

HYUNDAI CALIBRATION & CERTIFICATION TECH. CO., LTD.

Product Compliance Division, EMC Team
SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI, KYOUNKI-DO, 467-701, KOREA
TEL: +82 31 639 8518 FAX: +82 31 639 8525

CERTIFICATION (Permissive change class□)

Manufacture;

IMAGEQUEST CO., LTD.

SAN 136-1, AMI-RI , BUBAL-EUP, ICHEON-SI, KYOUNKI-DO, 467-701, KOREA

IMAGEOUEST FRN: 0005-8664-39

Date of Issue: March 10, 2004

Test Report No.: HCT-F04-0208

Test Site: HYUNDAI CALIBRATION & CERTIFICATION

TECHNOLOGIES CO., LTD.

HCT FRN: 0005-8664-21

FCC ID:

PJIL17A0D080

MODEL / TYPE:

L70S/L17A0D080

Rule Part(s): Part 15 & 2; ET Docket 95-19

Equipment Class: FCC Class B Peripheral Device (JBP)

Standard(s): FCC Class B: 1998 (CISPR 22)

EUT Type: 17" LCD Monitor

Max. Resolution(s): 1280 X 1024 (@80.0KHz/75Hz)

Model(s): L70S

Port/Connector(s) 15-pin D-sub VGA connector, AUDIO IN/OUT.

LCD Panel Samsung Electronics (LTM170EU-L11)

This equipment has been shown to be in compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2001 (Grant Notes: #19, #28).

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

persons taking them.

I SOO.

Report prepared by : Ki-Soo Kim Manager of EMC Tech. Part

HYUNDAI CALIBRATION & CERTIFICATION TECH. CO., LTD.

TABLE OF CONTENTS

PAGE

R	EPOI	RT COVER	1
T	ABLI	E OF CONTENTS	2
	1.1	SCOPE	
	3		
	2.1	INTRODUCTION (SITE DESCRIPTION)	4
	3.1	PRODUCTION INFORMATION	
5-6			
	4.1	DESCRIPTION OF TESTS (CONDUCTED)	7
	4.3	DESCRIPTION OF TESTS (RADIATED)	
8			
	5.1	LIST OF SUPPORT EQUIPMENT	9-10
	6.1	TEST DATA (CONDUCTED)	
11-	13		
	7.1	TEST DATA (RADIATED)	
14			
	8.1	SAMPLE CALCULATIONS	
15			
	9.1	TEST EQUIPMENT	
16			
	10.1	TEST SOFTWARE USED	
17			
	11.1	CONCLUSION	
18			

ATTACHMENT A: FCC ID LABEL & LOCATION

ATTACHMENT B: EXTERNAL PHOTOGRAPHS

ATTACHMENT C: BLOCK DIAGRAM(S)

ATTACHMENT D: TEST SETUP PHOTOGRAPHS

ATTACHMENT E: USER'S MANUAL

ATTACHMENT F: INTERNAL PHOTOGRAPHS

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

ATTACHMENT G: CIRCUIT

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

Applicant Name: IMAGEQUEST

Address: SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI,

KYOUNKI-DO, 467-701, KOREA

• FCC ID: PJIL17A0D080

• Equipment Class: FCC Class B Peripheral Device (JBP)

• EUT Type: 17" LCD MONITOR

• Model(s): L70S

• LCD Panel: Samsung Electronics (LTM170EU-L11)

• Max. Resolution: 1280 X 1024 (@80.0KHz/ 75Hz)

• Frequency Range: V-Sync: 56Hz – 75Hz, H-Sync: 31KHz – 80KHz

• Cable(s): Shielded D-Sub (with ferrite on both ends)

• Power Cord: Unshielded

• Rule Part(s): FCC Part 15 Subpart B

• Test Procedure(s): ANSI C63.4 (2001)

• Dates of Tests: December 15, 2003 ~ December 29, 2003

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

Place of Tests: 254-1,MAEKOK-RI,HOBUP-MYUN,ICHON-SI,KYOUNGKI-DO,467-701,KOREA

2.1 INTRODUCTION

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSIC63.4-1992) was used in determining radiated and conducted emissions emanating from IMAGEQUEST CO.,LTD. 17-inch LCD Monitor FCC ID: PJIL17A0D080

The open area test site and conducted measurement facility used to collect the radiated data are located at the 254-1, MAEKOK-RI,HOBUP-MYUN,ICHON-SI,KYOUNGKI-DO, 467-701,KOREA. The site is constructed in conformance with the requirements of ANSI C63.4and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 23,2003 (Confirmation Number: EA90661)

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

3.1 PRODUCT INFORMATION

3.2 Equipment Description

Equipment Under Test (EUT) is the IMAGEQUEST CO.,Ltd. (Model: L70S) 17-inch LCD Monitor

FCC ID: : PJIL17A0D080

Maximum Resolution(s): 1280 X 1024 (@80.0KHz/ 75Hz)

Frequency Range(s): H-Sync: 31KHz – 80KHz

V-Sync: 56Hz – 75 Hz

Pixel Pitch: 0.264mm

Power Supply: AC 100-240V 60/50Hz 1.0A

Power Cord: Unshielded AC power cord

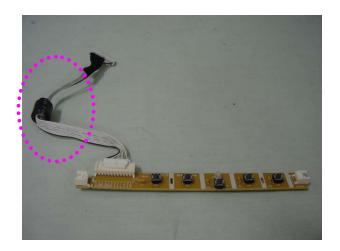
Port(s)/Input Connector(s): 15-pin D-sub VGA connector, AUDIO IN/OUT

Cable(s): Shielded D-Sub (with ferrite on both ends)

Dimensions (WxHxD): 396x414x200mm(WxHxD)

Weight (Net):3.7Kg unpacked

EMI Suppression Devices:


1. Attach a gasket on the main frame and main board to contact the lcd panel

2. Apply ferrite core to OSD signal line

REPORT 6/18 NO. : HCT-F04-0208 HYUNDAI C-TECH

4.1 Description of Tests(Conducted)

4.2 Powerline Conducted RFI (150kHz- 30MHz)

The power line conducted RFI measurements were performed according to CISPR 22.

The EUT was placed on a non-conducting 1.0 by 1.5 meter table which is 0.8 meters in height and 0.40 meters away from the vertical wall of the shielded enclosure. Power to the EUT is provided through a Rohde & Schwarz 50 Ω / 50 uH Line Impedance Stabilization Network (LISN) and the support equipment through a separate Solar 50 Ω / 50 uH Line- Conducted Test Facility LISN. Sufficient time for the EUT, support equipment, and test equipment were allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME. The spectrum was scanned from 150kHz to 30 MHz. Each maximum EME was remeasured using an EMI receiver. The detector function of the receiver was set to CISPR quasi- peak and average mode with the bandwidth set to 9 kHz. Each emission was maximized consistent with the typical applications by varying the configuration of the test sample. Interface cables were connected to the available interface ports of the test unit. The effect of varying the position of cables was investigated to find the configuration that produces maximum Diagram emission. Excess cable lengths were bundled at the centre with 30-40cm. in length. The worst-case configuration is noted in the test report and the photographs are attached. Each EME reported was calibrated using the Rohde & Schwarz SMX signal generator and are listed on Table 1. RFI Conducted FCC Class B

RFI CONDUCTED CISPR 2 Limits		CLASS B dB(uV/m)
Freq. Range	CISPR 22 Quasi-Peak	CISPR 22 Average
150kHz - 0.5MHz	66-56**	56-46**
0.5MHz - 5MHz	56	46
5MHz - 30MHz	60	50

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

*FCC Class B limits starts from 450kHz **Limits decreases linearly with the logarithm of frequency

Table 1. RFI Conducted Limits

4.3 Description of Tests(Radiated)

Radiated Emissions

Preliminary measurements were made indoors at 1 meter using broadband antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The spectrum was scanned from 30 to 300 MHz using biconical antenna, 300 to 1000 MHz using log-periodic antenna, and above 1 GHz using linearly polarized horn antennas. Final measurements were made outdoors at 10-meter test range using Dipole antennas and EMI receiver. For frequencies above 1 GHz, horn antennas were used. Sufficient time for the EUT, support equipment, and test equipment were allowed in order for them to warm up to their normal operating condition. The EMI receiver detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 120 kHz. The EUT, support equipment, and interconnecting cables were arranged to the configuration that produces the maximum EME emission found during preliminary scan. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Horizontal and vertical antenna polarizations were checked. Each emission was maximized by: varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and/ or support equipment, and powering the monitor the computer aux AC outlet, if applicable; and changing the polarity of the antenna, whichever determined the worst-case emission.

	ITE Radiated Limits						
Frequency (MHz)	FCC Limit @ 3m. Quasi- Peak dB[µV/m]	FCC Limit @ 10m.* Quasi – Peak dB [μV/m]	CISPR Limit @ 10m. Quasi-Peak dB [µV/m]				
30-88	40.0	29.5	30.0				
88-216	43.5	33.0	30.0				
216-230	46.0	35.6	30.0				
230-960	46.0	35.6	37.0				
960-1000	54.0	43.5	37.0				
> 1000	54.0	43.5	No Specified Limit				

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

FCC ID: PJIL17A0D080

* Limit extrapolated 20 dB/decade						

Table 2. Radiated Class B limits @ 10-meters

5.1 Support Equipment Used

DEVICE TYPE	MANUFACTURER	MODEL NUMBER	FCC ID / DoC	CONNECTED TO
MONITOR (EUT)	IMAGEQUEST CO., LTD.	L70S	PJIL17A0D080	P.C
P.C	Н.Р	HP Pavilion 8921	DoC	N/A
KEY BOARD	Н.Р	5181	DoC	P.C
MOUSE	Microsoft	IntelliMouse	DoC	P.C
PRINTER	H/P	C4569A	DoC	P.C
SERIAL MOUSE	Logitech	M-M28	DoC	P.C
HEADSET	Tsound	CAS08	DoC	EUT

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

5.2 Cable Description

	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (M)
MONITOR(EUT)	N	Y	1.8(P), 1.5(D)
PC(HOST)	N	N/A	1.8(P)
KEY BOARD	N/A	Y	1.8(D)
MOUSE	N/A	Y	1.8(D)
PRINTER	N	Y	1.8(P),1.8(D)
SERIAL MOUSE	N/A	Y	1.8(D)
AUDIO IN	N/A	Y	1.5(D)
HEADSET	N/A	N	1.8(D)

The marked "(D)" means the Data Cable and "(P)" means the Power Cable.

5.3 Noise Suppression Parts on Cable. (I/O CABLE)

	Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
MONITOR(EUT)	Y	BOTH END	Y	BOTH END

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

KEY BOARD	N	N/A	Y	P.C END
MOUSE	Y	N/A	Y	P.C END
PRINTER	N	N/A	Y	BOTH END
SERIAL MOUSE	N	N/A	Y	EUT END
AUDIO IN	Y	BOTH END	N	N/A
HEADSET	Y	P.C END	N	N/A

6.1 LINE-CONDUCTED TEST DATA

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

HYUNDAI C-TECH. EMC TESTING Laboratory

EUT:

L705

Manufacturer:

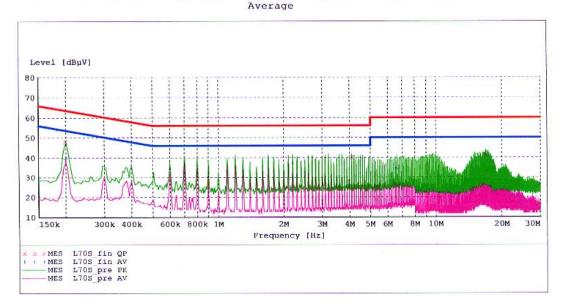
ImageQuest Co., Ltd.

Operating Condition: 1280 X 1024 75Hz Test Site: SHIELD ROOM

BK, HAM

Operator: Test Specification:

CISPR 22 CLASS B


Comment:

Start of Test:

12/17/03 / 10:51:10AM

SCAN TABLE: "CISPR 22 Voltage"

Short Description:
Start Stop Step
Frequency Frequency Width
150.0 kHz 500.0 kHz 5.0 kHz CISPR 22 Voltage Detector Meas. TF Transducer Bandw. Time 10.0 ms 9 kHz MaxPeak None Average 500.0 kHz 5.0 MHz 5.0 kHz 10.0 ms 9 kHz None MaxPeak

MEASUREMENT RESULT: "L70S fin QP"

10:5	3AM		-			
ncy MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
000	48.10	10.1	64	15.5	1	
000	40.20	10.3	56	15.8	1	
000	41.20	10.5	60	18.8	1	
	ncy MHz 000 000	MHz dBμV 000 48.10 000 40.20	ncy Level Transd MHz dBµV dB 000 48.10 10.1 000 40.20 10.3	ncy Level dBμV Transd dB dBμV 000 48.10 10.1 64 000 40.20 10.3 56	ncy Level dBμV Transd dB dBμV Limit dBμV Margin dB 000 48.10 10.1 64 15.5 000 40.20 10.3 56 15.8	ncy Level dBμV Transd dBμV Limit dBμV Margin dB Line dBμV 000 48.10 10.1 64 15.5 1 000 40.20 10.3 56 15.8 1

MEASUREMENT RESULT: "L70S fin AV"

2/17/03 10:5	3AM		_			
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
0.200000	39.30	10.1	54	14.3	1	
2.200000	37.20	10.3	46	8.8	1	
6.605000	34.50	10.3	50	15.5	1	

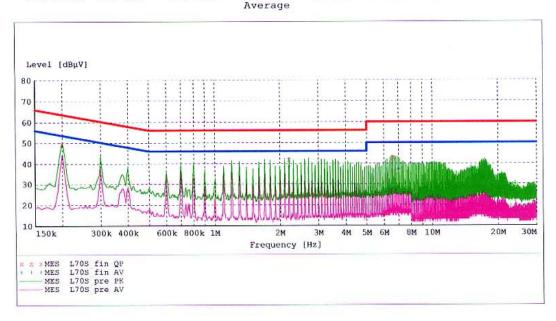
Page 1/1 12/17/03 10:53AM L70S

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH 12/18

HYUNDAI C-TECH. EMC TESTING Laboratory

L70S

Manufacturer: ImageQuest Co., Ltd.


Operating Condition: 1280 X 1024 75Hz Test Site: SHIELD ROOM

BK, HAM Operator:

Test Specification: CISPR 22 CLASS B

Comment: Start of Test: 12/17/03 / 10:48:04AM

SCAN TABLE: "CISPR 22 Voltage"
Short Description: CISPR
Start Stop Step De
Frequency Frequency Width
150.0 kHz 500.0 kHz 5.0 kHz Ma CISPR 22 Voltage CISPR 22 VOLLAGE
Detector Meas. IF
Time Bandw. Transducer MaxPeak 10.0 ms 9 kHz Average 500.0 kHz 5.0 MHz 5.0 kHz 10.0 ms 9 kHz None MaxPeak

MEASUREMENT RESULT: "L70S fin QP"

12/17/03 1	0:50AM					
Frequenc MH	The state of the s	Transd dB	Limit dBµV	Margin dB	Line	PE
0.20000	0 49.40	10.1	64	14.2	1	
2.20000	0 41.90	10.3	56	14.1	1	
6.60500	0 42.80	10.3	60	17.2	1	

MEASUREMENT RESULT: "L70S fin AV"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
0.200000	43.70	10.1	54	9.9	1	
2.200000	38.50	10.3	46	7.5	1	
7.005000	37.20	10.3	50	12.8	1	

Page 1/1 12/17/03 10:50AM L70S

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH 13/18

NOTES:

- 1. All modes of operation were investigated and the worst-case emissions are reported.
- 2. The CISPR RFI conducted limits are listed on Table 1 (Page 6).
- 3. Line H = Phase Line N = Neutral

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

^{**} Measurements using CISPR quasi-peak mode.

7.1 RADIATED TEST DATA

Frequency	Reading	Ant. Factor	Cable Loss		Total	Limit	Margin
MHz	dBuV	dB	dB	(H/V)	dBuV/m	dBuV/m	dB
51.6	12.56	10.76	1.5	V	24.9	3Ø	-5.1
72.0	17.80	6.30	1.8	V	25.9	3Ø	-4.1
120.5	10.33	12.78	2.4	Н	25.5	3Ø	-4.5
144.8	7.68	14.67	2.6	V	25.0	3Ø	-5.0
176.5	6.50	15.79	3.0	V	25.3	3Ø	-4.7
200.8	5.20	16.26	3.2	V	24.7	3Ø	-5.3
312.3	11.51	16.30	4.1	Н	31.9	37	-5.1
366.5	10.30	16.60	4.4	V	31.3	37	-5.7
431.3	8.05	17.86	4.8	V	30.7	37	-6.3
597.5	6.91	21.06	5.6	V	33.5	37	-3.5
644.8	3.97	22.54	5.8	V	32.3	37	-4.7
811.3	3.33	23.81	6.4	V	33.6	37	-3.4

Radiated Measurements at 10-meters.

1280 X 1024 (@80.0KHz/ 75Hz)

NOTES:

- 1. All modes of operation were investigated, and the worst-case emissions are reported.
- 2. The radiated limits are listed on Table 2 (Page 7).

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

^{**} AFCL = Antenna Factor (Roberts dipole) and Cable Loss.

^{***} Measurements using CISPR quasi-peak mode. Above 1GHz, peak detector function mode is used using a resolution bandwidth of 1MHz and a video bandwidth of 1MHz. The peak level complies with the average limit. Peak mode is used with linearly polarized horn antenna and low-loss microwave cable.

8.1 Sample Calculations

$$dB \square = 20 \log_{10} (mV/m)$$

8.2 Example 1:

@ 2.2 MHz

Class B limit = $56.0 \text{ dB}\mu\text{V}$

Reading = $41.9 \text{ dB}\mu\text{V}$ (calibrated level)

Margin = 41.9 - 56.0 = -14.1

= 14.1 dB below limit

8.3 Example 2:

@ 176.5 MHz

Class B limit = $30 \text{ dB}\mu\text{V/m}$

Reading = $6.5 \, dB\mu V/m$ (calibrated level)

Antenna Factor + Cable Loss = 18.8 dB

Total = $25.3 \text{ dB}\mu\text{V/m}$

Margin = 25.3 - 30.0 = -4.7

= 4.7 dB below limit

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

9.1 Test Equipment

Type	Manufacture	Model Number	CAL Date
EMI Test Receiver	Rohde & Schwarz	ESH3	2003.07.16
EMI Test Receiver	Rohde & Schwarz	ESVP	2003.10.01
EMI Test Receiver	Rohde & Schwarz	ESI40	2003.11.16
EMI Test Receiver	Rohde & Schwarz	ESVS30	2003.07.16
LISN	EMCO	3816/2	2003.11.29
LISN	EMCO	3816/2	2003.08.22
Amplifier	Hewlett-Packard	8447E	2003.08.23
Absorbing Clamp	Rohde & Schwarz	MDS-21	2003.04.24
Dipole Antennas	Rohde & Schwarz	VHAP	2003.07.16
Dipole Antennas	Rohde & Schwarz	UHAP	2003.07.16
Biconical Antenna	Rohde & Schwarz	VHA9103	2003.07.12
Log-Periodic Antenna	Rohde & Schwarz	UHALP9107	2003.07.12
Antenna Position Tower	EMCO	1051-12	N/A
Turn Table	EMCO	1060-06	N/A
Power Analyzer	Voltech	PM 3300	2004.2.15
Reference Network	ImpedanceVoltech	IEC 555	N/A
AC Power Source	PACIFIC	Magnetic Module	N/A
AC Power Source	PACIFIC	360AMX	2003.11.25
Controller	HD GmbH	HD 100	N/A
EMI in Motion	HD GmbH	KMS 560	N/A

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

10.1 Test Software Used

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software, contained on a 3-1/2 inch disc, was inserted into drive A and is auto starting on power-up. Once loaded, the program sequentially exercises each system component in turn. The sequence used is :(1) Display test, (2) RS 232 test (3) Key board test,(4) Printer test,(5) FDD test,(6) HDD test. The complete cycle takes about 20 seconds and is repeated continuously. As the keyboard and mouse are strictly input devices, no data is transmitted to them during test. They are however, continuously scanned for data input activity. The video resolution modes setup and change program was used during the radiated and conducted emission testing.

NOTE: This is a sample of the basic program used during the test. However, during testing, a different software program may be used; whichever determines the worst-case condition. In addition, the program used also depends on the number and type of devices being tested.

Actual program used is the "H" pattern in Notepad under Windows environment. All resolution modes (1280x1024, 1024x768, 800x600, 640x480, 720x400) were investigated and tested

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

11.1 Conclusion

The data collected shows that the IMAGEQUEST CO., LTD. 17-inch LCD Monitor FCC ID:PJIL17A0D080. complies with §15.107 and §15.109 of the FCC Rules.

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH

REPORT NO. : HCT-F04-0208 HYUNDAI C-TECH