertained

4.1.1 Labeling requirements

Section in this Report	Test Name	Verdict
5.1	Labeling	passed

4.1.2 PCS 1900

Section in this Report	Test Name	Verdict
5.2.1	RF Power Output	passed
5.2.2	Frequency Stability	passed
5.2.3	Radiated Emissions	passed
5.2.4	Conducted Spurious Emissions	passed
5.2.5	Block Edge Compliance	passed
5.2.6	Occupied Bandwidth	passed

4.1.3 GSM 850

Section in this Report	Test Name	Verdict
5.3.1	RF Power Output	passed
5.3.2	Frequency Stability	passed
5.3.3	Radiated Emissions	passed
5.3.4	Conducted Spurious Emissions	passed
5.3.5	Block Edge Compliance	passed
5.3.6	Occupied Bandwidth	passed

4.1.4 UMTS Band II

Section in this Report	Test Name	Verdict
5.4.1	RF Power Output	passed
5.4.2	Frequency Stability	passed
5.4.3	Radiated Emissions	passed
5.4.4	Conducted Spurious Emissions	passed
5.4.5	Block Edge Compliance	passed
5.4.6	Occupied Bandwidth	passd

4.1.5 UMTS Band V

Section in This Report	Test Name	Verdict
5.5.1	RF Power Output	passed
5.5.2	Frequency Stability	passed
5.5.3	Radiated Emissions	passed
5.5.4	Conducted Spurious Emissions	passed
5.5.5	Block Edge Compliance	passed
5.5.6	Occupied Bandwidth	passed

4.1.6 Receiver

Section in this Report	Test Name	Verdict
5.6.1	Receiver Radiated emissions	passed

5 Measurements and results

5.1 Labeling

Each equipment covered in an application for equipment authorization shall bear a nameplate or label listing the following:

(1) FCC Identifier consisting of the two elements in the exact order specified in § 2.926. The FCC Identifier shall be preceded by the term *FCC ID* in capital letters on a single line, and shall be of a type size large enough to be legible without the aid of magnification.

Example: FCC ID XXX123. XXX—Grantee
Code 123—Equipment Product Code

Verification:

The labeling of the EUT is shown in the photo documentation in the annex.

Result:

Labeling as described in Part 2.925:	PASSED
--------------------------------------	--------

5.2 PART PCS 1900

For Part 24/22 we use the substitution method (TIA/EIA 603).

All measurements in this report are done in GSM mode. The device is able to transmit data in GPRS mode also. But because the current measurements are performed in PEAK mode no other results from GPRS mode are possible. The only different is the modulation average power, which is 3 dB higher (by using 2 timeslots in the Up-link). All relevant tests have been repeated in 8-PSK Modulation if EDGE Mode is supported.

5.2.1 RF Power Output

Reference

FCC:	CFR Part 24.232, 2.1046
IC:	RSS 133, Issue 4, Section 4.3

Summary:

This paragraph contains both average/peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0 MHz and 1909.8 MHz (bottom, middle and top of operational frequency range).

Limits:

Nominal Peak Output Power (dBm)
+33

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Results: Output Power (conducted) GMSK Mode

Frequency (MHz)	Average Output Power (dBm)	Peak-to-Average Ratio (dB)
1850.2	29.1	0.1
1880.0	29.2	0.1
1909.8	29.0	0.1
Measurement uncertainty	± 0.5 dB	

Test Results: Output Power (conducted) 8-PSK Mode

Frequency (MHz)	Average Output Power (dBm)	Peak-to-Average Ratio (dB)
1850.2	26.3	3.0
1880.0	26.4	3.0
1909.8	26.1	3.0
Measurement uncertainty	± 0.5 dB	

EIRP Measurements

Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level
Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor
$$E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$$
- (f) Set the EMI Receiver and #2 as follows:
Center Frequency: test frequency
Resolution BW: 100 kHz
Video BW: same
Detector Mode: positive
Average: off
Span: 3 x the signal bandwidth
- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (l) Repeat for all different test signal frequencies

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency : equal to the signal source
 Resolution BW : 10 kHz
 Video BW : same
 Detector Mode : positive
 Average : off
 Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

$E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antennas (substitution antenna): .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.

(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.

(f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

(g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.

(h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.

(i) Tune the EMI Receivers to the test frequency.

(j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.

(l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.

(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

$P = P_1 - L_1 = (P_2 + L_2) - L_1 = P_3 + A + L_2 - L_1$

$EIRP = P + G_1 = P_3 + L_2 - L_1 + A + G_1$

$ERP = EIRP - 2.15 \text{ dB}$

Total Correction factor in EMI Receiver # 2 = $L_2 - L_1 + G_1$

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Nominal Peak Output Power (dBm)
+33

Test Results: Output Power (radiated) GMSK Mode

Frequency (MHz)	Average EIRP (dBm)
1850.2	29.7
1880.0	29.7
1909.8	29.5
Measurement uncertainty	±1.5 dB

Test Results: Output Power (radiated) 8-PSK Mode

Frequency (MHz)	Average EIRP (dBm)
1850.2	26.9
1880.0	26.9
1909.8	26.6
Measurement uncertainty	±1.5 dB

Sample Calculation:

Freq	SA Reading	SG Setting	Ant. gain	Dipol gain	Cable loss	EIRP Result			
MHz	dB μ V	dBm	dBi	dBi	dB	dBm			
1909.8	132.3	24.6	8.4	0.0	3.3	29.7			

$$\text{EIRP} = \text{SG (dBm)} - \text{Cable Loss (dB)} + \text{Ant. gain (dBi)}$$

5.2.2 Frequency Stability

Reference

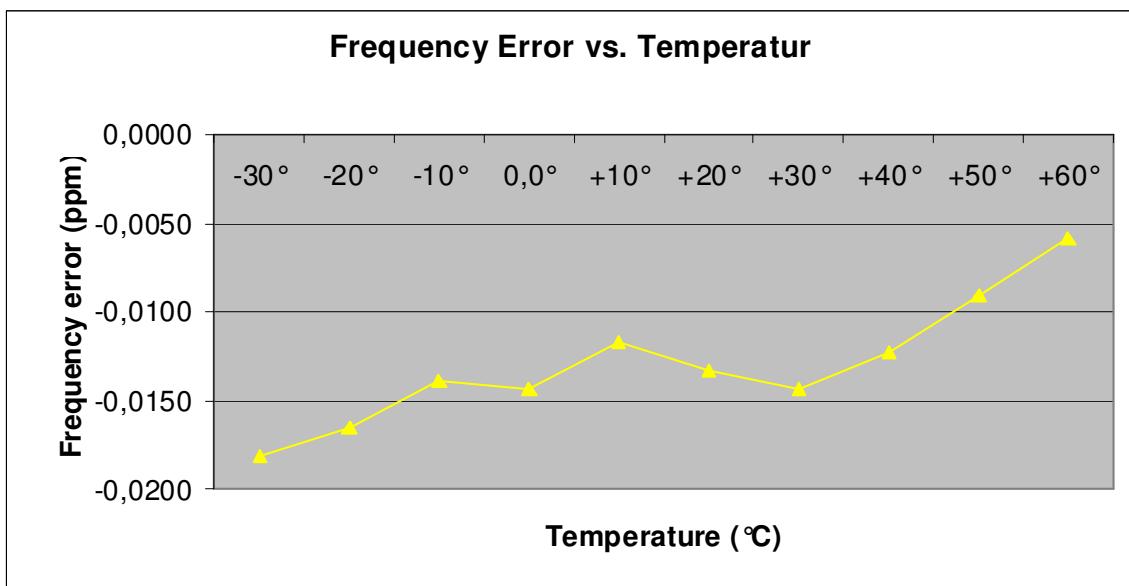
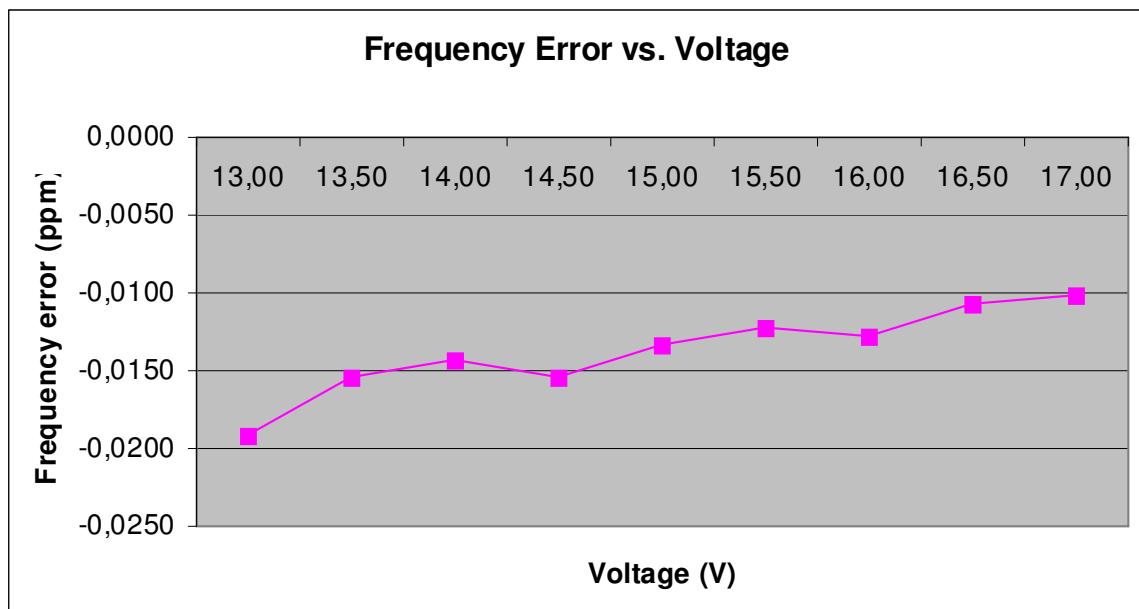
FCC:	CFR Part 24.235, 2.1055
IC:	RSS 133, Issue 4, Section 4.2

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a “call mode”. This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.
2. Subject the mobile station to overnight soak at -30 C.
3. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
5. Re-measure carrier frequency at room temperature with Vnom. Vary supply voltage from Vmin to Vmax, in 12 steps re-measuring carrier frequency at each voltage. Pause at Vnom for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
6. Subject the mobile station to overnight soak at +60 C.
7. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

Measurement Limit:



According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Results: AFC FREQ ERROR vs. VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
13,00	-36	-0,00000191	-0,0191
13,50	-29	-0,00000154	-0,0154
14,00	-27	-0,00000144	-0,0144
14,50	-29	-0,00000154	-0,0154
15,00	-25	-0,00000133	-0,0133
15,50	-23	-0,00000122	-0,0122
16,00	-24	-0,00000128	-0,0128
16,50	-20	-0,00000106	-0,0106
17,00	-19	-0,00000101	-0,0101

Test Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	-34	-0,00000181	-0,0181
-20	-31	-0,00000165	-0,0165
-10	-26	-0,00000138	-0,0138
±0,0	-27	-0,00000144	-0,0144
+10	-22	-0,00000117	-0,0117
+20	-25	-0,00000133	-0,0133
+30	-27	-0,00000144	-0,0144
+40	-23	-0,00000122	-0,0122
+50	-17	-0,00000090	-0,0090
+60	-11	-0,00000059	-0,0059

5.2.3 Radiated Emissions

Reference

FCC:	CFR Part 24.238, 2.1053
IC:	RSS 133, Issue 4, Section 4.4

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded.
- e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least $43 + 10\log(P)$ dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P)$ dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results: Radiated Emissions

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1880.0 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

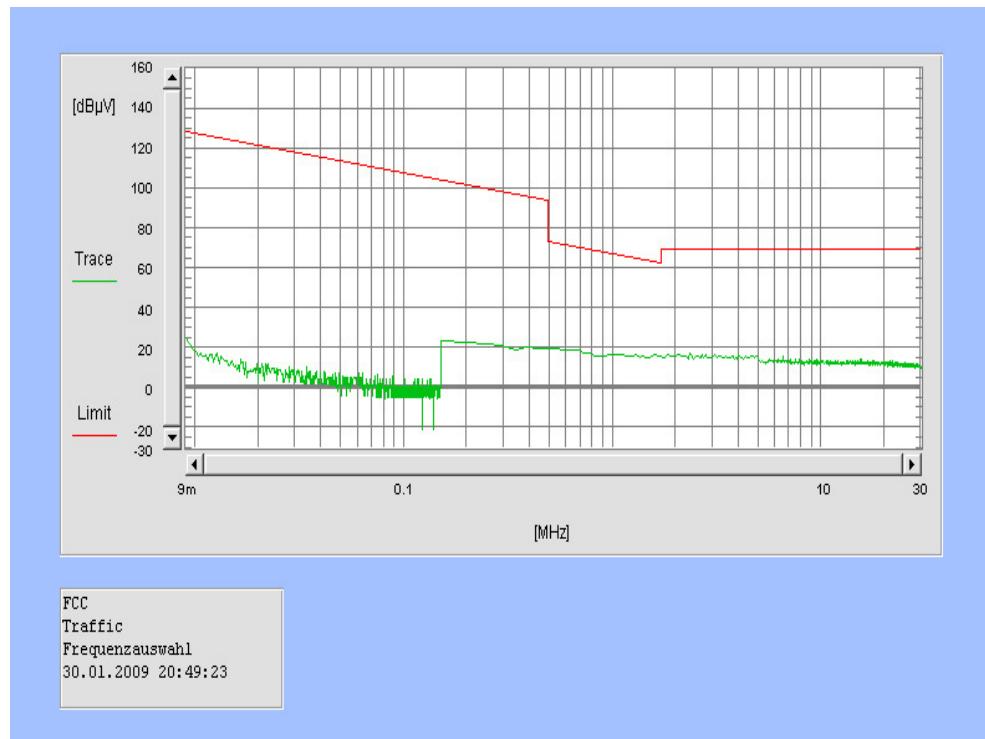
The final open field radiated levels are presented on the next table.

All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, too. The found values are stated in the table below.

As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch.-512 Freq. (MHz)	Level (dBm)	Tx ch.-661 Freq. (MHz)	Level (dBm)	Tx ch.-810 Freq. (MHz)	Level (dBm)
2	3700.4	-	3760	-	3819.6	-
3	5550.6	-	5640	-	5729.4	-
4	7400.8	-	7520	-	7639.2	-
5	9251.0	-	9400	-	9549.0	-
6	11101.2	-	11280	-	11458.8	-
7	12951.4	-	13160	-	13368.6	-
8	14801.6	-	15040	-	15278.4	-
9	16651.8	-	16920	-	17188.2	-
10	18502.0	-	18800	-	19098.0	-

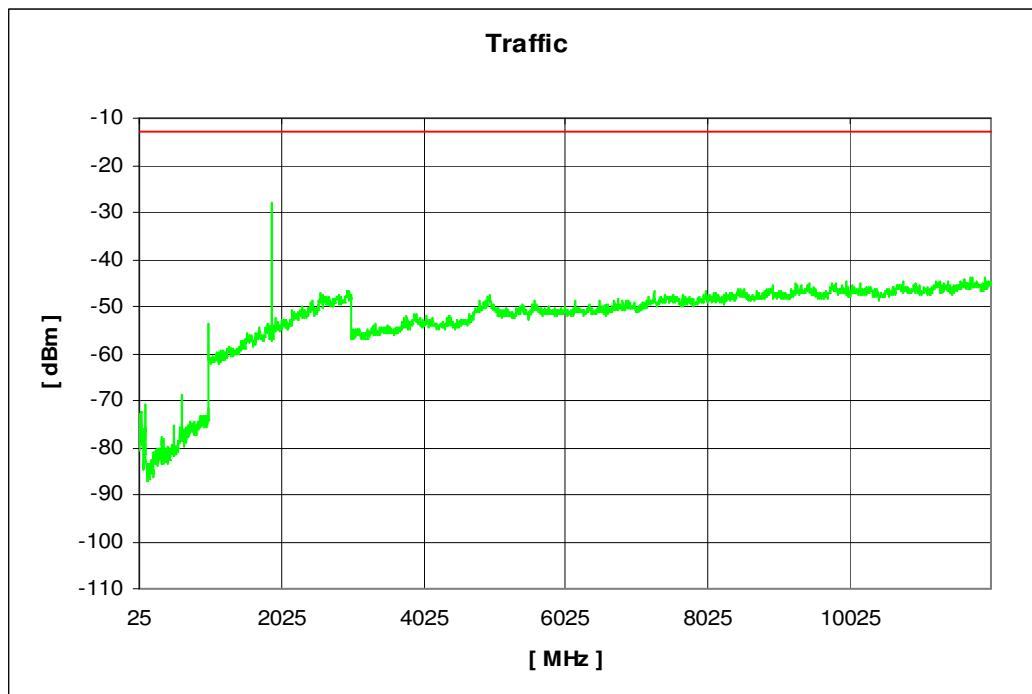

No peaks found > 20 dB below limit.

Sample calculation:

Freq	SA Reading	SG Setting	Ant. gain	Dipol gain	Cable loss	EIRP Result			
MHz	dB μ V	dBm	dBi	dBi	dB	dBm			
1909.8	132.3	24.6	8.4	0.0	3.3	29.7			

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

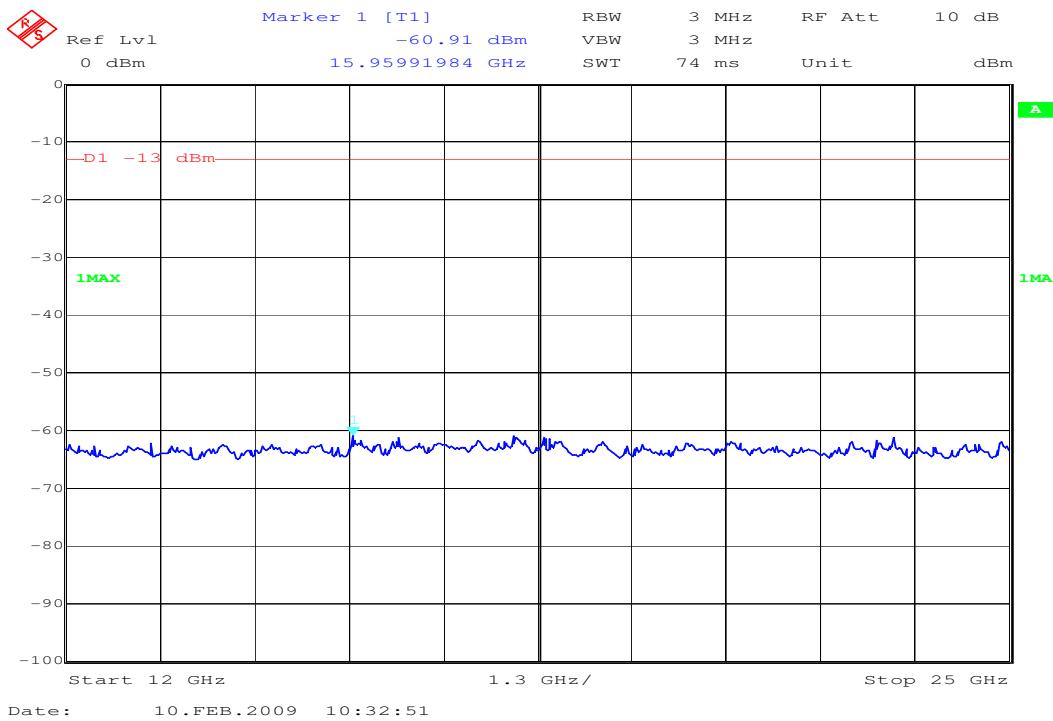
Channel 661 (Traffic mode up to 30 MHz)


Channel 661 (30 MHz - 12 GHz)

CETECOM ICT Services GmbH

Projekt- Nr.:2-4900-1-9_08

EUT:	W30	Polarisation:	Horizontal, Vertikal
Manufacturer:	Ericsson	Battery:	AC/DC Power Supply
IMEI:	PCS 1900 Channel 661	HW:	
Operator:	MUY	SW:	
Start of Test :	01.02.2009 13:52:19	Vmin:	
Standard:	FCC_24_1900	Vnom:	230
Signalling Unit:	CMU200	Vmax:	
Transducer-File:	C:\Spurious_neu\Messparameter\FCC_24_1900\Transducer_FCC_24_1900.xls		


Start Freq. [MHz]:	25	Stop Freq. [MHz]	12000
--------------------	----	------------------	-------

$f < 1 \text{ GHz}$: RBW/VBW: 100 kHz
 Carrier suppressed with a rejection filter

$f \geq 1 \text{ GHz}$: RBW / VBW 1 MHz

Channel 661 (12 GHz - 25 GHz) valid for all 3 channels

f ≥ 1GHz : RBW / VBW 1 MHz

5.2.4 Conducted Spurious Emissions

Reference

FCC:	CFR Part 24.238, 2.10.51
IC:	RSS 133, Issue 4, Section 4.4

Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

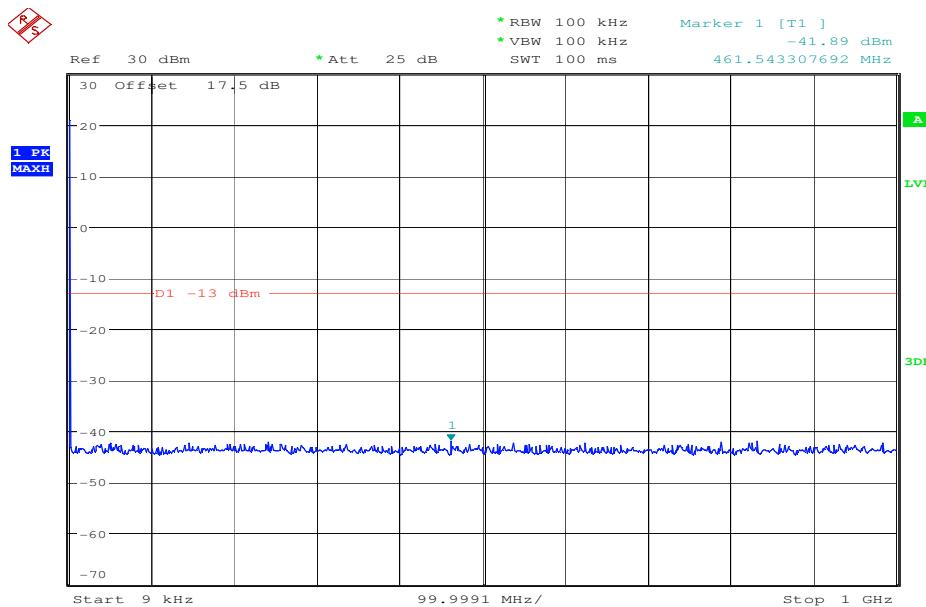
2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

USPCS Transmitter Channel Frequency:

512 1850.2 MHz

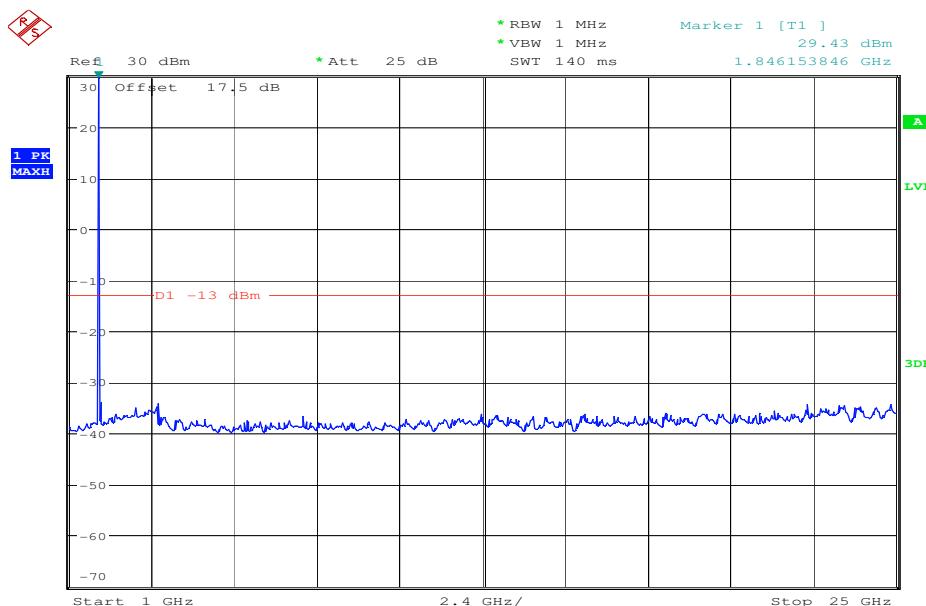
661 1880.0 MHz

810 1909.8 MHz

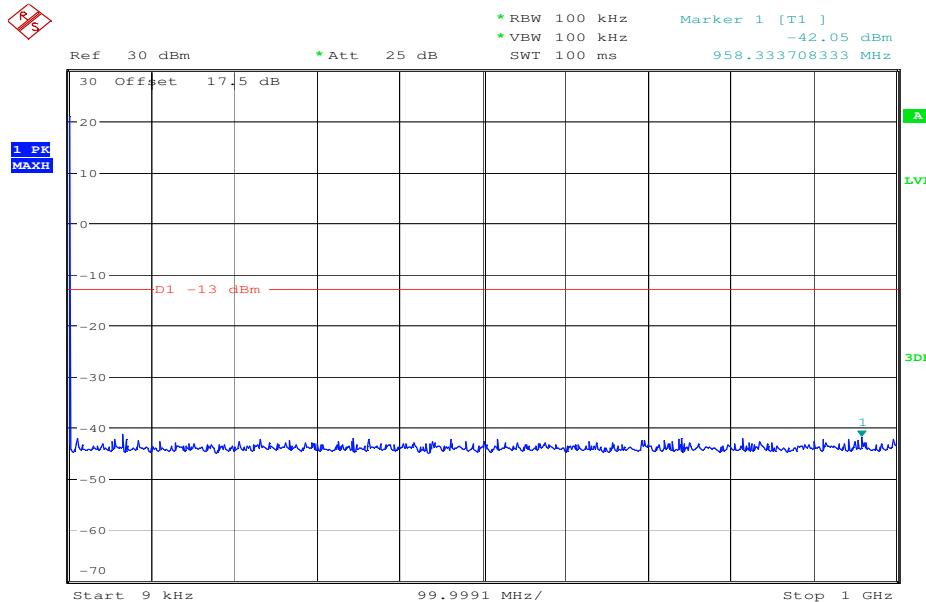

Measurement Limit:

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least $43+10\log(P)$ dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

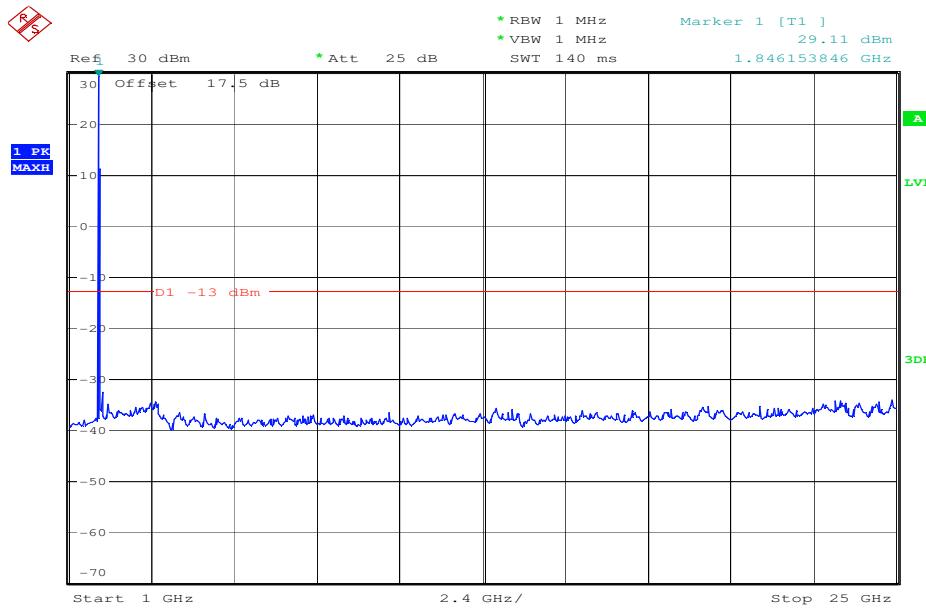
Measurement Results:


Harmonic	Tx ch.-512 Freq. (MHz)	Level (dBm)	Tx ch.-661 Freq. (MHz)	Level (dBm)	Tx ch.-810 Freq. (MHz)	Level (dBm)
2	3700.4	-	3760	-	3819.6	-
3	5550.6	-	5640	-	5729.4	-
4	7400.8	-	7520	-	7639.2	-
5	9251.0	-	9400	-	9549.0	-
6	11101.2	-	11280	-	11458.8	-
7	12951.4	-	13160	-	13368.6	-
8	14801.6	-	15040	-	15278.4	-
9	16651.8	-	16920	-	17188.2	-
10	18502.0	-	18800	-	19098.0	-

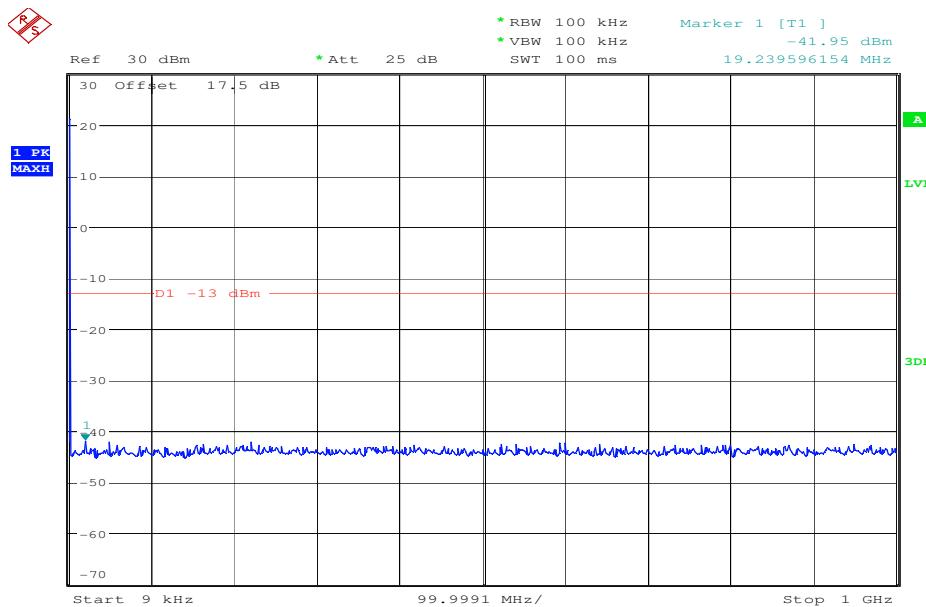
Channel 512


Date: 10.DEC.2008 09:45:08

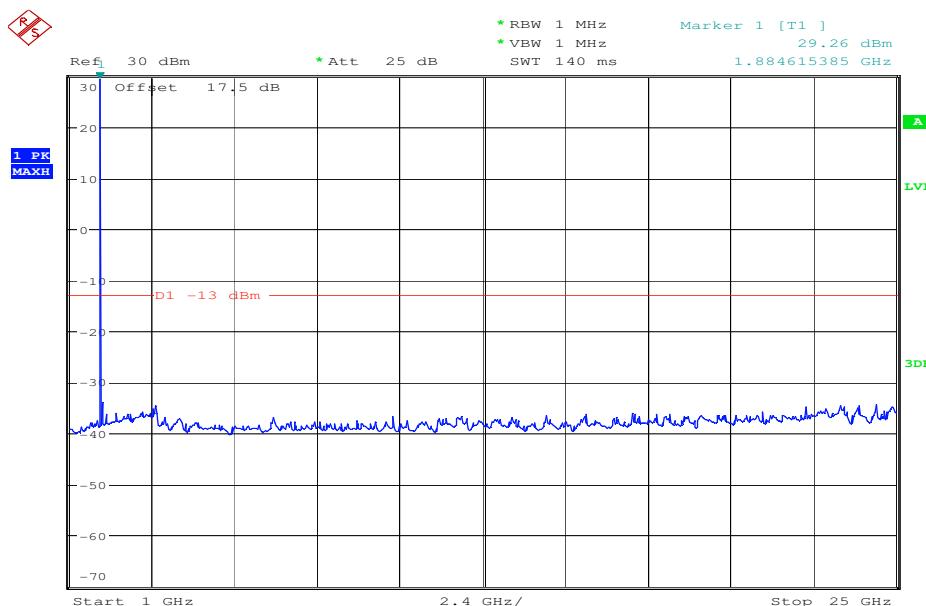
The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.


Date: 10.DEC.2008 09:56:01

Channel 661


Date: 10.DEC.2008 09:46:05

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.


Date: 10.DEC.2008 09:56:50

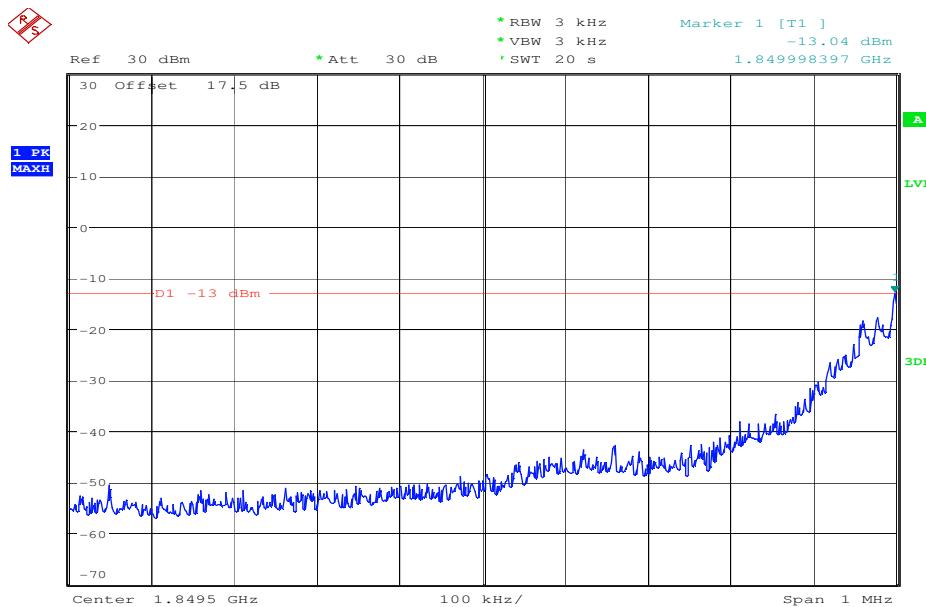
Channel 810

Date: 10.DEC.2008 09:46:53

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

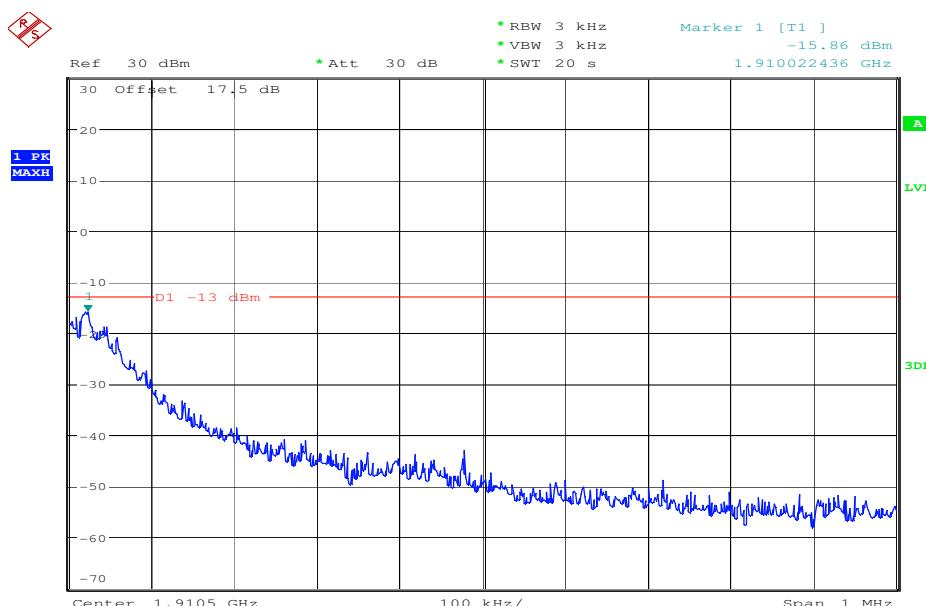
Date: 10.DEC.2008 09:57:16

5.2.5 Block Edge Compliance

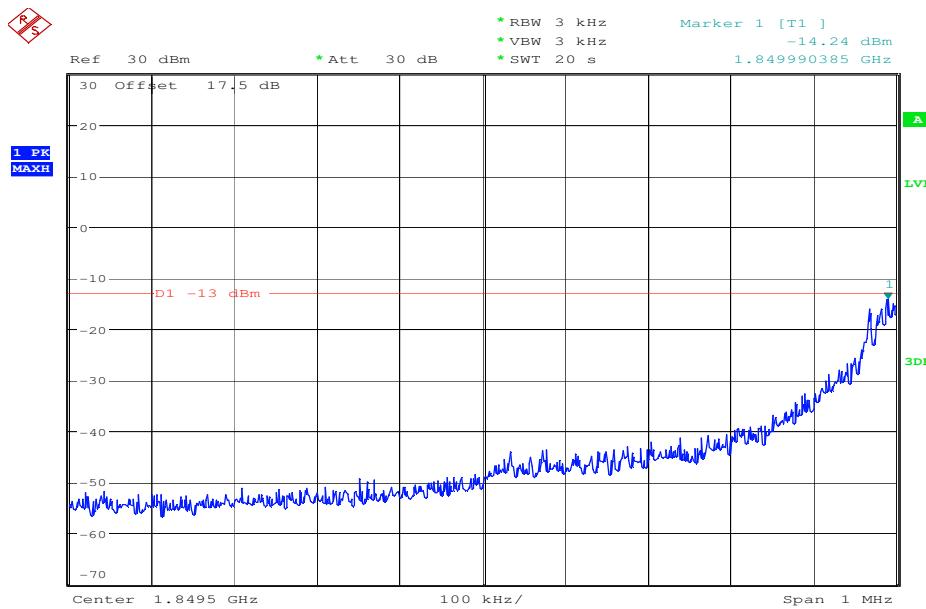

Reference

FCC:	CFR Part 24.238
IC:	RSS 133, Issue 4, Section 6.5

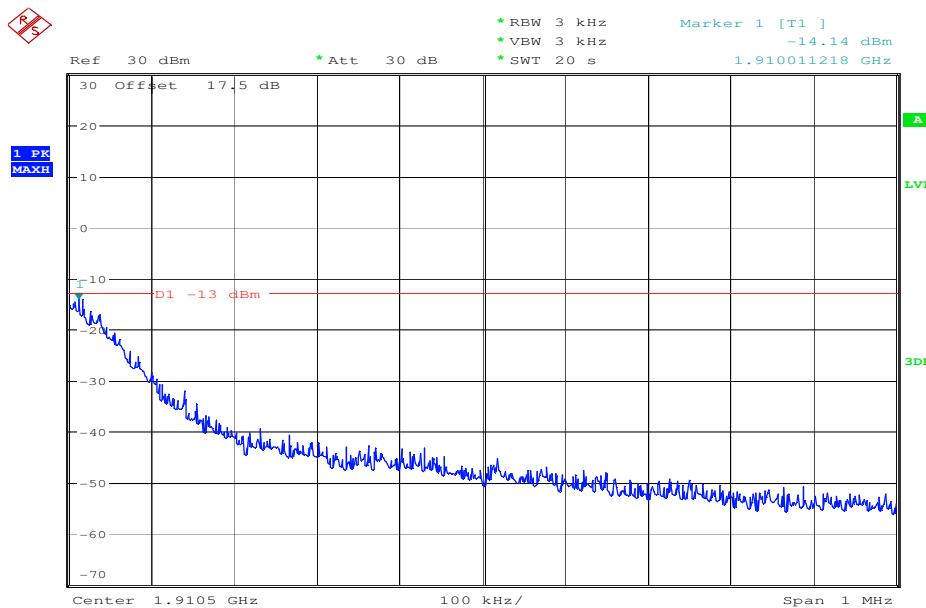
Measurement Limit:


(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least $43+10\log(P)$ dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Block 1 Channel 512


Date: 10.DEC.2008 10:00:33

Block 6 Channel 810


Date: 10.DEC.2008 10:02:23

Block 1 Channel 512 (EDGE)

Date: 10.DEC.2008 10:11:21

Block 6 Channel 810 (EDGE)

Date: 10.DEC.2008 10:05:05

5.2.6 Occupied Bandwidth

Reference

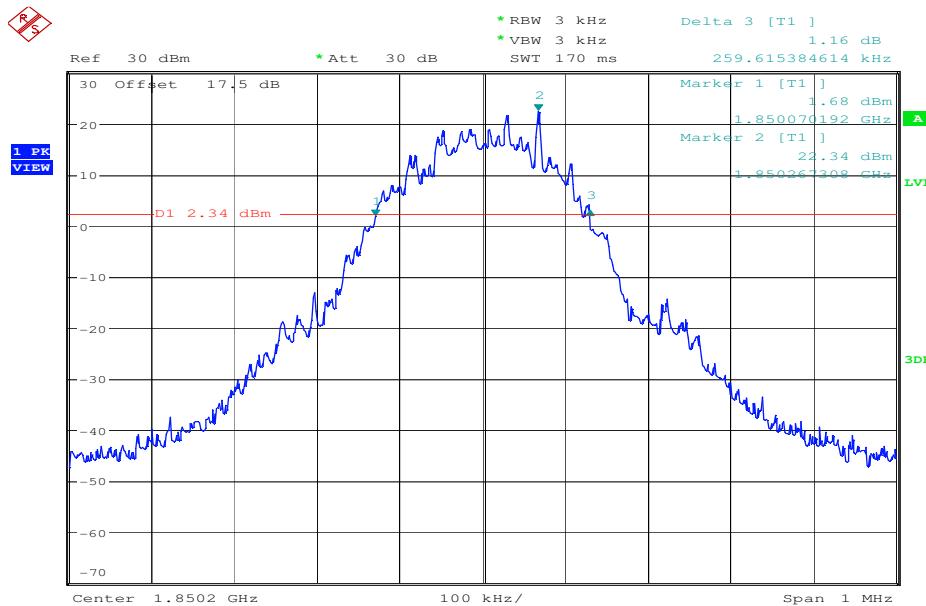
FCC:	CFR Part 24.238, 2.1049
IC:	RSS 133, Issue 4, Section 6.5

Occupied Bandwidth Results

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table 8.2 below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Normal mode

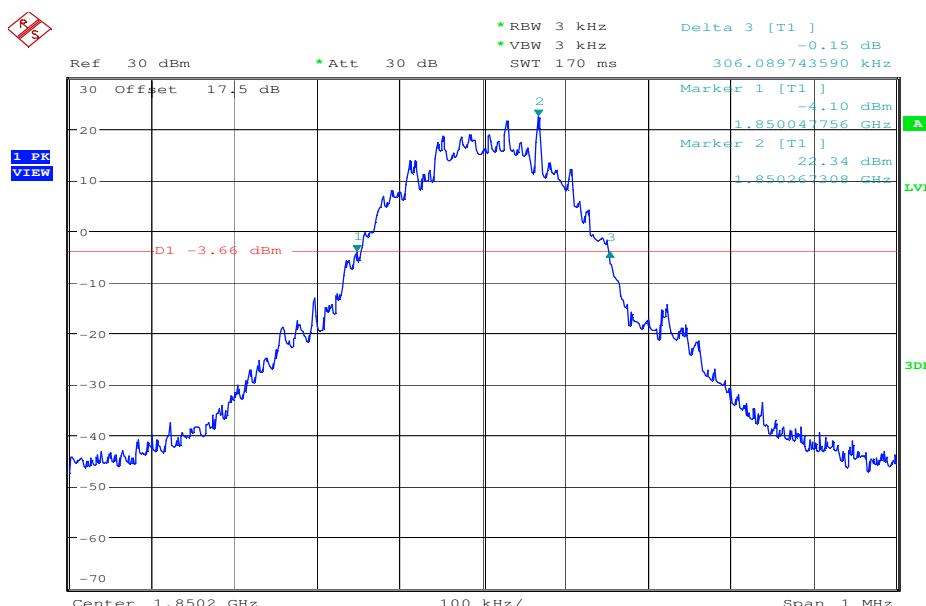
Frequency	99% Occupied Bandwidth kHz	-26 dBc Bandwidth kHz
1850.2 MHz	259.6	306.1
1880.0 MHz	258.0	299.7
1909.8 MHz	259.6	301.3


EDGE mode

Frequency	99% Occupied Bandwidth kHz	-26 dBc Bandwidth kHz
1850.2 MHz	278.5	309.0
1880.0 MHz	282.1	317.3
1909.8 MHz	274.0	310.9

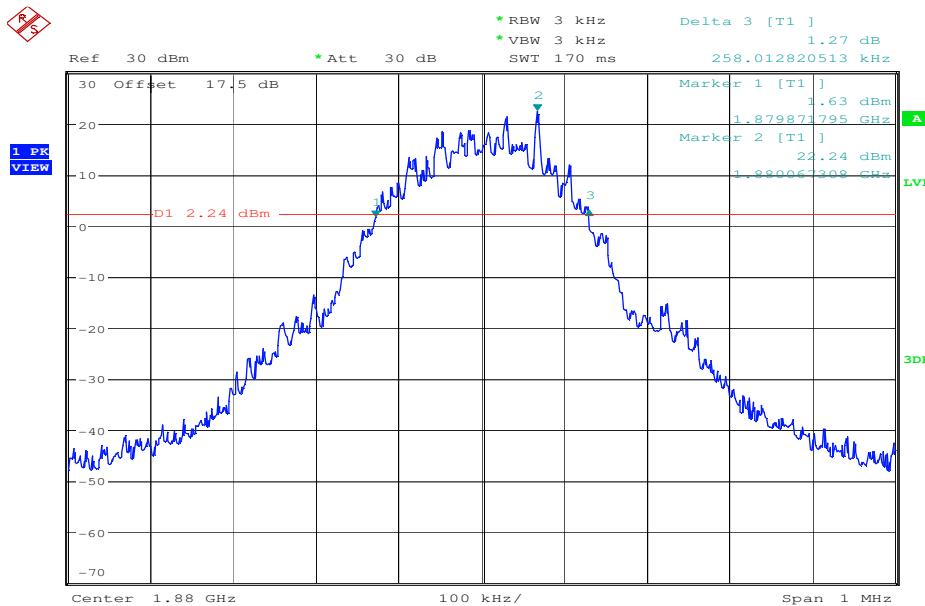
Part 24.238 (a) requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300.0 kHz, this equates to a resolution bandwidth of at least 3.0 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

Channel 512


99% (-20 dB) Occupied Bandwidth

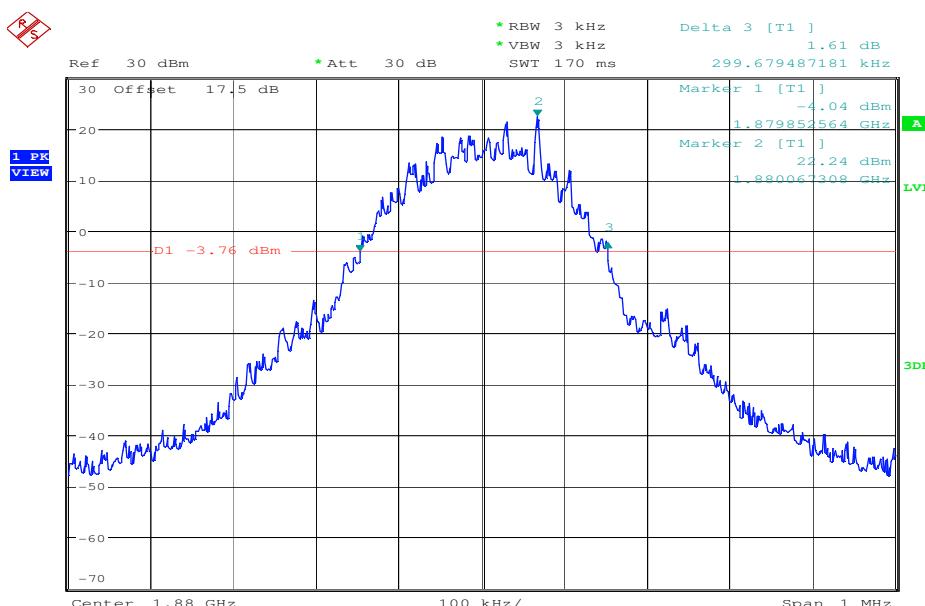
Date: 10.DEC.2008 10:44:16

Channel 512


-26 dBc Bandwidth

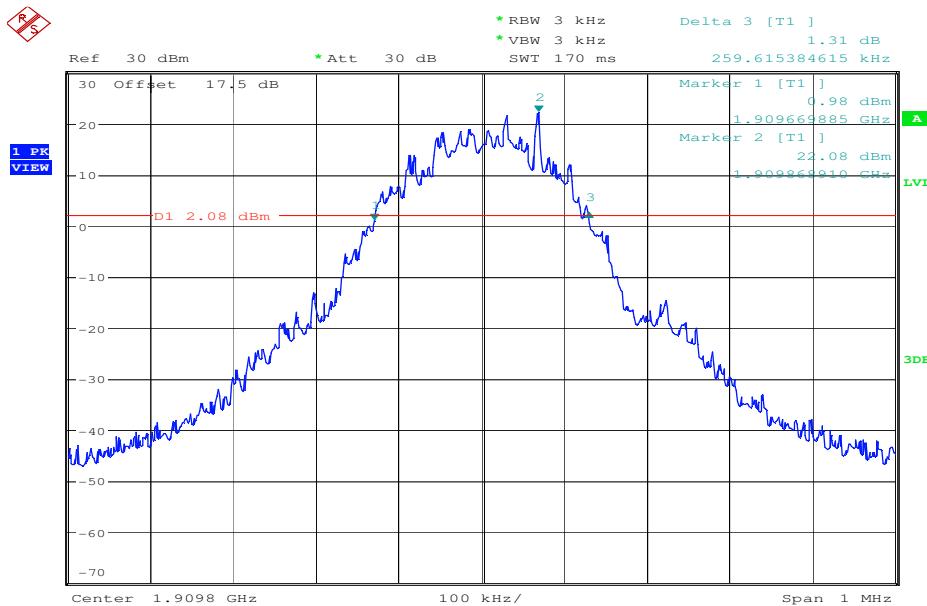
Date: 10.DEC.2008 10:45:10

Channel 661


99% (-20 dB) Occupied Bandwidth

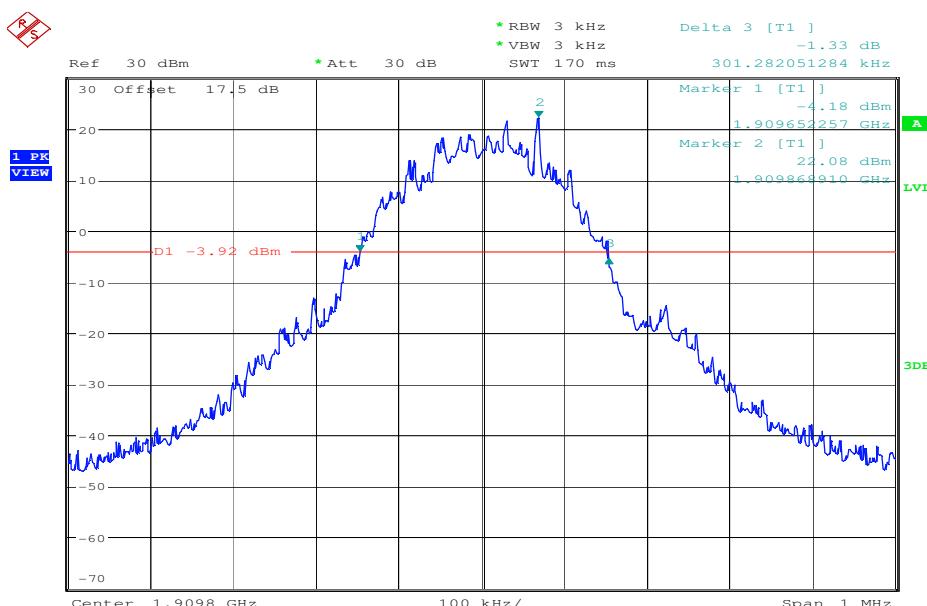
Date: 10.DEC.2008 10:41:33

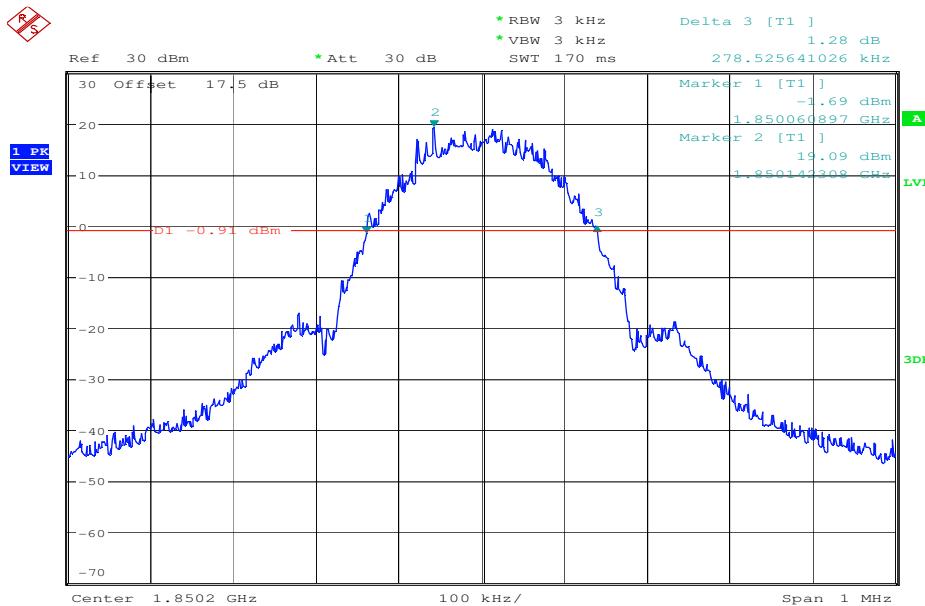
Channel 661


-26 dBc Bandwidth

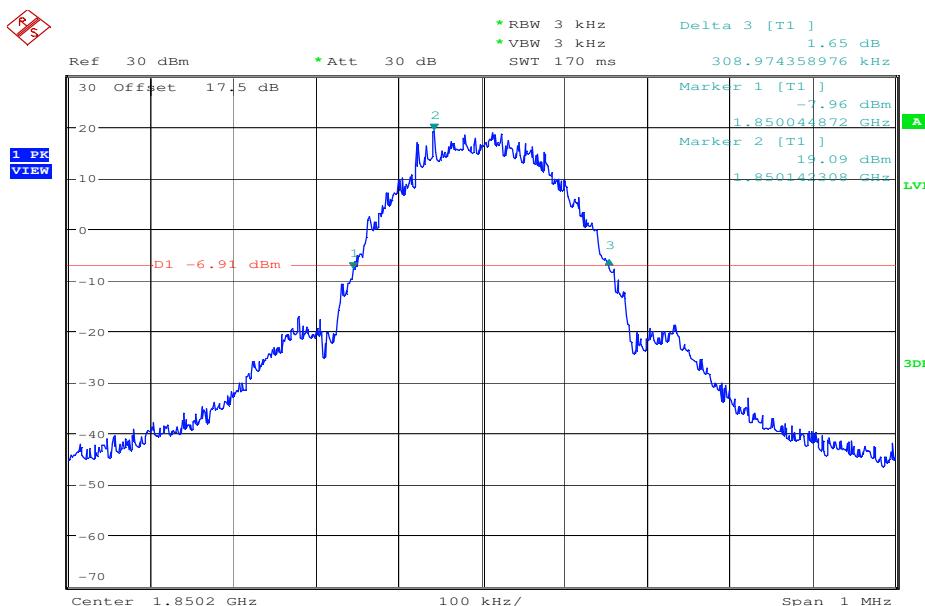
Date: 10.DEC.2008 10:42:18

Channel 810


99% (-20 dB) Occupied Bandwidth

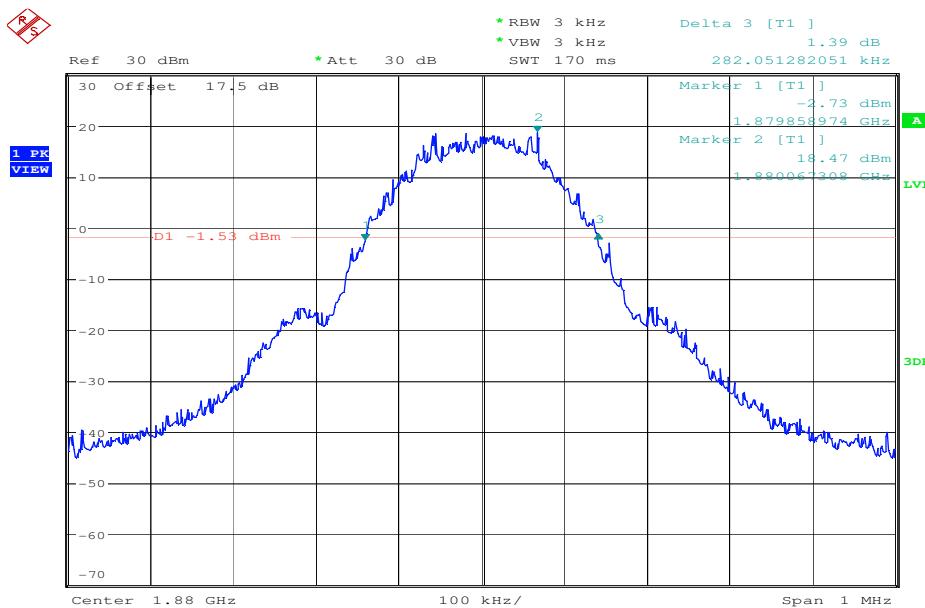

Date: 10.DEC.2008 10:38:22

Channel 810


-26 dBc Bandwidth

Date: 10.DEC.2008 10:39:26

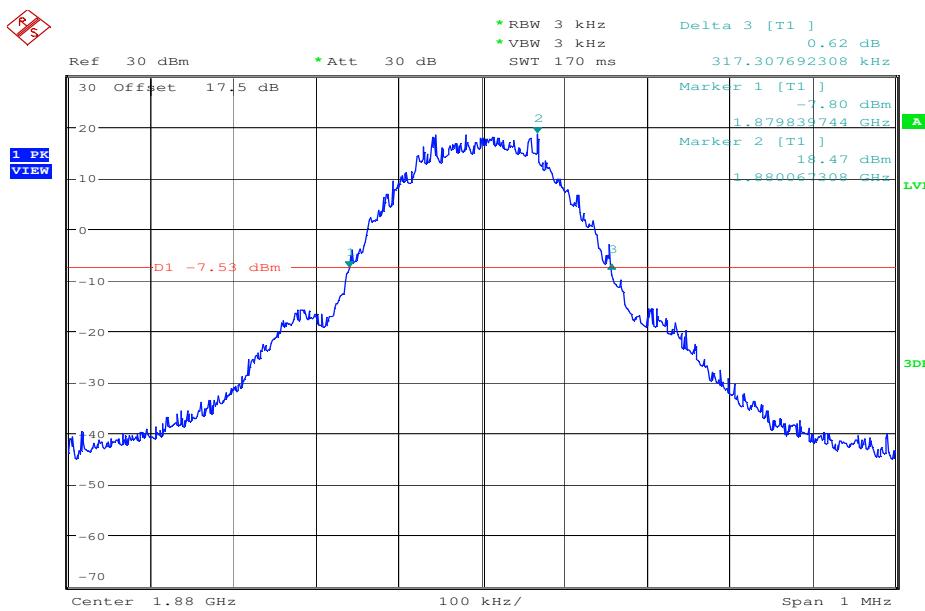
Channel 512 (EDGE)**99% (-20 dB) Occupied Bandwidth**


Date: 10.DEC.2008 10:20:53

Channel 512 (EDGE)**-26 dBc Bandwidth**

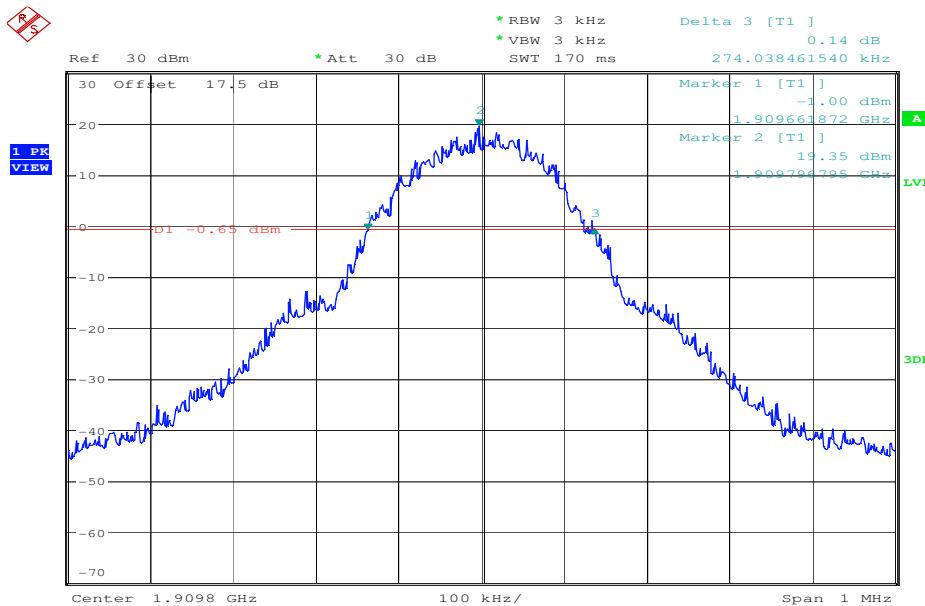
Date: 10.DEC.2008 10:21:28

Channel 661 (EDGE)


99% (-20 dB) Occupied Bandwidth

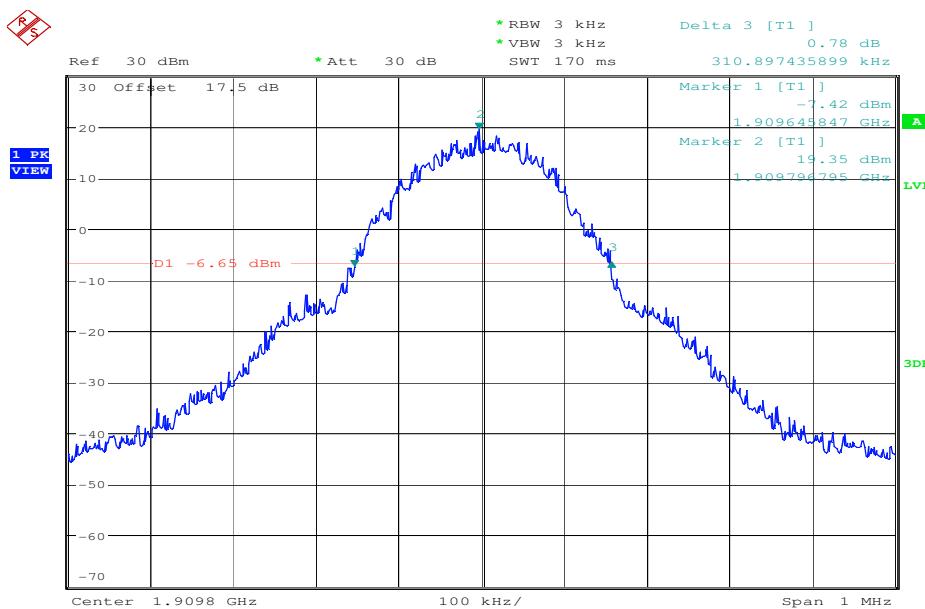
Date: 10.DEC.2008 10:29:01

Channel 661 (EDGE)


-26 dBc Bandwidth

Date: 10.DEC.2008 10:30:48

Channel 810 (EDGE)


99% (-20 dB) Occupied Bandwidth

Date: 10.DEC.2008 10:34:41

Channel 810 (EDGE)

-26 dBc Bandwidth

Date: 10.DEC.2008 10:35:15

5.3 PART GSM 850

5.3.1 RF Power Output

Reference

FCC:	CFR Part 22.9.1.3, 2.1046
IC:	RSS 132, Issue 2, Section 4.4 and 6.4

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation. The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average). These measurements were done at 3 frequencies, 824.2 MHz, 836.4 MHz and 848.8 MHz (bottom, middle and top of operational frequency range).

Limits:

Nominal Peak Output Power (dBm)
+38.45

Test Results: Output Power (conducted) GMSK Mode

Frequency (MHz)	Average Output Power (dBm)	Peak-to-Average Ratio (dB)
824.2	32.5	0.1
836.4	32.5	0.1
848.8	32.5	0.1
Measurement uncertainty	± 0.5 dB	

Test Results: Output Power (conducted) 8-PSK Mode

Frequency (MHz)	Average Output Power (dBm)	Peak-to-Average Ratio (dB)
824.2	27.7	3.1
836.4	27.8	3.2
848.8	27.6	3.1
Measurement uncertainty	± 0.5 dB	

ERP Measurements

Description: This is the test for the maximum radiated power from the phone.
Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.

(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level
Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor
 $E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.

(l) Repeat for all different test signal frequencies

Measuring the ERP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring ERP) as follows:

Center Frequency : equal to the signal source
 Resolution BW : 10 kHz
 Video BW : same
 Detector Mode : positive
 Average : off
 Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

$E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antennas (substitution antenna): .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.

(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.

(f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

(g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.

(h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.

(i) Tune the EMI Receivers to the test frequency.

(j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.

(l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.

(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

$$P = P_1 - L_1 = (P_2 + L_2) - L_1 = P_3 + A + L_2 - L_1$$

$$\text{EIRP} = P + G_1 = P_3 + L_2 - L_1 + A + G_1$$

$$\text{ERP} = \text{EIRP} - 2.15 \text{ dB}$$

Total Correction factor in EMI Receiver # 2 = $L_2 - L_1 + G_1$

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Nominal Peak Output Power (dBm)

+38.45

Test Results: Output Power (radiated) GMSK Mode

Frequency (MHz)	Average (dBm)
824.2	32.3
836.4	32.0
848.8	32.1
Measurement uncertainty	±1.5 dB

Test Results: Output Power (radiated) 8-PSK Mode

Frequency (MHz)	Average (dBm)
824.2	27.5
836.4	27.3
848.8	27.2
Measurement uncertainty	±1.5 dB

Sample calculation:

Freg	SA Reading	SG Setting	Ant. gain	Dipol gain	Cable loss	ERP	Substitution Antenna
MHz	dB μ V	dBm	dBi	dBi	dB	dBm	
848.8	137.8	26.6	8.4	0.0	3.3	31.7	UHAP Schwarzbeck S/N 460

$$\text{ERP} = \text{SG (dBm)} - \text{Cable Loss (dB)} + \text{Ant. gain (dB)}$$

*ERP can be calculated from EIRP by subtracting the gain of the dipole, $\text{ERP} = \text{EIRP} - 2.1\text{dBi}$

5.3.2 Frequency Stability

Reference

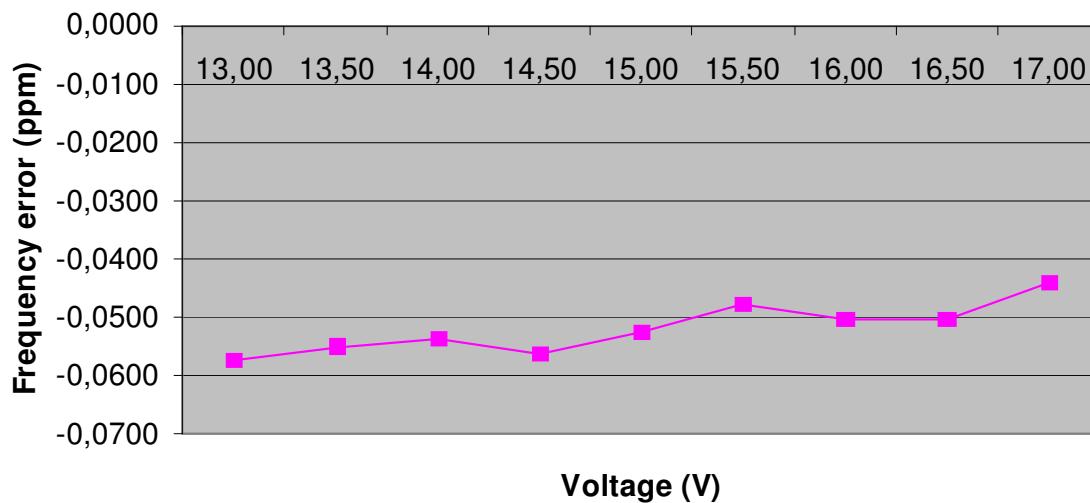
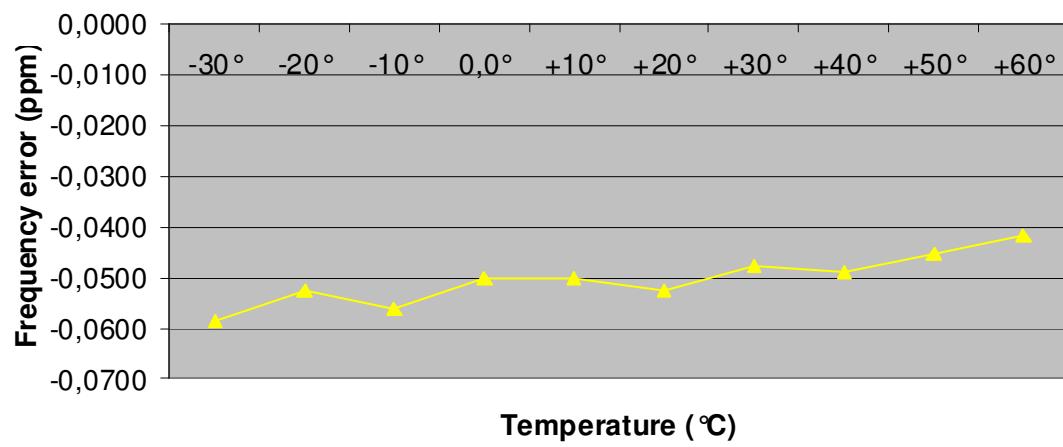
FCC:	CFR Part 22.355, 2.1055
IC:	RSS 132, Issue 2, Section 4.3 and 6.3

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a “call mode”. This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.
2. Subject the mobile station to overnight soak at -30 C.
3. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
5. Re-measure carrier frequency at room temperature with nominal 3.7 Volts. Vary supply voltage from minimum 3.3 Volts to maximum 4.4 Volts, in 13 steps re-measuring carrier frequency at each voltage. Pause at 3.7 V ac Volts for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
6. Subject the mobile station to overnight soak at +60 C.
7. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

Measurement Limit:



According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 22.355, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.. This transceiver is specified to operate with an input voltage of between 3.3 V dc and 4.4 V dc, with a nominal voltage of 3.7 V dc.

Measurement Results: AFC FREQ ERROR vs. VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
13,00	-48	-0,00000574	-0,0574
13,50	-46	-0,00000550	-0,0550
14,00	-45	-0,00000538	-0,0538
14,50	-47	-0,00000562	-0,0562
15,00	-44	-0,00000526	-0,0526
15,50	-40	-0,00000478	-0,0478
16,00	-42	-0,00000502	-0,0502
16,50	-42	-0,00000502	-0,0502
17,00	-37	-0,00000442	-0,0442

Measurement Results: AFC FREQ ERROR vs. TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	-49	-0,00000586	-0,0586
-20	-44	-0,00000526	-0,0526
-10	-47	-0,00000562	-0,0562
±0,0	-42	-0,00000502	-0,0502
+10	-42	-0,00000502	-0,0502
+20	-44	-0,00000526	-0,0526
+30	-40	-0,00000478	-0,0478
+40	-41	-0,00000490	-0,0490
+50	-38	-0,00000454	-0,0454
+60	-35	-0,00000418	-0,0418

Frequency Error vs. Voltage**Frequency Error vs. Temperature**

5.3.3 Radiated Emissions

Reference

FCC:	CFR Part 22.917, 2.1053
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:
- e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least $43 + 10\log(P)$ dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P)$ dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (824.2 MHz, 836.4 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

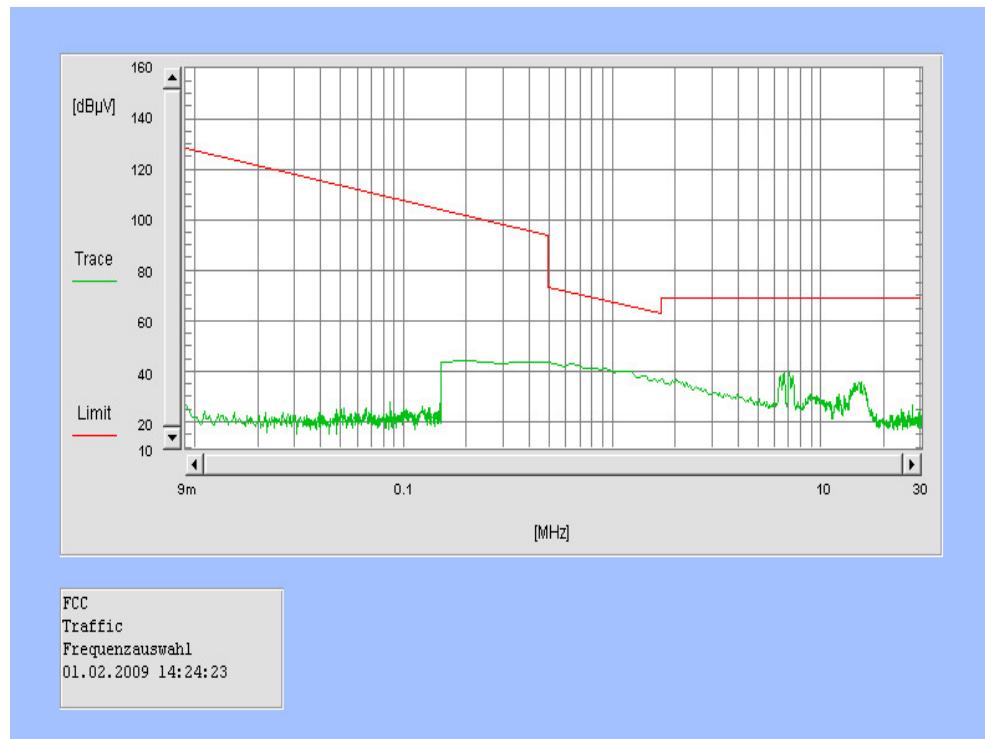
The final open field radiated levels are presented on the next pages.

All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, too. The found values are stated in the table below.

As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch.-128 Freq. (MHz)	Level (dBm)	Tx ch.-189 Freq. (MHz)	Level (dBm)	Tx ch.-251 Freq. (MHz)	Level (dBm)
2	1648.4	-	1672.8	-	1697.6	-
3	2472.6	-	2509.2	-	2546.4	-
4	3296.8	-	3345.6	-	3395.2	-
5	4121.0	-	4182.0	-	4244.0	-
6	4945.2	-	5018.4	-	5092.8	-
7	5769.4	-	5854.8	-	5941.6	-
8	6593.6	-	6691.2	-	6790.4	-
9	7417.8	-	7527.6	-	7639.2	-
10	8242.0	-	8364.0	-	8488.0	-

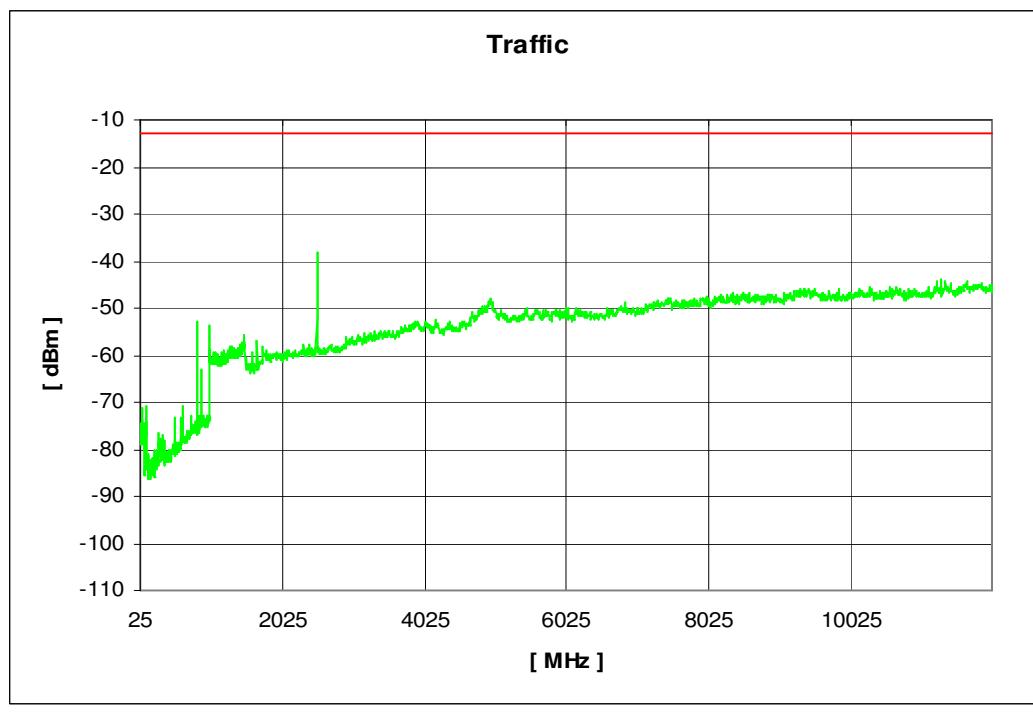

Sample calculation:

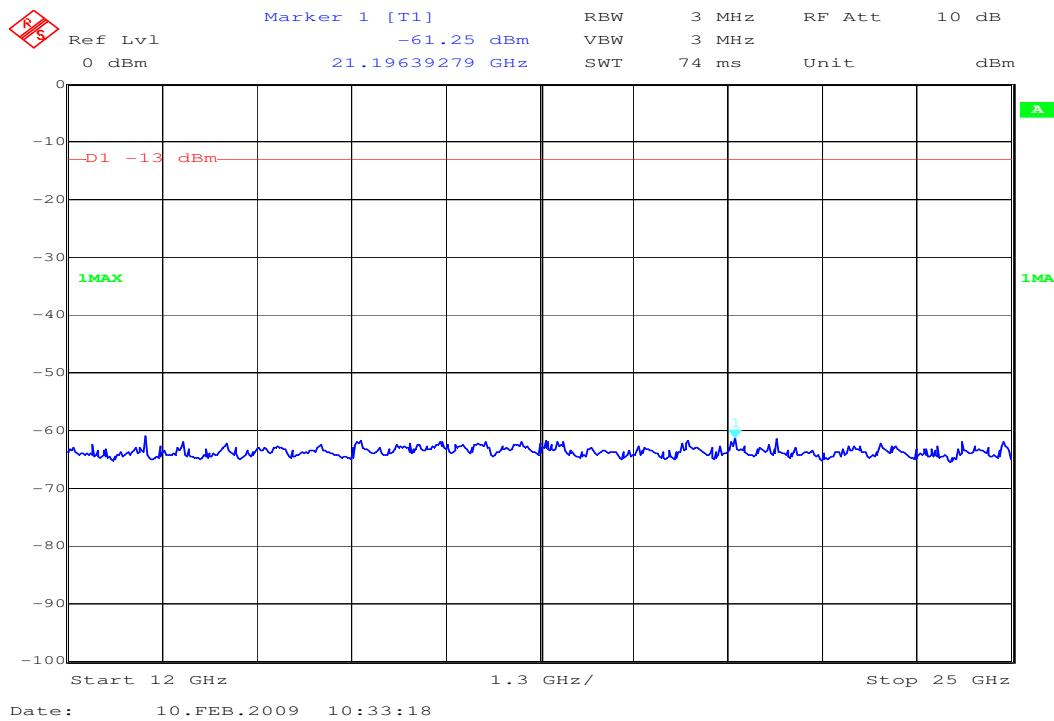
Freq	SA Reading	SG Setting	Ant. gain	Dipol gain	Cable loss	ERP	Substitution Antenna
MHz	dB μ V	dBm	dBi	dBi	dB	dBm	
848.8	137.8	26.6	8.4	0.0	3.3	31.7	UHAP Schwarzbeck S/N 460

$$\text{ERP} = \text{SG (dBm)} - \text{Cable Loss (dB)} + \text{Ant. gain (dB)}$$

*ERP can be calculated from EIRP by subtracting the gain of the dipole, $\text{ERP} = \text{EIRP} - 2.1 \text{dB}$

Channel 189 (Traffic mode up to 30 MHz)




Channel 189 (30 MHz - 12 GHz)

CETECOM ICT Services GmbH

Projekt- Nr.:2-4900-1-9_08

EUT:	W30	Polarisation:	Horizontal, Vertikal
Manufacturer:	Ericsson	Battery:	AC/DC Power Supply
IMEI:	GSM 850 Channel 189	HW:	
Operator:	MUY	SW:	
Start of Test :	01.02.2009 13:59:35	Vmin:	
Standard:	FCC_22_850	Vnom:	230
Signalling Unit:	CMU200	Vmax:	
Transducer-File:	C:\Spurious_neu\Messparameter\FCC_22_850\Transducer_FCC_22_850.xls		
Start Freq. [MHz]:	25	Stop Freq. [MHz]	12000

Channel 128 (12 GHz - 25 GHz) $f \geq 1\text{GHz} : \text{RBW} / \text{VBW} 1 \text{MHz}$

5.3.4 Conducted Spurious Emissions

Reference

FCC:	CFR Part 22.917, 1.1051
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

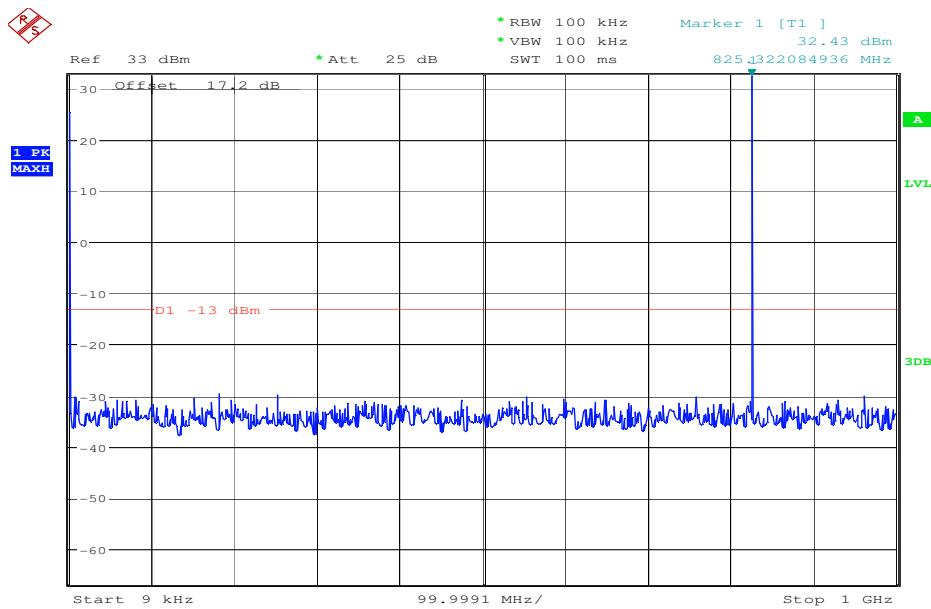
Measurement Procedure

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

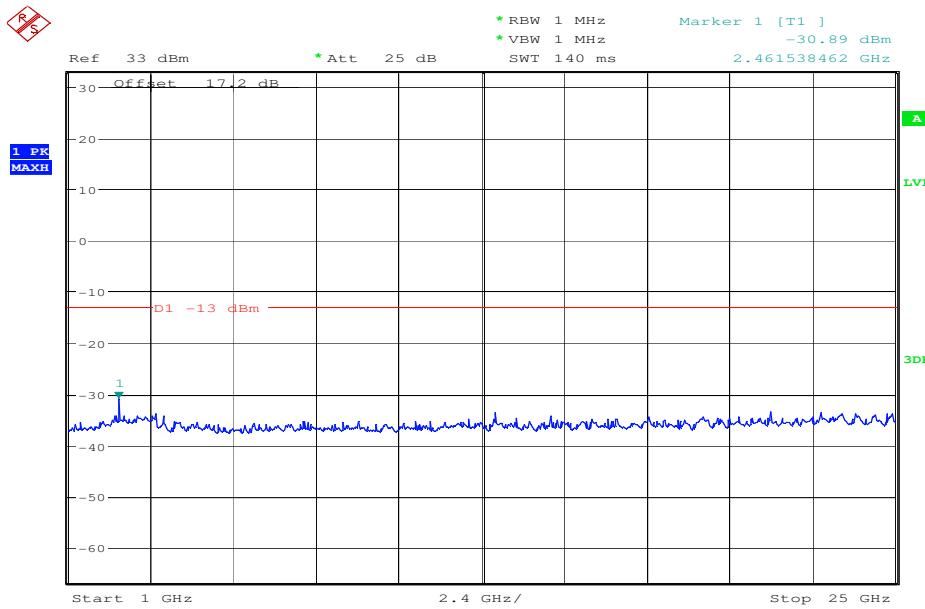
USPCS Transmitter Channel Frequency

128 824.2 MHz
189 836.4 MHz
251 848.8 MHz

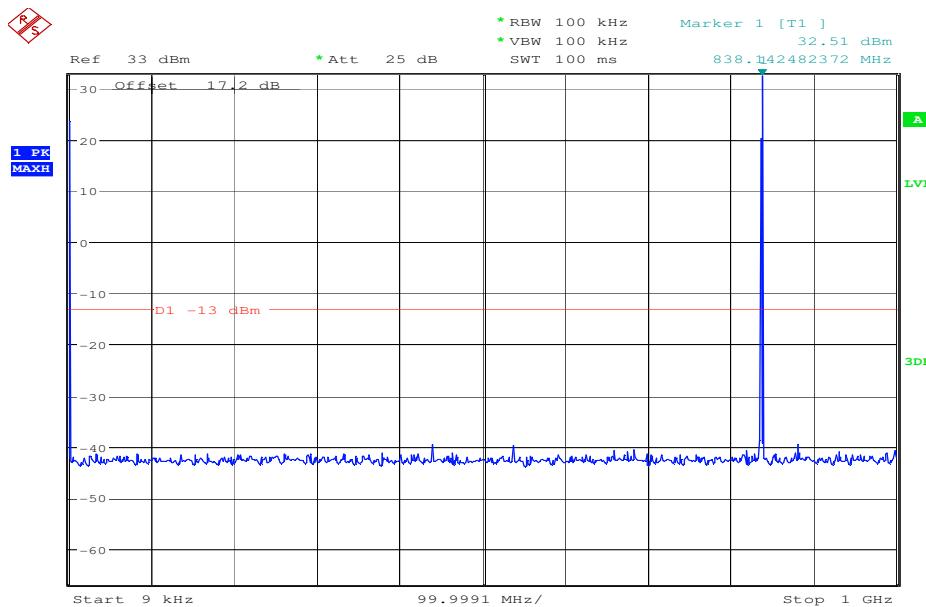

Measurement Limit

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least $43+10\log(P)$ dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Measurement Results

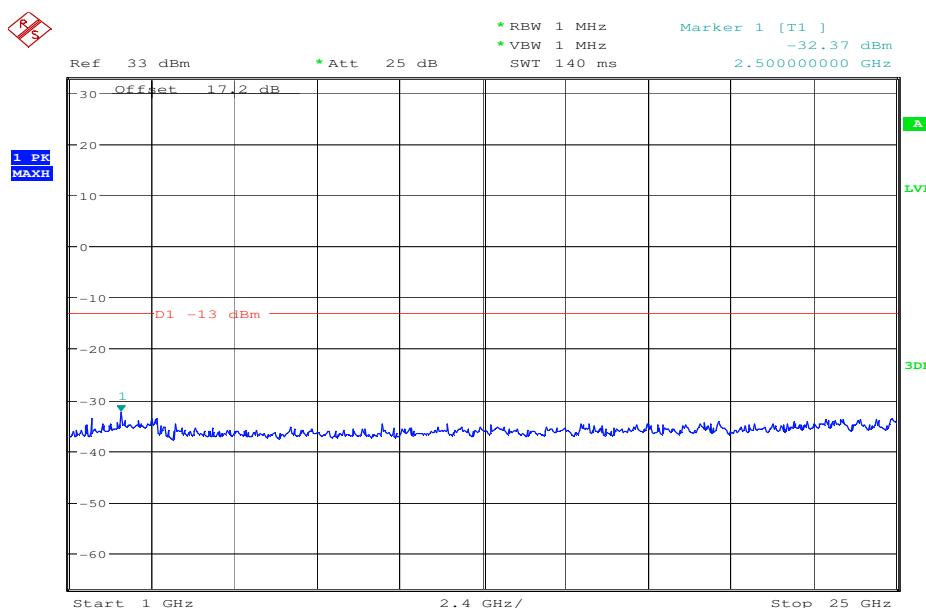

Harmonic	Tx ch.-128 Freq. (MHz)	Level (dBm)	Tx ch.-189 Freq. (MHz)	Level (dBm)	Tx ch.-251 Freq. (MHz)	Level (dBm)
2	1648.4	-	1672.8	-	1697.6	-
3	2472.6	-	2509.2	-	2546.4	-
4	3296.8	-	3345.6	-	3395.2	-
5	4121.0	-	4182.0	-	4244.0	-
6	4945.2	-	5018.4	-	5092.8	-
7	5769.4	-	5854.8	-	5941.6	-
8	6593.6	-	6691.2	-	6790.4	-
9	7417.8	-	7527.6	-	7639.2	-
10	8242.0	-	8364.0	-	8488.0	-

Channel: 128



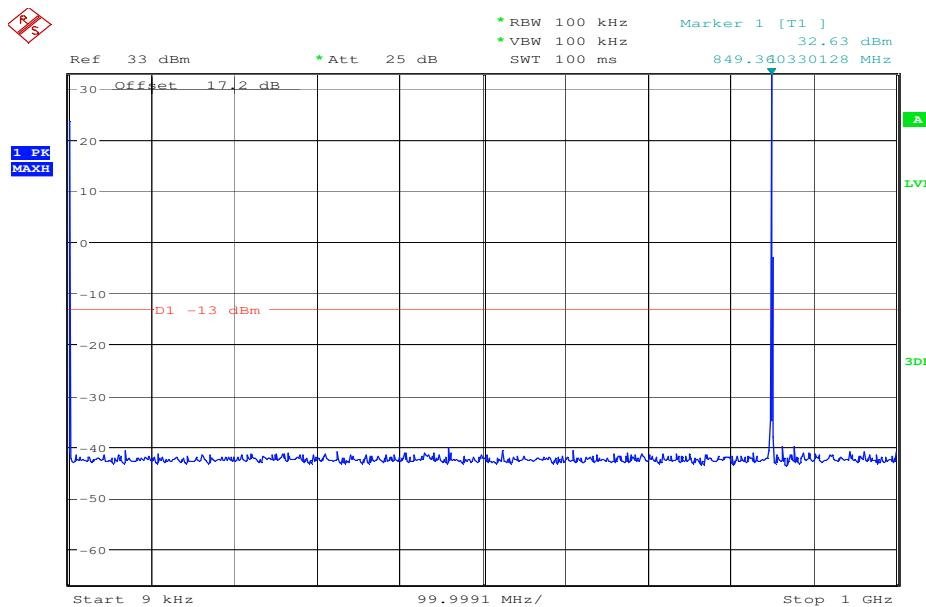
Date: 9.DEC.2008 14:15:03

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

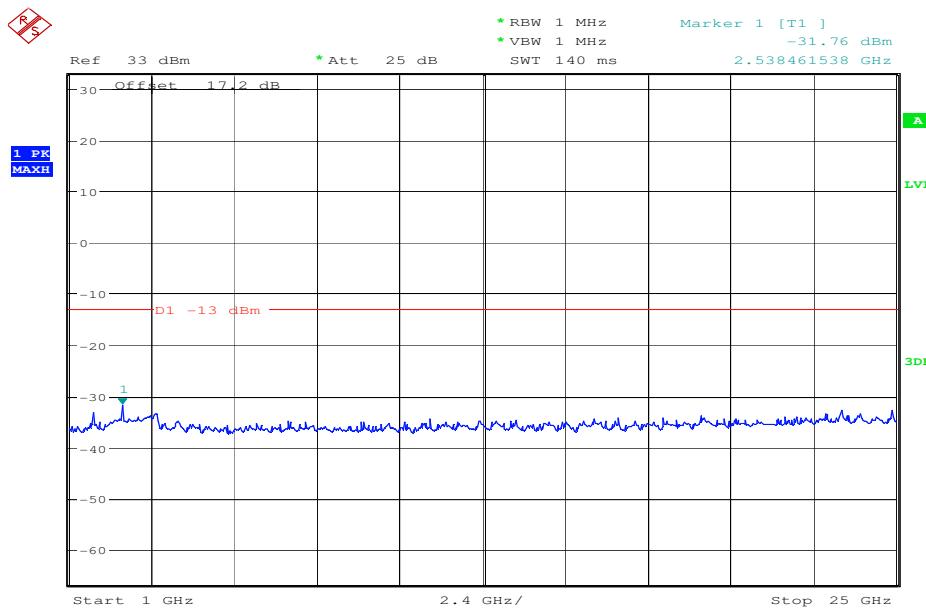


Date: 9.DEC.2008 14:34:40

Channel 189


Date: 9.DEC.2008 14:15:55

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.


Date: 9.DEC.2008 14:20:19

Channel 251

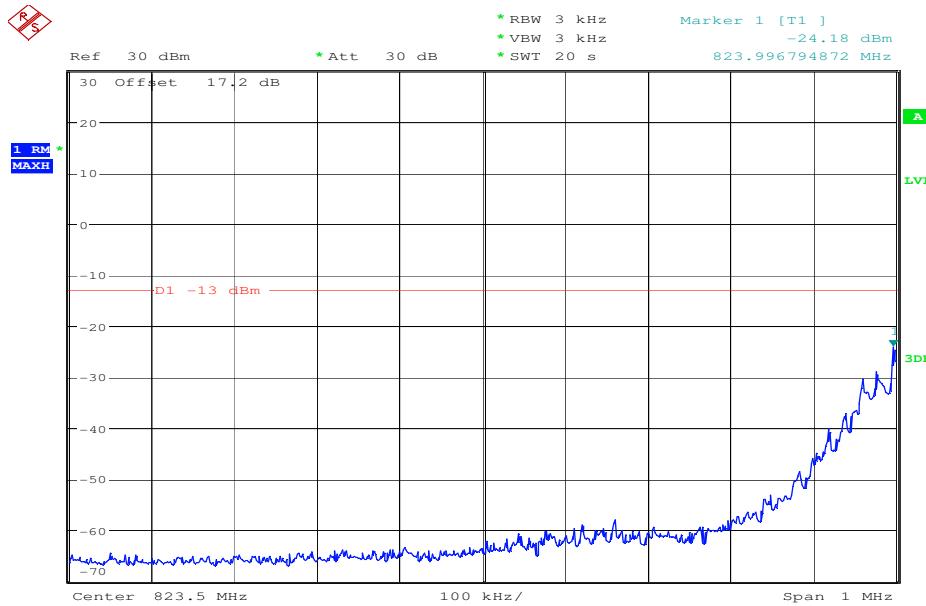
Date: 9.DEC.2008 14:16:52

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

Date: 9.DEC.2008 14:19:33

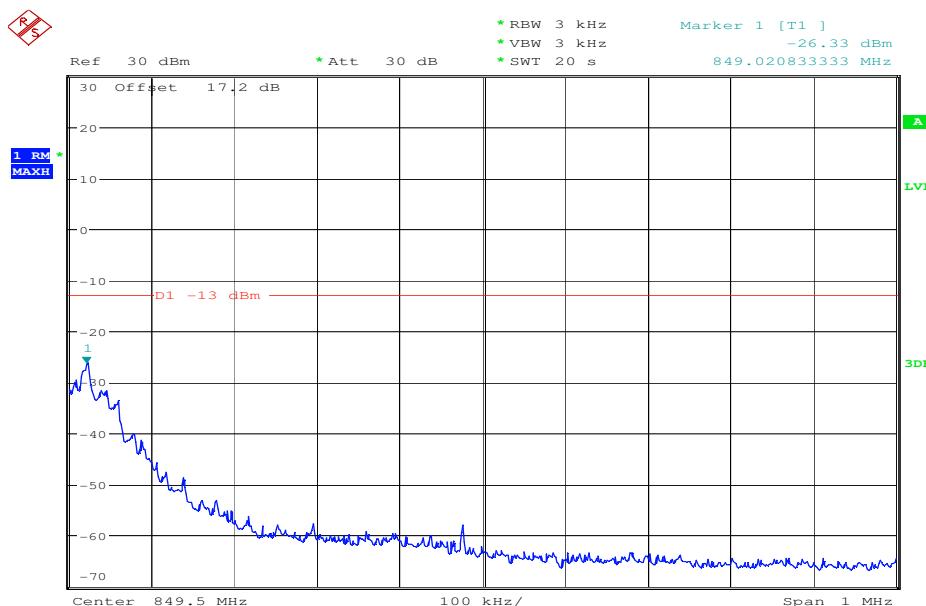
5.3.5 Block Edge Compliance

Reference

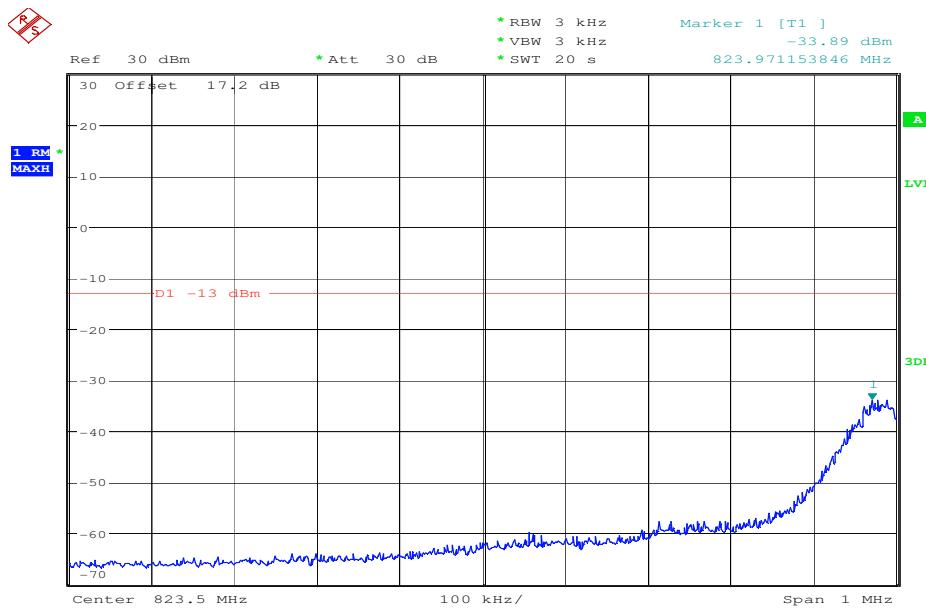

FCC:	CFR Part 22.917
IC:	RSS 132, Issue 2, Section 6.5

Measurement Limit:

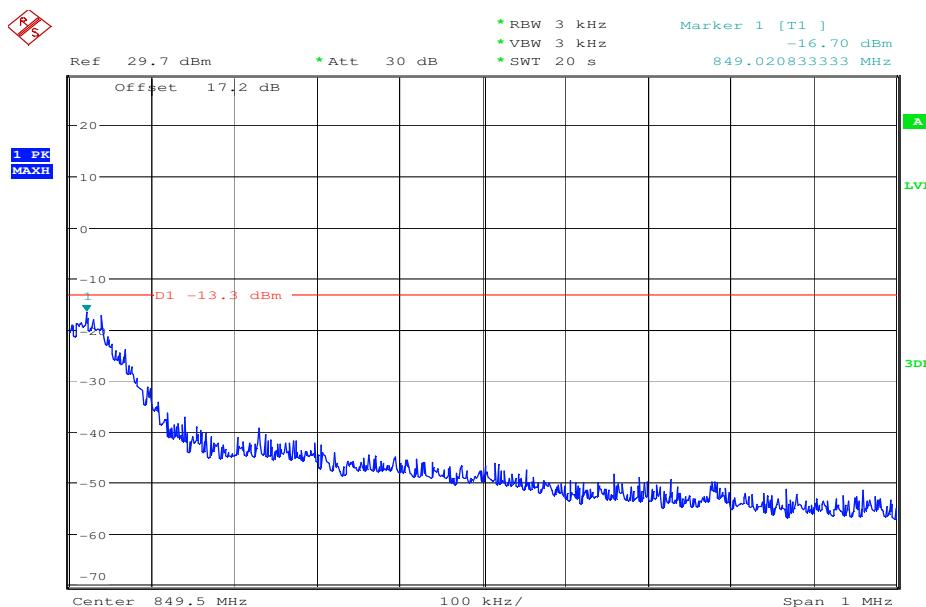
Sec. 22.917(b) Emission Limits.


(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least $43+10\log(P)$ dB. For all power levels +33 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Block 1 Channel 128


Date: 10.DEC.2008 07:22:50

Block 4 Channel 251


Date: 10.DEC.2008 07:24:21

Block 1 Channel 128 (EDGE)

Date: 10.DEC.2008 07:28:59

Block 4 Channel 251 (EDGE)

Date: 10.DEC.2008 10:53:19

5.3.6 Occupied Bandwidth

Reference

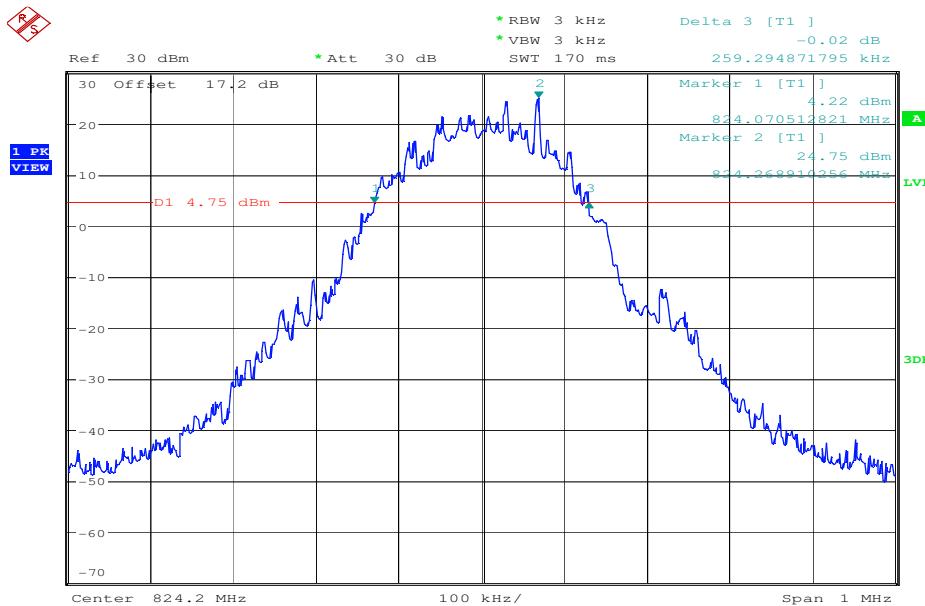
FCC:	CFR Part 22.917, 2.1049
IC:	RSS 132, Issue 2, Section 4.2

Occupied Bandwidth Results

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Normal mode

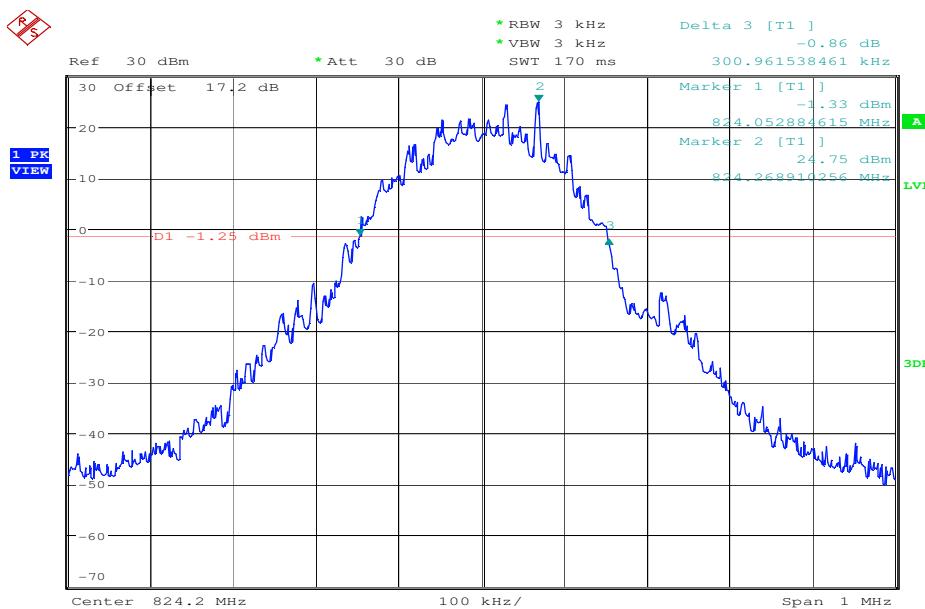
Frequency	99 % Occupied Bandwidth (kHz)	-26 dBc Bandwidth (kHz)
824.2 MHz	259.3	301.0
836.4 MHz	259.6	301.3
848.8 MHz	259.6	301.3


EDGE mode

Frequency	99 % Occupied Bandwidth (kHz)	-26 dBc Bandwidth (kHz)
824.2 MHz	269.2	317.3
836.4 MHz	272.4	310.9
848.8 MHz	293.3	315.7

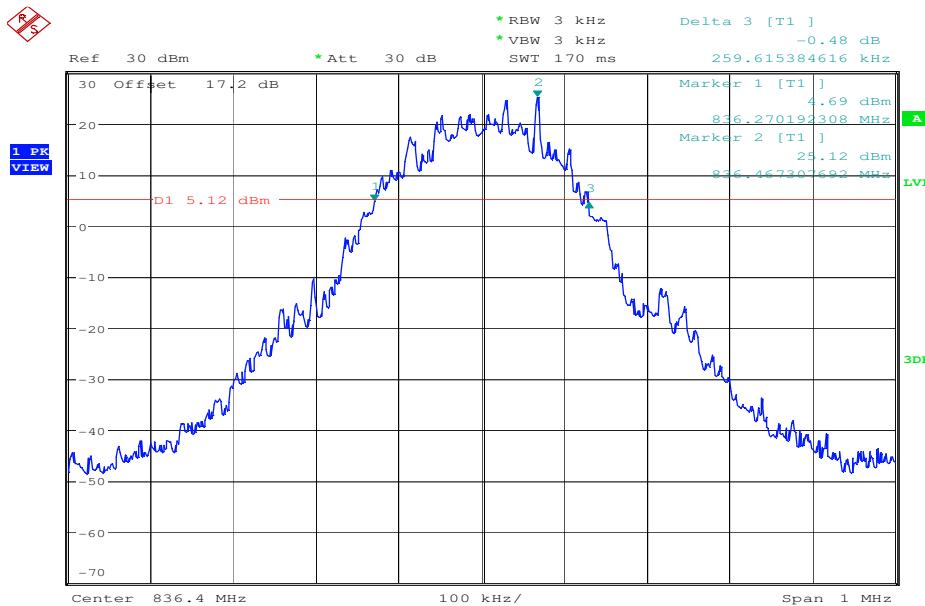
Part 22 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300 kHz, this equates to a resolution bandwidth of at least 3 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

Channel 128


99% (-20 dB) Occupied Bandwidth

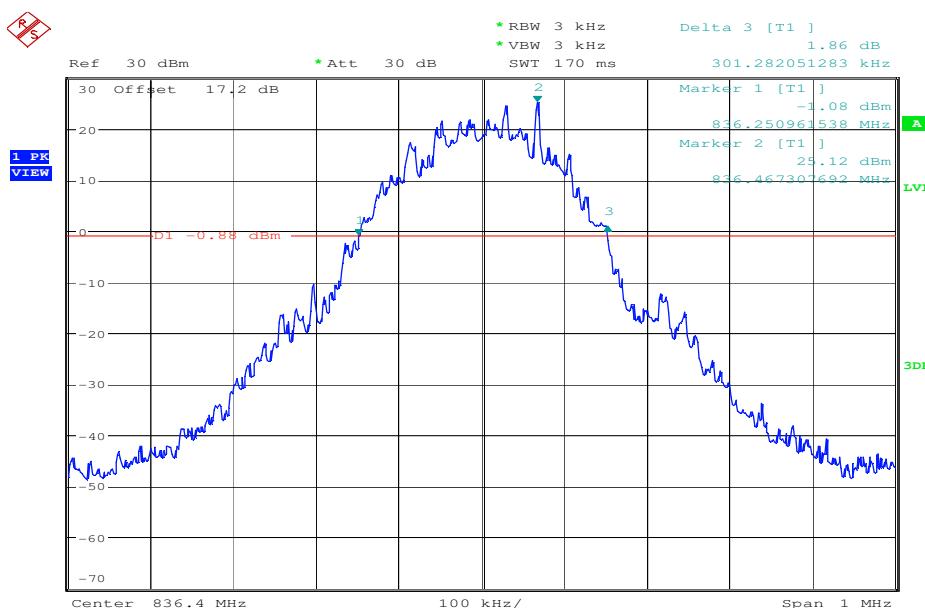
Date: 10.DEC.2008 08:20:12

Channel 128


-26 dBc Bandwidth

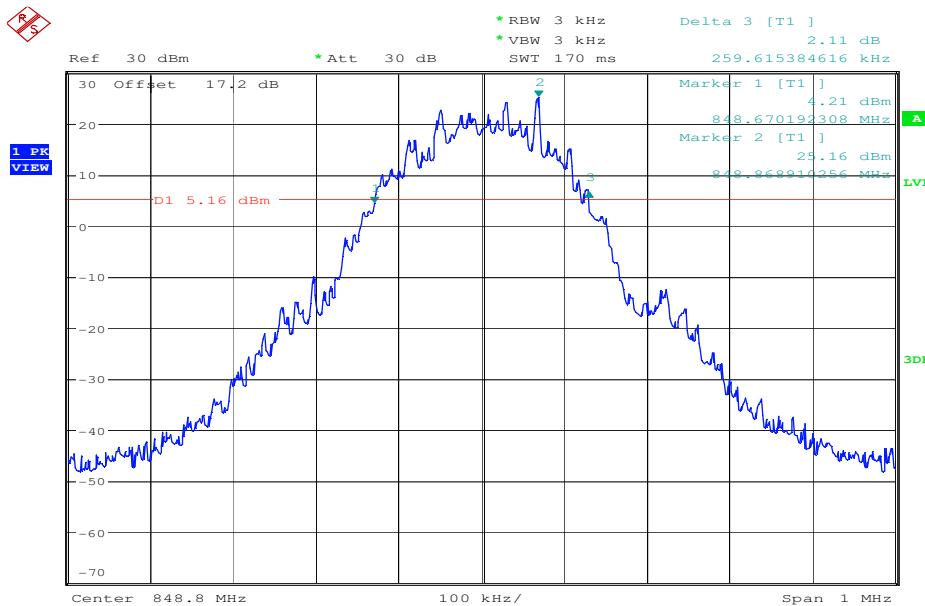
Date: 10.DEC.2008 08:21:06

Channel 189


99% (-20 dB) Occupied Bandwidth

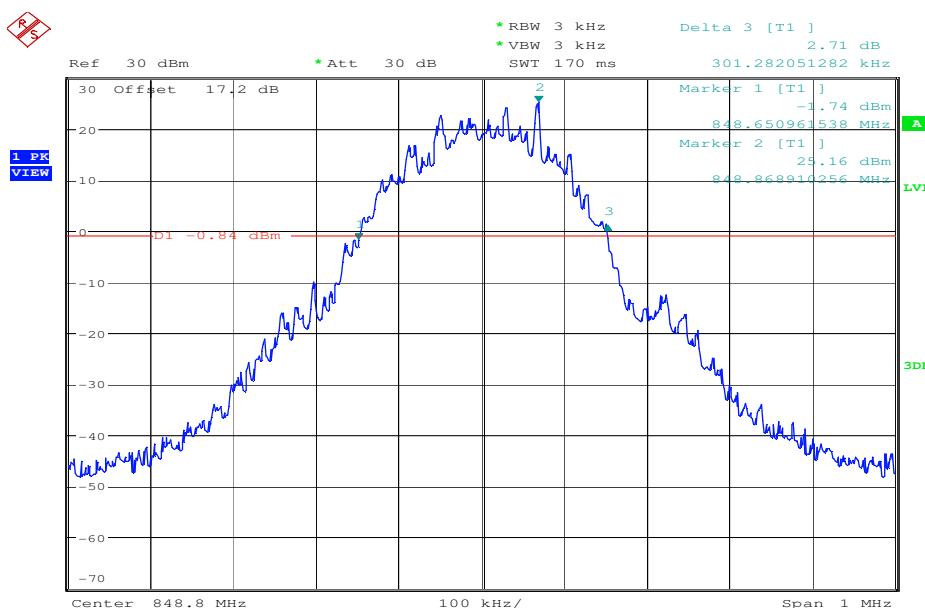
Date: 10.DEC.2008 08:23:54

Channel 189


-26 dBc Bandwidth

Date: 10.DEC.2008 08:25:08

Channel 251


99% (-20 dB) Occupied Bandwidth

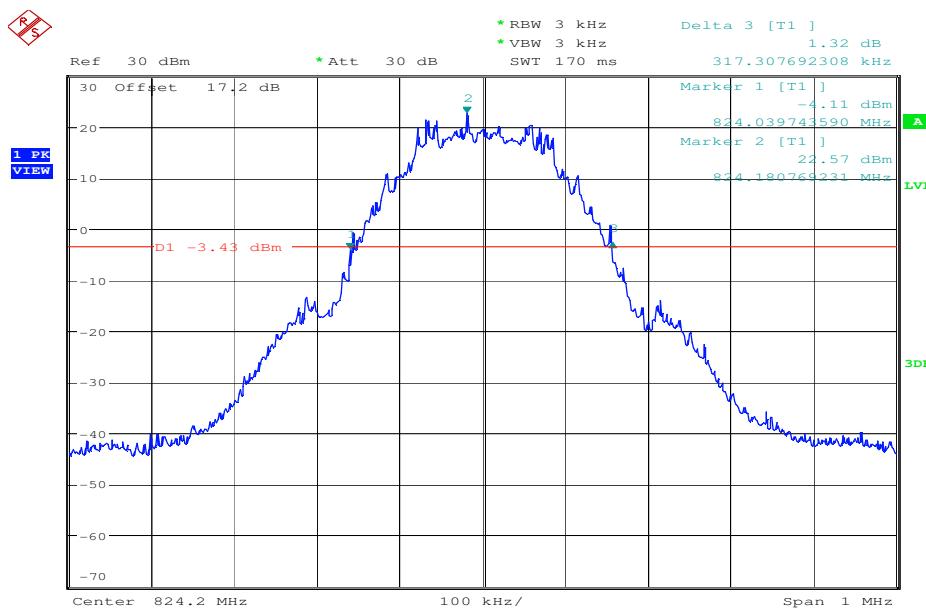
Date: 10.DEC.2008 08:27:05

Channel 251

-26 dBc Bandwidth

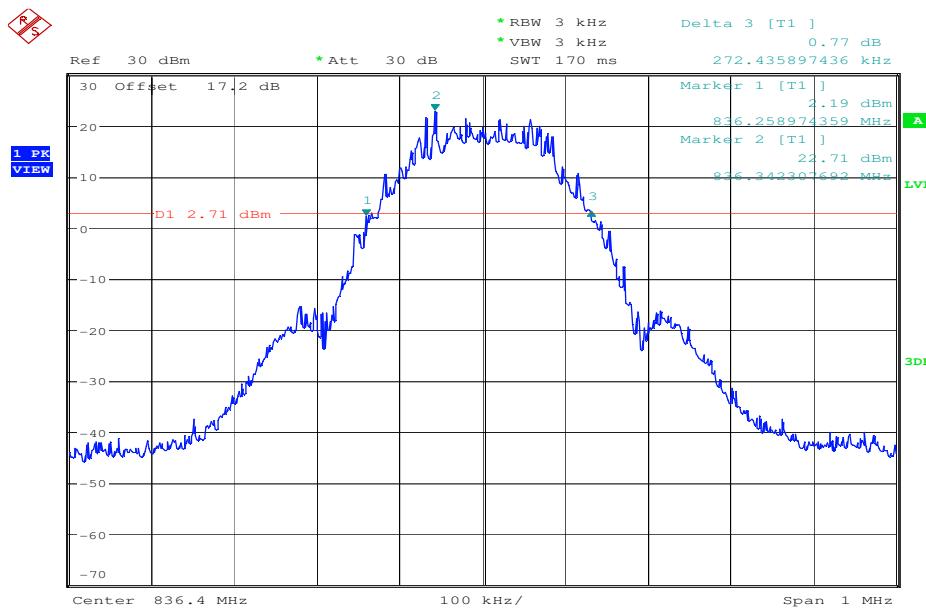
Date: 10.DEC.2008 08:27:46

Channel 128 (EDGE)


99% (-20 dB) Occupied Bandwidth

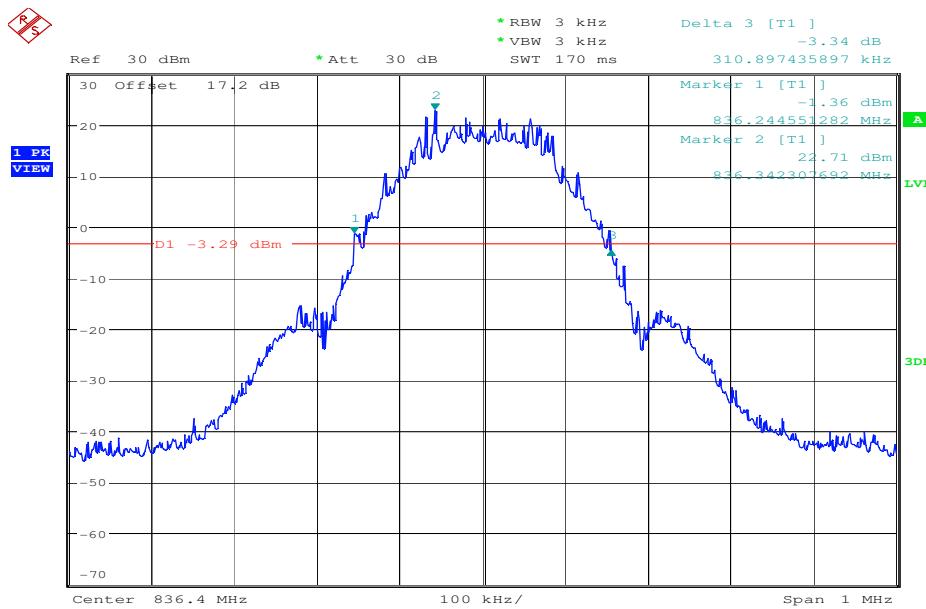
Date: 10.DEC.2008 08:56:09

Channel 128 (EDGE)


-26 dBc Bandwidth

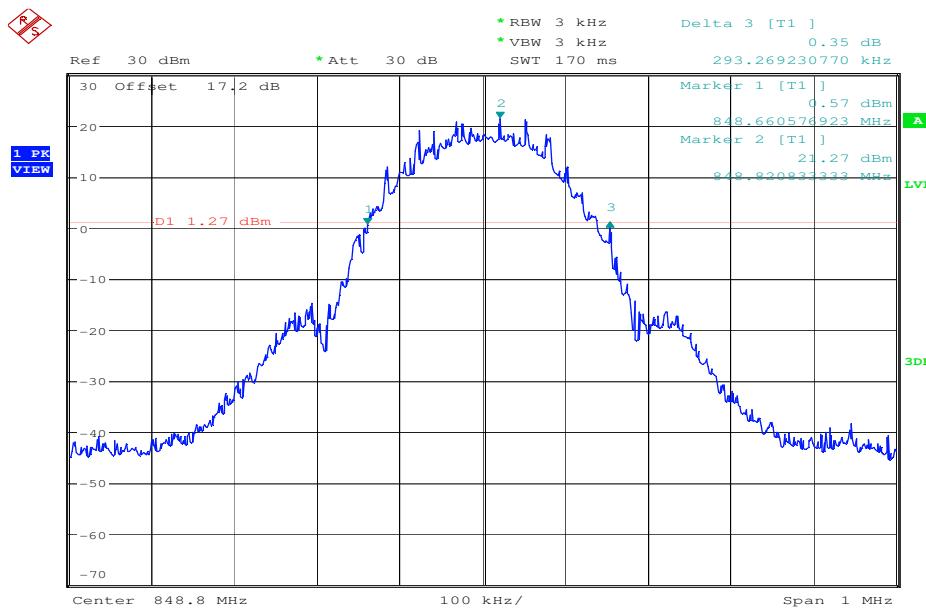
Date: 10.DEC.2008 08:57:15

Channel 189 (EDGE)


99% (-20 dB) Occupied Bandwidth

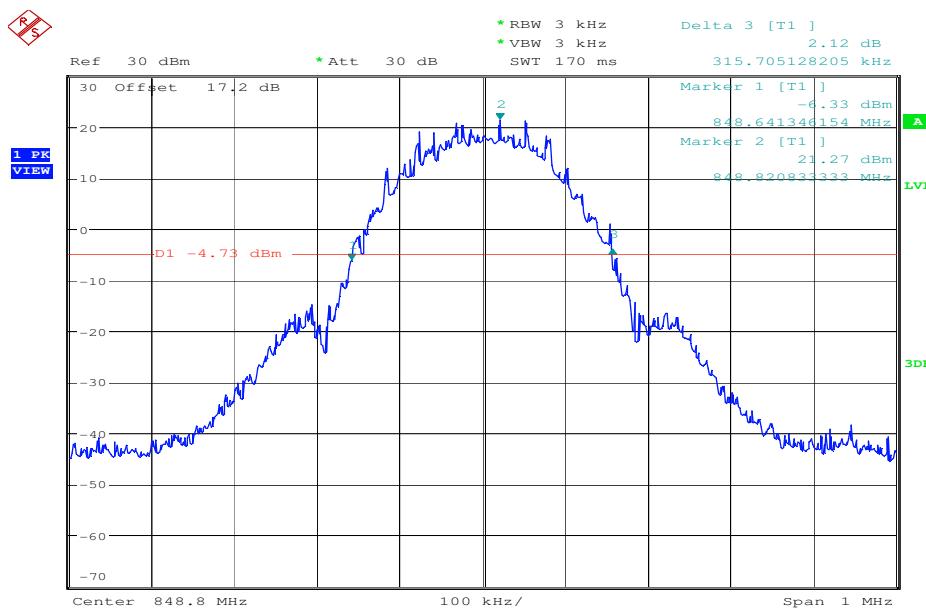
Date: 10.DEC.2008 08:44:19

Channel 189 (EDGE)


-26 dBc Bandwidth

Date: 10.DEC.2008 08:45:38

Channel 251 (EDGE)


99% (-20 dB) Occupied Bandwidth

Date: 10.DEC.2008 08:37:57

Channel 251 (EDGE)

-26 dBc Bandwidth

Date: 10.DEC.2008 08:39:04

5.4 PART UMTS Band II

5.4.1 RF Power Output

Reference

FCC:	CFR Part 24.232, 2.1046
IC:	RSS 133, Issue 3, Section 4.3

Summary:

This paragraph contains both average/peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0 MHz and 1907.6 MHz (bottom, middle and top of operational frequency range).

Settings for maximum output power were used.

Limits:

Nominal Peak Output Power (dBm)
+33

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Results: Output Power (conducted) UMTS Mode

Frequency (MHz)	Average Output Power (dBm)	Peak-to-Average Ratio (dB)
1852.4	22.2	3.1
1880.0	22.0	3.1
1907.6	21.9	3.0
Measurement uncertainty	±0.5 dB	

The following HSDPA sub-tests are defined by 3GPP 34.121 (table C.10.1.4)

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	CM(dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: $\Delta_{ACK}, \Delta_{NACK}, \Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$

Table 1: Subtests for UMTS Release 5 HSDPA

The following HSUPA sub-tests are defined by 3GPP 34.121 (table C.11.1.3)

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β_{ec}	β_{ed}	β_{ec}	β_{ed}	CM ⁽²⁾	MPR	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1}:47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: $\Delta_{ACK}, \Delta_{NACK}, \Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference

Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$

Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$

Note 5 : Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g

Note 6 : β_{ed} can not be set directly; it is set by Absolute Grant Value

Table 2: Subtests for UMTS Release 6 HSUPA

It was checked that the EUT supports the HSDPA- (and HSUPA)-Mode and fulfills the requirements of the table(s) above. All the power values in these modes were less than the power values in UMTS-mode.

EIRP Measurements

Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level
Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor
$$E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$$
- (f) Set the EMI Receiver and #2 as follows:
Center Frequency: test frequency
Resolution BW: 100 kHz
Video BW: same
Detector Mode: positive
Average: off
Span: 3 x the signal bandwidth
- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (l) Repeat for all different test signal frequencies

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency	: equal to the signal source
Resolution BW	: 10 kHz
Video BW	: same
Detector Mode	: positive
Average	: off
Span	: 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

$E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antennas (substitution antenna): .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.

(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.

(f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

(g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.

(h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.

(i) Tune the EMI Receivers to the test frequency.

(j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.

(l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.

(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

$P = P_1 - L_1 = (P_2 + L_2) - L_1 = P_3 + A + L_2 - L_1$

$EIRP = P + G_1 = P_3 + L_2 - L_1 + A + G_1$

$ERP = EIRP - 2.15 \text{ dB}$

Total Correction factor in EMI Receiver # 2 = $L_2 - L_1 + G_1$

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port.

Correct the antenna gain if necessary.

Limits:

Nominal Peak Output Power (dBm)
+33

Test Results: Output Power (radiated) UMTS Mode

Frequency (MHz)	Average EIRP (dBm)
1852.4	22.8
1880.0	22.5
1907.6	22.4
Measurement uncertainty	±1.5 dB

Sample Calculation:

Freq	SA Reading	SG Setting	Ant. gain	Dipol gain	Cable loss	EIRP Result			
MHz	dB μ V	dBm	dBi	dBi	dB	dBm			
1852.4	125.8	22.6	8.4	0.0	3.3	27.7			

$$\text{EIRP} = \text{SG (dBm)} - \text{Cable Loss (dB)} + \text{Ant. gain (dBi)}$$

5.4.2 Frequency Stability

Reference

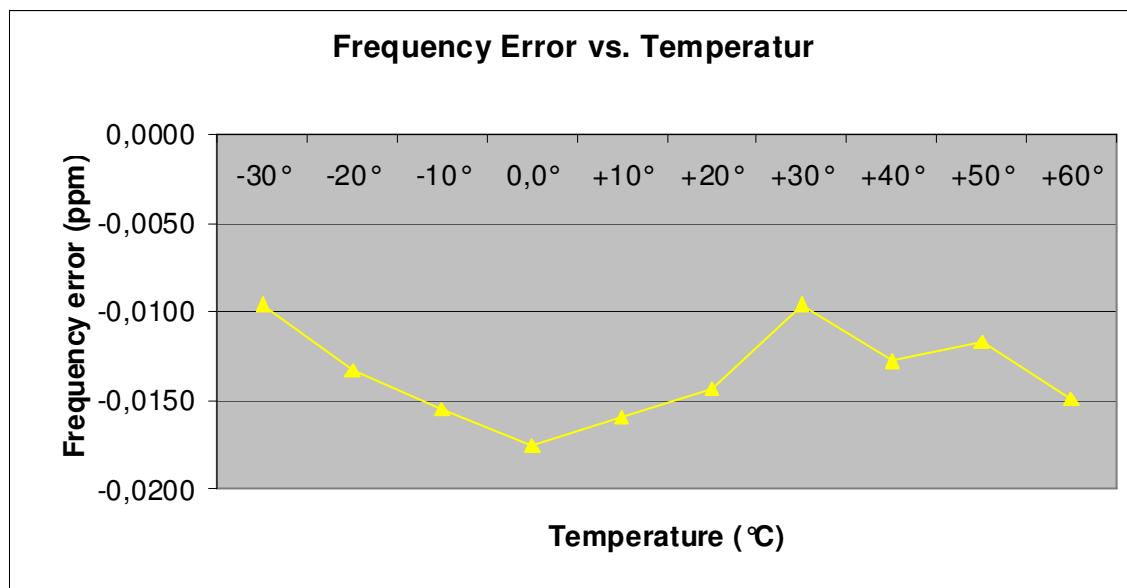
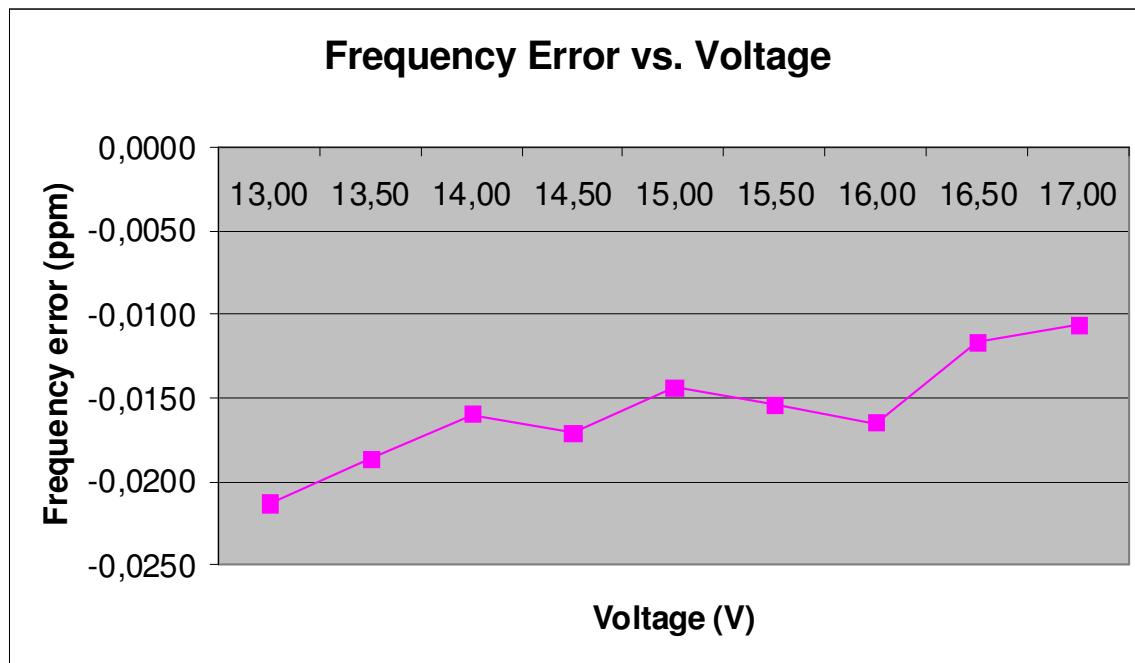
FCC:	CFR Part 24.235, 2.1055
IC:	RSS 133, Issue 3, Section 4.2

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a “call mode”. This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.
2. Subject the mobile station to overnight soak at -30 C.
3. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
5. Re-measure carrier frequency at room temperature with Vnom. Vary supply voltage from Vmin to Vmax, in 12 steps re-measuring carrier frequency at each voltage. Pause at Vnom for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
6. Subject the mobile station to overnight soak at +60 C.
7. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

Measurement Limit:



According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Results: AFC FREQ ERROR vs. VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
13,00	-40	-0,00000213	-0,0213
13,50	-35	-0,00000186	-0,0186
14,00	-30	-0,00000160	-0,0160
14,50	-32	-0,00000170	-0,0170
15,00	-27	-0,00000144	-0,0144
15,50	-29	-0,00000154	-0,0154
16,00	-31	-0,00000165	-0,0165
16,50	-22	-0,00000117	-0,0117
17,00	-20	-0,00000106	-0,0106

Test Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	-18	-0,00000096	-0,0096
-20	-25	-0,00000133	-0,0133
-10	-29	-0,00000154	-0,0154
±0,0	-33	-0,00000176	-0,0176
+10	-30	-0,00000160	-0,0160
+20	-27	-0,00000144	-0,0144
+30	-18	-0,00000096	-0,0096
+40	-24	-0,00000128	-0,0128
+50	-22	-0,00000117	-0,0117
+60	-28	-0,00000149	-0,0149

5.4.3 Radiated Emissions

Reference

FCC:	CFR Part 24.238, 2.1053
IC:	RSS 133, Issue 3, Section 4.4

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded.
- e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least $43 + 10\log(P)$ dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P)$ dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results: Radiated Emissions

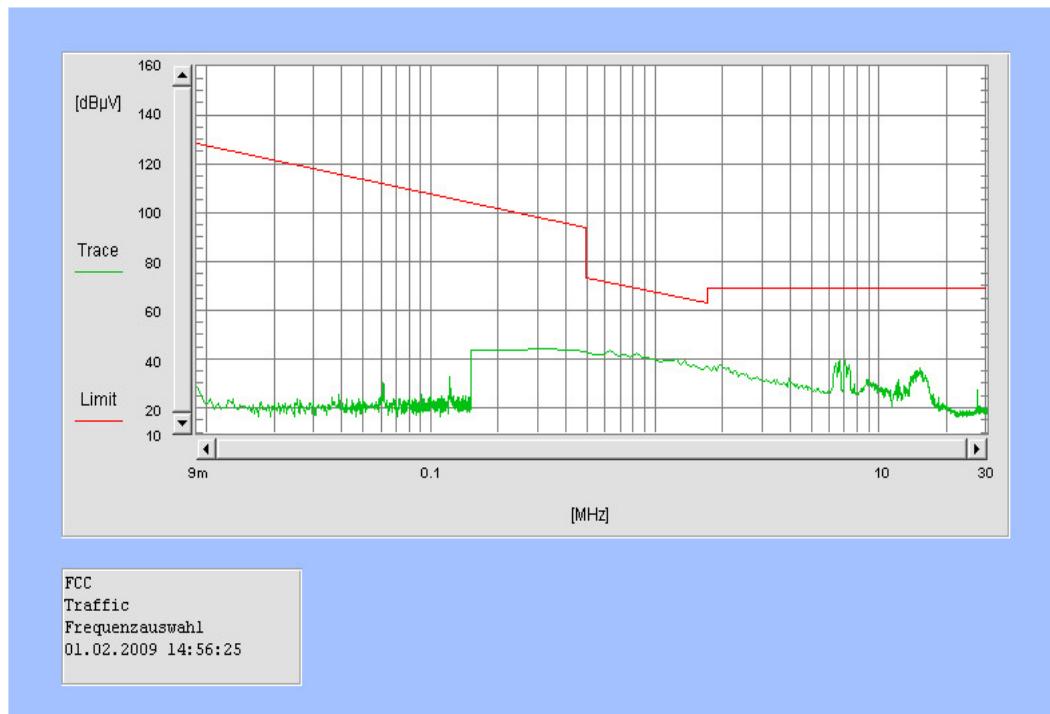
Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the UMTS band (1852.4 MHz, 1880.0 MHz and 1907.6 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the UMTS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next table.

All measurements were done in horizontal and vertical polarization; the plots show the worst case. The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, too. The found values are stated in the table below.

As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch.-9262 Freq. (MHz)	Level (dBm)	Tx ch.-9400 Freq. (MHz)	Level (dBm)	Tx ch.-9538 Freq. (MHz)	Level (dBm)
2	3704.8	-	3760	-	3815.2	-
3	5557.2	-	5640	-	5722.8	-
4	7409.6	-	7520	-	7630.4	-
5	9262.0	-	9400	-	9538.0	-
6	11114.4	-	11280	-	11445.6	-
7	12966.8	-	13160	-	13353.2	-
8	14819.2	-	15040	-	15260.8	-
9	16671.6	-	16920	-	17168.4	-
10	18524.0	-	18800	-	19076.0	-

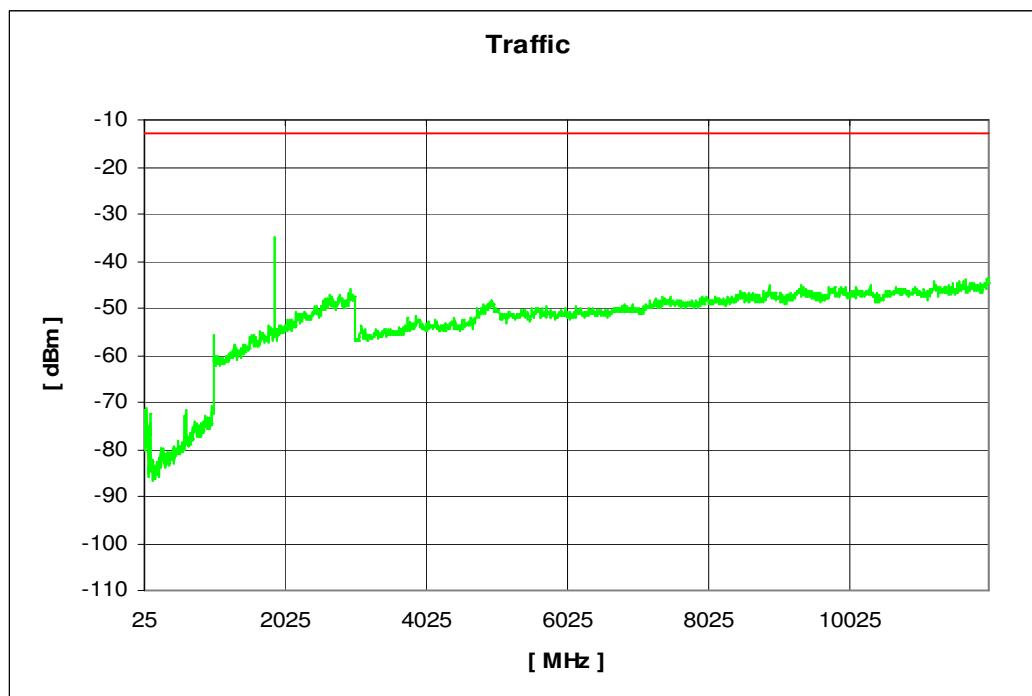

No peaks found < 20 dB below limit.

Sample calculation:

Freq	SA Reading	SG Setting	Ant. gain	Dipol gain	Cable loss	EIRP Result			
MHz	dB μ V	dBm	dBi	dBi	dB	dBm			
1852.4	125.8	22.6	8.4	0.0	3.3	27.7			

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

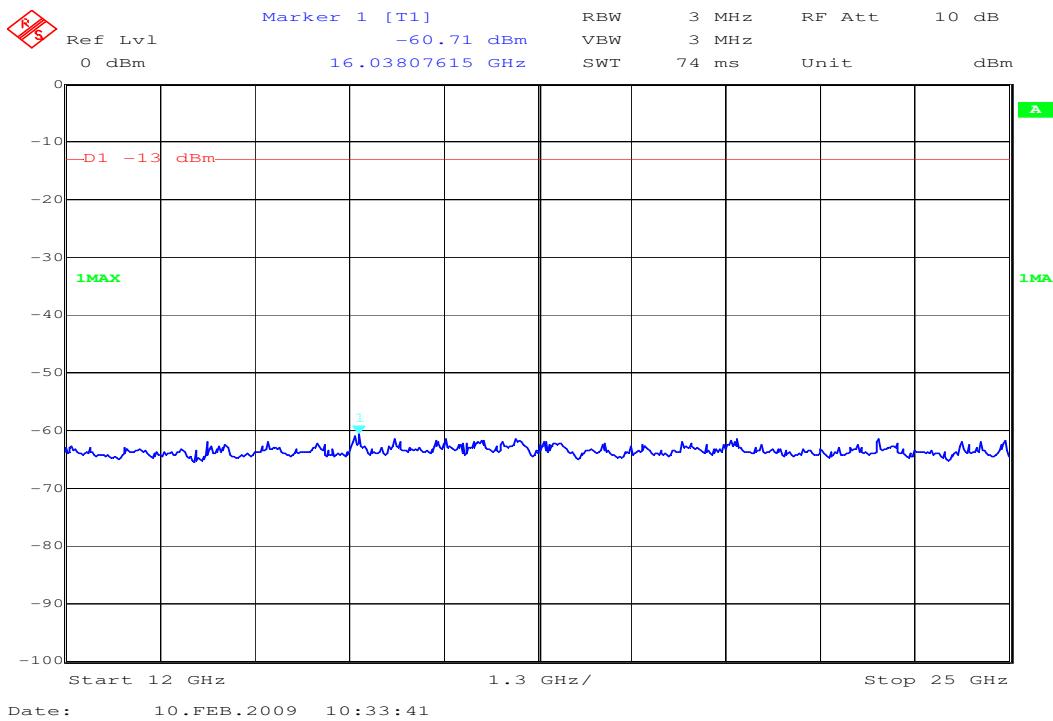
Channel 9400 (Traffic mode up to 30 MHz)



Channel 9400 (30 MHz - 12 GHz)

CETECOM ICT Services GmbH

Projekt- Nr.:2-4900-1-9_08


EUT:	W30	Polarisation:	Horizontal, Vertikal
Manufacturer:	Ericsson	Battery:	AC/DC Power Supply
IMEI:	FDD II Channel 9400	HW:	
Operator:	MUY	SW:	
Start of Test :	01.02.2009 14:29:53	Vmin:	
Standard:	FCC_24_1900	Vnom:	230
Signalling Unit:	CMU200	Vmax:	
Transducer-File:	C:\Spurious_neu\Messparameter\FCC_24_1900\Transducer_FCC_24_1900.xls		
Start Freq. [MHz]:	25	Stop Freq. [MHz]	12000

$f < 1 \text{ GHz}$: RBW/VBW: 100 kHz
 Carrier suppressed with a rejection filter

$f \geq 1 \text{ GHz}$: RBW / VBW 1 MHz

Channel 9262 (12 GHz - 25 GHz) valid for all 3 channels

f ≥ 1GHz : RBW / VBW 1 MHz

5.4.4 Conducted Spurious Emissions

Reference

FCC:	CFR Part 24.238, 2.10.51
IC:	RSS 133, Issue 3, Section 4.4

Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

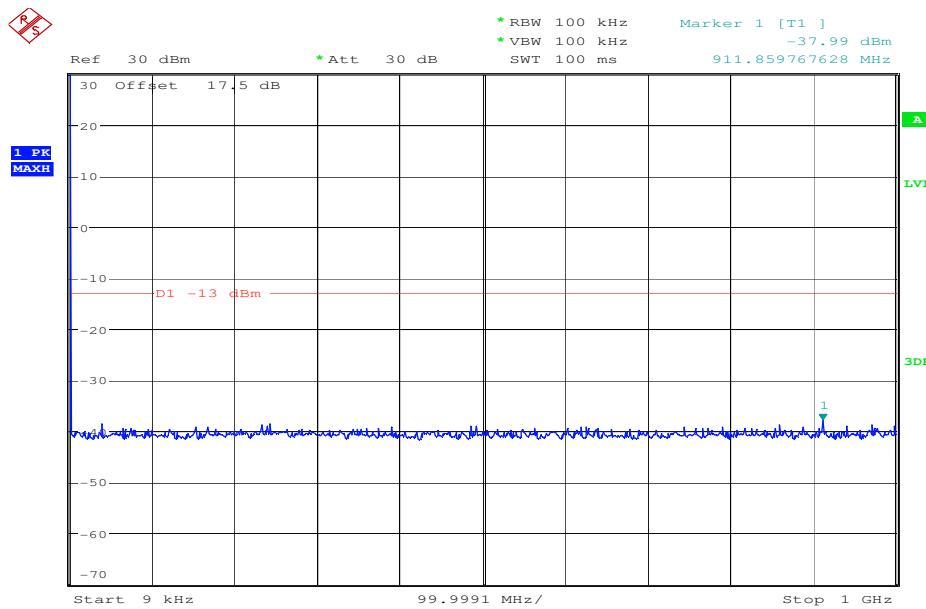
2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

UMTS Transmitter Channel Frequency:

9262 1852.4 MHz

9400 1880.0 MHz

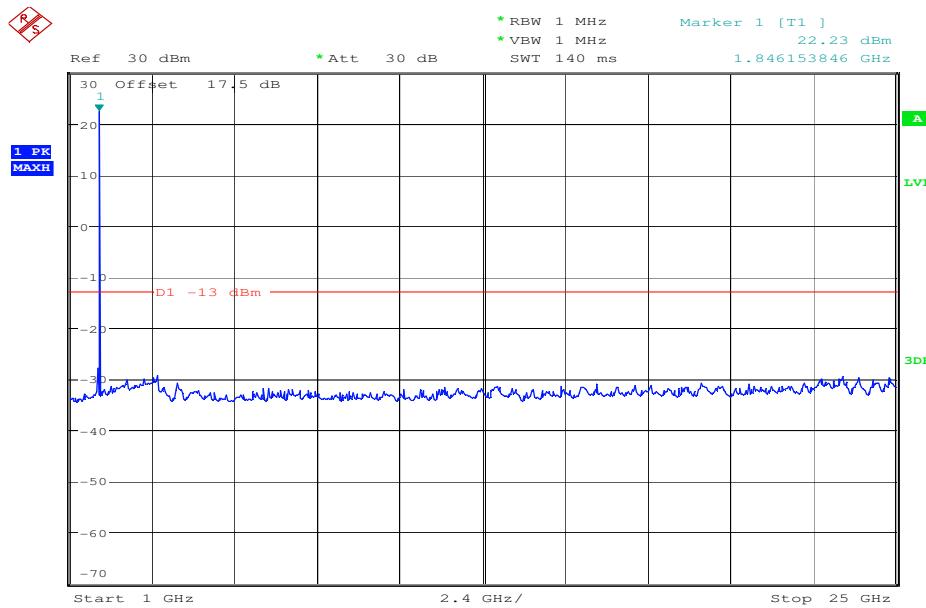
9538 1907.6 MHz


Measurement Limit:

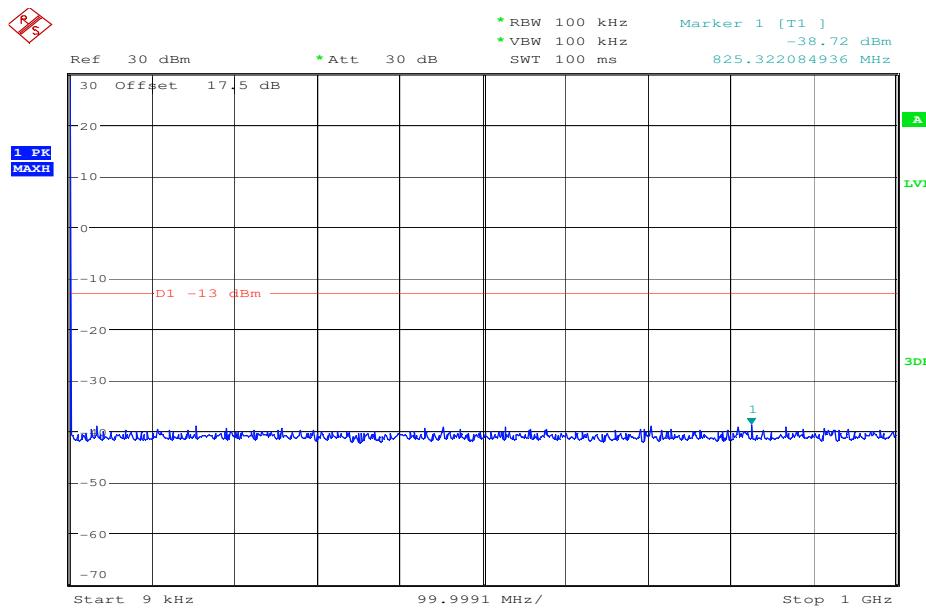
(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least $43+10\log(P)$ dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Measurement Results:

Harmonic	Tx ch.- 9262 Freq. (MHz)	Level (dBm)	Tx ch.-9400 Freq. (MHz)	Level (dBm)	Tx ch.-9538 Freq. (MHz)	Level (dBm)
2	3704.8	-	3760	-	3815.2	-
3	5557.2	-	5640	-	5722.8	-
4	7409.6	-	7520	-	7630.4	-
5	9262.0	-	9400	-	9538.0	-
6	11114.4	-	11280	-	11445.6	-
7	12966.8	-	13160	-	13353.2	-
8	14819.2	-	15040	-	15260.8	-
9	16671.6	-	16920	-	17168.4	-
10	18524.0	-	18800	-	19076.0	-

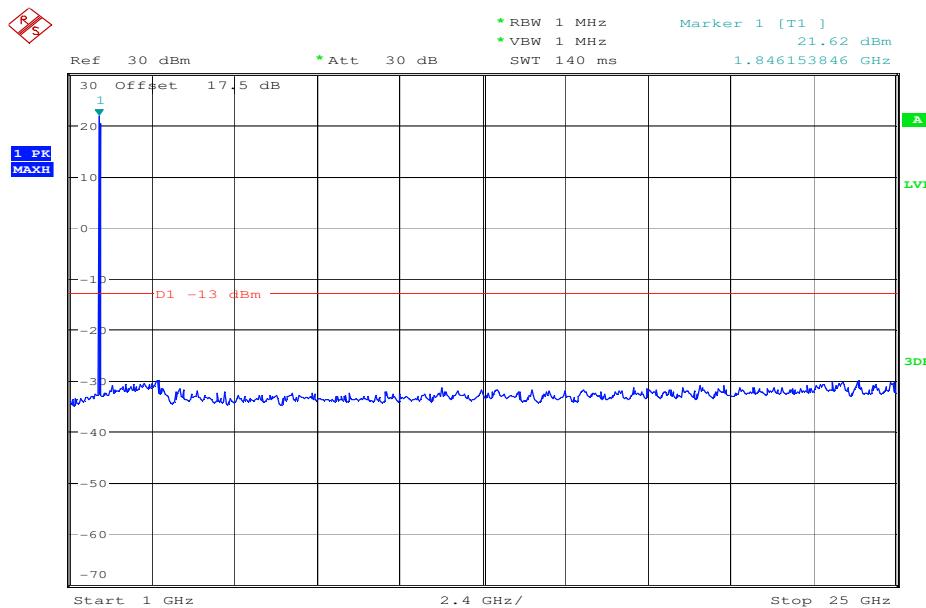

Channel 9262 (30 MHz – 1 GHz)

Date: 10.DEC.2008 13:21:53

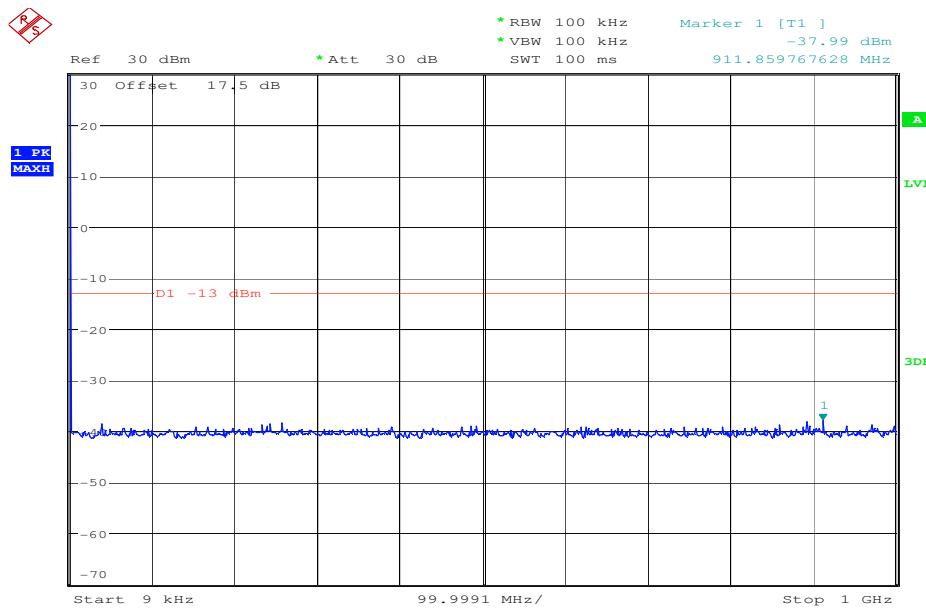

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

Channel 9262 (1 GHz – 25 GHz)

Date: 10.DEC.2008 13:38:12

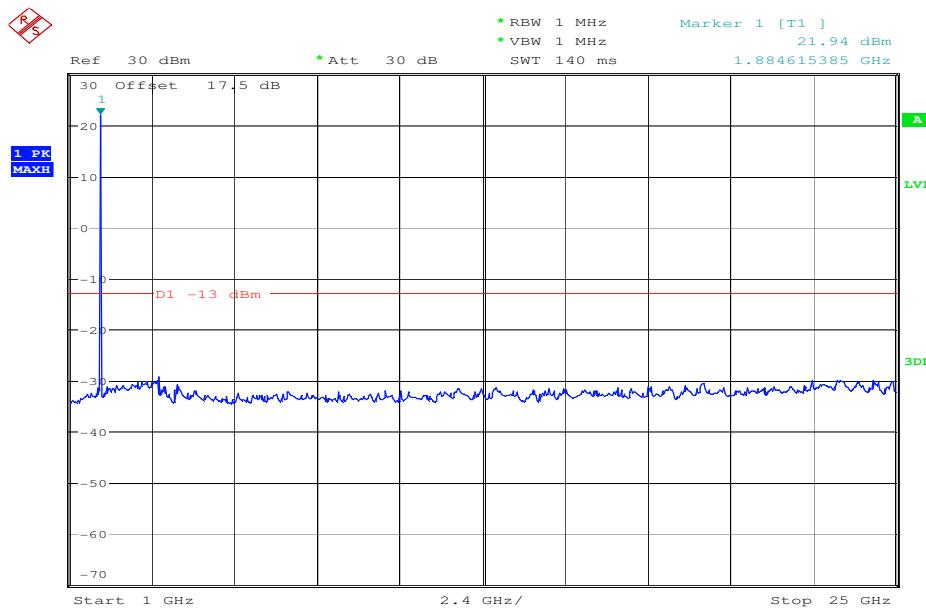

Channel 9400 (30 MHz – 1 GHz)

Date: 10.DEC.2008 13:22:54


The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

Channel 9400 (1 GHz – 25 GHz)

Date: 10.DEC.2008 13:39:15


Channel 9538 (30 MHz – 1 GHz)

Date: 10.DEC.2008 13:22:22

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

Channel 9538 (1 GHz – 25 GHz)

Date: 10.DEC.2008 13:41:17

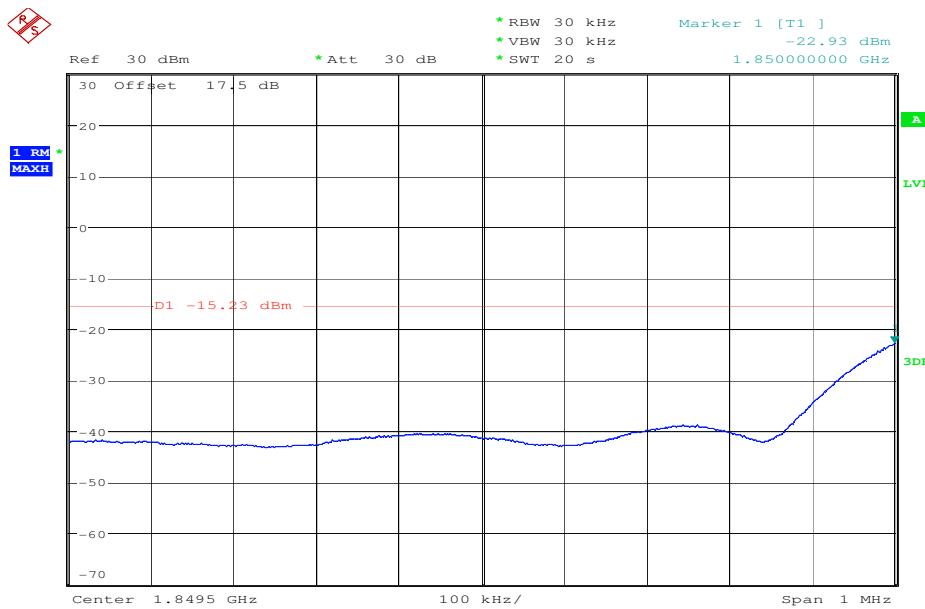
5.4.5 Block Edge Compliance

Reference

FCC:	CFR Part 24.238
IC:	RSS 133, Issue 3, Section 6.5

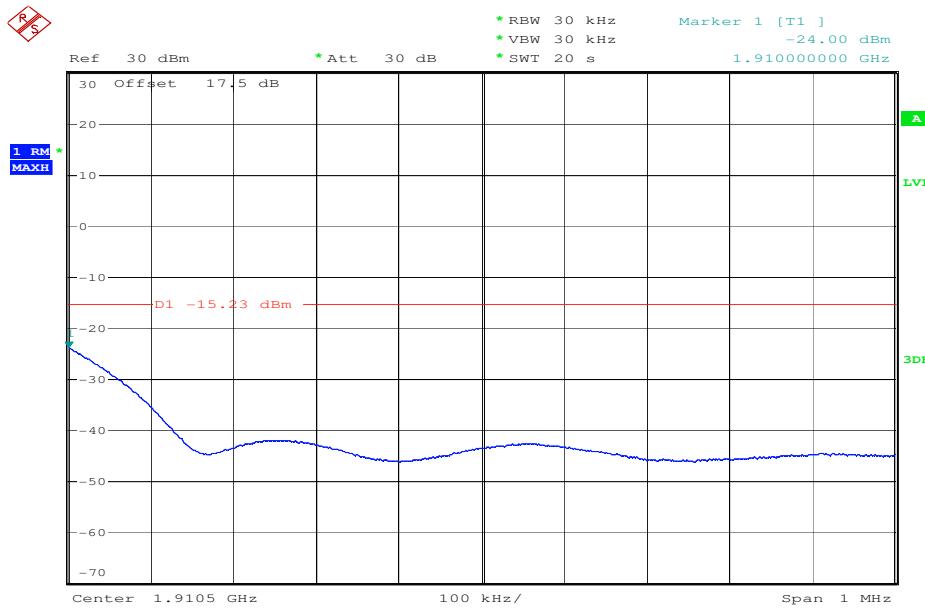
Measurement Limit:

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least $43+10\log(P)$ dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.


Part 22.917 specifies that “the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.”

However, in publication number 890810, The FCC Office of Engineering and Technology specified the following correction to the limits when a resolution bandwidth smaller than 1% of the emission bandwidth is used:

“An alternative is to add an additional correction factor of $10 \log(RBW1 / RBW2)$ to the $43 + 10 \log(P)$ limit. RBW1 is the narrower measurement resolution bandwidth and RBW2 is either the 1% emissions bandwidth or 1 MHz.”


When using a 30 kHz bandwidth, this yields a -2.2185 adjustment to the limit [$10\log(30\text{kHz}/50\text{kHz}) = -2.2185$]. When this adjustment is applied to the limit, the limit becomes -15.2288.

Channel 9262

Date: 10.DEC.2008 13:47:25

Channel 9538

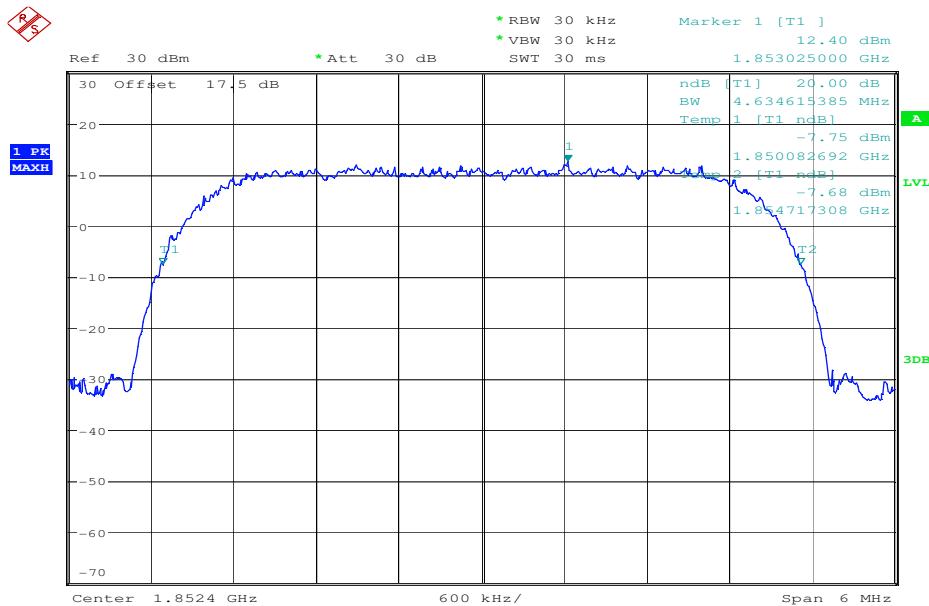
Date: 10.DEC.2008 13:48:16

5.4.6 Occupied Bandwidth

Reference

FCC:	CFR Part 24.238, 2.1049
IC:	RSS 133, Issue 3, Section 6.5

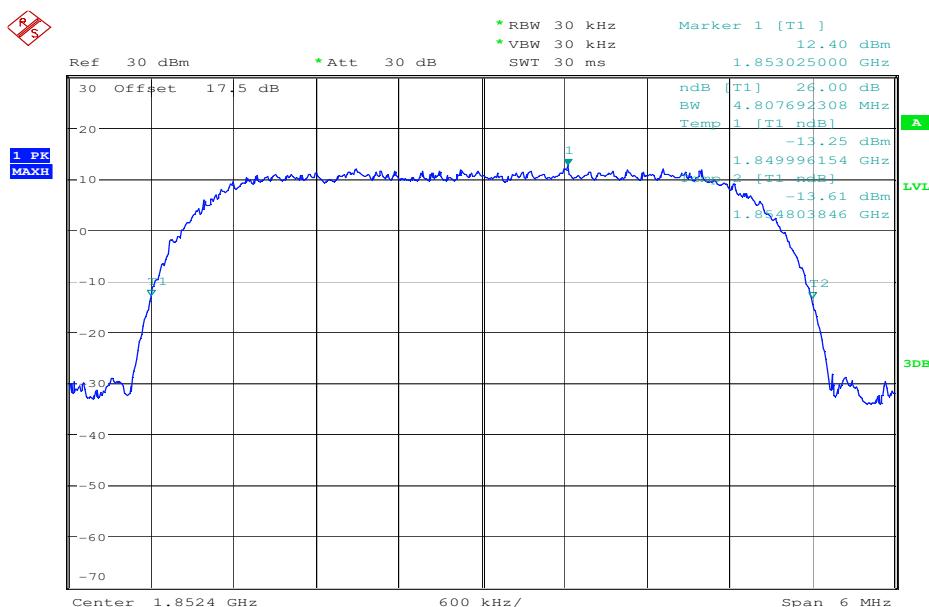
Occupied Bandwidth Results


Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table 8.2 below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Normal mode

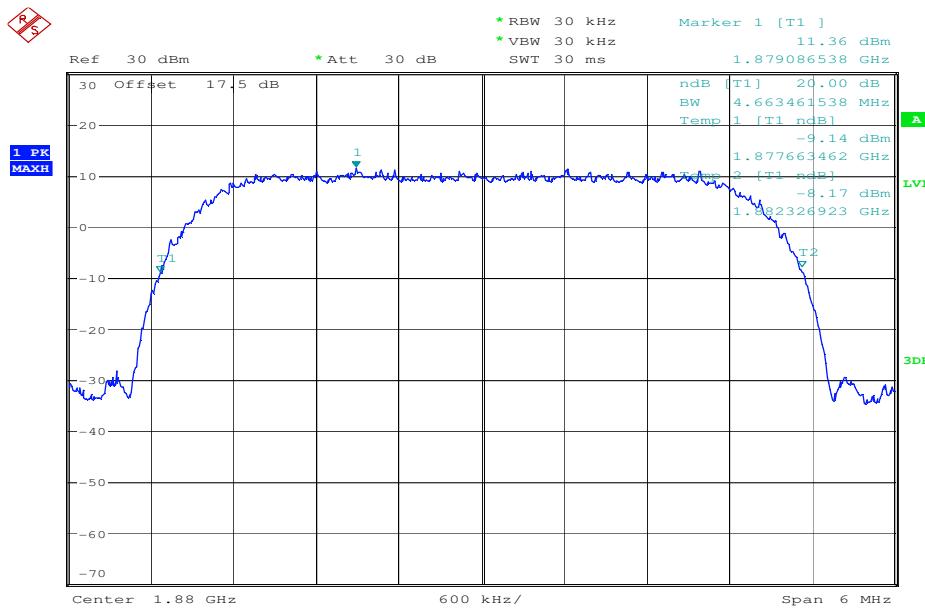
Frequency	99% Occupied Bandwidth kHz	-26 dBc Bandwidth kHz
1852.4 MHz	4635	4808
1880.0 MHz	4669	4808
1907.6 MHz	4663	4817

Channel 9262


99% (-20 dB) Occupied Bandwidth

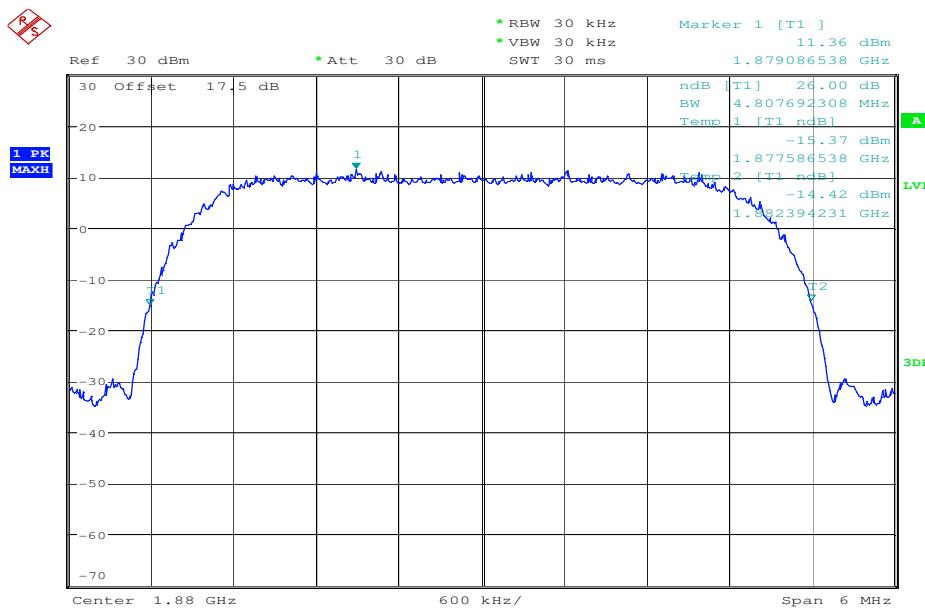
Date: 10.DEC.2008 13:51:48

Channel 9262


-26 dBc Bandwidth

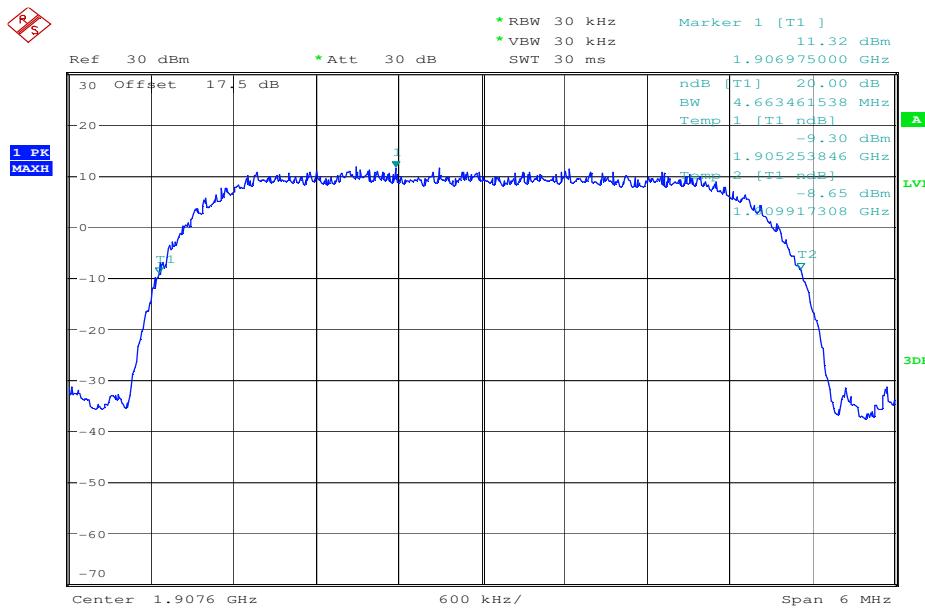
Date: 10.DEC.2008 13:52:52

Channel 9400


99% (-20 dB) Occupied Bandwidth

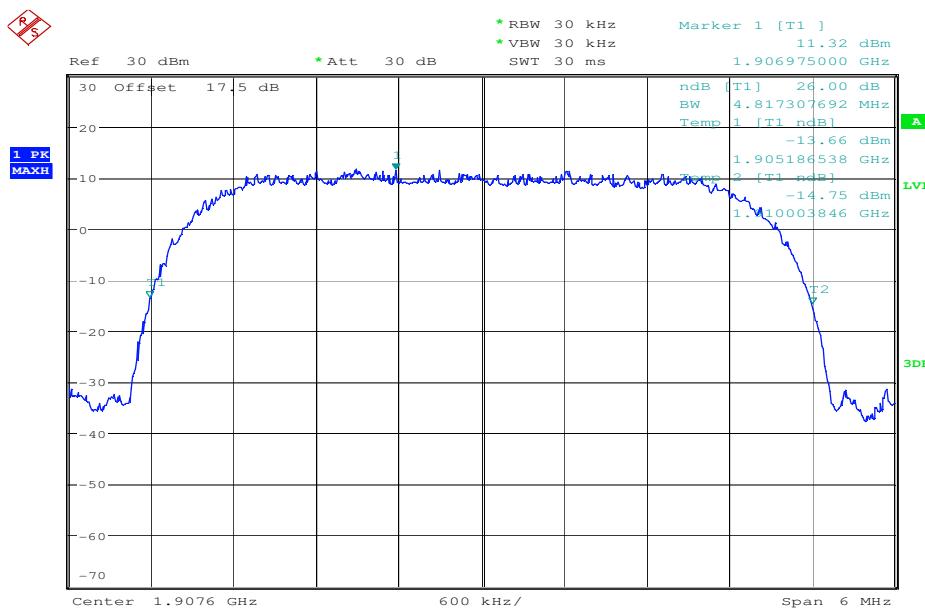
Date: 10.DEC.2008 13:54:03

Channel 9400


-26 dBc Bandwidth

Date: 10.DEC.2008 13:53:45

Channel 9538


99% (-20 dB) Occupied Bandwidth

Date: 10.DEC.2008 13:55:16

Channel 9538

-26 dBc Bandwidth

Date: 10.DEC.2008 13:55:36

5.5 PART UMTS Band V

5.5.1 RF Power Output

Reference

FCC:	CFR Part 22.9.1.3, 2.1046
IC:	RSS 132, Issue 2, Section 4.4 and 6.4

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 826.4 MHz, 836.0 MHz and 846.6 MHz (bottom, middle and top of operational frequency range).

Settings for maximum output power were used.

Limits:

Nominal Peak Output Power (dBm)
+38.45

Test Results: Output Power (conducted) UMTS Mode

Frequency (MHz)	Average Output Power (dBm)	Peak-to-Average Ratio (dB)
826.4	22.4	3.0
836.0	22.5	3.0
846.6	22.5	3.0
Measurement uncertainty	± 0.5 dB	

The following HSDPA sub-tests are defined by 3GPP 34.121 (table C.10.1.4)

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	CM(dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: $\Delta_{ACK}, \Delta_{NACK}, \Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$

Table 1: Subtests for UMTS Release 5 HSDPA

The following HSUPA sub-tests are defined by 3GPP 34.121 (table C.11.1.3)

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β_{ec}	β_{ed}	β_{ec}	β_{ed}	CM ⁽²⁾	MPR	AG ⁽⁴⁾ Index	E-TFCI	
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75	
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67	
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1}:47/15$	4	2	2.0	1.0	15	92	
4	2/15	15/15	64	2/15	4/15	2/15	$\beta_{ed2}:47/15$	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81	

Note 1: $\Delta_{ACK}, \Delta_{NACK}, \Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference

Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$

Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$

Note 5 : Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g

Note 6 : β_{ed} can not be set directly; it is set by Absolute Grant Value

Table 2: Subtests for UMTS Release 6 HSUPA

It was checked that the EUT supports the HSDPA- (and HSUPA)-Mode and fulfills the requirements of the table(s) above. All the power values in these modes were less than the power values in UMTS-mode.

ERP Measurements

Description: This is the test for the maximum radiated power from the phone.

Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level
Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor
 $E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$
- (f) Set the EMI Receiver and #2 as follows:
Center Frequency: test frequency
Resolution BW: 100 kHz
Video BW: same
Detector Mode: positive
Average: off
Span: 3 x the signal bandwidth
- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (l) Repeat for all different test signal frequencies

Measuring the ERP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring ERP) as follows:

Center Frequency : equal to the signal source
 Resolution BW : 10 kHz
 Video BW : same
 Detector Mode : positive
 Average : off
 Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

$E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antennas (substitution antenna): .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.

(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.

(f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

(g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.

(h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.

(i) Tune the EMI Receivers to the test frequency.

(j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.

(l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.

(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

$$P = P_1 - L_1 = (P_2 + L_2) - L_1 = P_3 + A + L_2 - L_1$$

$$\text{EIRP} = P + G_1 = P_3 + L_2 - L_1 + A + G_1$$

$$\text{ERP} = \text{EIRP} - 2.15 \text{ dB}$$

Total Correction factor in EMI Receiver # 2 = $L_2 - L_1 + G_1$

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Nominal Peak Output Power (dBm)

+38.45

Test Results: Output Power (radiated) UMTS Mode

Frequency (MHz)	Average (dBm)
826.4	22.2
836.0	22.0
846.6	22.1
Measurement uncertainty	±1.5 dB

Sample calculation:

Freq	SA Reading	SG Setting	Ant. gain	Dipol gain	Cable loss	ERP	Substitution Antenna
MHz	dB μ V	dBm	dBi	dBi	dB	dBm	
846.6	124.9	21.5	8.4	0.0	3.3	26.3	UHAP Schwarzbeck S/N 460

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

5.5.2 Frequency Stability

Reference

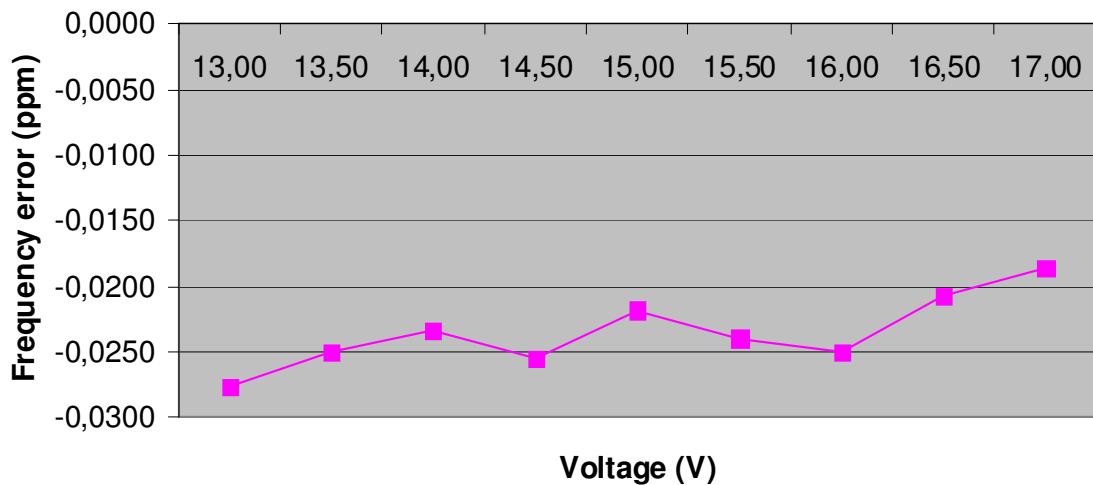
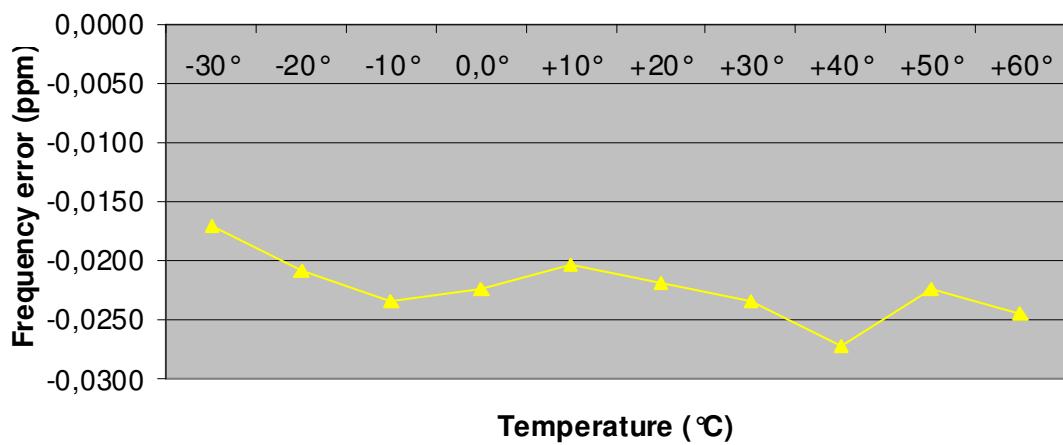
FCC:	CFR Part 22.355, 2.1055
IC:	RSS 132, Issue 2, Section 4.3 and 6.3

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a “call mode”. This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.
2. Subject the mobile station to overnight soak at -30 C.
3. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
5. Re-measure carrier frequency at room temperature with nominal 3.7 Volts. Vary supply voltage from minimum 3.3 Volts to maximum 4.4 Volts, in 13 steps re-measuring carrier frequency at each voltage. Pause at 3.7 V ac Volts for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
6. Subject the mobile station to overnight soak at +60 C.
7. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

Measurement Limit:



According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 22.355, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. This transceiver is specified to operate with an input voltage of between 3.3 V dc and 4.4 V dc, with a nominal voltage of 3.7 V dc.

Test Results: AFC FREQ ERROR vs. VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
13,00	-52	-0,00000277	-0,0277
13,50	-47	-0,00000250	-0,0250
14,00	-44	-0,00000234	-0,0234
14,50	-48	-0,00000255	-0,0255
15,00	-41	-0,00000218	-0,0218
15,50	-45	-0,00000239	-0,0239
16,00	-47	-0,00000250	-0,0250
16,50	-39	-0,00000207	-0,0207
17,00	-35	-0,00000186	-0,0186

Test Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	-32	-0,00000170	-0,0170
-20	-39	-0,00000207	-0,0207
-10	-44	-0,00000234	-0,0234
±0,0	-42	-0,00000223	-0,0223
+10	-38	-0,00000202	-0,0202
+20	-41	-0,00000218	-0,0218
+30	-44	-0,00000234	-0,0234
+40	-51	-0,00000271	-0,0271
+50	-42	-0,00000223	-0,0223
+60	-46	-0,00000245	-0,0245

Frequency Error vs. Voltage**Frequency Error vs. Temperatur**

5.5.3 Radiated Emissions

Reference

FCC:	CFR Part 22.917, 2.1053
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the UMTS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:
- e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least $43 + 10\log(P)$ dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P)$ dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the UMTS band (826.4 MHz, 836.0 MHz and 846.0 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the UMTS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

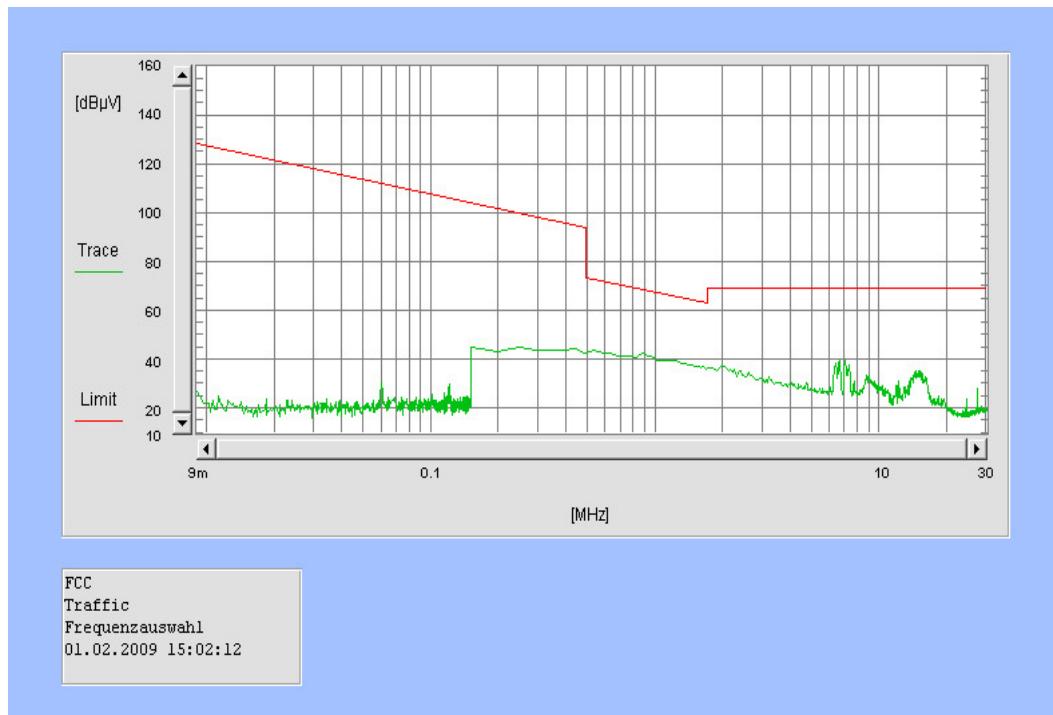
The final open field radiated levels are presented on the next pages.

All measurements were done in horizontal and vertical polarization, the plots shows the worst case.

All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch.-4132 Freq. (MHz)	Level (dBm)	Tx ch.-4180 Freq. (MHz)	Level (dBm)	Tx ch.-4233 Freq. (MHz)	Level (dBm)
2	1652.8	-	1672.0	-	1693.2	-
3	2479.2	-	2508.0	-	2539.8	-
4	3305.6	-	3344.0	-	3386.4	-
5	4132.0	-	4180.0	-	4233.0	-
6	4958.4	-	5016.0	-	5079.6	-
7	5784.8	-	5852.0	-	5926.2	-
8	6611.2	-	6688.0	-	6772.8	-
9	7437.6	-	7524.0	-	7619.4	-
10	8264.0	-	8360.0	-	8466.0	-

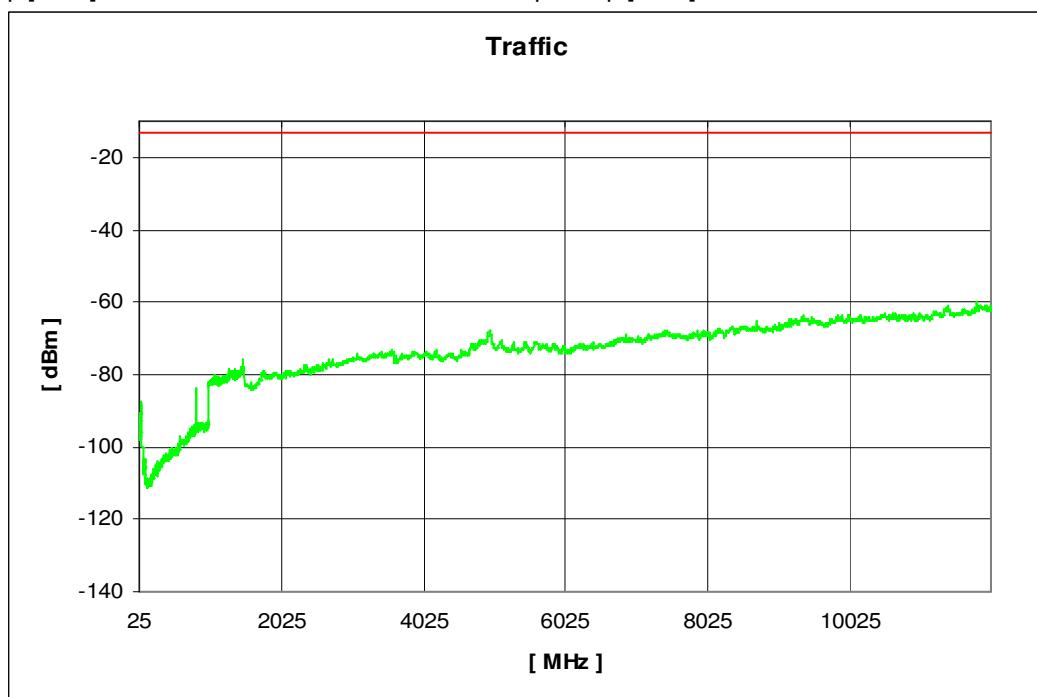

Sample calculation:

Freq	SA Reading	SG Setting	Ant. gain	Dipol gain	Cable loss	ERP	Substitution Antenna
MHz	dB μ V	dBm	dBi	dBi	dB	dBm	
846.6	124.9	21.5	8.4	0.0	3.3	26.3	UHAP Schwarzbeck S/N 460

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

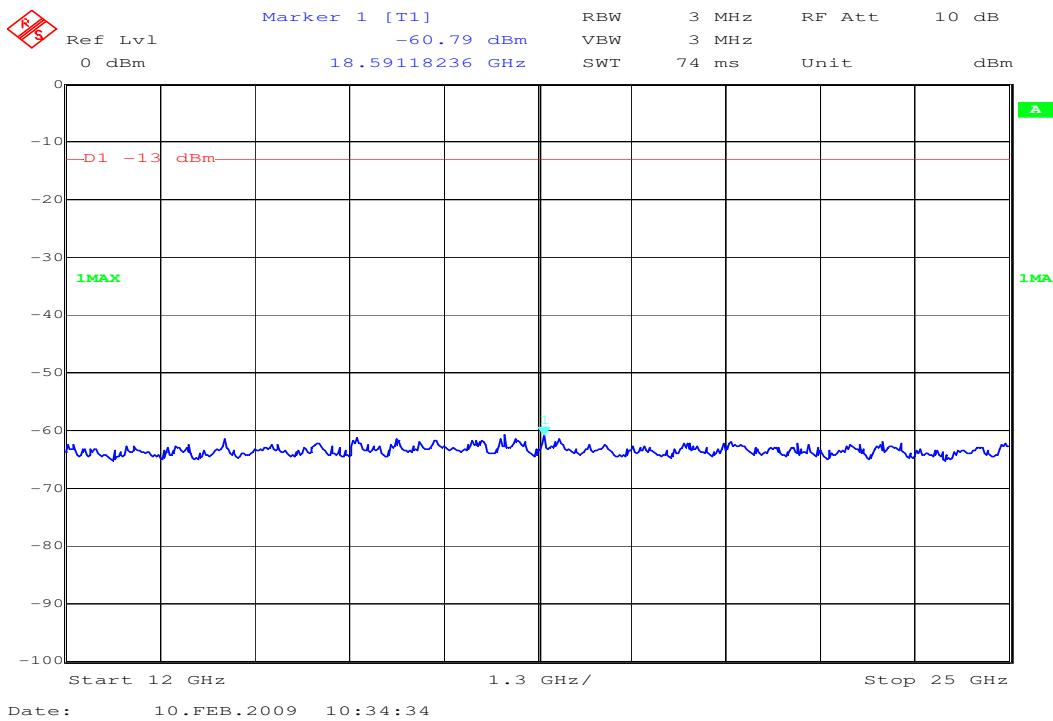
*ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dB

Channel 4180 (Traffic mode up to 30 MHz)


Channel 4180 (30 MHz - 12 GHz)

CETECOM ICT Services GmbH

Projekt- Nr.:2-4900-1-9_08


EUT:	W30	Polarisation:	Horizontal, Vertikal
Manufacturer:	Ericsson	Battery:	AC/DC Power Supply
IMEI:	FDD V Channel 4180	HW:	
Operator:	MUY	SW:	
Start of Test :	01.02.2009 15:04:32	Vmin:	
Standard:	FCC_22_850	Vnom:	230
Signalling Unit:	CMU200	Vmax:	
Transducer-File:	C:\Spurious_neu\Messparameter\FCC_22_850\Transducer_FCC_22_850.xls		

Start Freq. [MHz]:	25	Stop Freq. [MHz]	12000
--------------------	----	------------------	-------

f < 1 GHz : RBW/VBW: 100 kHz

f ≥ 1GHz : RBW / VBW 1 MHz

Channel 4132 (12 GHz - 25 GHz) valid for all 3 channels $f \geq 1\text{GHz} : \text{RBW} / \text{VBW} 1 \text{MHz}$

5.5.4 Conducted Spurious Emissions

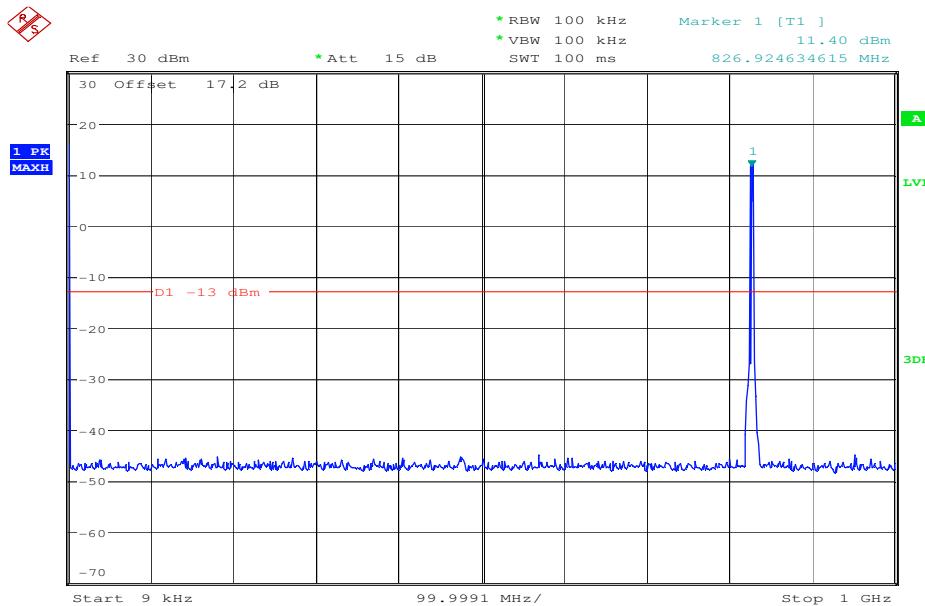
Reference

FCC:	CFR Part 22.917, 1.1051
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure

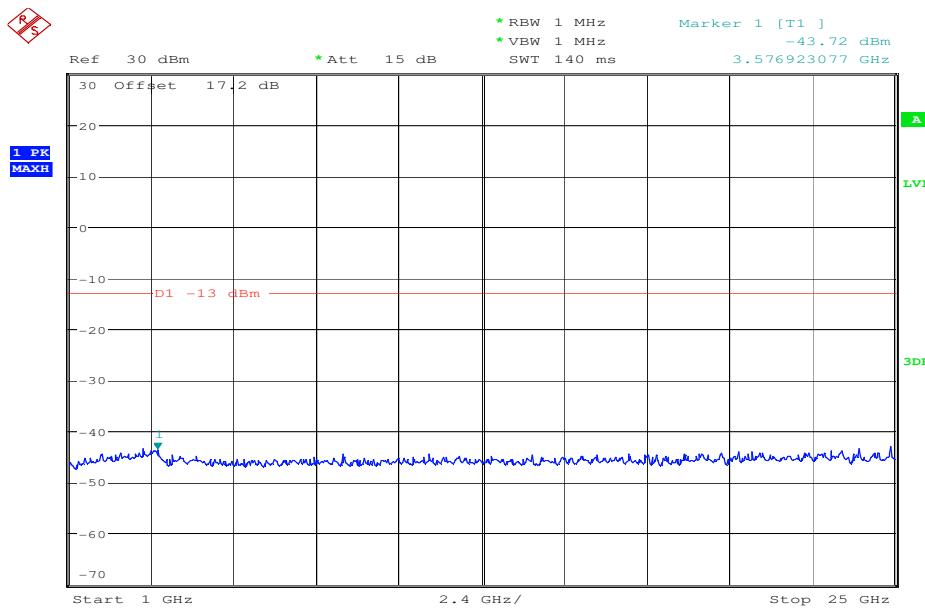
The following steps outline the procedure used to measure the conducted emissions from the mobile station.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

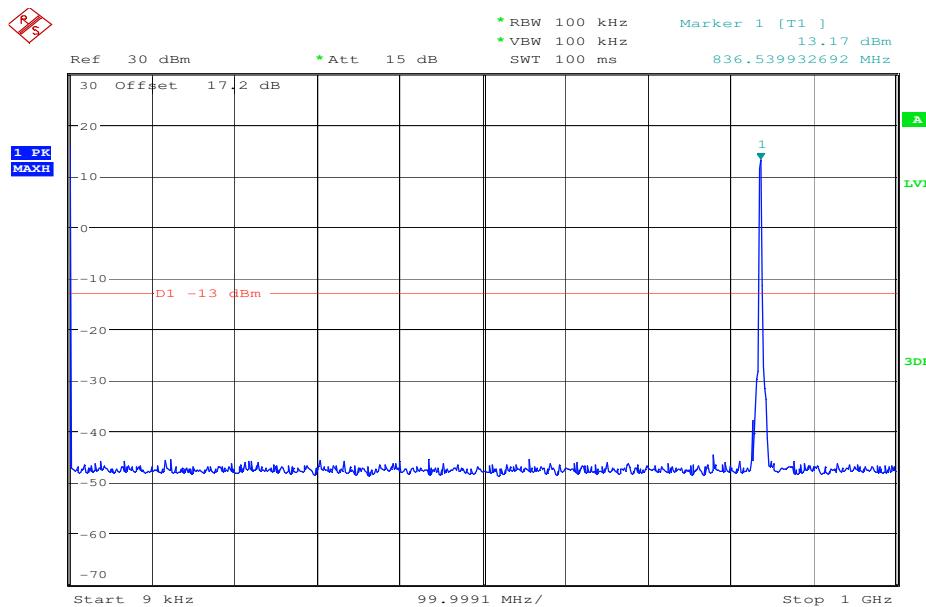

UMTS Transmitter Channel Frequency
 4132 826.4 MHz
 4180 836.0 MHz
 4233 846.6 MHz

Measurement Limit

(a) On any frequency outside frequency band of the UMTS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least $43+10\log(P)$ dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

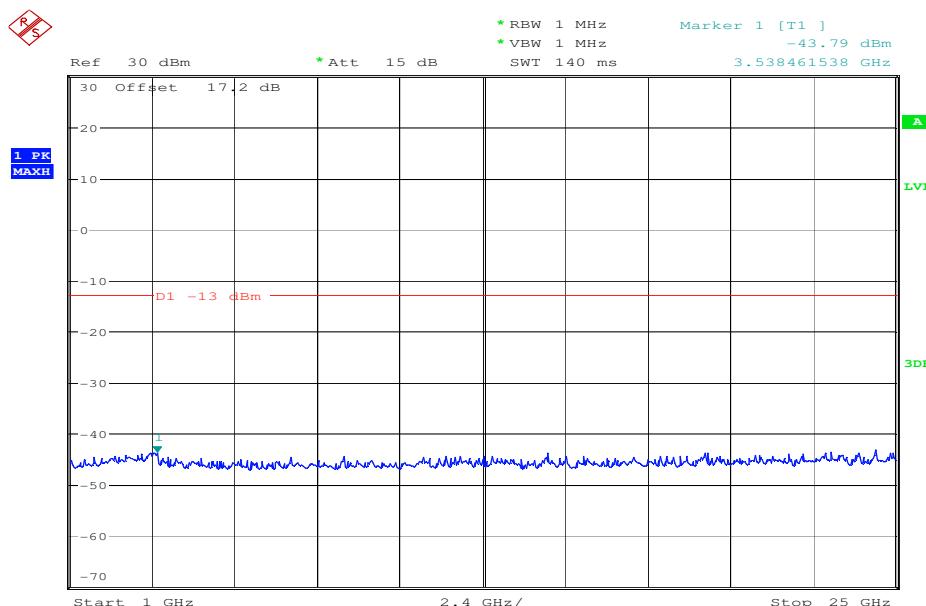

Measurement Results

Harmonic	Tx ch.-4132 Freq. (MHz)	Level (dBm)	Tx ch.-4180 Freq. (MHz)	Level (dBm)	Tx ch.- 4233 Freq. (MHz)	Level (dBm)
2	1652.8	-	1672.0	-	1693.2	-
3	2479.2	-	2508.0	-	2539.8	-
4	3305.6	-	3344.0	-	3386.4	-
5	4132.0	-	4180.0	-	4233.0	-
6	4958.4	-	5016.0	-	5079.6	-
7	5784.8	-	5852.0	-	5926.2	-
8	6611.2	-	6688.0	-	6772.8	-
9	7437.6	-	7524.0	-	7619.4	-
10	8264.0	-	8360.0	-	8466.0	-

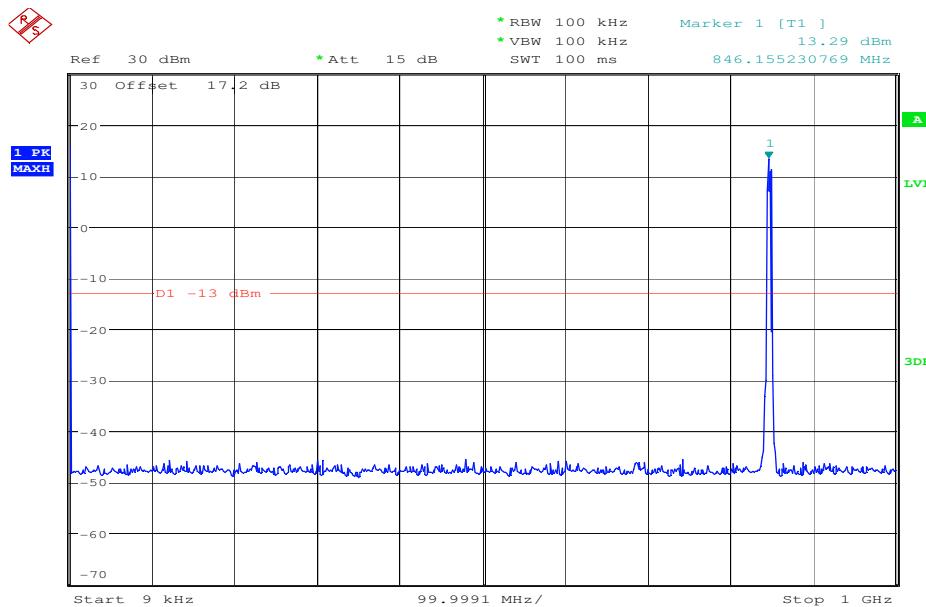

Channel 4132 (30 MHz – 1 GHz)

Date: 11.DEC.2008 06:52:59

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

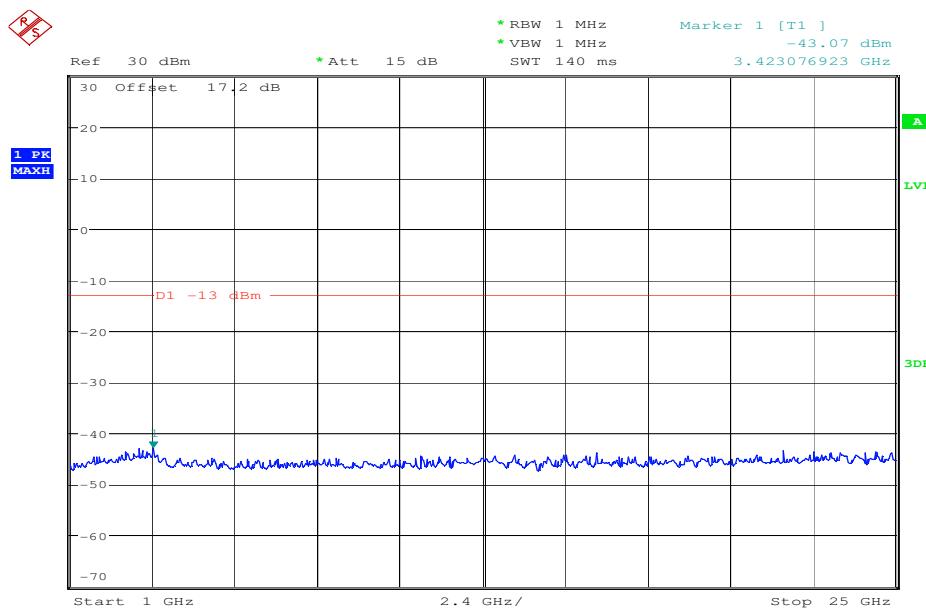

Channel 4132 (1 GHz – 25 GHz)

Date: 11.DEC.2008 06:55:18


Channel 4180 (30 MHz – 1 GHz)

Date: 11.DEC.2008 06:53:33

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.


Channel 4180 (1 GHz – 25 GHz)

Date: 11.DEC.2008 06:54:50

Channel 4233 (30 MHz – 1 GHz)

Date: 11.DEC.2008 06:53:56

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

Channel 4233 (1 GHz – 25 GHz)

Date: 11.DEC.2008 06:54:28

5.5.5 Block Edge Compliance

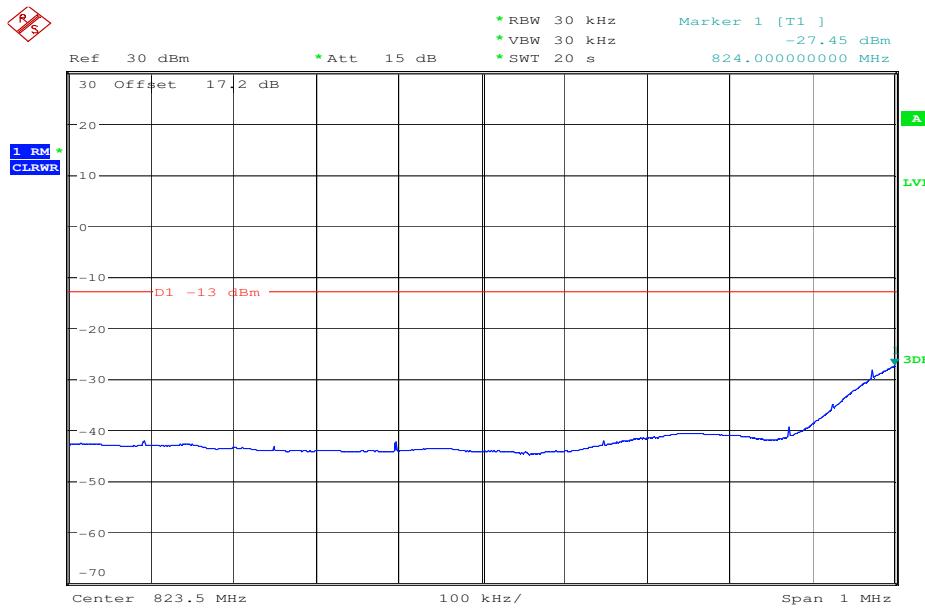
Reference

FCC:	CFR Part 22.917
IC:	RSS 132, Issue 2, Section 6.5

Measurement Limit:

Sec. 22.917(b) Emission Limits.

(a) On any frequency outside frequency band of the UMTS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least $43 + 10\log(P)$ dB. For all power levels +33 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.


Part 22.917 specifies that “the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.”

However, in publication number 890810, The FCC Office of Engineering and Technology specified the following correction to the limits when a resolution bandwidth smaller than 1% of the emission bandwidth is used:

“An alternative is to add an additional correction factor of $10 \log(RBW1 / RBW2)$ to the $43 + 10 \log(P)$ limit. RBW1 is the narrower measurement resolution bandwidth and RBW2 is either the 1% emissions bandwidth or 1 MHz.”

When using a 30 kHz bandwidth, this yields a -2.2185 adjustment to the limit [$10\log(30\text{kHz}/50\text{kHz}) = -2.2185$]. When this adjustment is applied to the limit, the limit becomes -15.2288.

Channel 4132

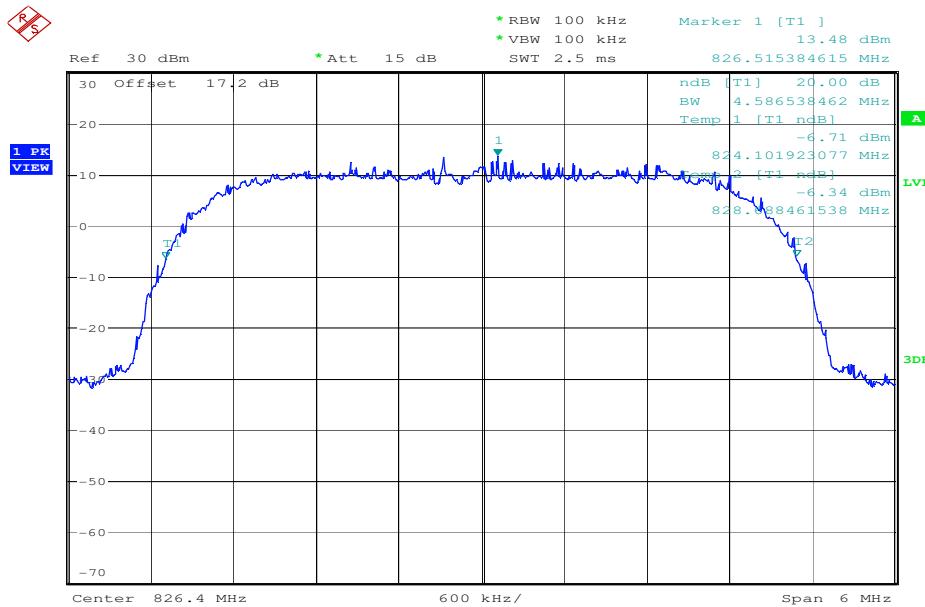
Date: 11.DEC.2008 07:00:29

Channel 4233

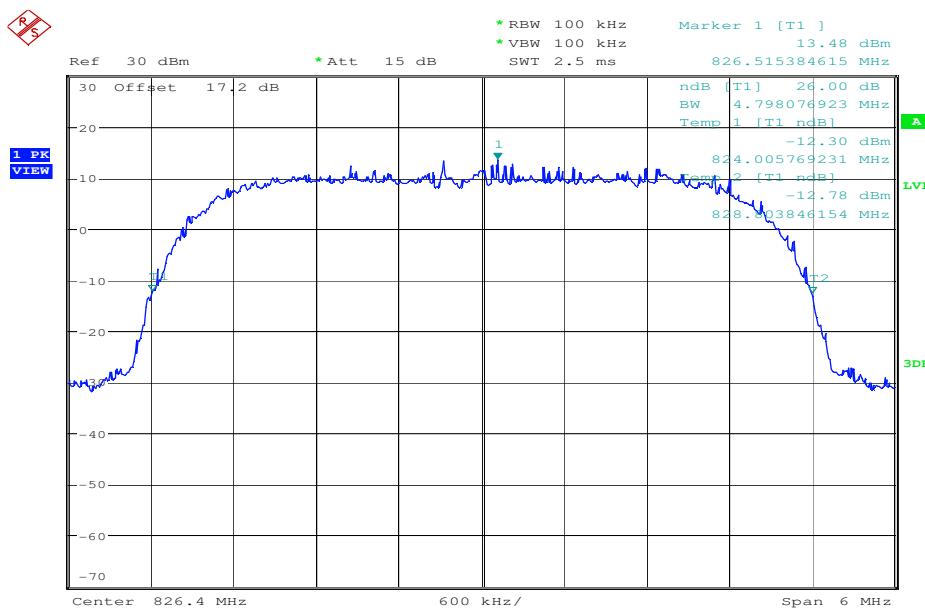
Date: 11.DEC.2008 07:01:25

5.5.6 Occupied Bandwidth

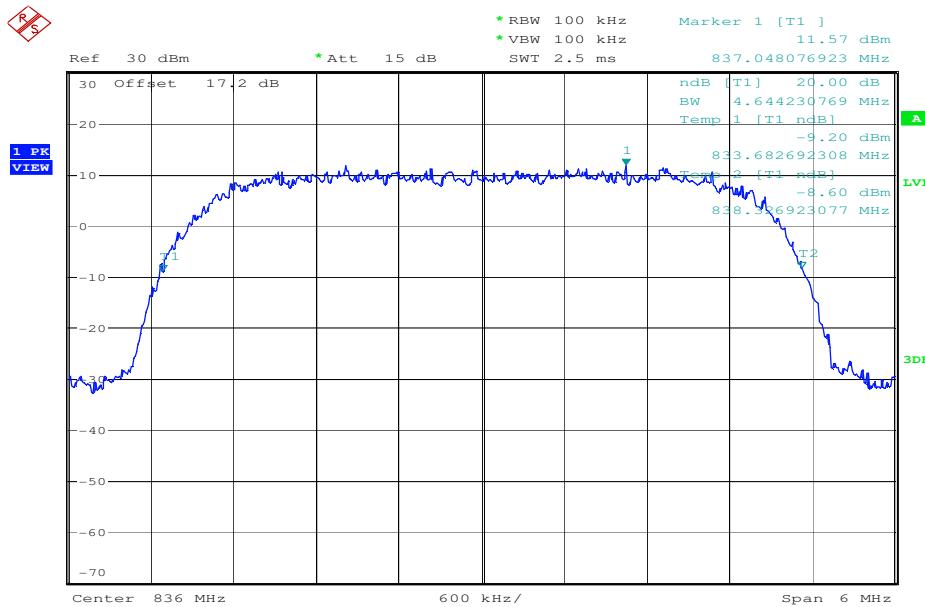
Reference


FCC:	CFR Part 22.917, 2.1049
IC:	RSS 132, Issue 2, Section 4.2

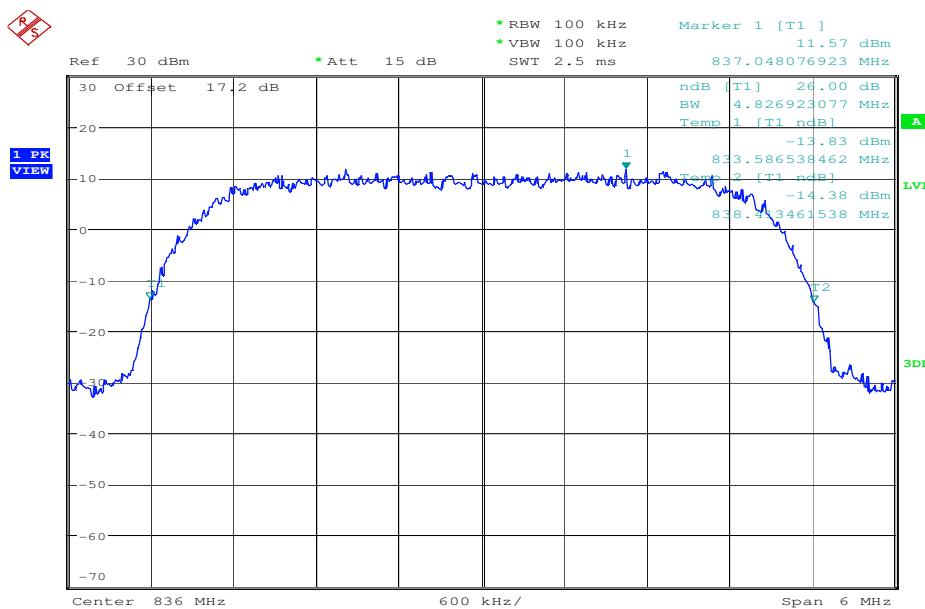
Occupied Bandwidth Results


Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the UMTS frequency band. Table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

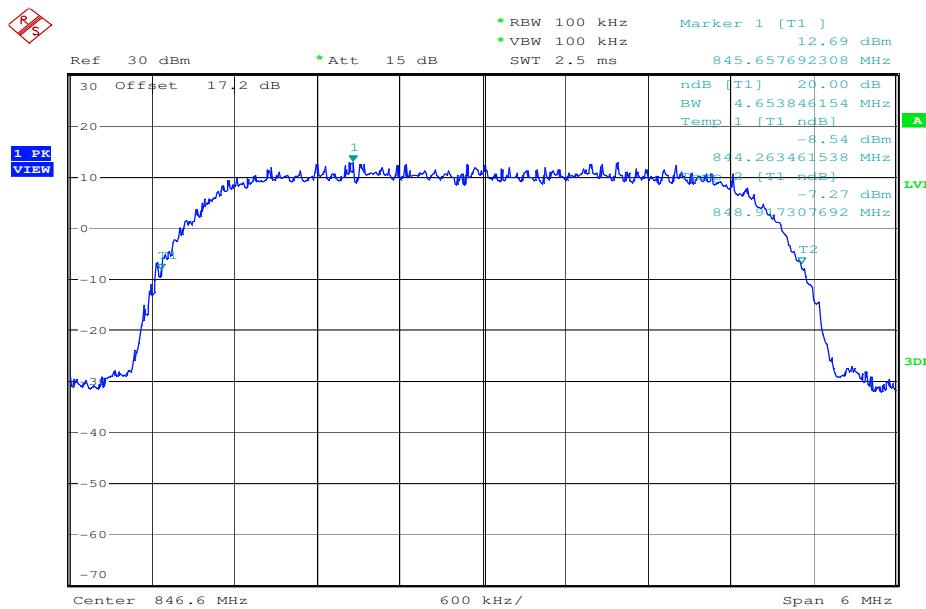
Normal mode


Frequency	99% Occupied Bandwidth (kHz)	-26 dBc Bandwidth (kHz)
826.4 MHz	4587	4798
836.0 MHz	4644	4827
846.6 MHz	4654	4817

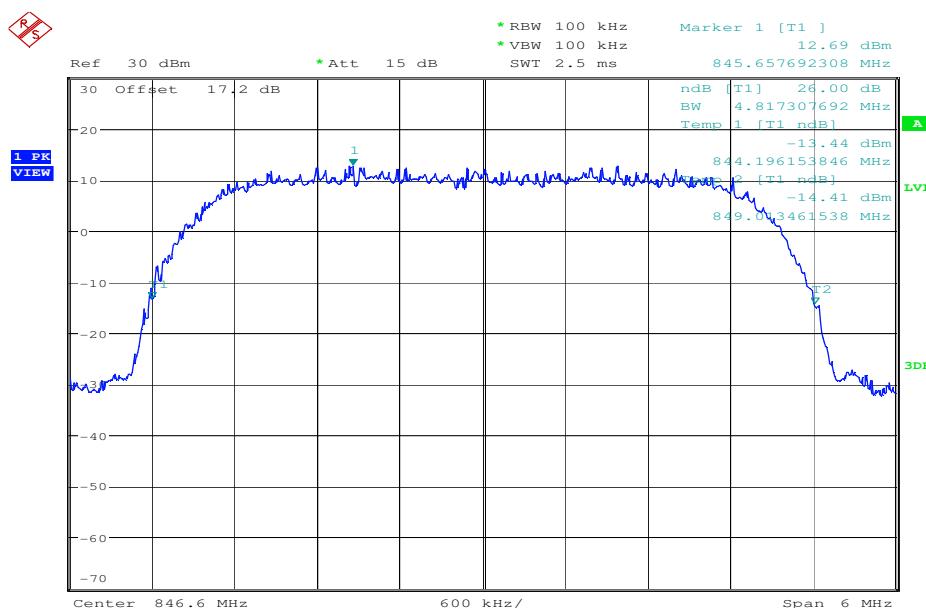
Channel 4132**99% (-20 dB) Occupied Bandwidth**


Date: 11.DEC.2008 07:10:16

Channel 4132**-26 dBc Bandwidth**


Date: 11.DEC.2008 07:10:40

Channel 4180**99% (-20 dB) Occupied Bandwidth**


Date: 11.DEC.2008 07:08:17

Channel 4180**-26 dBc Bandwidth**

Date: 11.DEC.2008 07:07:48

Channel 4233**99% (-20 dB) Occupied Bandwidth**

Date: 11.DEC.2008 07:06:43

Channel 4233**-26 dBc Bandwidth**

Date: 11.DEC.2008 07:06:58

5.6 Receiver

5.6.1 Receiver Radiated Emissions

Reference

FCC:	CFR Part 15.109, 2.1053
IC:	RSS 132, Issue 2, Section 4.6 and 6.6

Method of measurement

The measurement was performed in worst case. The EUT was not connected to the CMU 200. So the EUT perform a network search. In this case all oscillators are active.

Measurement Results

SPURIOUS EMISSIONS LEVEL (dB μ V/m)								
Idle mode			-/-			-/-		
f (MHz)	Detector	Level (dB μ V/m)	f (MHz)	Detector	Level (dB μ V/m)	f (MHz)	Detector	Level (dB μ V/m)
See plots								
Measurement uncertainty								± 3 dB

f < 1 GHz : RBW/VBW: 100 kHz

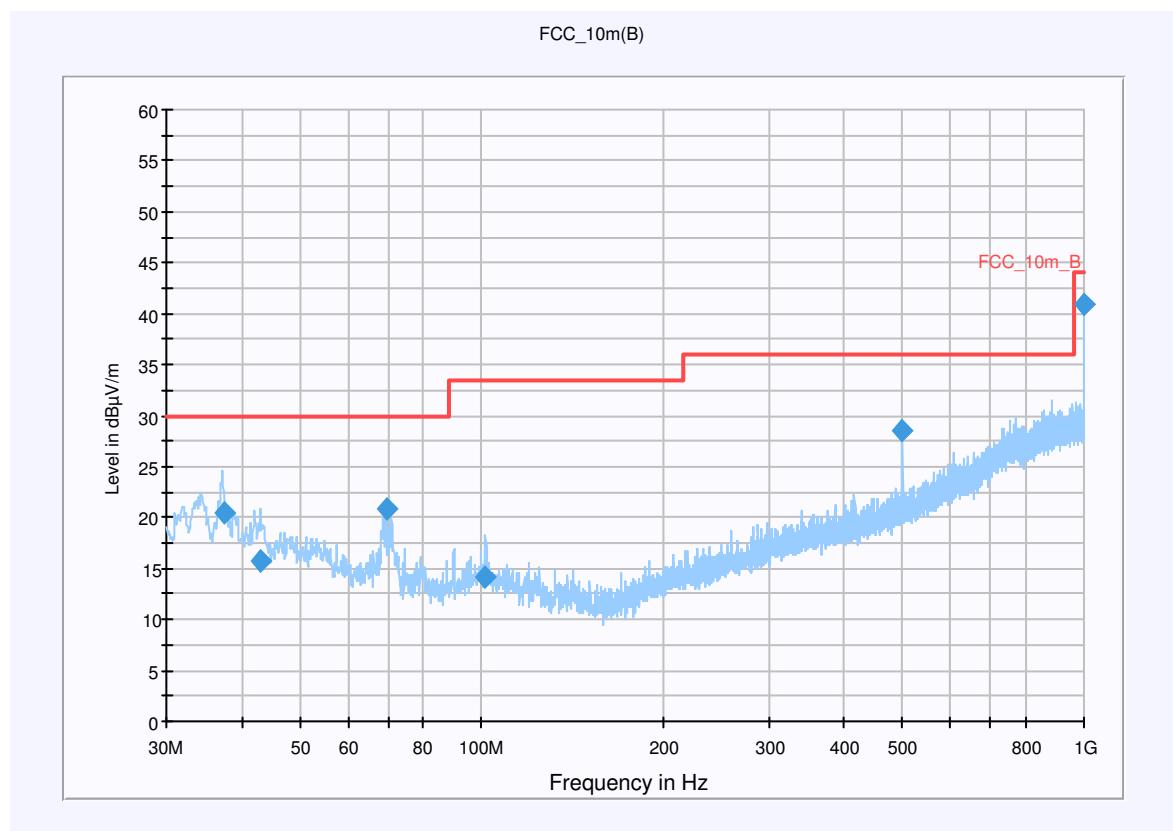
f \geq 1GHz : RBW/VBW: 1 MHz

H = Horizontal; V= Vertical

Measurement distance see table

Limits: § 15.109

Frequency (MHz)	Field strength (dB μ V/m)	Measurement distance (m)
30 - 88	30.0	10
88 - 216	33.5	10
216 - 960	36.0	10
above 960	54.0	3


Idle-Mode (30 MHz - 1 GHz) (valid for all modes)**Common Information**

EUT: W30 (KRC 101 1446 P1A) + NU20-A150160-I1
 Serial Number: T710443509 + unknown
 Test Description: FCC part 15 B class B @ 10 m
 Operating Conditions: idle + traffic on LAN
 Operator Name: Hennemann
 Comment: AC: 115 V / 60 Hz; ETH-cable: FTP

Scan Setup: FCC_Fin [EMI radiated]

Hardware Setup: Electric Field (NOS)
 Level Unit: dB μ V/m

Subrange	Detectors	IF Bandwidth	Meas. Time	Receiver
30 MHz - 1 GHz	QuasiPeak	120 kHz	15 s	Receiver
1 GHz - 2 GHz	QuasiPeak	1 MHz	15 s	Receiver

Final Result 1

Frequency (MHz)	QuasiPeak (dB μ V/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dB μ V/m)	Comment
37.393900	20.5	15000.000	120.000	106.0	V	-1.0	13.4	9.5	30.0	
42.939700	15.6	15000.000	120.000	200.0	V	179.0	13.5	14.4	30.0	
69.710700	20.9	15000.000	120.000	280.0	V	276.0	9.6	9.1	30.0	
101.719350	14.1	15000.000	120.000	139.0	V	294.0	12.1	19.4	33.5	
500.029650	28.5	15000.000	120.000	255.0	H	-1.0	18.7	7.5	36.0	
999.883225	40.9	15000.000	120.000	106.0	H	162.0	26.4	3.1	44.0	

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Frequency Range: 30 MHz - 2 GHz

Receiver: Receiver [ESCI 3]
@ GPIB0 (ADR 20), SN 100083/003, FW 3.32, CAL 07.01.2009

Signal Path: without Notch
FW 1.0

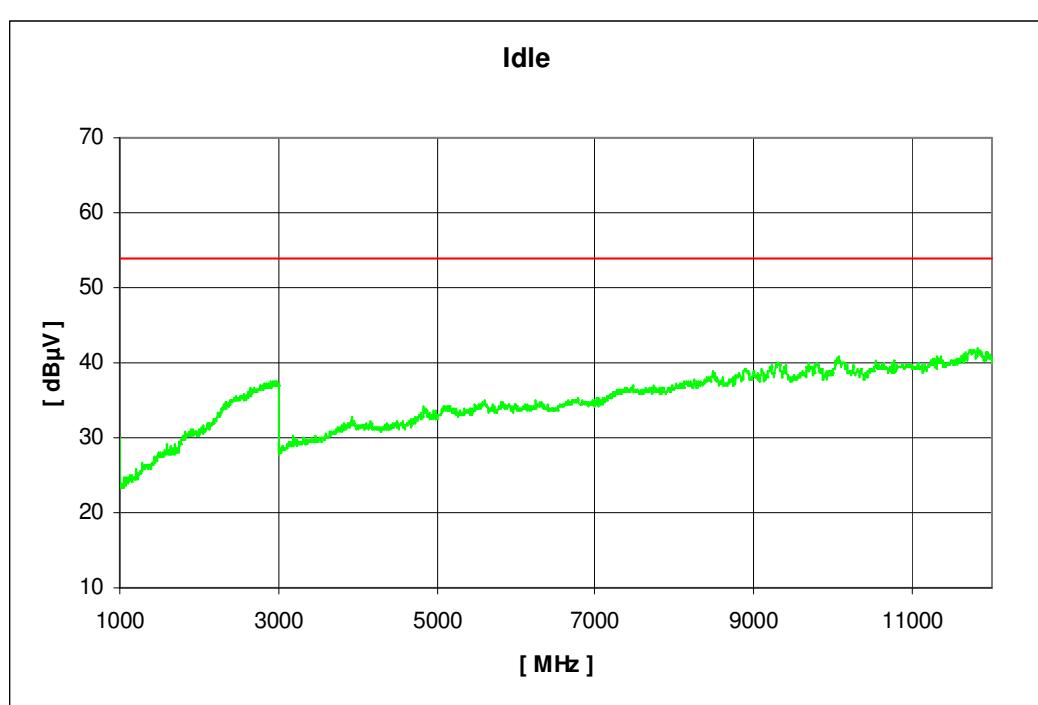
Antenna: VULB 9163
SN 9163-295, FW ---, CAL 08.04.2010
Correction Table (vertical): VULP6113
Correction Table (horizontal): VULP6113
Correction Table: Cabel with switch (0908)

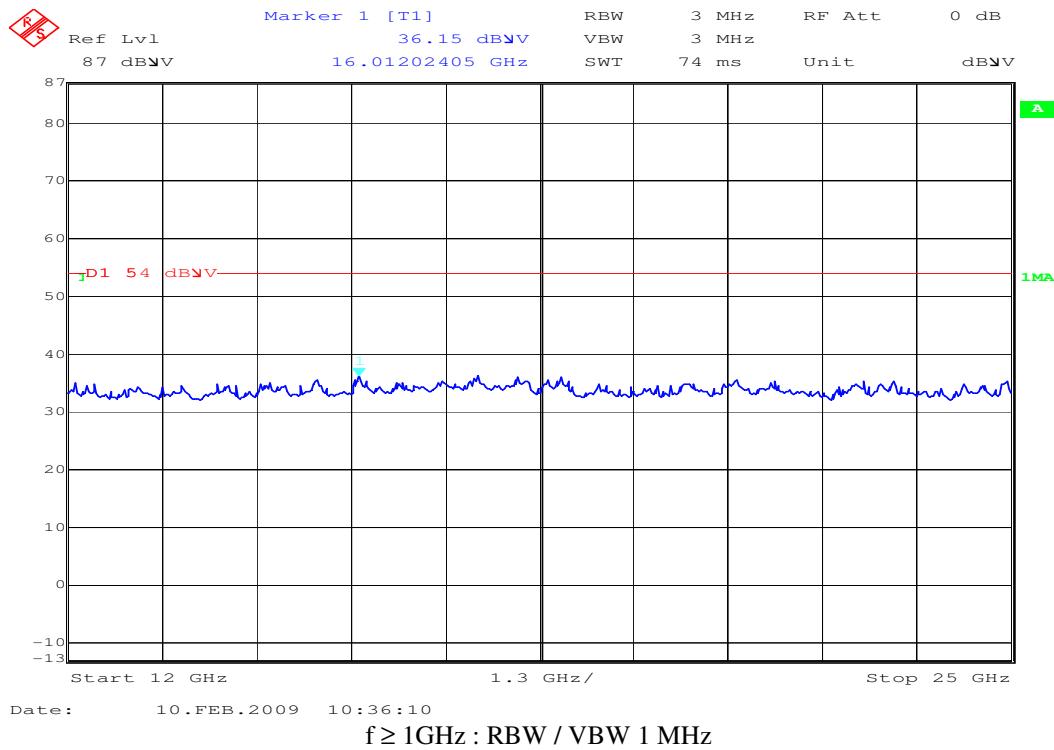
Antenna Tower: Tower [EMCO 2090 Antenna Tower]
@ GPIB0 (ADR 8), FW REV 3.12

Turntable: Turntable [EMCO Turntable]
@ GPIB0 (ADR 9), FW REV 3.12

EMC 32 Version 6.30.10 + Service Pack 2

f < 1 GHz : RBW/VBW: 100 kHz


f ≥ 1GHz : RBW / VBW 1 MHz


Idle-Mode (1 GHz - 12 GHz) (valid for all modes)

CETECOM ICT Services GmbH

Projekt- Nr.:2-4900-1-9_08

EUT:	W30	Polarisation:	Horizontal, Vertikal
Manufacturer:	Ericsson	Battery:	AC/DC Power Supply
IMEI:	Idle Mode	HW:	
Operator:	MUY	SW:	
Start of Test :	01.02.2009 14:05:22	Vmin:	
Standard:	FCC_15_407_2400	Vnom:	230
Signalling		Vmax:	
Unit:	CMU200		
Transducer-			
File:	C:\Spurious_neu\Messparameter\FCC_15_407_2400\Transducer_FCC_15_407_2400.xls		
Start Freq. [MHz]:	1000	Stop Freq. [MHz]	12000

Idle-Mode (12 GHz - 25 GHz)

6 Test equipment and ancillaries used for tests

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

All reported calibration intervals are calibrations according to the EN/ISO/IEC 17025 standard. These calibrations were performed from an accredited external calibration laboratory.

Additional to these calibrations the laboratory performed comparison measurements with other calibrated systems and performed a weekly chamber inspection.

All used devices are connected with a 10 MHz external reference.

According to the manufacturers' instruction is it possible to establish a calibration interval for the FSP unit of 24 month, if the device has an external 10 MHz reference.

Anechoic chamber C:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Anechoic chamber	MWB	87400/02	300000996	Monthly verification		
2	System-Rack 85900	HP I.V.	*	300000222	n.a.		
3	Measurement System 1						
4	Spektrum Analyzer 8566B	HP	3138A07614	300001207	13.12.2007	24	13.12.2009
5	Spektrum Analyzer Display 85662A	HP	3144A28627	300001208	13.12.2007	24	13.12.2009
6	Quasi-Peak-Adapter 85650A	HP	2811A01204	300002308	13.12.2007	24	13.12.2009
7	RF-Preselector 85685A	HP	2837A00778	300002448	13.12.2007	24	13.12.2009
8	PC Vectra VL	HP		300001688	n.a.		
9	Software EMI	HP		300000983	n.a.		
10	Measurement System 2						
11	FSP 30	R&S	100886	300003575	25.08.2008	24	25.08.2010
12	PC	F+W			n.a.		
13	TILE	TILE			n.a.		
14	Biconical antenna	EMCO	S/N: 860 942/003		Monthly verification (System cal.)		
15	Log. Period. Antenna 3146	EMCO	2130	300001603	Monthly verification (System cal.)		
16	Double Ridged Antenna HP 3115P	EMCO	3088	300001032	Monthly verification (System cal.)		
17	Active Loop Antenna 6502	EMCO	2210	300001015	Monthly verification (System cal.)		
18	Power Supply 6032A	HP	2818A03450	300001040	12.05.2007	36	12.05.2010
19	Busisolator	Kontron		300001056	n.a.		
20	Leitungsteiler 11850C	HP		300000997	Monthly verification (System cal.)		
21	Power attenuator 8325	Byrd	1530	300001595	Monthly verification (System cal.)		
22	Band reject filter WRCG1855/1910	Wainwright	7	300003350	Monthly verification (System cal.)		
23	Band reject filter WRCG2400/2483	Wainwright	11	300003351	Monthly verification (System cal.)		

Anechoic chamber A:

No.	Instrument/Ancillary	Manufacturer	Type	Serial-No.	Internal identification
Radiated emission in chamber A					
A-1	Spectrum Analyzer	Rohde & Schwarz	ESU26	100037	300003555
A-2	Signal Generator	Rohde & Schwarz	SMR20B11	1104.0002.20	300003593
A-3	RF System Panel	Rohde & Schwarz	TS RSP	---	300003556
A-4	Relais Matrix	Rohde & Schwarz	PSN	860673/009	300001385
A-5	Horn Antenna	EMCO	3115	9709-5290	300000212
A-6	Bilog.-Log. Antenna	Schwarzbeck	VULB 9163	02/00	300003696
A-7	Notch Filter GSM 900	Wainwright	WRCD 901.9/903.1EE	9	---
A-8	Notch Filter GSM 1800	Wainwright	WRCD 1747/1748-5EE	1	---
A-9	Notch Filter GSM 1900	Wainwright	WRCB 1879.5/1880.5EE	9	---
A-10	Notch Filter GSM 850	Wainwright	WRCT 837-0.2/50-8EE	1	---
A-11	Notch Filter UMTS	Wainwright	WRCD 1800/2000-0.2/40-5EEK	2	---
A-12	Notch Filter ISM 2400	Wainwright	WRCG 2400/ 2483-2375/2505-50/10SS	26	---
A-13	High Pass Filter 1.1 GHz	Wainwright	WHK 1.1/15G-10SS	---	---
A-14	High Pass Filter 2.6 GHz	Wainwright	WHKX 2.6/18G-12SS	---	---
A-15	High Pass Filter 7 GHz	Wainwright	WHKX 7.0/18G-8SS	---	---
A-14	Amplifier	Miteq	AFS4-00201800-15-10P-6	US42-0050 2650-28-5A	300003204
A-16	Controller	Inn co	CO 2000	2020507	---
A-17	DC Power Supply	Hewlet Packard	HP6632A	---	300000924
A-18	Computer	F+W	---	---	300003303

System Rack Room 005 :

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	FSP 30	R&S	100886	300003575	25.08.2008	24	25.08.2010
2	CBT	R&S	100313	300003516	03.09.2008	24	03.09.2010
3	Switch Matrix	HP		300000929	n.a.		
4	Power Supply	HP	3041A00544	300002270	13.05.2007	36	13.05.2010
5	Signal Generator	R&S	836206/0092	300002680	30.05.2007	36	30.05.2010

Signalling Units:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	CBT	R&S	100313	300003516	03.09.2008	24	03.09.2010
2	CBT	R&S	100185	300003416	27.08.2008	24	27.08.2010
3	CMU-200	R&S	103992	300003231	04.06.2008	12	04.06.2009
4	CMU-200	R&S	106240	300003321	27.08.2008	24	27.08.2010
5	CMU-200	R&S	832221/0055	300002862	20.03.2008	24	20.03.2010

Climatic Box:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Climatic box VT 4002	Heraeus Vötsch	58566046820010	300003019	11.05.2007	24	11.05.2009
2	Climatic box CTS T-40/50	CTS	064023	300003540	03.01.2007	24	03.01.2009

SRD Laboratory Room 002:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	System Controller PSM 12	R&S	835259/007	3000002681-00xx	n.a.		
2	Memory Extension PSM-K10	R&S	To 1	3000002681	n.a.		
3	Operating Software PSM-B2	R&S	To 1	3000002681	n.a.		
4	19" Monitor		22759020-ED	3000002681	n.a.		
5	Mouse		LZE 0095/6639	3000002681	n.a.		
6	Keyboard		G00013834L461	3000002681	n.a.		
7	Spectrum Analyser FSIQ 26	R&S	835540/018	3000002681-0005	10.01.2008	24	10.01.2010
8	Tracking Generator FSIQ-B10	R&S	835107/015	3000002681	s.No.7		
10	RF-Generator SMIQ03 (B1 Signal)	R&S	835541/056	3000002681-0002	26.08.2008	36	26.08.2011
11	Modulation Coder SMIQ-B20	R&S	To 10	3000002681	s.No.10		
12	Data Generator SMIQ-B11	R&S	To 10	3000002681	s.No.10		
13	RF Rear Connection SMIQ-B19	R&S	To 10	3000002681	s.No.10		
14	Fast CPU SM-B50	R&S	To 10	3000002681	s.No.10		
15	FM Modulator SM-B5	R&S	835676/033	3000002681	s.No.10		
16	RF-Generator SMIQ03 (B2 Signal)	R&S	835541/055	3000002681-0001	25.08.2008	36	25.08.2011
17	Modulation Coder SMIQ-B20	R&S	To 16	3000002681	s.No.16		
18	Data Generator SMIQ-B11	R&S	To 16	3000002681	s.No.16		
19	RF Rear Connection SMIQ-B19	R&S	To 16	3000002681	s.No.16		
20	Fast CPU SM-B50	R&S	To 16	3000002681	s.No.16		
21	FM Modulator SM-B5	R&S	836061/022	3000002681	s.No.16		
22	RF-Generator SMP03 (B3 Signal)	R&S	835133/011	3000002681-0003	26.08.2008	36	26.08.2011
23	Attenuator SMP-B15	R&S	835136/014	3000002681	S.No.22		
24	RF Rear Connection SMP-B19	R&S	834745/007	3000002681	S.No.22		
25	Power Meter NRVD	R&S	835430/044	3000002681-0004	26.08.2008	24	26.08.2010
26	Power Sensor NRVD-Z1	R&S	833894/012	3000002681-0013	26.08.2008	24	26.08.2010
27	Power Sensor NRVD-Z1	R&S	833894/011	3000002681-0010	26.08.2008	24	26.08.2010
28	Rubidium Standard RUB	R&S		3000002681-0009	27.08.2008	24	27.08.2010
29	Switching and Signal Conditioning Unit SSCU	R&S	338864/003	3000002681-0006	Verified with path compensation		
30	Laser Printer HP Deskjet 2100	HP	N/A	3000002681-0011	n.a.		
31	19" Rack	R&S	11138363000004	3000002681	n.a.		
32	RF-cable set	R&S	N/A	3000002681	n.a.		
33	IEEE-cables	R&S	N/A	3000002681	n.a.		
34	Sampling System FSIQ-B70	R&S	835355/009	3000002681	s.No.7		
35	RSP programmable attenuator	R&S	834500/010	3000002681-0007	26.08.2008	24	26.08.2010
36	Signalling Unit	R&S	838312/011	3000002681	n.a.		
37	NGPE programmable Power Supply for EUT	R&S	192.033.41	3000002681			
39	Power Splitter 6005-3	Inmet Corp.	none	300002841	23.12.2006	24	23.12.2008
40	SMA Cables SPS-1151-985-SPS	Insulated Wire	different	different	n.a.		
41	CBT32 with EDR Signaling Unit	R&S					
42	Coupling unit	Narda	N/A	--	n.a.		
43	2xSwitch Matrix PSU	R&S	872584/021	300001329	n.a.		
44	RF-cable set	R&S	N/A	different	n.a.		
45	IEEE-cables	R&S	N/A	--	n.a.		

Note: 3000002681-00xx inventoried as a system

SRD Laboratory Room 005:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Spektrum Analyzer 8566B	HP	2747A05275	300000219	18.01.2008	24	18.01.2010
2	Spektrum Analyzer Display 85662A	HP	2816A16497	300001690	23.01.2008	24	23.01.2010
3	Quasi-Peak-Adapter 85650A	HP	2811A01135	300000216	23.01.2008	24	23.01.2010
4	Power Supply	Heiden	003202	300001187	12.05.2007	36	12.05.2010
5	Power Supply	Heiden	1701	300001392	12.05.2007	36	12.05.2010

SRD Laboratory Room 011:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	NRP Power Meter	R&S	100212	300003780	27.02.2008	24	27.02.2010

Anechoic chamber F:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Control Computer	F+W	FW0502032	300003303	-/-	-/-	-/-
2	Trilog Antenna	9163-295	-/-	-/-	30.04.2008	24	30.04.2010
3	Amplifier - 0518C-138	Veritech Micro-wave Inc.	-/-	-/-	-/-	-/-	-/-
4	Switch - 3488A	HP		300000368	-/-	-/-	-/-
5	EMI Test receiver - ESCI	R&S	100083	300003312	31.01.2007	24	31.01.2009
6	Turntable Controller - 1061 3M	EMCO	1218	300000661	-/-	-/-	-/-
7	Tower Controller 1051 Controller	EMCO	1262	300000625	-/-	-/-	-/-
8	Tower - 1051	EMCO	1262	300000625	-/-	-/-	-/-
10	Ultra Notch-Filter Rejected band Ch. 62	WRCD	9	-/-	-/-	-/-	-/-

7 Annex A: MPE calculation

7.1 Antenna configurations

The EUT can be used with different antenna configurations:

- Internal PCB-antenna
- External window-antenna
- External roof-antenna

The EUT is equipped with a switching MCX-connector to switch between internal and external antenna.

Maximum conducted output power configurations:

850 MHz: GPRS multi-slot class 12 1.779 W

1900 MHz: GPRS multi-slot class 12 0.832 W

Maximum antenna gain for internal PCB-antenna

850 MHz: Gain -0.2 dBi

1900 MHz: Gain 0.5 dBi

Maximum antenna Gain for external window-antenna (datasheet in chapter 7.3)

850 MHz: Gain 2.15 dBi

1900 MHz: Gain 2.15 dBi

Maximum antenna Gain for external roof-antenna (datasheets in chapter 7.3)

850 MHz: Gain 11.0 dBi (antenna)

1900 MHz: Gain 11.0 dBi (antenna)

This antenna will be delivered with 10 m antenna cable and an attenuator of 3 dB.

So the effective gain can be calculated as follows:

Gain = Gain(Antenna) – Attenuation(attenuator) – Attenuation(cable)

850 MHz: Gain_(eff) = 11 dBi – 3 dBi – 10*0.45 dB/m = 3.5 dBi

1900 MHz: Gain_(eff) = 11 dBi – 3 dBi – 10*0.72 dB/m = 0.8 dBi

7.2 MPE calculation

Maximum possible radiated output power configurations

850 MHz: $32.5 \text{ dBm} + 3.5 \text{ dBi} = 36.0 \text{ dBm} = 4000 \text{ mW (EIRP)} = 2432 \text{ mW (ERP)}$ (with roof-antenna)

1900 MHz: $29.2 \text{ dBm} + 2.15 \text{ dBi} = 31.35 \text{ dBm} = 1370 \text{ mW (EIRP)}$ (with window-antenna)

Maximum permissive exposure (MPE)

850 MHz: Limit 0.57 mW/cm²

$$PD = P_{\text{rad}} * DF / (4 * \pi * r^2)$$

$$PD = 4000 \text{ mW} * 0.5 / (4 * \pi * 20^2 \text{ cm}^2)$$

$$\mathbf{PD = 0.398 \text{ mW/cm}^2}$$

Result: The device complies with the rules for a distance of 20 cm.

1900 MHz: Limit 1.00 mW/cm²

$$PD = P_{\text{rad}} * DF / (4 * \pi * r^2)$$

$$PD = 1370 \text{ mW} * 0.5 / (4 * \pi * 20^2 \text{ cm}^2)$$

$$\mathbf{PD = 0.136 \text{ mW/cm}^2}$$

Result: The device complies with the rules for a distance of 20 cm.

PD = Power Density

P_{rad} = Maximum radiated output power in mW

DF = Duty factor

r = Distance in cm

7.2.1 RF Technical Brief Cover Sheet acc. To RSS-102

All Fields must be completed with the requested information or the following codes: N/A for Not Applicable, N/P for Not Performed or N/V for Not Available. Where applicable, check appropriate box.

1. COMPANY NUMBER: **287X**

2. MODEL NUMBER: **MBR W30MBR W30**

3. MANUFACTURER: **Ericsson AB PDU RAN Transmission & Home Ericsson AB**

4. TYPE OF EVALUATION: **(c) RF Evaluation**

- Evaluated against exposure limits: General Public Use Controlled Use
- Duty cycle used in evaluation: 100 %
- Standard used for evaluation: RSS-102 Issue 2 (2005-11)
- Measurement distance: 0.20 m
- RF value: 3.98 V/m A/m W/m² (850 MHz)
- RF value: 1.36 V/m A/m W/m² (1900 MHz)

Measured Computed Calculated

Declaration of RF Exposure Compliance

ATTESTATION:

I attest that the information provided in this test report are correct; that a Technical Brief was prepared and the information it contains is correct; that the device evaluation was performed or supervised by me; that applicable measurement methods and evaluation methodologies have been followed and that the device meets the SAR and/or RF exposure limits of RSS-102.

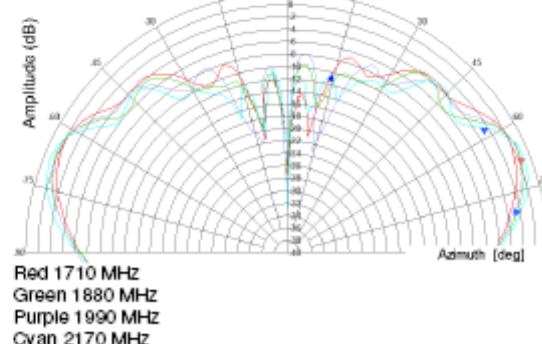
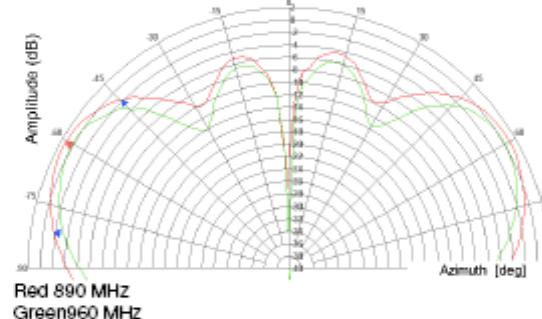
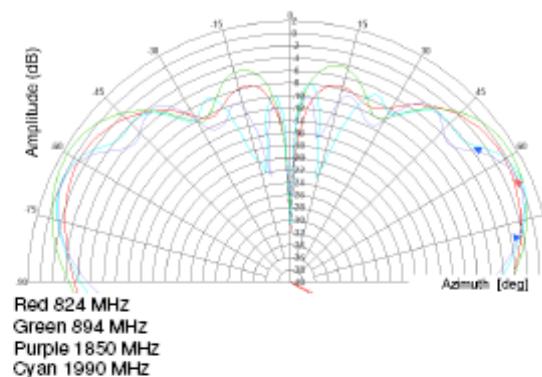
Name: Stefan Boes
Title: Dipl.Ing.(FH)
Company: Cetecom ICT Services GmbH

7.3 Data sheets

7.3.1 Window antenna

UMTS Window Antenna

The UMTS window antenna is an optional accessory to Ericsson's Fixed Wireless Terminal W2x product series.




Ericsson part no: KRE 105 179

Specification:

Color: Black
 Operating frequency: 824-960, 1710-2170 MHz
 Polarization type: Linear, vertical
 Azimuth beam: Omni-directional
 Gain: 2.15 dBi
 Impedance: 50 Ohm nominal
 V.S.W.R: 2.0:1 Max
 Connector: SMA
 Antenna cable: 2.6 meter
 Dimensions: Ø27 x 53 mm
 Weight: 140 g (Including ground plane)
 RoHS compliant: Yes
 Documentation: Printed Installation guide included
 Mounting: Magnet on metal surfaces or suction cap on smooth vertical surfaces such as windows

Radiation pattern
Elevation gain:

7.3.2 Roof antenna

High Gain All-Band Cellular Antenna

824 - 1000 MHz and 1700 - 2170 MHz

Product code: LPDA-A0021

This high gain wideband directional antenna covers the GSM 900 and GSM1800 / UMTS bands. Its configuration is suitable for various cellular telephone systems.

Features:

- Broadband.
- Covers various international cellular bands.
- Robust and weatherproof

Application areas:

This antenna provides communications capabilities for the following:

Standard		Frequency (MHz)
TACS	Europe and Asia only	871 - 949
TDMA/CDMA/AMPS		824 - 894
SM "GSM 900"		870- 960
PDC Japan only		810 - 956
EGSM		806 - 869
GSM 1800 / PCS/ PCN		1710 - 1880
DECT		1880 - 1900
PHS	Japan, Taiwan and China only	1895 - 1918
GSM "GSM1900"	USA and Canada only	1850 - 1990
UMTS		1900 - 2170

Smarteq Wireless Telecom

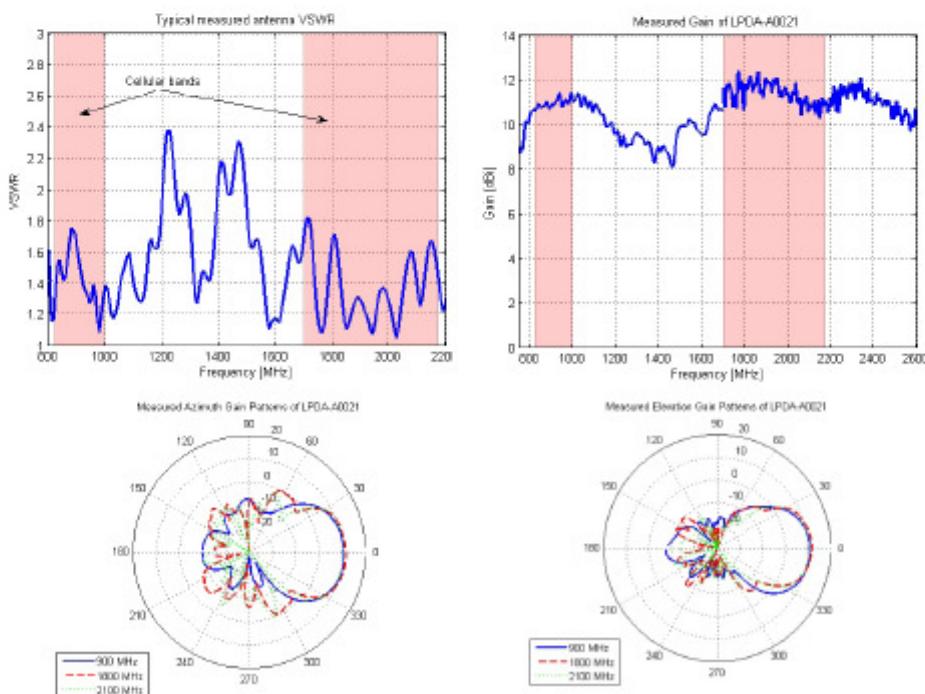
Broadband Directional Antenna

Specifications:**Product Code:**

LPDA-A0021

50 cm HDF195 with SMA(m) connector

LPDA-A0021-01


7 m HDF195 with SMA(m) connector

Electrical:

Gain (max)	11 dBi (± 0.5 dB)
Gain (min over band)	10.5 dBi (± 0.5 dB)
Frequency Band	824 - 1000 and 1700 - 2170 MHz
VSWR	< 2.5:1
Front to Back Ratio (F/B Ratio)	> 20 dB (nominal)
Feed power handling	10 W
Input impedance	50 Ohm (nominal)
Polarisation	Vertical

Mechanical:

Mounting	Pole or wall mount
Dimensions (l x w x h)	1010 mm x 200 mm x 50 mm
Weight	0.5 kg (including bracket)

Typical Antenna Measurements

7.3.3 Attenuator

HUBER+SUHNER® DATA SHEET RF ATTENUATORS: SERIES 66XX_SMA-50-1 (18 GHz)

Description

Standard Attenuator, Low Power

Type 66XX_SMA-50-1, for XX insert attenuation value in dB

For example for 3 dB attenuation insert "03" in the type code and write 6603_SMA-50-1

Product Configuration

Connectors (side 1 / side 2) SMA plug (male) / SMA jack (female)

Technical Data

Electrical Data

Nominal impedance	50 Ω
Attenuation values	from 1 up to 30 dB
Frequency range	DC to 18 GHz
Power rating	2 Watt average power to 25°C ambient temperature, linearly derated to 0.5 Watt at 125°C ambient temperature.
	250 Watt peak power during max. 5 µs
Power Coefficient	0.001 dB/dB/W
Temp. Coefficient	0.0001 dB/dB/°C

Environmental Data

2002/95/EC (RoHS) compliant

Mechanical Data

Dimensions	9 / 8 / 21.8 (height / width / length coaxial in mm) until 20 dB
Weight	9 / 8 / 25.1 (height / width / length coaxial in mm) up to 21 dB 0.00419 kg

Material Data

Piece Part	Material	Surface Plating
Centre contacts	Copper-Beryllium Alloy	Gold Plating (Nickel underplated)
Outer contacts	Stainless steel	
Body	Stainless steel	
Insulator	PTFE	
Coupling Nut	Stainless steel	

Related Documents

Outline Drawing	DOU-00089026 until 20 dB
	DOU-00096953 up to 21 dB

Ordering Information

Single Packing	66XX_SMA-50-1
----------------	---------------

Additional Information

Remarks

Interface dimensions acc. to IEC 60169-15_MIL-STD-348/310_CECC 22110

HUBER+SUHNER® DATA SHEET
RF ATTENUATORS: SERIES 66XX_SMA-50-1 (18 GHz)

Type 66XX_SMA-50-1, for XX insert attenuation value in dB

For example for 3 dB attenuation insert "03" in the type code and write 6603_SMA-50-1

Nominal attenuation (dB)	Attenuation deviation max. over frequency (DC - 18 GHz) (dB)	VSWR max. *) over frequency (DC - 18 GHz)	Power	H+S type	Item number
1				6601_SMA-50-1	84037360
2				6602_SMA-50-1	84030799
3	+/-0.3			6603_SMA-50-1	84036313
4		1.35	2 W	6604_SMA-50-1	84034265
5				6605_SMA-50-1	84037413
6				6606_SMA-50-1	84037341
7				6607_SMA-50-1	84037409
8				6608_SMA-50-1	84037387
9				6609_SMA-50-1	84037379
10	+/-0.5	1.35	2 W	6610_SMA-50-1	84036459
15				6615_SMA-50-1	84037421
18				6618_SMA-50-1	84037417
20				6620_SMA-50-1	84037363
30	+/-0.75	1.35	2 W	6630_SMA-50-1	84037371

The HUBER+SUHNER group is certified according to ISO 9001 and ISO 14001

WAIVER

It is exclusively in written agreements that we provide our customers with warrants and representations as to the technical specifications and/or the fitness for any particular purpose. The facts and figures contained herein are carefully compiled to the best of our knowledge, but they are intended for general informational purposes only.

HUBER+SUHNER – Excellence in Connectivity Solutions

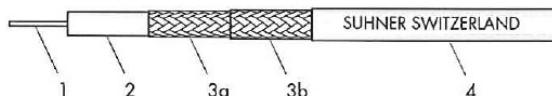
Document: Series 66XX_SMA-50-1 Revision: A.00

Issued: 18.09.2007

HUBER+SUHNER AG
RF Industrial
3100 Herisau, Switzerland
Phone +41 (0)71 353 41 11
Fax +41 (0)71 353 45 90
www.hubersuhner.com

Uncontrolled Copy

Page 2/2


7.3.4 Antenna cable

SUHNER® COAXIAL CABLE **TYPE: RG 223 /U**

Item: 22510072

Cable design

1	Inner conductor	Silver-plated copper wire	Ø 0.88 mm	
2	Dielectric	Solid polyethylene (PE)	Ø 2.95 mm	
3	Outer conductor . a)	Silver-plated copper braid	96% coverage	Ø 3.60 mm
	b)	Silver-plated copper braid	94% coverage	Ø 4.20 mm
4	Jacket	Non-migratory PVC	bk (RAL 9005)	Ø 5.40 mm
Print on jacket				
SUHNER SWITZERLAND RG 223 /U 50 Ohm				

Electrical data

Typ. operating frequency	(GHz) ≤ 5
Impedance	(Ω) 50 ± 2
Capacitance	(pF/m) 100.7
Relative signal propagation	(%) 66.3
Signal delay	(ns/m) 5.03
Phase stability	(°/GHz/m) -
vs temperature	(°/GHz) -
vs bending	(°/GHz) -
Insulation resistance	(MΩm) > 10 ⁸
Test voltage	(kV _{rms}) 5
Max. operating voltage at sea level	(kV _{rms}) 2.5
Typ. DC resistance	(Ω/km) 27.7
inner conductor	(Ω/km) 6.7
outer conductor	(Ω/km) -
Typ. screening effectiveness	(dB) 1 ... 300 MHz > 85

General data

Cable specification	cable design and materials in accordance with	MIL-C-17/84
Temperature range	operating	(°C) -40...+70
	installation	(°C) -20...+60
Flame propagation	IEC 332-1	n/a
Halogen content	IEC 754	n/a
Typ. Weight	(kg/100m)	5.5
Min. bending radius ...	for bending once	(mm) 30
	for repeated bendings	(mm) 55
	for flexible applications	(mm) -

Suitable connectors

Cable group

U9/U10

For details refer to the "SUHNER® coaxial connector catalogue" or contact your nearest HUBER+SUHNER representative

Document No.: 01.03.0500
Issue No.: 3
Supersedes: 0500/2

Uncontrolled copy
Issued/Checked/Released:
Last amended:

27.09.1997/486-lhm
Modification of attenuation graph

1/2