

ADDENDUM TO INTERNATIONAL ELECTRONICS INC. TEST REPORT FC05-056

FOR THE

ACCESS CONTROL SYSTEM, NETLOCK

FCC PART 15 SUBPART C SECTIONS 15.207, 15.209 & RSS-210

COMPLIANCE

DATE OF ISSUE: SEPTEMBER 22, 2005

PREPARED FOR: PREPARED BY:

International Electronics Inc.

427 Turnpike Street

Canton, MA 02021

Canton, MA 02021

Mary Ellen Clayton

CKC Laboratories, Inc.

5046 Sierra Pines Drive

Mariposa, CA 95338

P.O. No.: 31016 Date of test: August 8 & 9, 2005

W.O. No.: 84019

Report No.: FC05-056A

This report contains a total of 31 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 31 Report No.: FC05-056A

TABLE OF CONTENTS

Administrative Information	3
FCC to Canada Standard Correlation Matrix	.4
Conditions for Compliance	4
Approvals	4
FCC 15.31(e) Voltage Variation	5
FCC 15.31(m) Number of Channels	5
FCC 15.33(a) Frequency Ranges Tested	5
FCC 15.35 Analyzer Bandwidth Settings	5
FCC 15.203 Antenna Requirements	5
FCC 15.205 Restricted Bands	5
EUT Operating Frequency	5
Temperature and Humidity During Testing	5
Equipment Under Test (EUT) Description	
Equipment Under Test	6
Peripheral Devices	6
Report of Measurements	
Table 1: Six Highest Conducted Emission Levels: FCC 15.207	. 7
Table 2: Fundamental Emission Levels	
Table 3: Six Highest Radiated Emission Levels: FCC 15.209 (100 kHz - 30 MHz)	.9
Table 4: Six Highest Radiated Emission Levels: FCC 15.209 (30-1000 MHz)	. 10
Occupied/99% Bandwidth Plot	. 11
EUT Setup	.12
Correction Factors	.12
Table A: Sample Calculations	
Test Instrumentation and Analyzer Settings	13
Spectrum Analyzer Detector Functions	.13
Peak	13
Quasi-Peak	.13
Average	13
EUT Testing	.14
Mains Conducted Emissions	.14
Radiated Emissions	.14
Appendix A: Test Setup Photographs	15
Photograph Showing Mains Conducted Emissions	.16
Photograph Showing Mains Conducted Emissions	.17
Photograph Showing Radiated Emissions	.18
Photograph Showing Radiated Emissions	.19
Appendix B: Test Equipment List	20
Appendix C: Measurement Data Sheets	.21

Page 2 of 31 Report No.: FC05-056A

ADMINISTRATIVE INFORMATION

DATE OF TEST: August 8 & 9, 2005

DATE OF RECEIPT: August 8, 2005

MANUFACTURER: International Electronics Inc.

427 Turnpike Street Canton, MA 02021

REPRESENTATIVE: Chris Hentschel

TEST LOCATION: CKC Laboratories, Inc.

5046 Sierra Pines Drive Mariposa, CA 95338

TEST METHOD: ANSI C63.4 (2003) and RSS-210

PURPOSE OF TEST: To demonstrate the compliance of the Access

Control System, NetLock with the requirements for FCC Part 15 Subpart C Sections 15.207, 15.209 and

RSS-210 devices.

Addendum A is to correct the calibration dates for

the radiated emissions test equipment.

Page 3 of 31 Report No.: FC05-056A

FCC TO CANADA STANDARD CORRELATION MATRIX

Canadian Standard	Canadian Section	FCC Standard	FCC Section	Test Description
RSS 210	5.5	47CFR	15.203	Antenna Connector Requirements
RSS 210	6.2.1	47CFR	15.209	General Radiated Emissions Requirement
RSS 210	6.3	47CFR	15.205	Restricted Bands of Operation
RSS 210	6.4	47CFR	15.215(c)	Frequency Stability Recommendation
RSS 210	6.5	47CFR	15.35(c)	Pulsed Operation
RSS 210	6.6	47CFR	15.207	AC Mains Conducted Emissions Requirement
	Emission bandwidth (99% Bandwidth) -20dBc			SP100 Appendix II (Test report Cover Sheet) requires Occupied bandwidth (99%) measurement IAW RSS 133. Section 5.6
	IC 3082-D		784962	Site File No.

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

TEST PERSONNEL:

Joyce Walker, Quality Assurance Administrative

Manager

Randy Clark, EMC Engineer

Page 4 of 31 Report No.: FC05-056A

FCC 15.31(e) Voltage Variations

Voltage variations performed in accordance with 15.31, no change detected for $\pm 15\%$ mains input.

FCC 15.31(m) Number of Channels

This device operates on a single channel.

FCC 15.33(a) Frequency Ranges Tested

15.207 Conducted Emissions: 150 kHz – 30 MHz 15.209 Radiated Emissions: 100 kHz – 1000 MHz

FCC SECTION 15.35: ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE									
TEST BEGINNING FREQUENCY ENDING FREQUENCY BANDWIDTH SETTING									
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz						
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz						
RADIATED EMISSIONS 150 kHz 30 MHz 9 kHz									
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz						

FCC 15.203 Antenna Requirements

The antenna is an integral part of the EUT and is non-removable; therefore the EUT complies with Section 15.203 of the FCC rules.

FCC 15.205 Restricted Bands

The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.

EUT Operating Frequency

The EUT was operating at 125 kHz.

Temperature and Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C.

The relative humidity was between 20% and 75%.

Page 5 of 31 Report No.: FC05-056A

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit. The following models have been tested by CKC Laboratories:

EQUIPMENT UNDER TEST

<u>Proximity Reader</u> <u>Four Door Interface PCB Assembly</u>

Manuf: International Electronic Inc. Manuf: International Electronic Inc.

Model: 029-5106 Model: 029-5105

Serial: PHUNL Serial: NA FCC ID: Pending FCC ID: DoC

Auxiliary Control PCB Assembly 12VDC Power Supply

Manuf: International Electronic Inc. Manuf: International Electronic Inc.

Model:029-5107Model:PIP1312Serial:NASerial:0517FCC ID:DoCFCC ID:DoC

The manufacturer states that the above products will also be sold under different company part numbers and these models are identical electrically to the ones which were tested, or any differences between them do not affect their EMC characteristics, and therefore comply to the level of testing equivalent to the tested models. The following is a matrix of all the names:

Description	Sargent	Corbin	IEI	Product Label
	Part #	Part #		
Product Family	v.N1	Access		
	Series	800		
		TCNE		
		Series		
Auxiliary Control PCB Assembly ¹	52-3169	711F799	029-5107	FCC Part 15 class B - note in manual
Interface PCB Assembly - 4 droor ¹	52-3170	711F789	029-5105	FCC Part 15 class B - note in manual
Interface PCB Assembly - 2 droor ¹	52-3171	711F779	029-5108	FCC Part 15 class B - note in manual
Lock Reader ²	52-3168	708F739	029-5106	FCC-ID: PHUNL
				IC: 4517A-NL

¹These assemblies contain mocroprocessor with clock frequencies over 10kHz

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

Page 6 of 31 Report No.: FC05-056A

² This unit contains the RFID reader and is an intentional radiator

REPORT OF MEASUREMENTS

The following tables report the worst case emissions levels recorded during the tests performed on the EUT. All readings taken were peak readings unless otherwise stated. The data sheets from which the emissions tables were compiled are contained in Appendix C.

	Table 1: Six Highest Conducted Emission Levels: FCC 15.207												
FREQUENCY MHz	METER READING dBμV	COR Cable dB	RECTION Lisn dB	ON FACT HPF dB	TORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES				
0.200022	24.7	0.1	0.4	0.0		25.2	53.6	-28.4	BA				
0.242355	24.3	0.1	0.3	0.3		25.0	52.0	-27.0	WA				
0.284533	23.4	0.1	0.2	0.2		23.9	50.7	-26.8	WA				
0.291080	23.3	0.1	0.3	0.2		23.9	50.5	-26.6	BA				
0.296860	23.3	0.1	0.3	0.2		23.9	50.3	-26.4	BA				
0.500000	18.1	0.1	0.3	0.2		18.7	46.0	-27.3	BA				

Test Method: ANSI C63.4 (2003)

Spec Limit: FCC Part 15 Subpart C Section 15.207

NOTES: A = Average Reading

B = Black Lead W = White Lead

COMMENTS: Equipment is a wireless access entry system using a wired interface to an access controller. The door lock has a 125kHz proximity reader installed, which communicates to the controller PCB via 4-wire cable. The controller PCB includes inputs for up to 4 doors at a time. The remaining three door inputs are cabled and terminated with characteristic impedance. The relay PCB is cabled and terminated with characteristic impedance to simulate normal installation. The controller PCB is connected to the relay PCB by a standard interconnecting cable. Both the controller PCB and the relay PCB are mounted vertically on a wooden support to simulate normal installation (traditionally, these components would be installed in a metal enclosure - this configuration is tested to determine worst case emissions). All cables are bundled non-inductively according to ANSI C63.4 (2003). Frequency Range Investigated: 150kHz - 30MHz. Temperature: 27°C, Rel Humidity: 36%.

Page 7 of 31 Report No.: FC05-056A

	Table 2: Fundamental Emission Levels											
METER CORRECTION FACTORS CORRECTED SPEC FREQUENCY READING Ant Corr Cable Dist READING LIMIT MARGIN NOTION MHz dBμV dB dB dB dB dBμV/m dBμV/m dB								NOTES				
0.126	65.5	10.2	-80.0	0.1		-4.2	25.6	-29.8	V			
0.126	60.5	10.2	-80.0	0.1		-9.2	25.6	-34.8	Н			

Test Method: ANSI C63.4 (2003) NOTES: H = Horizontal Polarization
Spec Limit: FCC Part 15 Subpart C Section 15.209 V = Vertical Polarization

Test Distance: 3 Meters

COMMENTS: Equipment is a wireless access entry system using a wired interface to an access controller. The door lock has a 125kHz proximity reader installed, which communicates to the controller PCB via 4-wire cable. The controller PCB includes inputs for up to 4 doors at a time. The remaining three door inputs are cabled and terminated with characteristic impedance. The relay PCB is cabled and terminated with characteristic impedance to simulate normal installation. The controller PCB is connected to the relay PCB by a standard interconnecting cable. Both the controller PCB and the relay PCB are mounted vertically on a wooden support to simulate normal installation (traditionally, these components would be installed in a metal enclosure - this configuration is tested to determine worst case emissions). All cables are bundled non-inductively according to ANSI C63.4 (2003). Frequency Range Investigated: Carrier. Temperature: 27°C, Rel Humidity: 36%. Test distance correction factor used in accordance with FCC 15.31 to correct data for comparison to the limit at 300 meters.

Page 8 of 31 Report No.: FC05-056A

	Table 3: Six Highest Radiated Emission Levels: FCC 15.209 (100 kHz - 30 MHz)												
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIO Corr dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES				
0.505	35.1	10.1	-40.0	0.2		5.4	33.5	-28.1	V				
0.505	34.4	10.1	-40.0	0.2		4.7	33.5	-28.8	Н				
0.631	33.7	10.1	-40.0	0.2		4.0	31.6	-27.6	Н				
0.631	33.2	10.1	-40.0	0.2		3.5	31.6	-28.1	V				
0.884	28.7	10.1	-40.0	0.2		-0.8	28.6	-29.4	Н				
0.884	28.5	10.1	-40.0	0.2		-1.0	28.6	-29.6	V				

Test Method: ANSI C63.4 (2003) NOTES: H = Horizontal Polarization
Spec Limit: FCC Part 15 Subpart C Section 15.209 V = Vertical Polarization

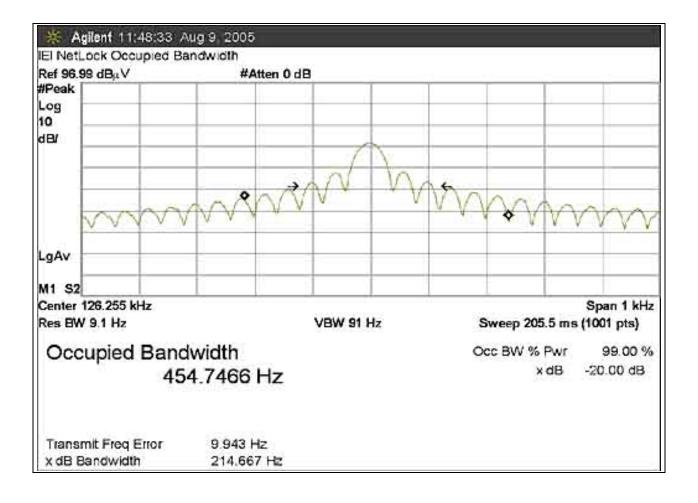
Test Distance: 3 Meters

COMMENTS: Equipment is a wireless access entry system using a wired interface to an access controller. The door lock has a 125kHz proximity reader installed, which communicates to the controller PCB via 4-wire cable. The controller PCB includes inputs for up to 4 doors at a time. The remaining three door inputs are cabled and terminated with characteristic impedance. The relay PCB is cabled and terminated with characteristic impedance to simulate normal installation. The controller PCB is connected to the relay PCB by a standard interconnecting cable. Both the controller PCB and the relay PCB are mounted vertically on a wooden support to simulate normal installation (traditionally, these components would be installed in a metal enclosure - this configuration is tested to determine worst case emissions). All cables are bundled non-inductively according to ANSI C63.4 (2003). Frequency Range Investigated: 100kHz - 30MHz. Temperature: 27°C, Rel Humidity: 36%. Test distance correction factor used in accordance with FCC 15.31 to correct data for comparison to the limit at 30 and 300 meters. Emissions detected are ambient noise level readings; no EUT Emissions detected within 20dB of the limit.

Page 9 of 31 Report No.: FC05-056A

	Table 4: Six Highest Radiated Emission Levels: FCC 15.209 (30-1000 MHz)												
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES				
71.880	46.2	5.9	-26.8	1.9		27.2	40.0	-12.8	V				
76.112	47.7	6.3	-26.9	2.0		29.1	40.0	-10.9	V				
76.380	45.7	6.4	-26.9	2.0		27.2	40.0	-12.8	V				
81.080	45.8	6.9	-27.0	2.0		27.7	40.0	-12.3	V				
83.700	44.7	7.2	-26.9	2.1		27.1	40.0	-12.9	V				
86.626	45.5	7.6	-26.9	2.1		28.3	40.0	-11.7	V				

Test Method: ANSI C63.4 (2003) NOTES: H = Horizontal Polarization
Spec Limit: FCC Part 15 Subpart C Section 15.209 V = Vertical Polarization


Test Distance: 3 Meters

COMMENTS: Equipment is a wireless access entry system using a wired interface to an access controller. The door lock has a 125kHz proximity reader installed, which communicates to the controller PCB via 4-wire cable. The controller PCB includes inputs for up to 4 doors at a time. The remaining three door inputs are cabled and terminated with characteristic impedance. The relay PCB is cabled and terminated with characteristic impedance to simulate normal installation. The controller PCB is connected to the relay PCB by a standard interconnecting cable. Both the controller PCB and the relay PCB are mounted vertically on a wooden support to simulate normal installation (traditionally, these components would be installed in a metal enclosure - this configuration is tested to determine worst case emissions). All cables are bundled non-inductively according to ANSI C63.4 (2003). Frequency Range Investigated: 100kHz - 30MHz. Temperature: 27°C, Rel Humidity: 36%. Test distance correction factor used in accordance with FCC 15.31 to correct data for comparison to the limit at 30 and 300 meters. Emissions detected are ambient noise level readings; no EUT Emissions detected within 20dB of the limit.

Page 10 of 31 Report No.: FC05-056A

OCCUPIED/99% BANDWIDTH PLOT

Page 11 of 31 Report No.: FC05-056A

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated and conducted emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TAI	TABLE A: SAMPLE CALCULATIONS								
	Meter reading	$(dB\mu V)$							
+	Antenna Factor	(dB)							
+	Cable Loss	(dB)							
_	Distance Correction	(dB)							
_	Preamplifier Gain	(dB)							
=	Corrected Reading	$(dB\mu V/m)$							

Page 12 of 31 Report No.: FC05-056A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Appendix B were used to collect both the radiated and conducted emissions data. For radiated measurements from 100 kHz to 30 MHz, the magnetic loop antenna was used. For frequencies from 30 to 1000 MHz, the biconilog antenna was used. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of $97 \text{ dB}\mu\text{V}$, and a vertical scale of 10 dB per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

Page 13 of 31 Report No.: FC05-056A

EUT TESTING

Mains Conducted Emissions

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 0.5 meter deep, and 0.5 meter in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

The LISNs used were $50 \,\mu\text{H}$ -/+ $50 \,\text{ohms}$. Above $150 \,\text{kHz}$, a $0.15 \,\mu\text{F}$ series capacitor was added in-line prior to connecting the analyzer to restore the proper impedance for the range. A $30 \,\text{to}\,50 \,\text{second}$ sweep time was used for automated measurements in the frequency bands of $150 \,\text{kHz}$ to $500 \,\text{kHz}$, and $500 \,\text{kHz}$ to $30 \,\text{MHz}$. All readings within $20 \,\text{dB}$ of the limit were recorded, and those within $6 \,\text{dB}$ of the limit were examined with additional measurements using a slower sweep time.

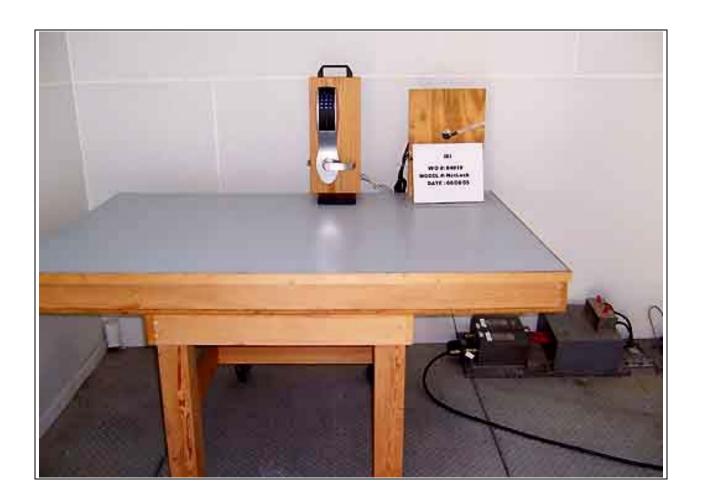
Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 0.5 meter by 0.5 meters.

During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 100 kHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable and raising and lowering the antenna from one to four meters as needed. The test engineer maximized the readings with respect to the table rotation, antenna height, and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

Page 14 of 31 Report No.: FC05-056A



APPENDIX A TEST SETUP PHOTOGRAPHS

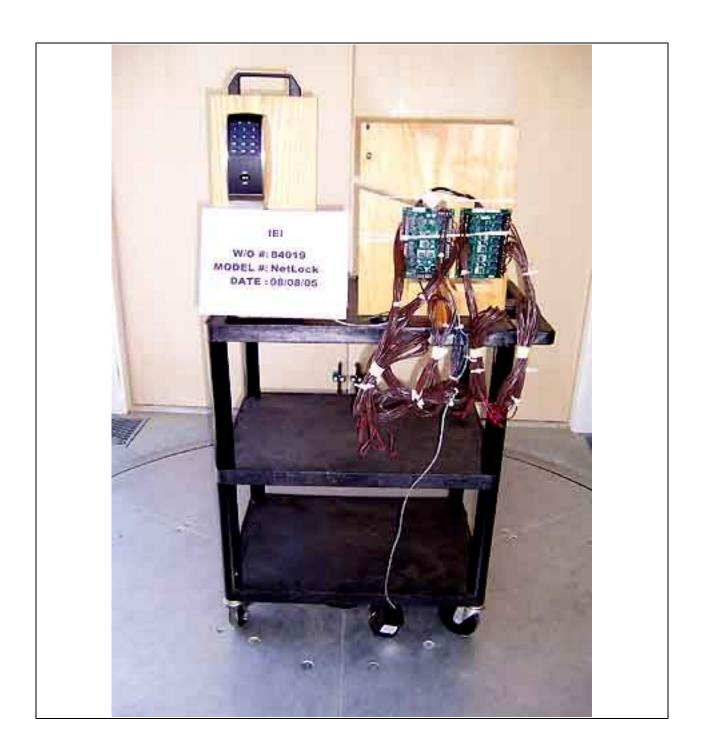
Page 15 of 31 Report No.: FC05-056A

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Front View

Page 16 of 31 Report No.: FC05-056A

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS



Mains Conducted Emissions - Side View

Page 17 of 31 Report No.: FC05-056A

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

Page 18 of 31 Report No.: FC05-056A

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

Page 19 of 31 Report No.: FC05-056A

APPENDIX B

TEST EQUIPMENT LIST

Conducted Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
150kHz HP Filter	G7754	04/20/2004	04/20/2006	02608
TTE				
LISN, 8028-50-TS-	8379276, 280	06/03/2005	06/03/2007	1248 & 1249
24-BNC				

Fundamental Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
EMCO Loop Antenna	1074	05/13/2005	05/13/2007	00226
Transformer	None	05/05/2005	05/05/2007	2037
Powerstat 126				

100 kHz – 30 MHz Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
EMCO Loop Antenna	1074	05/13/2005	05/13/2007	00226

30 – 1000 MHz Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A SA	US44300407	01/12/2005	01/12/2007	02660
HP 8447D Preamp	1937A02604	03/11/2005	03/11/2007	00099
Chase CBL6111C	2456	06/7/2005	06/7/2007	01991
Bilog				

Page 20 of 31 Report No.: FC05-056A

APPENDIX C:

MEASUREMENT DATA SHEETS

Page 21 of 31 Report No.: FC05-056A

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: IEI

Specification: FCC 15.207 - AVE

Work Order #: 84019 Date: 8/9/2005
Test Type: Conducted Emissions Time: 11:28:47
Equipment: Access Control System Sequence#: 4

Manufacturer: IEI Tested By: Randal Clark Model: NetLock 120V 60Hz

S/N:

Equipment Under Test (* = EUT):

Equipment Citater Test (- 20 1)•			_
Function	Manufacturer	Model #	S/N	
Proximity Reader	IEI	029-5106	PHUNL	
Four Door Interface PCB	IEI	029-5105		
Assembly				
Auxiliary Control PCB	IEI	029-5107		
Assembly				
12VDC Power Supply	IEI	PIP1312	0517	

Support Devices:

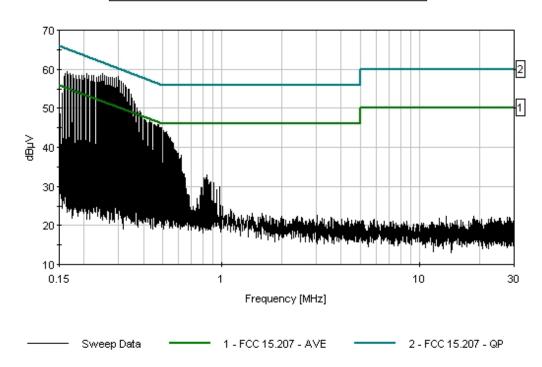
Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Equipment is a wireless access entry system using a wired interface to an access controller. The door lock has a 125kHz proximity reader installed, which communicates to the controller PCB via 4-wire cable. The controller PCB includes inputs for up to 4 doors at a time. The remaining three door inputs are cabled and terminated with characteristic impedance. The relay PCB is cabled and terminated with characteristic impedance to simulate normal installation. The controller PCB is connected to the relay PCB by a standard interconnecting cable. Both the controller PCB and the relay PCB are mounted vertically on a wooden support to simulate normal installation (traditionally, these components would be installed in a metal enclosure - this configuration is tested to determine worst case emissions). All cables are bundled non-inductively according to ANSI C63.4 (2003). Frequency Range Investigated: 150kHz - 30MHz. Temperature: 27°C, Rel Humidity: 36%.

Transducer Legend:

Transaucer Legena.	
T1=Cable - Internal + cab	T2=LISN Insertion Loss s/n276
T3=HP Filter AN02608	


Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	296.860k	23.3	+0.1	+0.3	+0.2		+0.0	23.9	50.3	-26.4	Black
	Ave										
^	296.896k	57.5	+0.1	+0.3	+0.2		+0.0	58.1	50.3	+7.8	Black
3	291.080k	23.3	+0.1	+0.3	+0.2		+0.0	23.9	50.5	-26.6	Black
	Ave										
^	291.078k	57.4	+0.1	+0.3	+0.2		+0.0	58.0	50.5	+7.5	Black
5	500.000k	18.1	+0.1	+0.3	+0.2		+0.0	18.7	46.0	-27.3	Black
	Ave										
٨	500.000k	44.2	+0.1	+0.3	+0.2		+0.0	44.8	46.0	-1.2	Black

Page 22 of 31 Report No.: FC05-056A

_										
7	200.022k	24.7	+0.1	+0.4	+0.0	+0.0	25.2	53.6	-28.4	Black
1	Ave									
٨	200.000k	58.0	+0.1	+0.4	+0.0	+0.0	58.5	53.6	+4.9	Black
9	178.600k	24.7	+0.1	+0.4	+0.4	+0.0	25.6	54.6	-29.0	Black
1	Ave									
٨	178.600k	58.4	+0.1	+0.4	+0.4	+0.0	59.3	54.6	+4.7	Black
11	400.000k	18.2	+0.1	+0.4	+0.1	+0.0	18.8	47.9	-29.1	Black
1	Ave									
٨	400.000k	45.5	+0.1	+0.4	+0.1	+0.0	46.1	47.9	-1.8	Black

CKC Laboratories Date: 8/9/2005 Time: 11:28:47 IEIWO#: 84019 FCC 15:207 - AVE Test Lead: Black 120V 60Hz Sequence#: 4 IEI M/N NetLock

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: IEI

Specification: FCC 15.207 - AVE

Work Order #: 84019 Date: 8/9/2005
Test Type: Conducted Emissions Time: 11:39:27
Equipment: Access Control System Sequence#: 5

Manufacturer: IEI Tested By: Randal Clark Model: NetLock 120V 60Hz

S/N:

Equipment Under Test (* = EUT):

=quipilient citue: 1est (
Function	Manufacturer	Model #	S/N
Proximity Reader	IEI	029-5106	PHUNL
Four Door Interface PCB	IEI	029-5105	
Assembly			
Auxiliary Control PCB	IEI	029-5107	
Assembly			
12VDC Power Supply	IEI	PIP1312	0517

Support Devices:

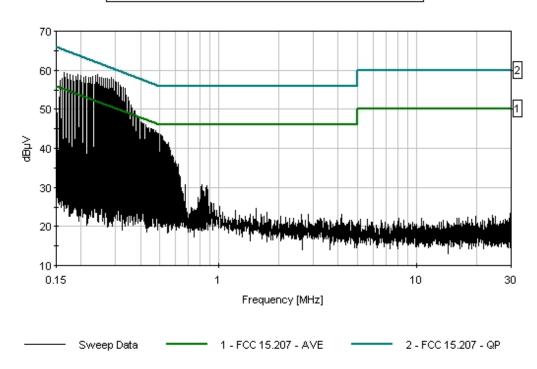
			~ ~ ~	
Function	Manufacturer	Model #	C/N	
Tuncuon	Munatucturer	1110401 //	D/1 N	

Test Conditions / Notes:

Equipment is a wireless access entry system using a wired interface to an access controller. The door lock has a 125kHz proximity reader installed, which communicates to the controller PCB via 4-wire cable. The controller PCB includes inputs for up to 4 doors at a time. The remaining three door inputs are cabled and terminated with characteristic impedance. The relay PCB is cabled and terminated with characteristic impedance to simulate normal installation. The controller PCB is connected to the relay PCB by a standard interconnecting cable. Both the controller PCB and the relay PCB are mounted vertically on a wooden support to simulate normal installation (traditionally, these components would be installed in a metal enclosure - this configuration is tested to determine worst case emissions). All cables are bundled non-inductively according to ANSI C63.4 (2003). Frequency Range Investigated: 150kHz - 30MHz. Temperature: 27°C, Rel Humidity: 36%.

Transducer Legend:

Transaucer Legena.	
T1=Cable - Internal + cab	T2=LISN Insertion Loss s/n280
T3=HP Filter AN02608	


Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: White		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	284.533k	23.4	+0.1	+0.2	+0.2		+0.0	23.9	50.7	-26.8	White
	Ave										
٨	284.533k	57.7	+0.1	+0.2	+0.2		+0.0	58.2	50.7	+7.5	White
3	242.355k	24.3	+0.1	+0.3	+0.3		+0.0	25.0	52.0	-27.0	White
	Ave										
٨	242.355k	58.1	+0.1	+0.3	+0.3		+0.0	58.8	52.0	+6.8	White
5	171.272k	25.0	+0.1	+0.3	+0.8		+0.0	26.2	54.9	-28.7	White
	Ave										
٨	171.300k	58.5	+0.1	+0.3	+0.8		+0.0	59.7	54.9	+4.8	White

Page 24 of 31 Report No.: FC05-056A

7 200.000k Ave	24.5	+0.1	+0.3	+0.0	+0.0	24.9	53.6	-28.7	White
^ 200.000k	56.2	+0.1	+0.3	+0.0	+0.0	56.6	53.6	+3.0	White
9 400.000k	18.3	+0.1	+0.3	+0.1	+0.0	18.8	47.9	-29.1	White
Ave ^ 400.000k	46.4	+0.1	+0.3	+0.1	+0.0	46.9	47.9	-1.0	White
11 500.000k	10.3	+0.1	+0.3	+0.2	+0.0	10.9	46.0	-35.1	White
Ave				+0.2					
^ 500.000k	41.7	+0.1	+0.3	+0.2	+0.0	42.3	46.0	-3.7	White

CKC Laboratories Date: 8/9/2005 Time: 11:39:27 IEI WO#: 84019 FCC 15:207 - AVE Test Lead: White 120V 60Hz Sequence#: 5 IEI M/N NetLock

Page 25 of 31 Report No.: FC05-056A

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: IEI

Specification: FCC 15.209

Work Order #: 84019 Date: 8/9/2005
Test Type: Maximized Emissions Time: 10:48:25
Equipment: Access Control System Sequence#: 3

Manufacturer: IEI Tested By: Randal Clark

Model: NetLock

S/N:

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Proximity Reader	IEI	029-5106	PHUNL
Four Door Interface PCB	IEI	029-5105	
Assembly			
Auxiliary Control PCB	IEI	029-5107	
Assembly			
12VDC Power Supply	IEI	PIP1312	0517

Support Devices:

			~ ~ ~	
Function	Manufacturer	Model #	C/N	
Tuncuon	Munatucturer	1110401 //	D/1 N	

Test Conditions / Notes:

Equipment is a wireless access entry system using a wired interface to an access controller. The door lock has a 125kHz proximity reader installed, which communicates to the controller PCB via 4-wire cable. The controller PCB includes inputs for up to 4 doors at a time. The remaining three door inputs are cabled and terminated with characteristic impedance. The relay PCB is cabled and terminated with characteristic impedance to simulate normal installation. The controller PCB is connected to the relay PCB by a standard interconnecting cable. Both the controller PCB and the relay PCB are mounted vertically on a wooden support to simulate normal installation (traditionally, these components would be installed in a metal enclosure - this configuration is tested to determine worst case emissions). All cables are bundled non-inductively according to ANSI C63.4 (2003). Frequency Range Investigated: Carrier. Temperature: 27°C, Rel Humidity: 36%. Test distance correction factor used in accordance with 15.31 to correct data for comparison to the limit at 300 meters. Voltage variations performed in accordance with 15.31, no change detected for ±15% mains input.

Transducer Legend:

Transancer Ecgena.	
T1=Cable - 10 Meter	T2=Mag Loop - AN 00226 - 9kHz-30M
T3=15.31 3m 40dB/Dec Correction	

Measurement Data:		Re	eading lis	ted by ma	argin.							
#		Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1	126.235k	65.5	+0.1	+10.2	-80.0		+0.0	-4.2	25.6	-29.8	Verti
												100
	2	126.255k	60.5	+0.1	+10.2	-80.0		+0.0	-9.2	25.6	-34.8	Horiz
												100

Page 26 of 31 Report No.: FC05-056A

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: IEI

Specification: FCC 15.209

Work Order #: 84019 Date: 8/9/2005
Test Type: Maximized Emissions Time: 10:50:54
Equipment: Access Control System Sequence#: 2

Equipment: Access Control System Sequence#: 2
Manufacturer: IEI Tested By: Randal Clark

Model: NetLock

S/N:

Equipment Under Test (* = EUT):

Equipment Citater Test (- 20 1)•			_
Function	Manufacturer	Model #	S/N	
Proximity Reader	IEI	029-5106	PHUNL	
Four Door Interface PCB	IEI	029-5105		
Assembly				
Auxiliary Control PCB	IEI	029-5107		
Assembly				
12VDC Power Supply	IEI	PIP1312	0517	

Support Devices:

Function	Manufacturar	Model #	C/NI	
Function	Manufacturer	Model #	3 /1 N	

Test Conditions / Notes:

Equipment is a wireless access entry system using a wired interface to an access controller. The door lock has a 125kHz proximity reader installed, which communicates to the controller PCB via 4-wire cable. The controller PCB includes inputs for up to 4 doors at a time. The remaining three door inputs are cabled and terminated with characteristic impedance. The relay PCB is cabled and terminated with characteristic impedance to simulate normal installation. The controller PCB is connected to the relay PCB by a standard interconnecting cable. Both the controller PCB and the relay PCB are mounted vertically on a wooden support to simulate normal installation (traditionally, these components would be installed in a metal enclosure - this configuration is tested to determine worst case emissions). All cables are bundled non-inductively according to ANSI C63.4 (2003). Frequency Range Investigated: 100kHz - 30MHz. Temperature: 27°C, Rel Humidity: 36%. Test distance correction factor used in accordance with 15.31 to correct data for comparison to the limit at 30 and 300 meters. Emissions detected are ambient noise level readings, no EUT Emissions detected within 20dB of the limit.

Transducer Legend:

1. ansaucer Ecgena.	
T1=Cable - 10 Meter	T2=Mag Loop - AN 00226 - 9kHz-30M
T3=15.31 3m 40dB/Dec Correction	

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	631.284k	33.7	+0.2	+10.1	-40.0		+0.0	4.0	31.6	-27.6	Horiz
											100
2	631.175k	33.2	+0.2	+10.1	-40.0		+0.0	3.5	31.6	-28.1	Verti
											100
3	504.940k	35.1	+0.2	+10.1	-40.0		+0.0	5.4	33.5	-28.1	Verti
											100
4	505.029k	34.4	+0.2	+10.1	-40.0		+0.0	4.7	33.5	-28.8	Horiz
											100
5	883.794k	28.7	+0.2	+10.3	-40.0		+0.0	-0.8	28.6	-29.4	Horiz
											100

Page 27 of 31 Report No.: FC05-056A

6	883.645k	28.5	+0.2	+10.3	-40.0	+0.0	-1.0	28.6	-29.6	Verti
										100
7	757.539k	29.3	+0.2	+10.2	-40.0	+0.0	-0.3	30.0	-30.3	Horiz
										100
8	757.410k	27.6	+0.2	+10.2	-40.0	+0.0	-2.0	30.0	-32.0	Verti
										100
9	252.519k	41.5	+0.1	+10.2	-80.0	+0.0	-28.2	19.6	-47.8	Horiz
										100
10	378.705k	37.8	+0.2	+10.2	-80.0	+0.0	-31.8	16.0	-47.8	Verti
										100
11	252.519k	40.6	+0.1	+10.2	-80.0	+0.0	-29.1	19.6	-48.7	Verti
										100
12	378.774k	36.1	+0.2	+10.2	-80.0	+0.0	-33.5	16.0	-49.5	Horiz
										100

Page 28 of 31 Report No.: FC05-056A

Test Location: CKC Laboratories •5473A Clouds Rest • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: IEI

Specification: FCC 15.209

Work Order #: 84019 Date: 8/9/2005
Test Type: Maximized Emissions Time: 09:36:23
Equipment: Access Control System Sequence#: 1

Manufacturer: IEI Tested By: Randal Clark

Model: NetLock

S/N:

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Proximity Reader	IEI	029-5106	PHUNL
Four Door Interface PCB	IEI	029-5105	
Assembly			
Auxiliary Control PCB	IEI	029-5107	
Assembly			
12VDC Power Supply	IEI	PIP1312	0517

Support Devices:

Function	Manufacturer	Model #	S/N	
1 unction	Manaracturer	IVIOGCI II	D/1 1	

Test Conditions / Notes:

Equipment is a wireless access entry system using a wired interface to an access controller. The door lock has a 125kHz proximity reader installed, which communicates to the controller PCB via 4-wire cable. The controller PCB includes inputs for up to 4 doors at a time. The remaining three door inputs are cabled and terminated with characteristic impedance. The relay PCB is cabled and terminated with characteristic impedance to simulate normal installation. The controller PCB is connected to the relay PCB by a standard interconnecting cable. Both the controller PCB and the relay PCB are mounted vertically on a wooden support to simulate normal installation (traditionally, these components would be installed in a metal enclosure - this configuration is tested to determine worst case emissions). All cables are bundled non-inductively according to ANSI C63.4 (2003). Frequency Range Investigated: 30-1000MHz. Temperature: 27°C, Rel Humidity: 36%.

Transducer Legend:

1. ansameer Begena.	
T1=Amp - S/N 604	T2=Bilog Site D
T3=Cable - 10 Meter	

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

Measur	етет Диш.	177	ading no	icu by ma	ngm.		1 (ot Distance	. J MICICIS		
#	Freq	Rdng	T1	T2	T3	•	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	76.112M	47.7	-26.9	+6.3	+2.0		+0.0	29.1	40.0	-10.9	Verti
											105
2	86.626M	45.5	-26.9	+7.6	+2.1		+0.0	28.3	40.0	-11.7	Verti
											107
3	81.080M	45.8	-27.0	+6.9	+2.0		+0.0	27.7	40.0	-12.3	Verti
											114
4	76.380M	45.7	-26.9	+6.4	+2.0		+0.0	27.2	40.0	-12.8	Verti
											114
5	71.880M	46.2	-26.8	+5.9	+1.9		+0.0	27.2	40.0	-12.8	Verti
											107
6	83.700M	44.7	-26.9	+7.2	+2.1		+0.0	27.1	40.0	-12.9	Verti
											114

Page 29 of 31 Report No.: FC05-056A

7	84.207M	44.6	-26.9	+7.3	+2.1	+0.0	27.1	40.0	-12.9	Verti 105
8	79.253M	45.4	-27.0	+6.6	+2.0	+0.0	27.0	40.0	-13.0	Verti 107
9	75.220M	45.2	-26.9	+6.2	+2.0	+0.0	26.5	40.0	-13.5	Verti 114
10	80.196M	44.8	-27.0	+6.7	+2.0	+0.0	26.5	40.0	-13.5	Verti 105
11	73.240M	43.6	-26.9	+6.0	+1.9	+0.0	24.6	40.0	-15.4	Verti 114
12	86.270M	41.3	-26.9	+7.6	+2.1	+0.0	24.1	40.0	-15.9	Horiz 261
13	66.790M	42.9	-26.8	+5.8	+1.8	+0.0	23.7	40.0	-16.3	Horiz
14	85.820M	40.4	-26.9	+7.5	+2.1	+0.0	23.1	40.0	-16.9	261 Horiz 261
15	84.360M	39.8	-26.9	+7.3	+2.1	+0.0	22.3	40.0	-17.7	Horiz 261
16	82.820M	39.2	-26.9	+7.1	+2.1	+0.0	21.5	40.0	-18.5	Horiz 261
17	74.530M	38.2	-26.9	+6.2	+1.9	+0.0	19.4	40.0	-20.6	Horiz 261
18	72.830M	37.2	-26.9	+6.0	+1.9	+0.0	18.2	40.0	-21.8	Horiz 261
19	222.350M	34.0	-26.2	+10.1	+3.4	+0.0	21.3	46.0	-24.7	Horiz 136
20	130.861M	31.8	-26.7	+11.1	+2.6	+0.0	18.8	43.5	-24.7	Verti 105
21	208.400M	32.7	-26.4	+9.0	+3.3	+0.0	18.6	43.5	-24.9	Horiz 136
22	213.750M	31.8	-26.3	+9.4	+3.4	+0.0	18.3	43.5	-25.2	Horiz 136
23	228.550M	32.8	-26.2	+10.5	+3.4	+0.0	20.5	46.0	-25.5	Horiz 136
24	140.083M	31.1	-26.7	+10.9	+2.7	+0.0	18.0	43.5	-25.5	Verti 114
25	225.050M	32.5	-26.2	+10.3	+3.4	+0.0	20.0	46.0	-26.0	Horiz 136
26	70.410M	33.0	-26.8	+5.7	+1.9	+0.0	13.8	40.0	-26.2	Horiz 261
27	138.234M	30.3	-26.7	+10.9	+2.7	+0.0	17.2	43.5	-26.3	Verti 105
28	220.050M	32.6	-26.3	+9.9	+3.4	+0.0	19.6	46.0	-26.4	Horiz 136
29	123.488M	29.7	-26.7	+11.1	+2.5	+0.0	16.6	43.5	-26.9	Verti 105
30	116.116M	29.7	-26.7	+10.6	+2.4	+0.0	16.0	43.5	-27.5	Verti 100
31	221.100M	31.0	-26.2	+10.0	+3.4	+0.0	18.2	46.0	-27.8	Verti
32	222.850M	30.8	-26.2	+10.1	+3.4	+0.0	18.1	46.0	-27.9	165 Verti 165
										105

Page 30 of 31 Report No.: FC05-056A

33	226.572M	30.4	-26.2	+10.4	+3.4	+0.0	18.0	46.0	-28.0	Verti
										105
34	224.350M	30.2	-26.2	+10.2	+3.4	+0.0	17.6	46.0	-28.4	Verti
										165
35	144.033M	28.2	-26.7	+10.7	+2.7	+0.0	14.9	43.5	-28.6	Verti
										114
36	145.550M	28.1	-26.7	+10.6	+2.8	+0.0	14.8	43.5	-28.7	Verti
										105

Page 31 of 31 Report No.: FC05-056A