

ROGERS LABS, INC.

4405 West 259th Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

ENGINEERING TEST REPORT FOR APLLICATION of GRANT of CERTIFICATION

FOR

CFR 47, PART 15C - INTENTIONAL RADIATORS Paragraph 15.247 **Spread Spectrum Frequency Hopping Module**

For

Coyote DataCom, Inc.

12721 Benson Overland Park, KS 66213 Keith Hollcroft,

DATA TRANSMITTER Model: CDR-915 Frequency 902-928 MHz FCC ID#: PHO-CDR915

Test Date: March 20, 2002

Certifying Engineer: Scot D Rogers

Scot D. Rogers ROGERS LABS, INC.

4405 West 259th Terrace Louisburg, KS 66053 Phone: (913) 837-3214

FAX: (913) 837-3214

TABLE OF CONTENTS

FC	DRWARD:	3
1)	APPLICABLE STANDARDS & TEST PROCEDURES	3
	2.1033(b) Application for Certification	4
2)	EQUIPMENT TESTED	5
3)	EQUIPMENT FUNCTION AND TESTING PROCEDURES	5
4)	EQUIPMENT AND CABLE CONFIGURATIONS	
-,	Conducted Emission Test Procedure	
	Radiated Emission Test Procedure:	
5)	LIST OF TEST EQUIPMENT	
6)	UNITS OF MEASUREMENTS	
7)	TEST SITE LOCATIONS	
•		
8)	SUBPART B – UNINTENTIONAL RADIATORS	
	Conducted EMI	
	Radiated EMI	
	Data: Conducted Emissions (7 Highest Emissions)	
	Data: General Radiated Emissions from Support Equipment (6 Highest Emissions)	
	Summary of Results for Conducted Emissions	15
	Summary of Results for Radiated Emissions	16
	Statement of Modifications and Deviations	16
9)	SUBPART C - INTENTIONAL RADIATORS	16
	15.203 Antenna Requirements	16
	15.205 Restricted Bands of Operation	
	Data: Emissions in Restricted Bands	17
	Summary of Results for Radiated Emissions in Restricted Bands:	17
	15.209 Radiated Emissions Limits; General Requirements	
	Radiated EMI	
	Data: General Radiated Emissions from EUT (6 Highest Emissions)	
	Summary of Results for Radiated Emissions:	
	15.247 Operation in the Band 902-928 MHz	
	Data: Radiated Emissions from EUT (Magnetic Mount Antenna Maximum 3dB gain)	
	Data: Radiated Emissions from EUT (Omni Directional Monopole Antenna Maximum 3dB gain)	25
	Data: Radiated Emissions from EUT (Yagi Antenna Maximum 6dB gain)	25
	Summary of Results for Radiated Emissions of Intentional Radiator	26
	Statement of Modifications and Deviations	26

ROGERS LABS, INC. Coyote DataCom, Inc.
4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module
Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 2 of 30 $\,$

FORWARD:

The following is submitted for consideration in obtaining a Grant of Certification for low power intentional radiators per CFR Paragraph 15.247.

NVLAP Lab Code: 200087-0

Name of Applicant:

Coyote DataCom, Inc. 12721 Benson Overland Park, KS 66213

Model: CDR-915 Spread Spectrum Frequency Hopping Module

FCC I.D.: PHO-CDR915.

Frequency Range: 902928 MHz.

Operating Power: 200 mW (antenna-conducted measurement).

1) Applicable Standards & Test Procedures

a) In accordance with the Federal Communications Code of Federal Regulations, dated October 1, 2000, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.247 the following is submitted:

b) Test procedures used are the established Methods of

Measurement of Radio-Noise Emissions as described in the ANSI

63.4-1992 Document FCC and documents DA00-1407 and DA00-705.

ROGERS LABS, INC. Coyote DataCom, Inc.
4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module
Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 3 of 30

2.1033(b) Application for Certification

(1) Manufacturer: COYOTE DATACOM, INC.

12721 Benson

Overland Park, KS 66213

(2) Identification: Model: CDR-915

FCC I.D.: PHO-CDR915

NVLAP Lab Code: 200087-0

(3) Instruction Book:

Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:

Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:

Refer to Exhibit of Operational Description.

(6) Report of Measurements:

Follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:

Refer to Exhibit for photographs of equipment.

- (8) No Peripheral Equipment was Necessary.
- (9) Transition Provisions of 15.37 are not being requested.
- (10) Frequency hopping Spread Spectrum transmitters:

Compliance with 15.247(a)(1) and the receiver bandwidth requirement are demonstrated in this report and exhibits.

- (11) Not Applicable. The EUT is not a Scanning Receiver.
- (12) Not Applicable. The EUT does not operate in the 5%4

 GHz frequency band.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 4 of 30

2) Equipment Tested

Equipment	<u>Model</u>	FCC I.D.#
EUT	CDR-915	PHO-CDR915
CPU	Sharp PC9000	FKG PC9000
Printer	2168A	B94C2121X

NVLAP Lab Code: 200087-0

3) Equipment Function and Testing Procedures

The EUT is a 902-928 MHz radio transmitterused to transmit data for use in the industrial market place. DATA TRANSMITTER is a wireless link used for transmitting information from one remote location to another. The unit is marketed for developers wishing to incorporate a wireless link in a system solution. This product can reduce the development time for system engineers by utilizing the pre developed transceiver into their system needs. The unit typically operates from a direct current voltage source supplied at the system level. For testing purposes, a twelve-volt wall transformer was used to power the unit. The device is marketed for use with one of three antenna The antenna options include a magnetic configurations. mount, Monopole, and Yagi, all of which were tested for this report. The unit has provision to connect to a computer for data and command information. The EUT was tested with and without computer communications through the RS232 serial port.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 5 of 30

4) Equipment and Cable Configurations

Conducted Emission Test Procedure

The unit typically operates only from twelvevolt supply voltage from the host deviceand has internal power regulation circuitry. For testing purposes, a twelve-volt wall transformer was used to power the unit. The test setup, including the EUT, was aranged in a typical equipment configuration and placed on a 1 x 1.5meter wooden bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50µHy choke. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table.

NVLAP Lab Code: 200087-0

Radiated Emission Test Procedure:

The EUT was placed on a rotatable 1 x 1.5meter wooden platform, 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. Refer to photographs in Appendix for EUT placement.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 6 of 30

5) List of Test Equipment

A Hewlett Packard 8591EM Spectrum Analyzer was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of Test Equipment.

NVLAP Lab Code: 200087-0

HP 8591 EM ANALYZER SETTINGS										
	CONDUCTED EMISSIONS:									
RBW	AVG. BW	DETECTOR FUNCTION								
9 kHz	30 kHz Peak / Quasi Peak									
	RADIATED EMISSIONS:									
RBW	AVG. BW	DETECTOR FUNCTION								
120 kHz	300 kHz	Peak / Quasi Peak								
HP	8562A ANALYZER SETTII	NGS								
RBW	VIDEO BW	DETECTOR FUNCTION								
100 kHz	100 kHz 100 kHz PEAK									
1 MHz	1 MHz	Peak / Average								

EQUIPMENT	MFG.	MODEL	CAL. DATES	DUE.
LISN Antenna	Comp. Design	1762 BCD-235-B	10/01 7/01	10/02 7/02
Antenna	EMCO	3147	10/01	10/02
Antenna	EMCO	3143	4/01	4/02
Analyzer	HP	8591EM	7/01	7/02

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 7 of 30

6) Units of Measurements

Conducted EMI: Data is in dBµV; dB referenced to one microvolt.

Radiated EMI: Data is in dBµV/m; dB/m referenced to one microvolt per meter.

NVLAP Lab Code: 200087-0

7) Test Site Locations

Conducted EMI: The AC powerline conducted emissions tests were performed in a shielded screen room located at Rogers Labs, Inc., 4405 W. 259h Terrace, Louisburg, KS.

Radiated EMI: The radiated emissions tests were performed

At the 3 meters, Open Area Test Site (OATS) located at Rogers

Labs, Inc., 4405 W. 256h Terrace, Louisburg, KS.

Site Approval: Refer to Appendix for FCC Site Approval Letter, Reference # 90910.

8) SUBPART B - UNINTENTIONAL RADIATORS

Conducted EMI

The EUT was arranged in a typical equipment configuration and placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen or .

The LISN was positioned on the floor of the screen room 80 m from the rear of the EUT. The manufacturer supplied AC power wall adapter for the EUT was connected to the LISN. A second

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 8 of 30

LISN was positioned on the floor of the screen room 80cm from the rear of the supporting equipment of the EUT. All power cords except the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a $0.1~\mu F$ capacitor, internal to the LISN. Power line conducted emissions testing was carried out individually for each current carrying conductor of the EUT. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length The screen room, conducting ground place, analyzer, and LISN were bonded together to the protective earth ground Preliminary testing was performed to identify the frequency of each radio frequency emission displaying the highest amplitude. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once theworst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz then the data was recorded with maximum conducted emissions levels. Refer to figures one and two for plots of conducted emissions.

Coyote DataCom, Inc. ROGERS LABS, INC. 4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915



Figure 1. Conducted Emissions Line 1.

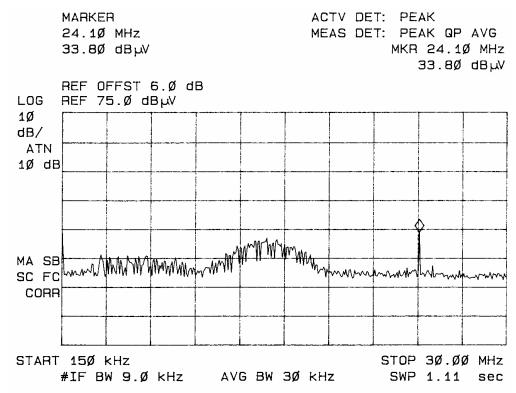


Figure 2. Conducted Emissions Line 2.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 8373214 Test to: FCC Parts 2 and 15c (15.247) Page 10 of 30

Radiated EMI

The EUT was arranged in a typical equipment configuration and operated through all of its various modes. Preliminary testing was performed in a screme room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Plots were made of the frequency spectrum from 30 MHz to 10,000 MHz for the preliminarytesting. Refer to figures three and four for plots of the radiated emissions spectrum taken in a screen room and figures five and six for antenna conducted emissions of the EUT. The highest radiated emission was then remaximized at this location beforefinal radiated emissions measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. frequency spectrum from 30 MHz to 10,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 5 GHz and or, pyramidal horns and mixers from 4 GHz to 10 GHz, notch filters and appropriate amplifiers were utilized.

NVLAP Lab Code: 200087-0

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 11 of 30

Sample Calculations:

RFS = Radiated Field Strength $dB\mu V/m$ @ 3m = $dB\mu V$ + A.F. - Amplifier Gain $dB\mu V/m$ @ 3m = 53.2 + 12.1 - 35 = 30.3

MARKER ACTV DET: PEAK 77.5 MHz MEAS DET: PEAK QP 38.32 dBuV MKR 77.5 MHz 38.32 dBW LOG HEF BØ.Ø dBW 1Ø dB/ NTA特 Ø dB MA SB SC FC START 30.0 MHz STOP 23Ø, Ø MHz #IF BW 120 kHz AVG BW 300 kHz _SWP#4117 msec

Figure 3. Radiated Emissions taken at 1 meter in screen room.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 12 of 30

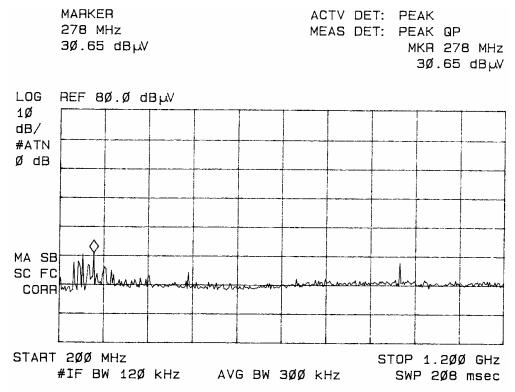


Figure 4. Radiated Emissions then at 1 meter in screen room.

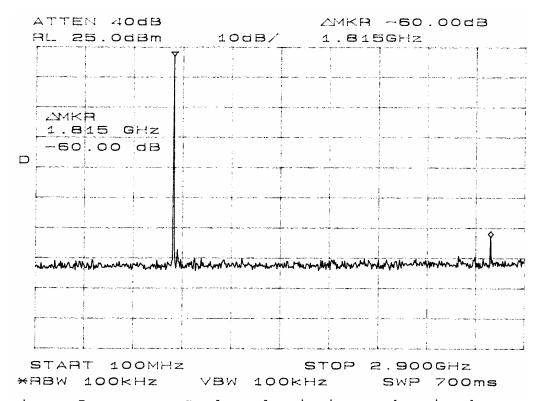


Figure 5. Antenna Conducted Emissions taken in the screen room.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 13 of 30

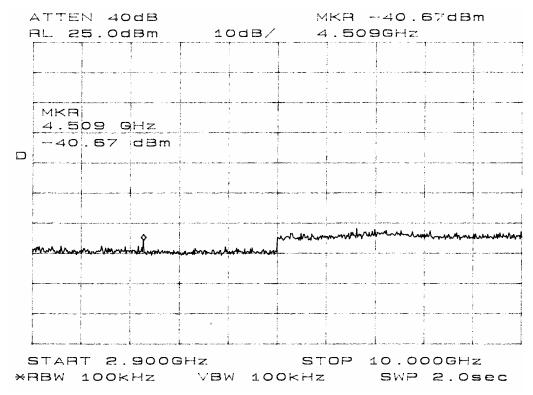


Figure 6. Antenna Conducted Emissions taken in the screen room.

Data: Conducted Emissions (7 Highest Emissions)

Frequency in MHz	Peak Level L1 in dBµV	Peak Level L2 in dBµV	FCC Limit in dBµV
0.15 - 0.5	31.2	32.0	48.0
0.5 - 5.0	25.3	25.4	48.0
5.0 - 10.0	22.8	25.6	48.0
10.0 - 15.0	30.0	31.1	48.0
15.0 - 20.0	27.1	28.9	48.0
20.0 - 25.0	30.3	33.8	48.0
25.0 - 30.0	20.2	20.6	48.0

Other emissions presenthad amplitudes at least 10 dB below the limit

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 14 of 30

Data: General Radiated Emissions from EUT (6 Highest Emissions)

Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	FCC Class B Limit @ 3m (dBµV/m)
33.2	53.2	50.1	12.1	35	30.3	27.2	40.0
48.0	55.3	56.0	8.5	35	28.8	29.5	40.0
58.0	55.9	53.7	5.2	35	26.1	23.9	40.0
72.0	57.4	53.2	7.6	35	30.0	25.8	40.0
74.7	59.3	56.8	7.2	35	31.5	29.0	40.0
144.0	55.6	51.5	10.2	35	30.8	26.7	43.5

Other emissions present had amplitudes at least 10 dB below the limit.

Data: General Radiated Emissions from Support Equipment (6 Highest Emissions)

Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	FCC Class B Limit @ 3m (dBµV/m)
120.0	54.8	64.2	6.0	35	25.8	35.2	43.5
140.0	62.8	65.0	8.7	35	36.5	38.7	43.5
180.0	59.7	59.5	8.9	35	33.6	33.4	43.5
196.0	51.4	50.9	10.4	35	26.8	26.3	43.5
240.0	44.7	43.3	10.3	35	20.0	18.6	46.0
278.0	53.1	55.2	12.8	35	30.9	33.0	46.0

Other emissions present had amplitudes at least 10 dB below the limit.

Summary of Results for Conducted Emissions

The conducted emissions for the EUT meet the requirements for CISPR 22 and FCC Part 15B CLASS B Digital Dexces. The EUT had a 14.2 dB minimum margin below the limit. Other emissions were present with recorded data representing worst-case amplitudes.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 15 of 30

Summary of Results for Radiated Emissions

The radiated emissions for the EUT meet the requirements for CISPR 22 and FCC Part 15B CLASS B Digital Devices. The EUT had an 8.5 dB minimum margin below the limit. Other emissions were present with amplitudes at least 10 dB below the limit.

Statement of Modifications and Deviations

No modifications to the EUT were equired for the unit to meet the CISPR 22 or FCC Part 15B CLASS B emissions standards.

There were no deviations to the specifications.

9) Subpart C - Intentional Radiators

As per CFR Part 15, Subpart C, paragraph 15.247 the following information is submitted.

15.203 Antenna Requirements

The unit is produced with a reverse SMA antenna connector to be used with the approved authorized antennas. The requirements of 15.203 are met there are no deviations or exceptions to the specification.

15.205 Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in the restricted bands. Emissions were checkleat the OATS, using appropriate antennas or pyramidal horns,

amplification stages, and a spectrum analyzer. No other

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 16 of 30

significant emission was observed which fell into the restricted bands of operation.

Sample Calculations:

RFS
$$(dB\mu V/m @ 3m) = FSM(dB\mu V + A.F.(dB) - Gain(dB)$$

= 49.3 + 7.4 - 35
= 21.7

Data: Emissions in Restricted Bands

Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	FCC Class B Limit @ 3m (dBµV/m)
118.7	49.3	56.2	7.4	35	21.7	28.6	43.5
120.0	54.8	64.2	6.0	35	25.8	35.2	43.4
196.0	51.4	50.9	10.4	35	26.8	26.3	43.4
240.0	44.7	43.3	10.3	35	20.0	18.6	46.0
400.0	56.4	47.2	16.6	35	38.0	28.8	46.0
2707.6	31.5	34.3	33.0	21.5	43.0	45.8	54.0
2737.2	32.1	40.3	33.0	21.5	43.6	51.8	54.0
2781.6	25.8	40.6	33.0	21.5	37.3	52.1	54.0
3609.6	35.8	32.1	37.0	21.5	51.3	47.6	54.0
3649.6	35.8	36.0	37.0	21.5	51.3	51.5	54.0
3708.8	32.6	36.0	37.0	21.5	48.1	51.5	54.0

Summary of Results for Radiated Emissions in Restricted Bands:

The radiated emissions for the EUT meet the requirements for FCC Part 15C Intentional Radiators. The EUT had a 1.9dB minimum margin below the limits. No other emissions where found in the restricted frequency bands Other emissions were present with amplitudes at least 10 dB below the FCC Limits.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 17 of 30

15.209 Radiated Emissions Limits; General Requirements

NVLAP Lab Code: 200087-0

Radiated EMI

The EUT was arranged in a typical equipment configuration and operated through all of its various modes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Emissions were checked in the screen room from 30 to 10,000 MHz and plots were made of the frequency spectrum from 30 MHz to 10,000 MHz for the preliminary The highest radiated emission was then remaximized at this location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the open field test site at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 30 MHz to 10,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna polarization between horizontal and vertical. Antennas used were Broadband Biconical from 30 MHz to 200 MHz, Biconilog from 30 MHz to 1000 MHz, Log Periodic from 200 MHz to 5 GHz, and/or Pyramidal Horns from 4 GHz to 10 GHz.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 18 of 30

Sample Calculations:

RFS = Radiated Field Strength $dB\mu V/m @ 3m = dB\mu V + A.F. - Amplifier Gain$ $dB\mu V/m @ 3m = 53.2 + 12.1 - 35$ = 30.3

NVLAP Lab Code: 200087-0

Data: General Radiated Emissions from EUT (6 Highest Emissions)

Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	FCC Class B Limit @ 3m (dBµV/m)
33.2	53.2	50.1	12.1	35	30.3	27.2	40.0
48.0	55.3	56.0	8.5	35	28.8	29.5	40.0
58.0	55.9	53.7	5.2	35	26.1	23.9	40.0
72.0	57.4	53.2	7.6	35	30.0	25.8	40.0
74.7	59.3	56.8	7.2	35	31.5	29.0	40.0
144.0	55.6	51.5	10.2	35	30.8	26.7	43.5

Other emissions presenthad amplitudes at least 10 dB below the limit.

Data: General Radiated Emissions from Support Equipment (6 Highest Emissions)

Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	FCC Class B Limit @ 3m (dBµV/m)
118.7	45.8	54.1	5.8	35	16.6	24.9	43.5
120.0	54.8	64.2	6.0	35	25.8	35.2	43.5
180.0	59.7	59.5	8.9	35	33.6	33.4	43.5
196.0	51.4	50.9	10.4	35	26.8	26.3	43.5
240.0	44.7	43.3	10.3	35	20.0	18.6	46.0
278.0	53.1	55.2	12.8	35	30.9	33.0	46.0

Other emissions present had amplitudes at least 10 dB below the limit.

ROGERS LABS, INC. Coyote DataCom, Inc.
4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module
Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 19 of 30

Summary of Results for Radiated Emissions:

The radiated emissions for the EUT meet the requirements for FCC Part 15C Intentional Radiators. The EUT had an 8.5 dB minimum margin below the limits. Other emissions were present with amplitudes at least 10 dB below the FCC Limits.

NVLAP Lab Code: 200087-0

15.247 Operation in the Band 902-928 MHz

The power output was measured on an open field test site at a three-meter distance. Data was taken perParagraph 2.1046(a) and 15.247. The 902 and 928 MHz band edges are protected due to the 902.4 - 927.6 MHz channels used for frequency of operation. Refer to figures seven through elevenshowing plots taken for the EUT displaying compliance with the specifications.

(a) The EUT is a frequency hopping spread spectrum intentional radiator utilizing at least 25 hopping chamels. The 20-dB bandwidth of 315 kHz meets the requirements of greater than 250 and less than 500 kHz wide with the average time of occupancy on any frequency not greater than 0.4 seconds within a ten-second-time period.

Information showing compliance fortime of occupancy and hopping sequence are displayed below.

```
This is the pseudo random channel lookup table... flash const unsigned char TX_TABLE[] = { 0, 26, 4, 10, 46, 34, 14, 40, 6, 20, 36, 16, 22, 12, 24, 44, 18, 28, 32, 8, 38, 30, 42, 2, 48 }; This routine initiates the channel change for the next TX channel. The routine sequentially goes through the channels in the randomized table above. This guarantees that all channels are used equally. void GotoNextTxChannel (void) {
```

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module

Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 20 of 30

```
NVLAP Lab Code: 200087-0
```

```
tx_channel++;
if ( tx_channel > 24 )
{
tx_channel = 0; //start at beginning of table
while (scan_timer); //check for FCC time limit
scan_timer = FCC_TIME; //reset 10 second timer
}
```

The Data Radio utilizes two methods for limiting channel occupancy to 400 mS per channel in a 10-second interval. When the radio is streaming data, packet transmissions are set at 150 mS. By guaranteeing that each channel is used equally there is no possibility of any channel transmitting more than 400 mS in any 10-second period. The second limitation is imposed using a simple software driven timer. Each time the transmitter uses channel 1 in the transmit hop table a 10 second timer is started. In the event the radio goes through the entire table and back to channel 1 before the 10 seconds has elapsed, the radio is forced to wait in receive mode the remainder of the 10-second period. These two tests applied together guarantee that the CDR-915 will not, in any case, exceed the channel occupancy limitations set forth by the FCC part 15.247 rules for frequency hopping transmitters.

(b) The maximum peak output power of the unit was measured at the antenna port with a three dB pad and shown in figure 7. The amplitudes of each emission and spurious emission were measured at a distance of 3 meters from the FSM antenna at the OATS. The amplitude of each emission was maximized by varying the FSM antenna height, polarization, and by rotating the turntable. A Biconilog Antenna was used for measuring emissions from 30 to 1000 MHz, Log Periodic Antenna for 200 to 5000 MHz, and Pyramidal Horn Antennas from 4 GHz to 10 GHz. Emissions were measured in dPV/m at three-meters.

Sample calculation.

```
dB\mu v/m@ 3m = FSM + A.F. + cable loss
= 84.3 + 23.2 - 2.5
= 110.0
```

(c) The band edges are protected due to the frequency of operation of the EUT.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module
Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 21 of 30

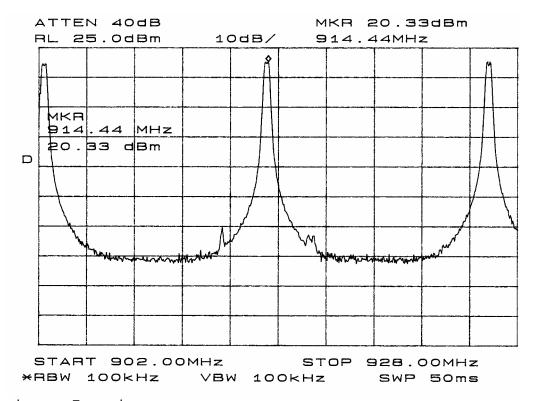


Figure 7 Maximum Power output.

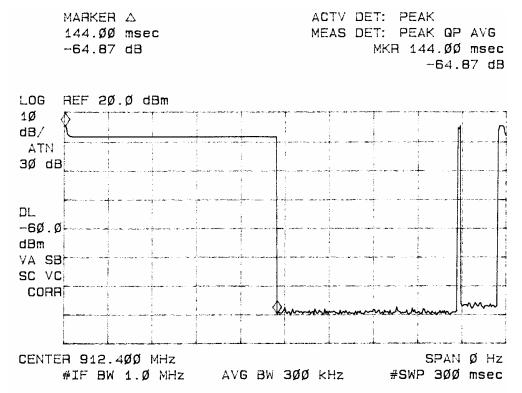


Figure 8. Dwell Time of Occupancy.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 22 of 30

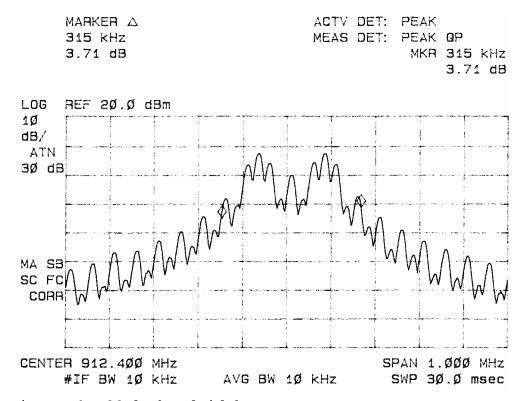


Figure 9. 20-dB bandwidth.

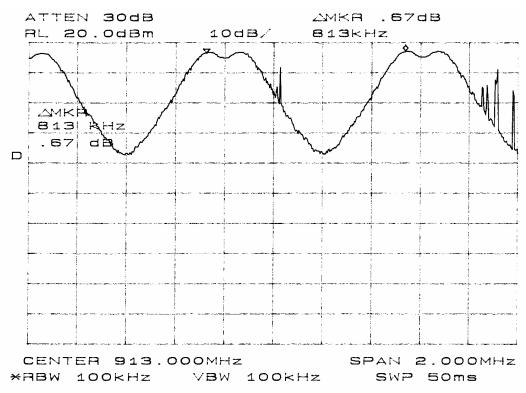


Figure 10 Channel Spacing.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 23 of 30

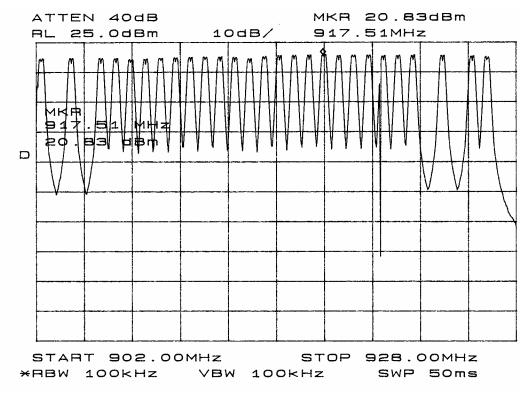


Figure 11 plot showing at least 25 hopping channels.

Data: Radiated Emissions from EUT (Magnetic Mount Antenna Maximum 3dB gain)

Emission Frequency (MHz)	FSM Horz. (dBµV)	FSM Vert. (dBµV)	Ant. Factor (dB)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	Limit @ 3m (dBµV/m)
902.4	84.3	92.5	23.2	-2.5	110.0	118.2	
1804.8	44.3	39.1	29.4	21.5	52.2	47.0	54.0
2707.6	31.5	34.3	33.0	21.5	43.0	45.8	54.0
3609.6	35.8	32.1	37.0	21.5	51.3	47.6	54.0
4512.0	31.3	31.8	41.0	21.5	50.8	51.3	54.0
912.4	83.8	93.0	23.2	-2.5	109.5	118.7	
1824.8	38.1	42.0	29.4	21.5	46.0	49.9	54.0
2737.2	32.1	40.3	33.0	21.5	43.6	51.8	54.0
3649.6	35.8	36.0	37.0	21.5	51.3	51.5	54.0
4562.0	27.0	25.3	41.0	21.5	46.5	44.8	54.0
927.2	81.5	92.8	23.2	-2.5	107.2	118.5	
1854.4	38.3	42.1	29.4	21.5	46.2	50.0	54.0
2781.6	25.8	40.6	33.0	21.5	37.3	52.1	54.0
3708.8	32.6	36.0	37.0	21.5	48.1	51.5	54.0
4636.0	28.0	23.5	41.0	21.5	47.5	43.0	54.0

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 24 of 30

Data: Radiated Emissions from EUT (Omni Directional Monopole Antenna Maximum 3dB gain)

Emission Frequency (MHz)	FSM Horz. (dBµV)	FSM Vert. (dBµV)	Ant. Factor (dB)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	Limit @ 3m (dBµV/m)
902.4	95.5	90.4	23.2	-2.5	121.2	116.1	
1804.8	43.6	43.6	29.4	21.5	51.5	51.5	54.0
2707.6	29.8	34.1	33.0	21.5	41.3	45.6	54.0
3609.6	33.3	33.3	37.0	21.5	48.8	48.8	54.0
4512.0	31.8	31.0	41.0	21.5	51.3	50.5	54.0
914.4	92.3	84.7	23.2	-2.5	118.0	110.4	
1828.8	36.3	25.6	29.4	21.5	44.2	33.5	54.0
2743.2	37.3	30.5	33.0	21.5	48.8	42.0	54.0
3657.6	32.3	30.3	37.0	21.5	47.8	45.8	54.0
4572.0	27.6	24.0	41.0	21.5	47.1	43.5	54.0
926.4	94.7	88.5	23.2	-2.5	120.4	114.2	
1852.8	35.3	35.3	29.4	21.5	43.2	43.2	54.0
2779.2	30.1	29.8	33.0	21.5	41.6	41.3	54.0
3705.6	33.0	32.5	37.0	21.5	48.5	48.0	54.0
4632.0	26.8	27.0	41.0	21.5	46.3	46.5	54.0

Data: Radiated Emissions from EUT (Yagi Antenna Maximum 6dB gain)

Emission Frequency (MHz)	FSM Horz. (dBµV)	FSM Vert. (dBµV)	Ant. Factor (dB)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	Limit @ 3m (dBµV/m)
902.4	98.2	86.2	23.2	-2.5	123.9	111.9	
1804.8	31.1	36.3	29.4	21.5	39.0	44.2	54.0
2707.6	27.1	30.8	33.0	21.5	38.6	42.3	54.0
3609.6	32.8	28.0	37.0	21.5	48.3	43.5	54.0
4512.0	26.0	26.3	41.0	21.5	45.5	45.8	54.0
914.4	95.3	84.8	23.2	-2.5	121.0	110.5	
1828.8	37.7	38.1	29.4	21.5	45.6	46.0	54.0
2743.2	25.0	33.1	33.0	21.5	36.5	44.6	54.0
3657.6	37.7	35.0	37.0	21.5	49.2	45.5	54.0
4572.0	27.3	27.0	41.0	21.5	46.8	46.5	54.0
926.4	93.3	77.4	23.2	-2.5	119.0	103.1	
1852.8	36.3	30.1	29.4	21.5	44.2	38.0	54.0
2779.2	29.8	34.0	33.0	21.5	41.3	45.5	54.0
3705.6	30.0	34.8	37.0	21.5	45.5	50.3	54.0
4632.0	23.9	24.5	41.0	21.5	43.4	44.0	54.0

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 8373214 Test to: FCC Parts 2 and 15c (15.247) Page 25 of 30

The EUT had a 0.2 dB margin below the limit at the fundamental frequency of operation and 5.1 dB margin below the limit for the harmonic emissions. The radiated emissions for the EUT meet the requirements for FCC Part 15.247 Intentional Radiators. There are no measurable emissions in the restricted bands other thanthose recorded in this report.

Other emissions were present with amplitudes at least 10 dB below the FCC Limits. The specification of 15.247 are met, there are no deviations or exceptions to the requirements.

NVLAP Lab Code: 200087-0

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to meet the FCC Part 15C emissions standards. There were no deviations to the specifications.

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 26 of 30

APPENDIX

Model: CDR-915 DATA TRANSMITTER

NVLAP Lab Code: 2000870

- Test Equipment List
- 2. Rogers Qualifications
- 3. FCC Site Approval Letter

ROGERS LABS, INC. Coyote DataCom, Inc.
4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module
Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 8373214 Test to: FCC Parts 2 and 15c (15.247) Page 27 of 30

TEST EQUIPMENT LIST FOR ROGERS LABS, INC.

NVLAP Lab Code: 200087-0

The test equipment used is maintained in calibration and good operating condition. Use of this calibrated equipment ensures measurements are traceable to national standards.

List of Test Equipment:	Calibration Da	ate:
Scope: Tektronix 2230	-	2/02
Wattmeter: Bird 43 with Load Bird 8085		2/02
Power Supplies: Sorensen SRL 20-25, SRL 40-25,	DCR 150, DCR 140	2/02
H/V Power Supply: Fluke Model: 408B (SN:		2/02
R.F. Generator: HP 606A		2/02
R.F. Generator: HP 8614A		2/02
R.F. Generator: HP 8640B		2/02
Spectrum Analyzer: HP 8562A,	4/01	
Mixers: 11517A, 11970A, 11970K,	11970U, 11970V,	11970W
HP Adapters: 11518, 11519, 11520		
Spectrum Analyzer: HP 8591 EM		7/01
Frequency Counter: Leader LDC 825		2/02
Antenna: EMCO Biconilog Model: 3143		4/01
Antenna: EMCO Log Periodic Model: 3147		10/01
Antenna: Antenna Research Biconical Mod	del: BCD 235	7/01
Antenna: EMCO Dipole Set 3121C		2/02
Antenna: C.D. B-101		2/02
Antenna: Solar 9229-1 & 9230-1		2/02
Antenna: EMCO 6509		2/02
Audio Oscillator: H.P. 201CD	2/02	
R.F. Power Amp 65W Model: 470A-1010		2/02
R.F. Power Amp 50W M185 10-501		2/02
R.F. PreAmp CPPA-102		2/02
Shielded Room 5 M \times 3 M \times 3.0 M (101 dB	Integrity)	
LISN 50 μ Hy/50 ohm/0.1 μ f		10/01
LISN Compliance Eng. 240/20		2/02
Peavey Power Amp Model: IPS 801		2/02
Power Amp A.R. Model: 10W 1010M7		2/02
Power Amp EIN Model: A301		2/02
ELGAR Model: 1751		2/02
ELGAR Model: TG 704A-3D		2/02
ESD Test Set 2010i		2/02
Fast Transient Burst Generator Model: EF	T/ B 101	2/02
Current Probe: Singer CP105		2/02
Current Probe: Solar 91081N		2/02
Field Intensity Meter: EFM018		2/02
KEYTEK Ecat Surge Generator		2/02
02/01/2002		

ROGERS LABS, INC. Coyote DataCom, Inc.
4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module
Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 28 of 30

QUALIFICATIONS

NVLAP Lab Code: 200087-0

Of

SCOT D. ROGERS, ENGINEER

ROGERS LABS, INC.

Mr. Rogers has approximately 13 years experience in the field of electronics. Six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

POSITIONS HELD:

Systems Engineer: A/C Controls Mfg. Co., Inc.

6 Years

Electrical Engineer: Rogers Consulting Labs, Inc.

5 Years

Electrical Engineer: Rogers Labs, Inc.

Current

EDUCATIONAL BACKGROUND:

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot D. Rogers

March 20, 2002

Date

1/11/00

FEDERAL COMMUNICATIONS COMMISSION Laboratory Division 7435 Oakland Mills Road Columbia, MD. 21046

December 08, 2000

Registration Number: 90910

NVLAP Lab Code: 200087-0

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Attention: Scot D. Rogers

Re: Measurement facility located at Louisburg

3 & 10 meter site

Date of Listing: December 08, 2000

Gentlemen:

Your submission of the description of the subject measurement facility has been reviewed and found to be in compliance with the requirements of Section 2.948 of the FCC Rules. The description has, therefore, been placed on file and the name of your organization added to the Commission's list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that this filing must be updated for any changes made to the facility, and at least every three years from the date of listing the data on file must be certified as current.

If requested, the above mentioned facility has been added to our list of those who perform these measurement services for the public on a fee basis. An up-to-date list of such public test facilities is available on the Internet on the FCC Website at WWW.FCC.GOV, E-Filing, OET Equipment Authorization Electronic Filing.

Sincerely,

Thomas W Phillips Electronics Engineer

Thomas W. Phillips

ROGERS LABS, INC. Coyote DataCom, Inc.

4405 W. 259th Terrace MODEL: CDR-915 Frequency Hopping Module Louisburg, KS 66053 Test #: 020321 FCCID#: PHO-CDR915

Phone/Fax: (913) 837-3214 Test to: FCC Parts 2 and 15c (15.247) Page 30 of 30