

# N58-LA

## Product Specifications

Issue2.3 Date2021-04-23



**Copyright © Neoway Technology Co., Ltd. 2021. All rights reserved.**

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Neoway Technology Co., Ltd.

**neoway** is the trademark of Neoway Technology Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

**Notice**

This document provides a guide for users to use N58-LA.

This document is intended for system engineers (SEs), development engineers, and test engineers.

THIS GUIDE PROVIDES INSTRUCTIONS FOR CUSTOMERS TO DESIGN THEIR APPLICATIONS. PLEASE FOLLOW THE RULES AND PARAMETERS IN THIS GUIDE TO DESIGN AND COMMISSION. NEOWAY WILL NOT TAKE ANY RESPONSIBILITY OF BODILY HURT OR ASSET LOSS CAUSED BY IMPROPER OPERATIONS.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE DUE TO PRODUCT VERSION UPDATE OR OTHER REASONS.

EVERY EFFORT HAS BEEN MADE IN PREPARATION OF THIS DOCUMENT TO ENSURE ACCURACY OF THE CONTENTS, BUT ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS DOCUMENT DO NOT CONSTITUTE A WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

Neoway provides customers complete technical support. If you have any question, please contact your account manager or email to the following email addresses:

Sales@neoway.com

Support@neoway.com

Website: <http://www.neoway.com>

# Contents

|                                                    |     |
|----------------------------------------------------|-----|
| About This Document .....                          | vi  |
| Scope .....                                        | vi  |
| Audience .....                                     | vi  |
| Change History.....                                | vi  |
| Conventions .....                                  | vi  |
| Related Documents.....                             | vii |
| 1 Safety Recommendations .....                     | 8   |
| 2 About N58-LA .....                               | 9   |
| 2.1 Product Introduction .....                     | 9   |
| 2.2 Product Overview .....                         | 9   |
| 2.3 Block Diagram .....                            | 10  |
| 2.4 Basic Features .....                           | 11  |
| 3 Compliant Standards .....                        | 13  |
| 4 Module Pins .....                                | 14  |
| 4.1 Pin Layout .....                               | 14  |
| 4.2 Module Appearance .....                        | 15  |
| 5 Electrical Characteristics and Reliability ..... | 16  |
| 5.1 Electrical Characteristics.....                | 16  |
| 5.2 Temperature Characteristics .....              | 17  |
| 5.3 ESD Protection Characteristics.....            | 17  |
| 6 RF Characteristics .....                         | 18  |
| 6.1 Operating Bands .....                          | 18  |
| 6.2 TX Power and RX Sensitivity .....              | 19  |
| 6.3 GNSS Parameters .....                          | 20  |
| 7 Mechanical Characteristics.....                  | 21  |
| 7.1 Dimensions.....                                | 21  |
| 7.2 Label.....                                     | 22  |
| 7.3 Packaging.....                                 | 22  |
| 7.3.1 Reel and Tape .....                          | 22  |
| 7.3.2 Moisture.....                                | 24  |
| 8 Assembly .....                                   | 25  |
| 8.1 Module PCB Package .....                       | 25  |
| 8.2 Application PCB Package .....                  | 26  |
| 8.3 Stencil.....                                   | 26  |
| 8.4 Solder Paste.....                              | 27  |
| 8.5 SMT Furnace Temperature Curve.....             | 27  |
| A Abbreviations .....                              | 29  |

# Figures

|                                                                  |    |
|------------------------------------------------------------------|----|
| Figure 2-1 Block diagram .....                                   | 10 |
| Figure 4-1 Pin layout of the N58-LA module (top view) .....      | 14 |
| Figure 4-2 Top view of the N58-LA module .....                   | 15 |
| Figure 4-3 Bottom view of the N58-LA module .....                | 15 |
| Figure 7-1 N58-LA top and side dimensions (unit: mm) .....       | 21 |
| Figure 8-1 Bottom view of the N58-LA module PCB (unit: mm) ..... | 25 |
| Figure 8-2 Top view of the recommended N58-LA PCB package .....  | 26 |
| Figure 8-3 SMT furnace temperature curve .....                   | 27 |

# Tables

|                                                                     |    |
|---------------------------------------------------------------------|----|
| Table 2-1 Variants and frequency bands .....                        | 9  |
| Table 2-2 Basic features of the N58-LA module .....                 | 11 |
| Table 5-1 Electrical characteristics of the N58-LA module .....     | 16 |
| Table 5-2 Current consumption of the N58-LA module (typical) .....  | 16 |
| Table 5-3 Temperature characteristics of the N58-LA module .....    | 17 |
| Table 5-4 ESD protection characteristics of the N58-LA module ..... | 17 |
| Table 6-1 Operating bands of the N58-LA module .....                | 18 |
| Table 6-2 TX power and RX sensitivity of the N58-LA module .....    | 19 |
| Table 6-3 GNSS parameters .....                                     | 20 |

# About This Document

## Scope

This document is applicable to the N58-LA series. It describes the N58-LA variants, supported frequency bands, basic characteristics, interface definitions, reliability indicators, appearance, dimensions, assembly, packaging, storage, and other information.

## Audience

This document is intended for system engineers (SEs), development engineers, and test engineers.

## Change History

| Issue | Date    | Change                                                    | Author      |
|-------|---------|-----------------------------------------------------------|-------------|
| 1.0   | 2019-12 | Initial draft.                                            | ZhangGang   |
| 2.0   | 2020-03 | Updated the frequency bands supported.                    | ZhangGang   |
| 2.1   | 2020-07 | Updated the dimension drawing and PCB package drawing.    | Liu Pengbin |
| 2.2   | 2020-08 | Updated certain data.                                     | ZhangGang   |
| 2.3   | 2021-01 | Updated the document structure and optimized the content. | Wu Hui      |

## Conventions

| Symbol | Description                                                                                                                                                      |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| !      | Indicates danger or warning. This information must be followed. Otherwise, a catastrophic module or user device failure or bodily injury may occur.              |
| !      | Indicates caution. This symbol alerts the user to important points about using the module. If these points are not followed, the module or user device may fail. |
| i      | Indicates instructions or tips. This symbol provides advices or suggestions that may be useful when using the module.                                            |

## Related Documents

*Neoway\_N58-LA\_Datasheet*

*Neoway\_N58-LA\_Hardware\_User\_Guide*

*Neoway\_N58-LA\_AT\_Command\_Manual*

*Neoway\_N58-LA\_EVK\_User\_Guide*

# 1 Safety Recommendations

Ensure that this product is used in compliance with the requirements of the country and environment. Read the following safety recommendations to avoid bodily injuries or damages of the product or workplace:

- Do not use this product at any places with a risk of fire or explosion.  
If this product is used in a place with flammable gas or dust, such as propane gas, gasoline, and flammable spray, it will cause an explosion or a fire.
- Disable the wireless communication function in places where wireless communication is prohibited.
- Do not use this product that can interfere with other electronic devices in environments, such as hospitals and airplanes.

Follow the requirements below during the application design and use of this product:

- Do not disassemble this product without permission from Neoway. Otherwise, we are entitled to refuse to provide further warranty.
- Design your application correctly based on the hardware user guide. Connect this product to a stable power supply and route traces following fire safety standards.
- Avoid touching the pins of this product to prevent damages caused by ESD.

## 2 About N58-LA

### 2.1 Product Introduction

N58-LA is an industrial LTE module that is developed based on the UNISOC platform. This module supports GSM/GPRS and LTE Cat 1 network modes, provides a variety of hardware interfaces, supports audio and video functions, and optionally supports GNSS. This module is easy for customers to develop applications and is applicable to IoT communication devices, including wireless meter reading terminals, in-vehicle terminals, handheld POS terminals, and industrial routers.

### 2.2 Product Overview

N58-LA series include multiple variants. The following table lists the variants and frequency bands supported.

Table 2-1 Variants and frequency bands

| Variant | Region        | Category | Frequency Band                                                                  | GNSS <sup>1)</sup> | Codec |
|---------|---------------|----------|---------------------------------------------------------------------------------|--------------------|-------|
| N58-LA  | Latin America | Cat1     | FDD-LTE: B2, B4, B5, B7, B66<br>TDD-LTE: B38, B40, B41<br>GSM/GPRS: 850/1900MHz | Supported          | Yes   |

 GNSS<sup>1)</sup> indicates that the configuration is optional.

## 2.4 Basic Features

Table 2-2 Basic features of the N58-LA module

| Feature               | Description                                                                                                                                                                                                                  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical features     | <ul style="list-style-type: none"> <li>Dimensions: (30.0±0.15)mm × (28.0±0.15)mm × (2.6±0.2)mm</li> <li>Package: LGA+LCC</li> <li>Weight: 4.63g</li> </ul>                                                                   |
| Temperature range     | <p>Operating temperature range: -30°C to +75°C</p> <p>Extended temperature range: -40°C to +85°C</p> <p>Storage temperature range: -40°C to +90°C</p>                                                                        |
| Operating voltage     | <p>VBAT: 3.4V to 4.2V, Typical value: 3.8V</p> <p>Sleep mode<sup>2)</sup>: &lt;2.6mA</p>                                                                                                                                     |
| Current               | <p>Idle mode<sup>3)</sup>: &lt;16mA</p> <p>Operating mode<sup>4)</sup> (LTE mode): &lt;600mA</p>                                                                                                                             |
| Application processor | ARM Cortex-A5 processor, 500MHz main frequency                                                                                                                                                                               |
| Memory                | <p>RAM: 128 Mb</p> <p>ROM: 64 Mb</p>                                                                                                                                                                                         |
| Frequency band        | See Table 2-1.                                                                                                                                                                                                               |
| Wireless rate         | <p>GPRS: Max 85.6 kbps(DL)/Max 85.6 kbps(UL)</p> <p>FDD-LTE: Cat1, Max 10Mbps(DL)/Max 5Mbps (UL)</p> <p>TDD-LTE: Cat1, Max 8Mbps(DL)/Max 2Mbps(UL)</p>                                                                       |
| Power class           | <p>GSM850: +33dBm (Power Class 4)</p> <p>PCS1900: +30dBm (Power Class 1)</p> <p>LTE: +23dBm (Power Class 3)</p>                                                                                                              |
|                       | 2G/4G antenna, GNSS antenna, 50Ω characteristic impedance                                                                                                                                                                    |
|                       | Two UART interfaces, at most 2 Mbps                                                                                                                                                                                          |
|                       | Two UIM interfaces, adaptive 1.8 V/2.85 V                                                                                                                                                                                    |
| Application interface | <p>One USB2.0 high-speed interface</p> <p>One 12-bit ADC interface, voltage detection range: 0.1 V to 1.7 V</p> <p>One SDIO interface</p> <p>One 1PPS interface</p> <p>One I2C interface, only the master mode supported</p> |
| Data                  | PPP, RNDIS, ECM                                                                                                                                                                                                              |
| Protocol              | TCP, UDP, MQTT, FTP/FTPS, HTTP/HTTPS, SSL, TLS                                                                                                                                                                               |
| Certification         | CCC, SRRC, RoHS, CE                                                                                                                                                                                                          |

## approval



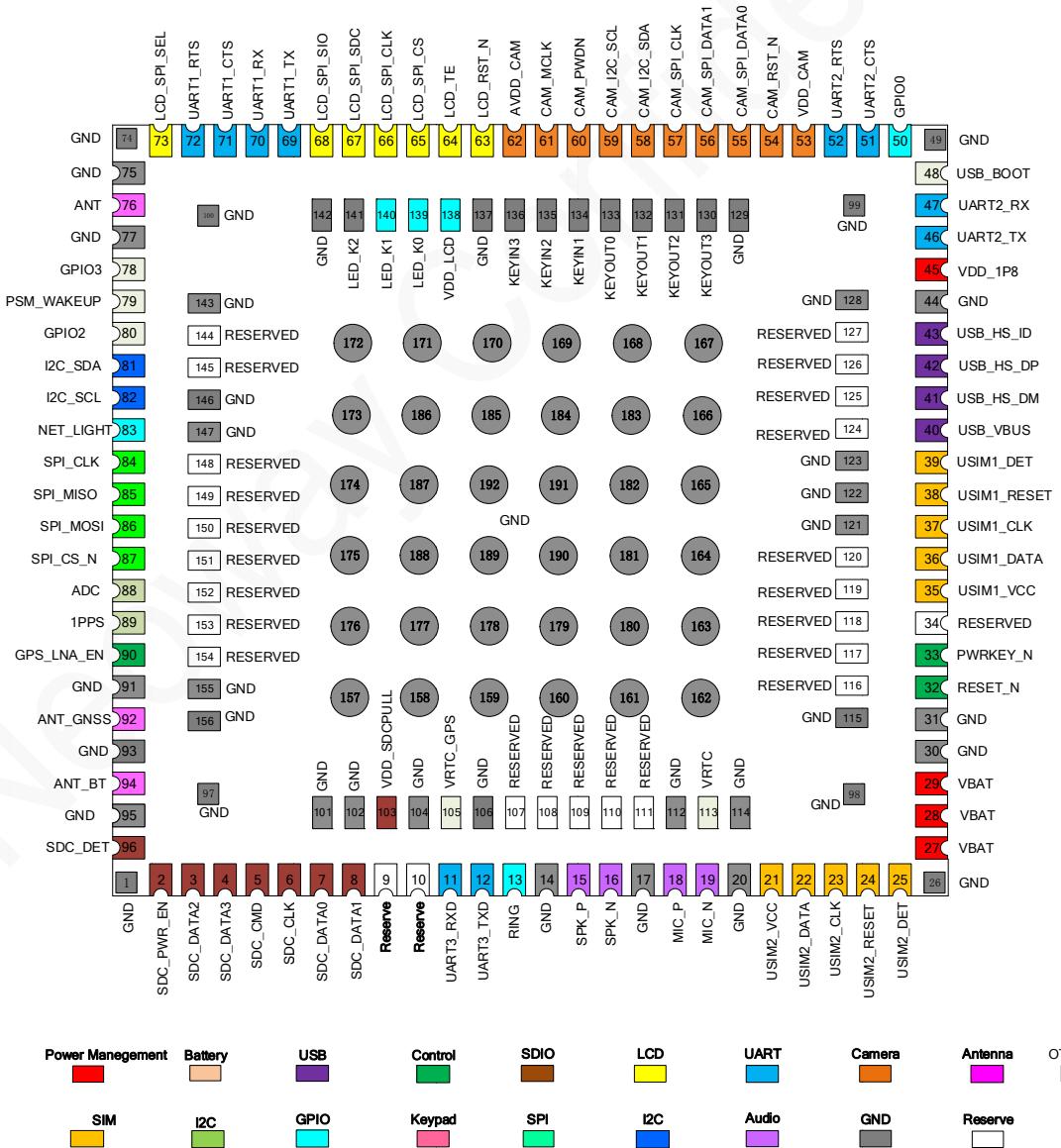
Sleep mode<sup>2)</sup>: indicates that the module enters the low power consumption state. In this state, the peripheral interface of the module is disabled, but the radio frequency function is normal. The module will exit the sleep mode when there is an incoming call or an SMS message, and will re-enter the sleep mode when the incoming call and voice end.

Idle mode<sup>3)</sup>: indicates the status of the module when the module is functioning properly and there is no data service.

Operating mode<sup>4)</sup> current indicates the operating current of the module when there is data communication. In idle mode<sup>3)</sup>, only an example of the current in LTE mode is provided. For details about the current in non-LTE modes, see the N58-LA current test report.

## 3 Compliant Standards

N58-LA complies with the following standards:

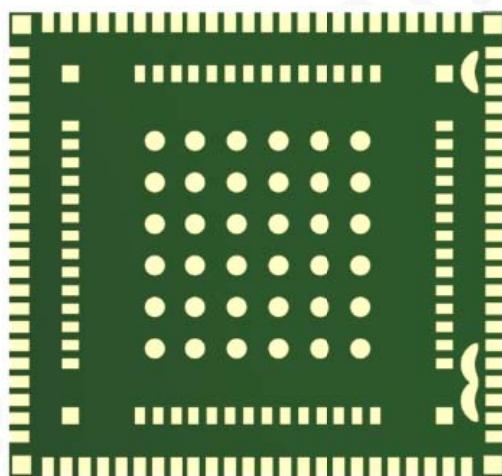

- 3GPP TS 07.07 AT command set for GSM Mobile Equipment (ME)
- YD 1214-2006 Technical requirement of 900/1800MHz TDMA Digital Cellular Mobile Telecommunication Network General Packet Radio Service (GPRS) Equipment: Mobile Stations
- YD 1215-2006 Testing Methods of 900/1800MHz TDMA Digital Cellular Mobile Telecommunication Network General Packet Radio Service (GPRS) Equipment: Mobile Stations
- YD 1032-2000 Limits and Measurement Methods of Electromagnetic Compatibility for 900/1800MHz Digital Cellular Telecommunications System Part1: Mobile Station and Ancillary Equipment
- YD/T 2220-2011 Technical Requirement and test method of WCDMA/GSM(GPRS) dual mode digit mobile user equipment (phase 4)
- Ministry of Industry and Information Technology PRC, Measures for the Network Access Management of Telecommunication Equipment (2014 Amendment)
- GB4943.1-2011 Information technology equipment - Safety - Part 1: General requirements
- GB/T22450.1-2008 Limits and measurement methods of electromagnetic compatibility for 900/1800MHz TDMA digital cellular telecommunications system - Part 1: Mobile station and ancillary equipment
- CNCA-07C-031:2007 Rules for Compulsory Certification of Telecommunication Equipment Telecommunication Terminal Equipment
- GSM/GPRS/EDGE 2G Communication Protocol
- LTE Cat1 4G Communication Protocol

# 4 Module Pins

There are 192 pins on the N58-LA module, and pads use the LGA+LCC package. The N58-LA module supports the functional interfaces, including the power, USB, UIM, UART, ADC, I2C, and SDIO interfaces.

## 4.1 Pin Layout

Figure 4-1 Pin layout of the N58-LA module (top view)




## 4.2 Module Appearance

Figure 4-2 Top view of the N58-LA module



Figure 4-3 Bottom view of the N58-LA module



These are renderings of the N58-LA module. For the actual appearance, see the module that you receive from Neoway.

# 5 Electrical Characteristics and Reliability

This chapter describes the electrical characteristics and reliability of the N58-LA module, including the input and output voltage and current of the power supply, the current consumption of the module in different states, the operating and storage temperature ranges, and the ESD protection characteristics.

## 5.1 Electrical Characteristics



- If the voltage is excessively low, the module might fail to start. If the voltage is excessively high or there is a voltage burst during the startup, the module might be damaged permanently.
- If you use LDO or DC-DC to supply power to the module, ensure that the output current is at least 2.5A. The 2.5A current occurs when the module is working at the maximum power level of the GSM mode. The peak current during burst transmission has a short duration. Placing a large capacitor on the VBAT pin of the module can effectively enhance the freewheeling capability of the power supply and prevent excessive voltage drops that cause exceptions, such as module shutdown.

Table 5-1 Electrical characteristics of the N58-LA module

| Model Status | Minimum Value   | Typical Value | Maximum Value |
|--------------|-----------------|---------------|---------------|
| VBAT         | V <sub>in</sub> | 3.4V          | 4.2V          |
|              | I <sub>in</sub> | N/A           | 2.5A          |

Table 5-2 Current consumption of the N58-LA module(typical)

| Frequency Band               | Status | Sleep (mA) | Idle (DRX/eDRX) (mA) | Active(mA)@max power |
|------------------------------|--------|------------|----------------------|----------------------|
| FDD-LTE: B2, B4, B5, B7, B66 |        | <2.6 mA    | <16mA                | <600mA               |
| TDD-LTE:B38, B40, B41        |        | <2.6mA     | <16mA                | <340mA               |
| GSM850                       |        | <2.6mA     | <15mA                | <170mA               |
| GSM1900                      |        | <2.6mA     | <15mA                | <170mA               |

## 5.2 Temperature Characteristics

Table 5-3 Temperature characteristics of the N58-LA module

| Model Status          | Minimum Value | Typical Value | Maximum Value |
|-----------------------|---------------|---------------|---------------|
| Operating temperature | -30°C         | 25°C          | 75°C          |
| Extended temperature  | -40°C         | 25°C          | 85°C          |
| Storage temperature   | -40°C         | 25°C          | 90°C          |



If the operating temperature of the module is in the range of a low temperature -30°C to -35°C or a high temperature 75°C to 85°C, the RF performance indicators of the module may deteriorate and fail to comply with 3GPP specifications. However, it will not have a large impact on the normal use of the module. After the temperature is restored, the RF performance indicators of the module can comply with 3GPP specifications.

## 5.3 ESD Protection Characteristics

Electronic products need to pass ESD tests. The following table shows the ESD capability of key pins of the module. It is recommended to add ESD protection based on the application industry of the product to ensure product quality when designing a product.

Test environment: humidity 45%; temperature 25°C

Table 5-4 ESD protection characteristics of the N58-LA module

| Test Point      | Contact Discharge | Air Discharge |
|-----------------|-------------------|---------------|
| GND             | ±8kV              | ±15kV         |
| ANT             | ±8kV              | ±15kV         |
| Shielding cover | ±8kV              | ±15kV         |

# 6 RF Characteristics

The N58-LA module supports network modes, including GSM, FDD-LTE, TDD-LTE (Cat1), and optionally supports GNSS. This chapter describes the RF characteristics of the N58-LA module.

## 6.1 Operating Bands

Table 6-1 Operating bands of the N58-LA module

| Operating Band | Uplink        | Downlink      |
|----------------|---------------|---------------|
| GSM850         | 824–849MHz    | 869–894MHz    |
| PCS1900        | 1850–1910MHz  | 1930–1990MHz  |
| FDD-LTE B2     | 1850–1910MHz  | 1930–1990MHz  |
| FDD-LTE B4     | 1710–1755MHz  | 2110–2155MHz  |
| FDD-LTE B5     | 824–849MHz    | 869–894MHz    |
| FDD-LTE B7     | 2500–2570MHz  | 2620–2690MHz  |
| FDD-LTE B66    | 1710–1780MHz  | 2110–2200MHz  |
| TDD-LTE B38    | 2570–2620MHz  | 2570–2620MHz  |
| TDD-LTE B40    | 2300–2400MHz  | 2300–2400MHz  |
| TDD-LTE B41    | 2535–2655 MHz | 2535–2655 MHz |

## 6.2 TX Power and RX Sensitivity

Table 6-2 TX power and RX sensitivity of the N58-LA module

| Frequency Band | TX Power | RX Sensitivity |
|----------------|----------|----------------|
| GSM850         | 33d      | Bm+2/-2dBm     |
| PCS1900        | 30d      | Bm+2/-2dBm     |
| FDD-LTEB2      | 23d      | Bm+2/-2dBm     |
| FDD-LTEB4      | 23d      | Bm+2/-2dBm     |
| FDD-LTEB5      | 23d      | Bm+2/-2dBm     |
| FDD-LTEB7      | 23d      | Bm+2/-2dBm     |
| FDD-LTEB66     | 23d      | Bm+2/-2dBm     |
| TDD-LTE B38    | 23d      | Bm+2/-2dBm     |
| TDD-LTEB40     | 23d      | Bm+2/-2dBm     |
| TDD-LTEB41     | 23d      | Bm+2/-2dBm     |



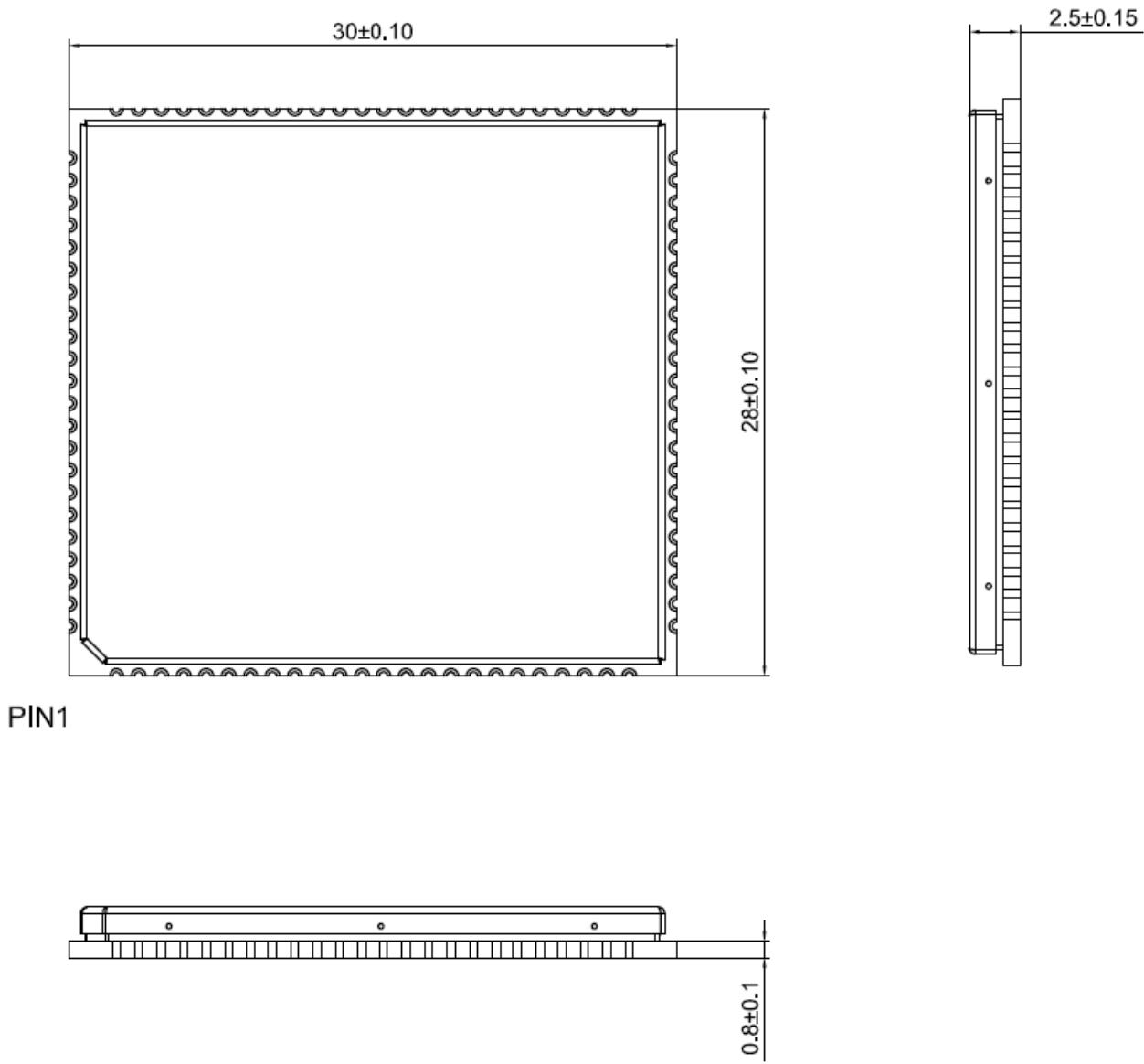
All values above were obtained in labs. The LTE frequency band indicators are tested under the conditions of 10MHz bandwidth, QPSK modulation, and 50 RBs. The RX sensitivity of certain frequency bands on the live network may have a certain deviation due to interference.

## 6.3 GNSS Parameters

Table 6-3 GNSS parameters

| Parameter                                      | Description            |
|------------------------------------------------|------------------------|
| GPS L1 operating frequency                     | 1575.42±1.023MHz       |
| GLONASS operating frequency                    | 1597.5–1605.9MHz       |
| BDS operating frequency                        | 1559.1–1563.1MHz       |
| Tracking sensitivity                           | -160dBm                |
| Acquisition sensitivity                        | -154dBm                |
| Positioning precision (in an open environment) | <3m (CEP50)            |
| Hot start time (in an open environment)        | <1s                    |
| Cold start time (in an open environment)       | <33s                   |
| Update frequency                               | <10Hz                  |
| Noise coefficient(CNRin/CNRout)                | 3dB                    |
| GNSS data type                                 | NMEA-0183              |
| GNSS antenna type                              | Passive/active antenna |




The tracking sensitivity and the acquisition sensitivity were obtained in a signaling test on SPIRENT6300, and they are the maximum values in multiple tests on samples. During the tests, no external LNA or active antenna was used to amplify the signals.

# 7 Mechanical Characteristics

This chapter describes the mechanical characteristics of the N58-LA module.

## 7.1 Dimensions

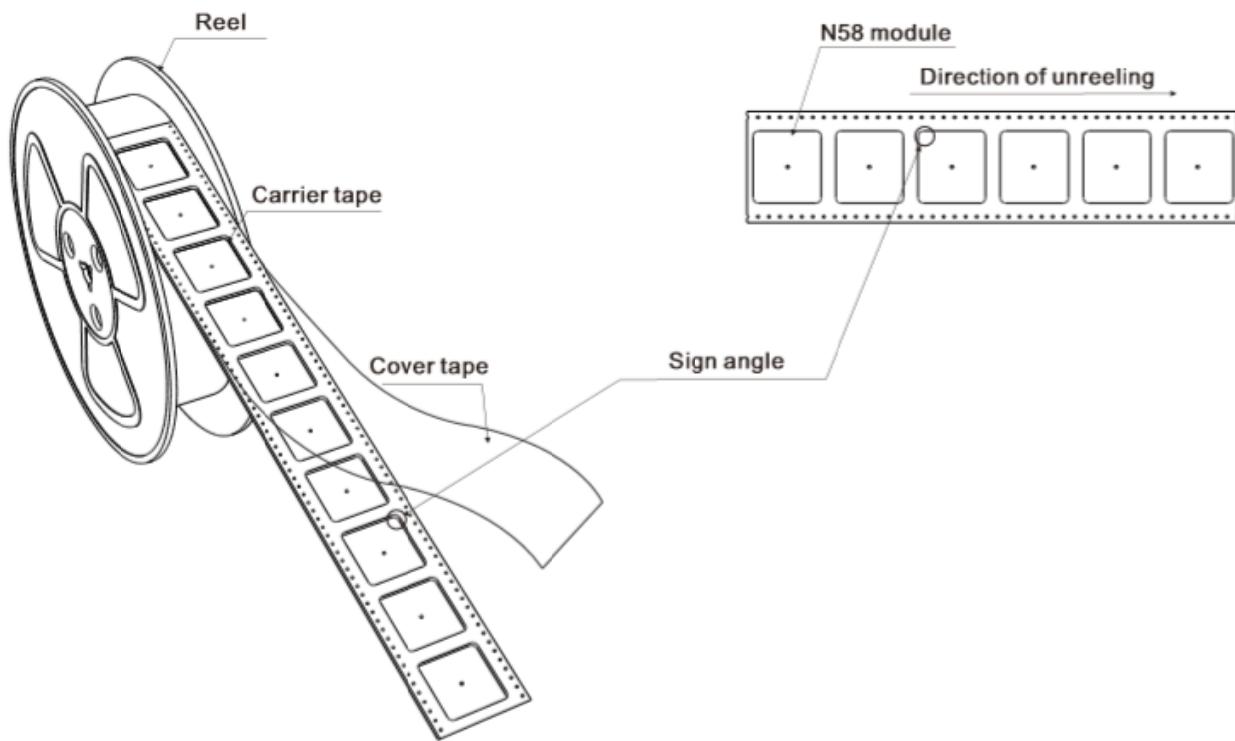
Figure 7-1 N58-LAtop and side dimensions (unit: mm)



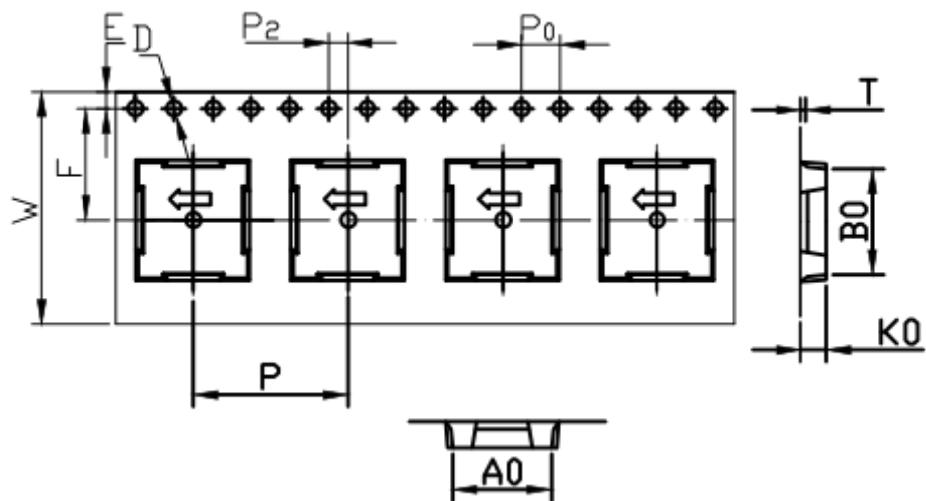
## 7.2 Label

The label uses laser engraving and can withstand a high temperature up to 260°C.



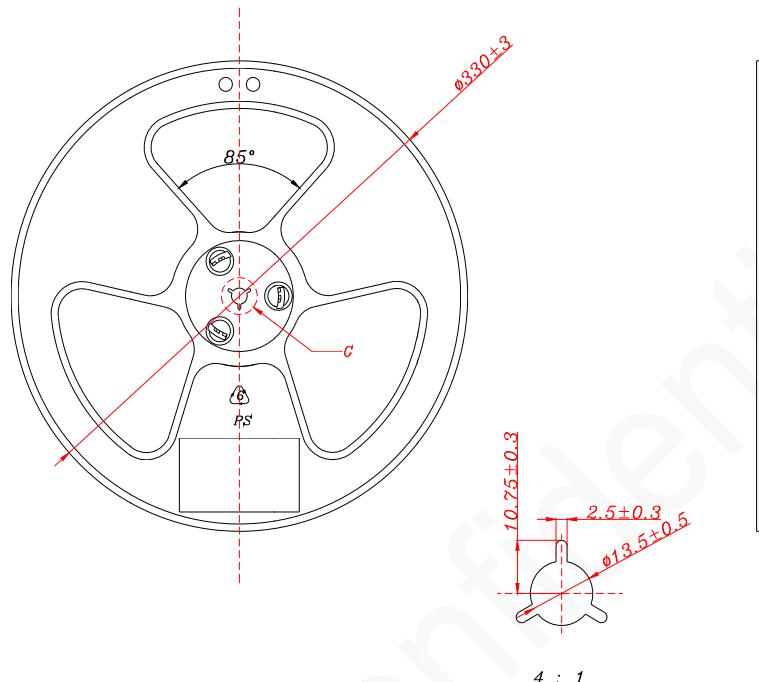

- The picture above is only for reference.
- The material and surface finishing must comply with RoHS directives.

## 7.3 Packaging


The N58-LA module uses a surface-mount method for furnace welding. A moisture-proof packaging method is used to prevent the product from being moist from production to customer use. That is, a processing method, such as using the aluminum foil bag, desiccant, humidity indicator card, tape, or vacuum, is used to ensure the dryness of the product and prolong the lifetime.

### 7.3.1 Reel and Tape

N58-LA modules in mass production are delivered in the following packaging.




### Tape details



| ITEM | W                      | $A_0$                  | $B_0$                  | $K_0$                 | $K_1$                  | P                      | F                      | E                      | D                      | $D_1$                  | $P_0$                  | $P_2$                  |
|------|------------------------|------------------------|------------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| DIM  | $24.0^{+0.30}_{-0.10}$ | $10.1^{+0.10}_{-0.10}$ | $11.0^{+0.10}_{-0.10}$ | $2.7^{+0.10}_{-0.10}$ | $0.00^{+0.10}_{-0.10}$ | $16.0^{+0.10}_{-0.10}$ | $11.5^{+0.10}_{-0.10}$ | $1.75^{+0.10}_{-0.10}$ | $1.50^{+0.10}_{-0.00}$ | $0.00^{+0.25}_{-0.00}$ | $4.00^{+0.10}_{-0.10}$ | $2.00^{+0.10}_{-0.10}$ |

## Reel details

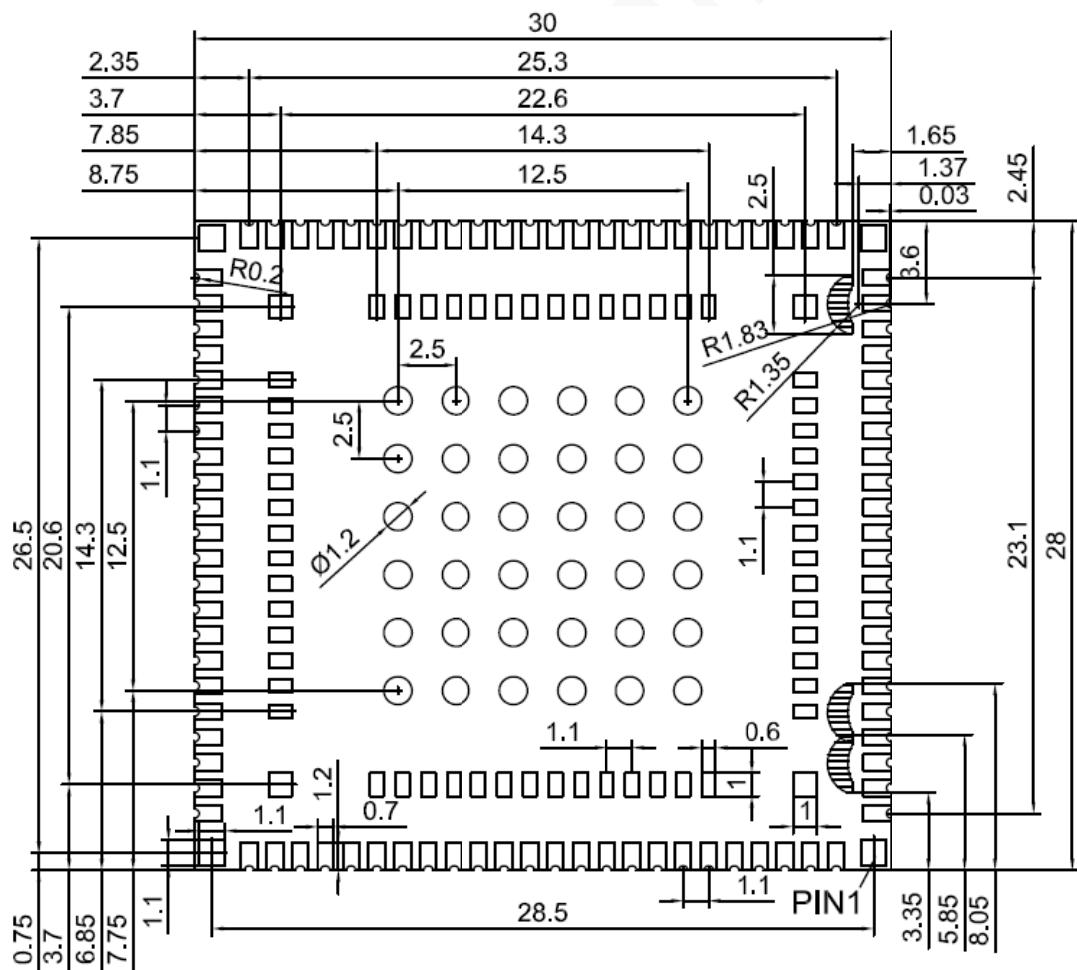


### 7.3.2 Moisture

N58-LA is a level-3 moisture sensitive device, in compliance with standard IPC/JEDECJ-STD-020. Pay attention to all the related requirements for using this kind of components.

After the module is unpacked, if it is exposed to the air for a long time, the module will be moist, and the module may be damaged during reflow soldering or welding in a lab. It is recommended that the module exposed to the air for a long time must be baked before it can be used again. The baking conditions are determined based on the moisture condition. It is recommended to bake the module at a temperature higher than 90 degrees for more than 12 hours. In addition, since the carrier tape is of non-high temperature resistant material, the module cannot be baked directly on the carrier tape.

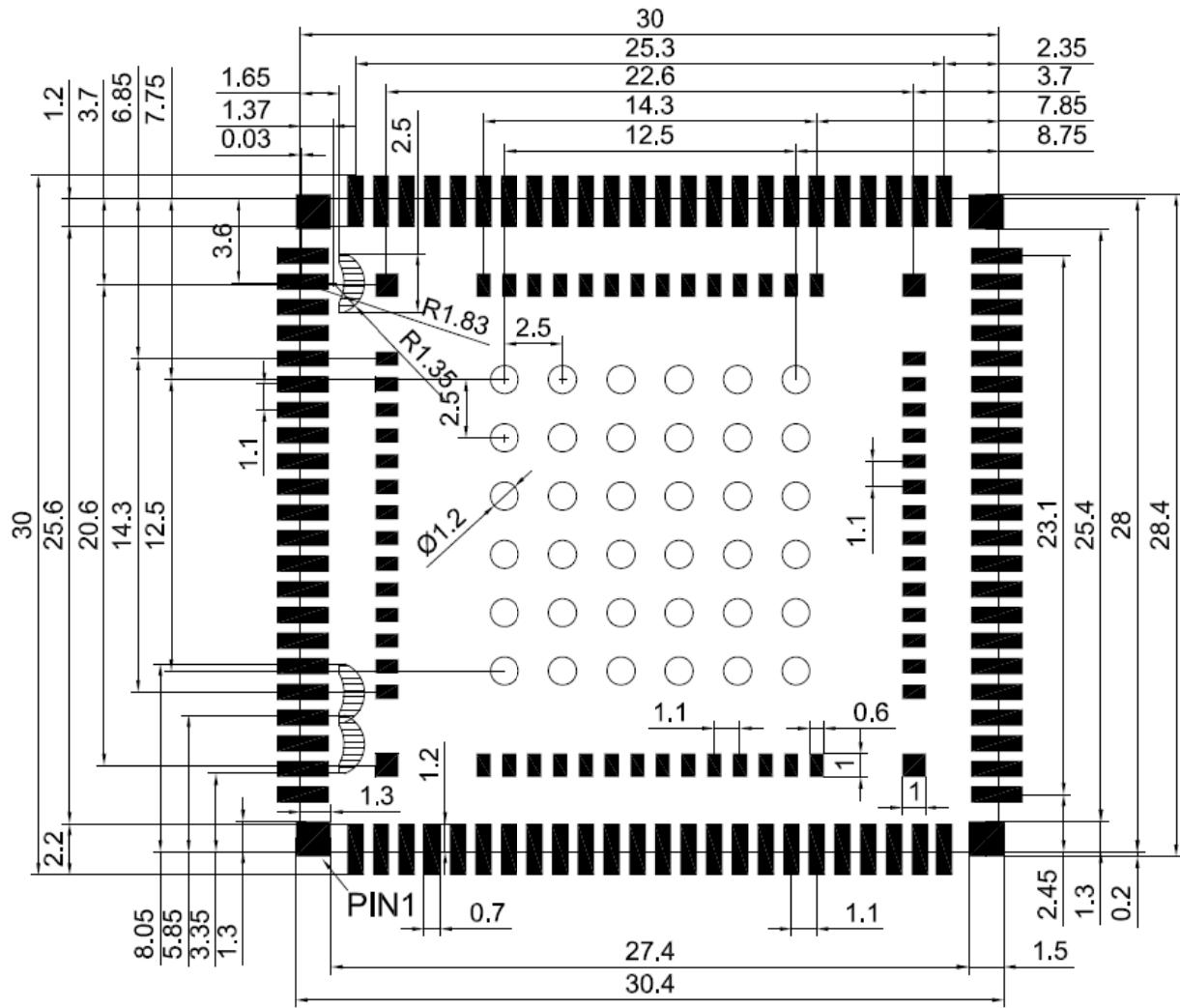
## 8 Assembly


This chapter describes the N58-LA module package, the recommended application package, and technical points related to SMT.

## 8.1 Module PCB Package



Do not route traces, dig holes, or lay copper in the area under the module. Otherwise, print green ink or white ink on the surface.


Figure 8-1 Bottom view of the N58-LA module PCB(unit:mm)



## 8.2 Application PCB Package

The pins of N58-LA use the 100-PIN LGA+92-PIN LCC package. The recommended PCB package is as follows, and the unit is mm.

Figure 8-2 Top view of the recommended N58-LA PCB package



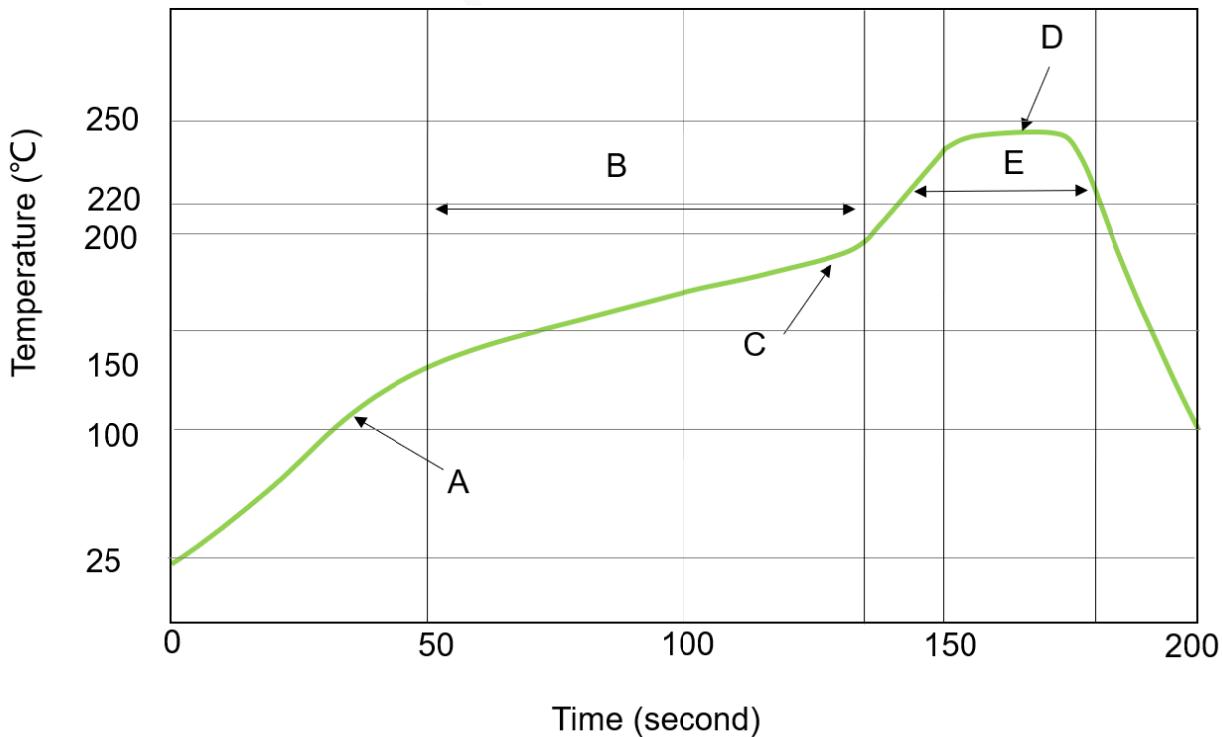
## 8.3 Stencil

The recommended stencil thickness is at least 0.15 mm to 0.20 mm.

## 8.4 Solder Paste

The solder paste volume and the PCB flatness play key roles in the production yield.

Do not use solder pastes with lead that use a module technique that is different from Neoway module technique.


- The melting temperature of solder pastes with lead is 35°C lower than that of solder pastes without lead. The temperature in the reflow process parameters is also lower than that of solder pastes without lead, and less time is consumed correspondingly. It is easy to cause the LCC/LGA in the module to be in the semi-melted state after the second reflow soldering, resulting in poor soldering.
- If customers must use solder pastes with lead, ensure that the reflow temperature is kept at 220°C for more than 45 seconds and the peak temperature reaches 240°C.

## 8.5 SMT Furnace Temperature Curve



Neoway will not provide a warranty for thermal component exceptions caused by improper temperature control.

Figure 8-3 SMT furnace temperature curve



Technical parameters:

- Ramp-up rate: 1°C/sec to 4°C/sec
- Ramp-down rate: -3°C/sec to -1°C/sec
- Soaking zone: 150–180°C, time: 60–100s
- Reflow zone: >220°C, time: 40–90s
- Peak temperature: 235–245°C

For information about important notes in N58-LA storage and mounting, refer to *Neoway Module Reflow Manufacturing Recommendations*.

When manually desoldering the module, use heat guns with great opening, adjust the temperature to about 245°C (depending on the type of the solder paste), and heat the module till the solder paste is melt. Then gently remove the module using tweezers. Do not shake the module in high temperatures while removing it. Otherwise, the components inside the module might get misplaced and cannot be repaired.

# A Abbreviations

| Abbreviation | Full Name                                  |
|--------------|--------------------------------------------|
| ADC          | Analog-to-Digital Converter                |
| AFC          | Automatic Frequency Control                |
| AGC          | Automatic Gain Control                     |
| AI           | Analog Input                               |
| AO           | Analog Output                              |
| AP           | Access Point                               |
| ARM          | Advanced RISC Machine                      |
| BDS          | BeiDou Navigation Satellite System         |
| BOM          | Bill of Material                           |
| BT           | Bluetooth                                  |
| CCC          | China Compulsory Certification             |
| CEP          | Circular Error Probable                    |
| CNR          | Carrier to Noise Rate                      |
| CPU          | Central Processing Unit                    |
| CS           | Chip Select                                |
| CTS          | Clear to Send                              |
| DC           | Direct Current                             |
| DCS          | Digital Cellular System                    |
| DI           | Digital Input                              |
| DIO          | Digital Input/Output                       |
| DL           | Downlink                                   |
| DO           | Digital Output                             |
| DPSK         | Differential Phase Shift Keying            |
| DQPSK        | Differential Quadrature Phase Shift Keying |
| DRX          | Discontinuous Reception                    |
| DTR          | Data Terminal Ready                        |
| ECM          | Ethernet Control Model                     |

|         |                                         |
|---------|-----------------------------------------|
| eDRX    | Extended DRX                            |
| EGSM    | Enhanced GSM                            |
| ESD     | Electronic Static Discharge             |
| ESR     | Equivalent Series Resistance            |
| EVK     | Evaluation Kit                          |
| FCC     | Federal Communications Commission       |
| FDD     | Frequency Division Duplexing            |
| FPC     | Flexible Printed Circuit                |
| FTP     | File Transfer Protocol                  |
| FTPS    | FTP Secure                              |
| GFSK    | Gauss Frequency Shift Keying            |
| GLONASS | GLOBAL NAVIGATION SATELLITE SYSTEM      |
| GNSS    | Global Navigation Satellite System      |
| GPIO    | General Purpose Input Output            |
| 3GPP    | 3rd Generation Partnership Project      |
| GPRS    | General Packet Radio Service            |
| GPS     | Global Positioning System               |
| GSM     | Global System for Mobile Communications |
| I2C     | Inter-Integrated Circuit                |
| IO      | Input/Output                            |
| ISP     | Image Signal Processor                  |
| LCC     | Leadless Chip Carriers                  |
| LCD     | Liquid Crystal Display                  |
| LED     | Light Emitting Diode                    |
| LGA     | Land Grid Array                         |
| LTE     | Long Term Evolution                     |
| MCU     | Microcontroller Unit                    |
| MIPI    | Mobile Industry Processor Interface     |
| PCB     | Printed Circuit Board                   |
| PCS     | Personal Communications Service         |
| PWM     | Pulse Width Modulation                  |
| QVGA    | Quarter Video Graphics Array            |
| RAM     | Random Access Memory                    |

|       |                                             |
|-------|---------------------------------------------|
| RF    | Radio Frequency                             |
| ROM   | Read-only Memory                            |
| RTC   | Real-Time Clock                             |
| SD    | Secure Digital                              |
| SDIO  | Secure Digital Input Output                 |
| SIM   | Subscriber Identification Module            |
| SPI   | Serial Peripheral Interface                 |
| SRAM  | Static Random Access Memory                 |
| TDD   | Time Division Duplex                        |
| UART  | Universal Asynchronous Receiver/Transmitter |
| UL    | Uplink                                      |
| USB   | Universal Serial Bus                        |
| USIM  | Universal Subscriber Identity Module        |
| VBAT  | Battery Voltage                             |
| VSWR  | Voltage Standing Wave Ratio                 |
| Wi-Fi | Wireless Fidelity                           |
| WLAN  | Wireless Local Area Network                 |

#### FCC Compliance Notice

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation.

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

## **Regulatory Module Integration Instructions**

### **2.2 List of applicable FCC rules**

This device complies with part2-Subpart J ,part 22-Subpart H,part 24-Subpart E,part 27 of the FCC Rules.

### **2.3 Summarize the specific operational use conditions**

The input voltage to the module should be nominally 3.4-4.2V DC , typical value 3.8V DC and the ambient temperature of the module should not exceed 85°C.

If the antenna needs to be changed, the certification should be re-applied.

### **2.4 Limited module procedures**

Not applicable

### **2.5 Trace antenna designs**

Not applicable

### **2.6 RF exposure considerations**

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment .This equipment should be installed and operated with minimum distance 20cm between the radiator& your body. If the device built into a host as a portable usage, the additional RF exposure evaluation may be required as specified by 2.1093.

### **2.7 Antennas**

Comply with the antenna requirements of Section 15.203 and 15.204(c), the requirements of antenna connector and spurious emission have been fulfilled, the maximum gain of GSM850/LTE Band 5 is 2.41dBi,PCS1900/LTE Band 2 is 4dBi, LTE Band 4/66 is 6 dBi.LTE Band7/38/41 is 9dBi,LTE Band40 is 0dBi.

### **2.8 Label and compliance information**

The outside of final products that contains this module device must display a label referring to the enclosed module. This exterior label can use wording such as: "Contains Transmitter Module FCC ID: PJ7-N58-LA ", or "Contains FCC ID: PJ7-N58-LA ", Any similar wording that expresses the same meaning may be used.

### **2.9 Information on test modes and additional testing requirements**

a)The modular transmitter has been fully tested by the module grantee on the required number of channels, modulation types, and modes, it should not be necessary for the host installer to re-test all the available transmitter modes or settings. It is recommended that the host product manufacturer, installing the modular transmitter, perform some investigative measurements to confirm that the resulting composite system does not exceed the spurious emissions

limits or band edge limits (e.g., where a different antenna may be causing additional emissions).

b) The testing should check for emissions that may occur due to the intermixing of emissions with the other transmitters, digital circuitry, or due to physical properties of the host product (enclosure). This investigation is especially important when integrating multiple modular transmitters where the certification is based on testing each of them in a stand-alone configuration. It is important to note that host product manufacturers should not assume that because the modular transmitter is certified that they do not have any responsibility for final product compliance.

C) If the investigation indicates a compliance concern the host product manufacturer is obligated to mitigate the issue. Host products using a modular transmitter are subject to all the applicable individual technical rules as well as to the general conditions of operation in Sections 15.5, 15.15, and 15.29 to not cause interference. The operator of the host product will be obligated to stop operating the device until the interference has been corrected

## **2.10 Additional testing, Part 15 subpart B disclaimer**

The final host / module combination need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device .

The host integrator installing this module into their product must ensure that the final composite product complies with the FCC requirements by a technical assessment or evaluation to the FCC rules, including the transmitter operation and should refer to guidance in KDB 996369.

### **Frequency spectrum to be investigated**

For host products with certified modular transmitter, the frequency range of investigation of the composite system is specified by rule in Sections 15.33(a)(1) through (a)(3), or the range applicable to the digital device, as shown in Section 15.33(b)(1), whichever is the higher frequency range of investigation.

### **Operating the host product**

When testing the host product, all the transmitters must be operating. The transmitters can be enabled by using publicly-available drivers and turned on, so the transmitters are active. In certain conditions it might be appropriate to use a technology-specific call box (test set) where accessory devices or drivers are not available.

When testing for emissions from the unintentional radiator, the transmitter shall be placed in the receive mode or idle mode, if possible. If receive mode only is not possible then, the radio shall be passive (preferred) and/or active scanning. In these cases, this would need to enable activity on the communication BUS (i.e., PCIe, SDIO, USB) to ensure the unintentional radiator circuitry is enabled. Testing laboratories may need to add attenuation or filters depending on the signal strength of any active beacons (if applicable) from the enabled radio(s). See ANSI C63.4, ANSI C63.10 and ANSI C63.26 for further general testing details.