

Engineering Test Report No. 2202781-02

Report Date	September 9, 2022	
Manufacturer Name	Industrial Scientific Corporation	
Manufacturer Address	1 Life Way Pittsburgh, PA 15205	
Model No.	RGX	
Date Received	September 6, 2022	
Test Dates	September 6, 2022 to September 9, 2022	
Specifications	FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 Innovation, Science, and Economic Development Canada, RSS-210 Innovation, Science, and Economic Development Canada, RSS-GEN	
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515	FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107
Signature		
Tested by	Javier Cardenas	
Signature		
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894	
PO Number	400306844	

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 and Innovation, Science, and Economic Development Canada, RSS-210 and RSS-Gen test specification(s). The data presented in this test report pertains to the EUT on the test date(s) specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	3
2.	Introduction	4
2.1.	Scope of Tests	4
2.2.	Purpose	4
2.3.	Identification of the EUT.....	4
3.	Power Input	4
4.	Grounding	4
5.	Support Equipment	4
6.	Interconnect Leads.....	4
7.	Modifications Made to the EUT	5
8.	Modes of Operation.....	5
9.	Test Specifications	5
10.	Test Plan	5
11.	Deviation, Additions to, or Exclusions from Test Specifications	5
12.	Laboratory Conditions	5
13.	Summary	6
14.	Sample Calculations	6
15.	Statement of Conformity	6
16.	Certification	6
17.	Photographs of EUT	7
18.	Block Diagram of Test Setup	9
19.	Equipment List	10
20.	Powerline Conducted Emissions Test (AC Mains)	11
21.	Spurious Radiated Emissions	19
22.	Scope of Accreditation	26

**This report shall not be reproduced, except in full,
without the written approval of Elite Electronic Engineering Inc.**

1. Report Revision History

Revision	Date	Description
–	13 SEP 2022	Initial Release of Engineering Test Report No. 2202781-02

2. Introduction

2.1. Scope of Tests

This document presents the results of a series of RF emissions tests that were performed on the Industrial Scientific Corporation wireless industrial gateway (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was manufactured and submitted for testing by Industrial Scientific Corporation located in Pittsburgh, PA.

2.2. Purpose

The test series was performed to determine if the EUT meets the Class II Permissive Change requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Sections 15.225. The following modifications have been made to the original equipment:

- A change of integrated cellular radio.

The test series was also performed to determine if the EUT meets the Class II Permissive Change requirements of the Industry Canada Radio Standards Specification RSS-Gen and Industry Canada Radio Standards Specification RSS-210 for Transmitters.

Testing was performed in accordance with ANSI C63.10-2013.

2.3. Identification of the EUT

The EUT was identified as follows:

EUT Identification	
Description	Wireless gateway for industrial environment applications
Model/Part No.	RGX
Serial No.	22072A3-007
Software/Firmware Version	
Size of EUT	28cm Height x 23cm Width x 15cm Depth
Number of Interconnection Wires	2
Type of Interconnection Wires	USB

The EUT listed above was used throughout the test series.

3. Power Input

The EUT obtained 12VDC power from a TDK-Lambda switching power supply, Model No. DT62PW120D-002. The power supply received 115V 60Hz power through lowpass powerline filters.

4. Grounding

The EUT was not connected to ground.

5. Support Equipment

The EUT was submitted for testing along with the following support equipment:

Description	Model #	S/N
Laptop	---	---

6. Interconnect Leads

The following interconnect cables were submitted with the test item:

Item	Description
USB (Qty 2)	Connects laptop to EUT

7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

8. Modes of Operation

Mode	Description
Tx	Transmit at 13.56MHz

9. Test Specifications

The tests were performed to selected portions of, and in accordance with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 and Innovation, Science, and Economic Development Canada, RSS-210 test specifications.

- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subpart C
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz"
- ANSI C63.10-2013, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- RSS-210 Issue 10, December 2019, "License-Exempt Radio Apparatus: Category I Equipment"
- RSS-Gen Issue 5, March 2019, Amendment 1, Innovation, Science, and Economic Development Canada, "Spectrum Management and Telecommunications, Radio Standards Specification, General Requirements for Compliance of Radio Apparatus"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from Industrial Scientific Corporation and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225, Innovation, Science, and Economic Development Canada, RSS-210, and ANSI C63.4-2014 specifications.

11. Deviations, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

Ambient Parameters	Value
Temperature	24°C
Relative Humidity	40%
Atmospheric Pressure	1014.3mb

13. Summary

The following EMC tests were performed, and the results are shown below:

Test Description	Requirements	Test Methods	S/N	Results
Powerline Conducted Emissions Test (AC Mains)	FCC 15C RSS-GEN	ANSI C63.10: 2013	22072A3-007	Conforms
Spurious Radiated Emissions	FCC 15C ISED RSS-210	ANSI C63.10: 2013	22072A3-007	Conforms

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

$$\text{Formula 1: } VL \text{ (dBuV)} = MTR \text{ (dBuV)} + CF \text{ (dB)}.$$

For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

$$\text{Formula 1: } FS \text{ (dBuV/m)} = MTR \text{ (dBuV)} + AF \text{ (dB/m)} + CF \text{ (dB)} + (-PA \text{ (dB)}) + DC \text{ (dB)}$$

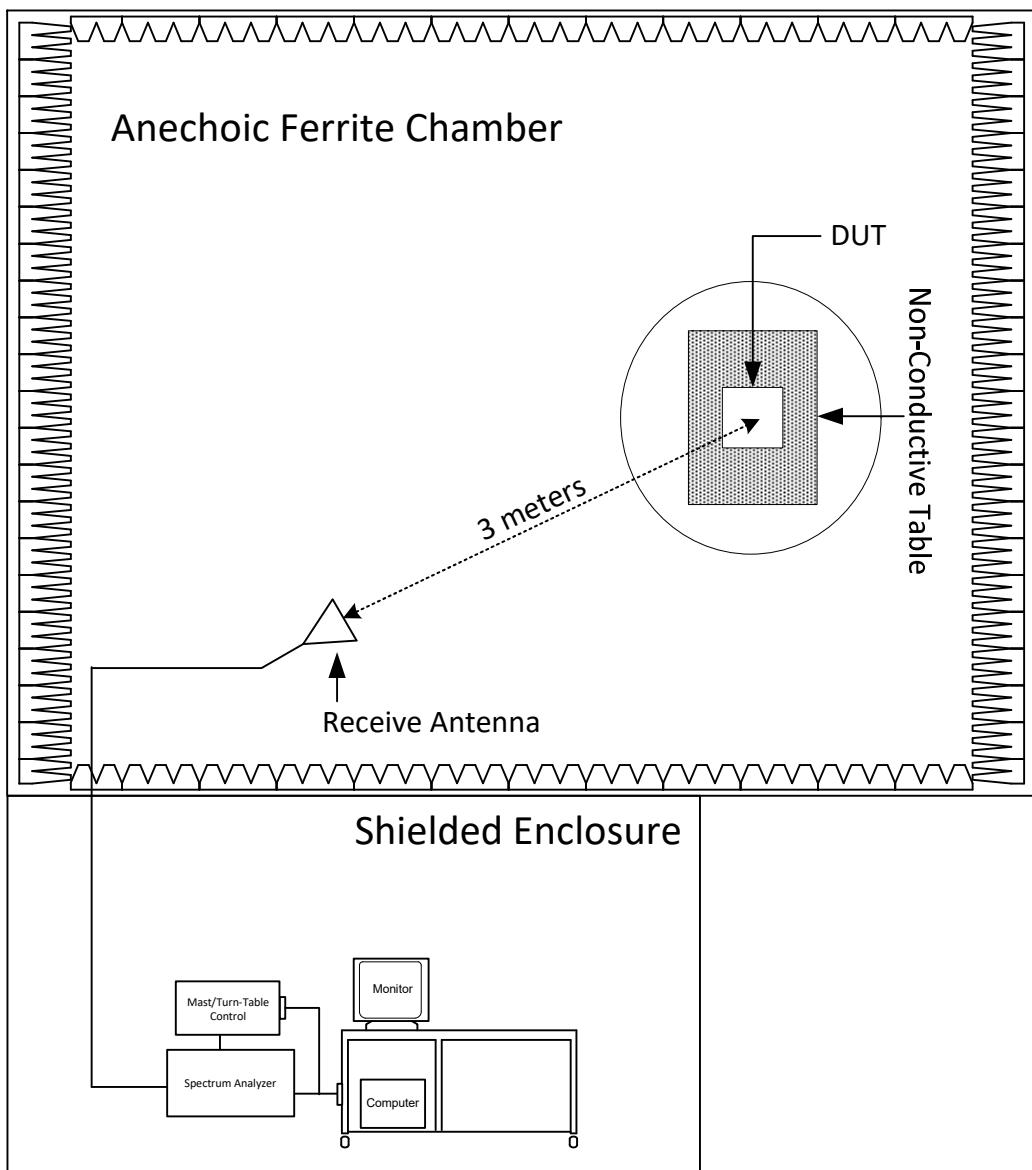
To convert the Field Strength dBuV/m term to uV/m, the dBuV/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in uV/m terms.

$$\text{Formula 2: } FS \text{ (uV/m)} = \text{AntiLog} [(FS \text{ (dBuV/m)})/20]$$

15. Statement of Conformity

The Industrial Scientific Corporation wireless industrial gateway, Model No. RGX, Serial No. 22072A3-007, did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 and Innovation, Science, and Economic Development Canada, RSS-210.

16. Certification


Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 and Innovation, Science, and Economic Development Canada, RSS-210 test specifications. The data presented in this test report pertains to the EUT on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT

18. Block Diagram of Test Setup

Radiated Measurements Test Setup

19. Equipment List

Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
CDZ3	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
GRB0	1MHZ, LISN SIGNAL CHECKER	ELITE	LISNCHKR1M	1	1MHZ	8/15/2022	8/15/2024
MEA3	MICRO-OHM METER	KEITHLEY	580	772667	10UOHM-200KOHM	6/6/2022	6/6/2023
NLS0	24" ACTIVE LOOP ANTENNA	EMCO	6502	89979	10KHZ-30MHZ	09/11/2020	09/11/2022
NTA3	BILOG ANTENNA	TESEQ	6112D	32853	25-1000MHz	10/20/2020	10/20/2022
PLF2	CISPR16 50UH LISN	ELITE	CISPR16/70A	002	.15-30MHz	4/5/2022	4/5/2023
PLF4	CISPR16 50UH LISN	ELITE	CISPR16/70A	003	.15-30MHz	4/5/2022	4/5/2023
RBG4	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	103007	2HZ-44GHZ	4/28/2022	4/28/2023
T1E14	10DB 25W ATTENUATOR	WEINSCHEL	46-10-43	CM5690	DC-18GHZ	5/18/2022	5/18/2024
VBR8	CISPR EN FCC CE VOLTAGE.exe					N/A	
WKA1	SOFTWARE, UNIVERSAL RCV EMI	ELITE	UNIV_RCV_EMI	1	---	I/O	

N/A: Not Applicable

I/O: Initial Only

CNR: Calibration Not Required

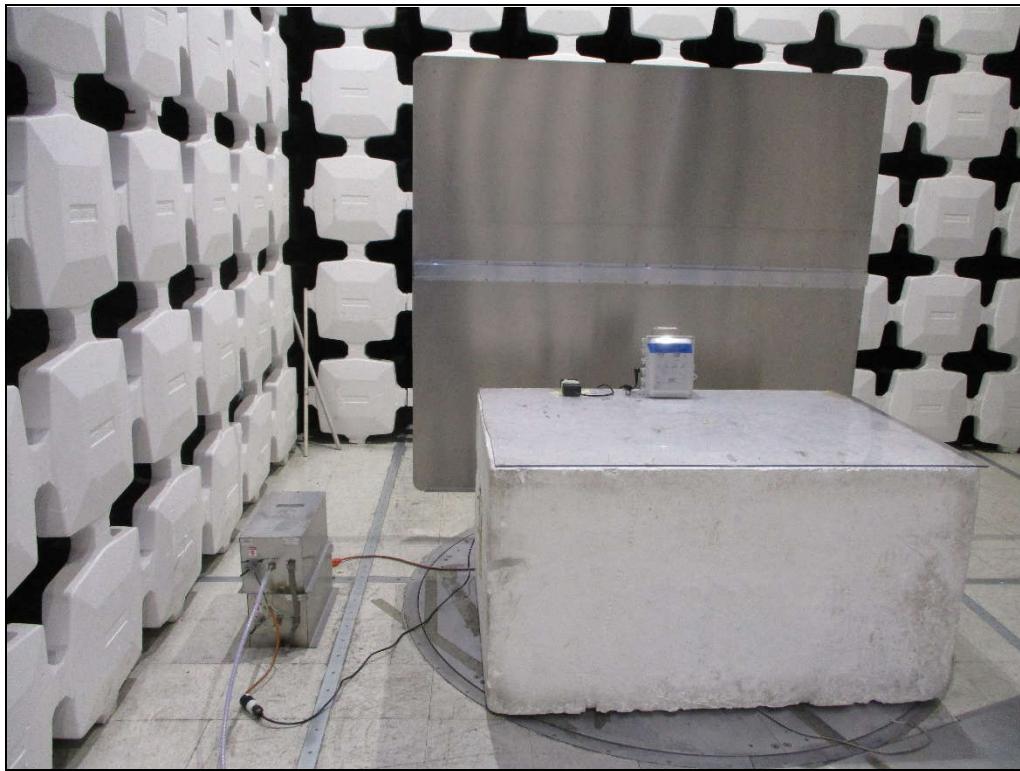
NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

20. Powerline Conducted Emissions Test (AC Mains)

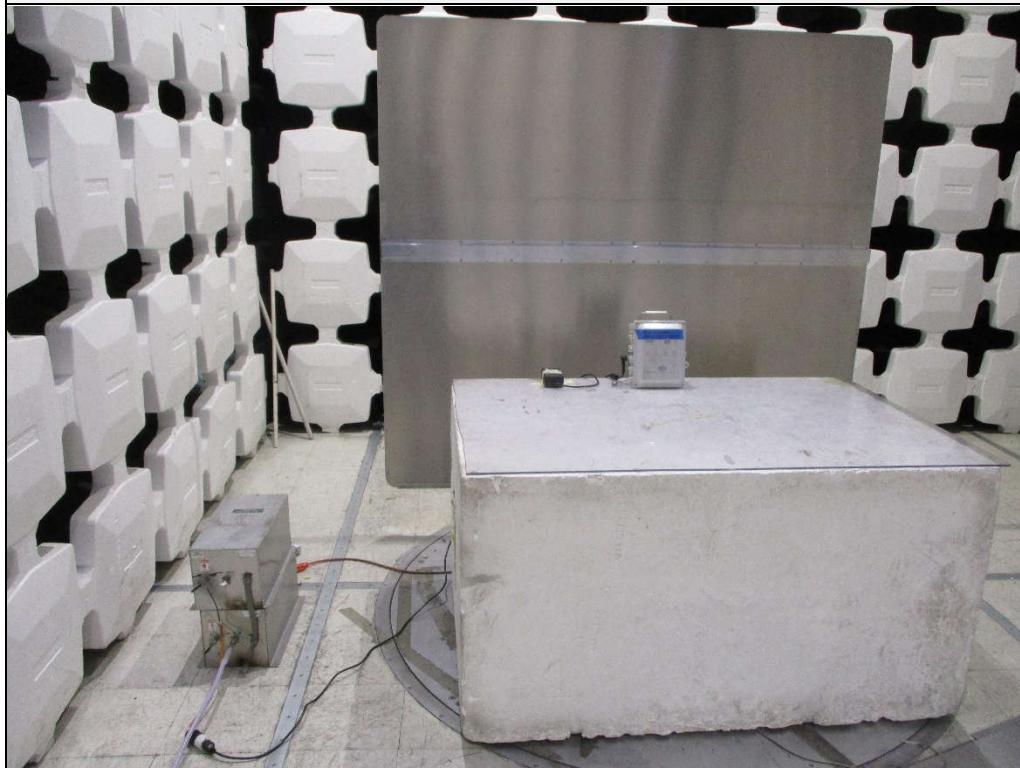
Test Information	
Manufacturer	Industrial Scientific Corporation
Product	wireless industrial gateway
Model	RGX
Serial No	22072A3-007
Mode	Tx
Test Date	September 8, 2022

Test Setup Details	
Setup Format	Tabletop
Height of Support	NA
Type of Test Site	Semi-Anechoic
Test site used	R29F
Note	N/A

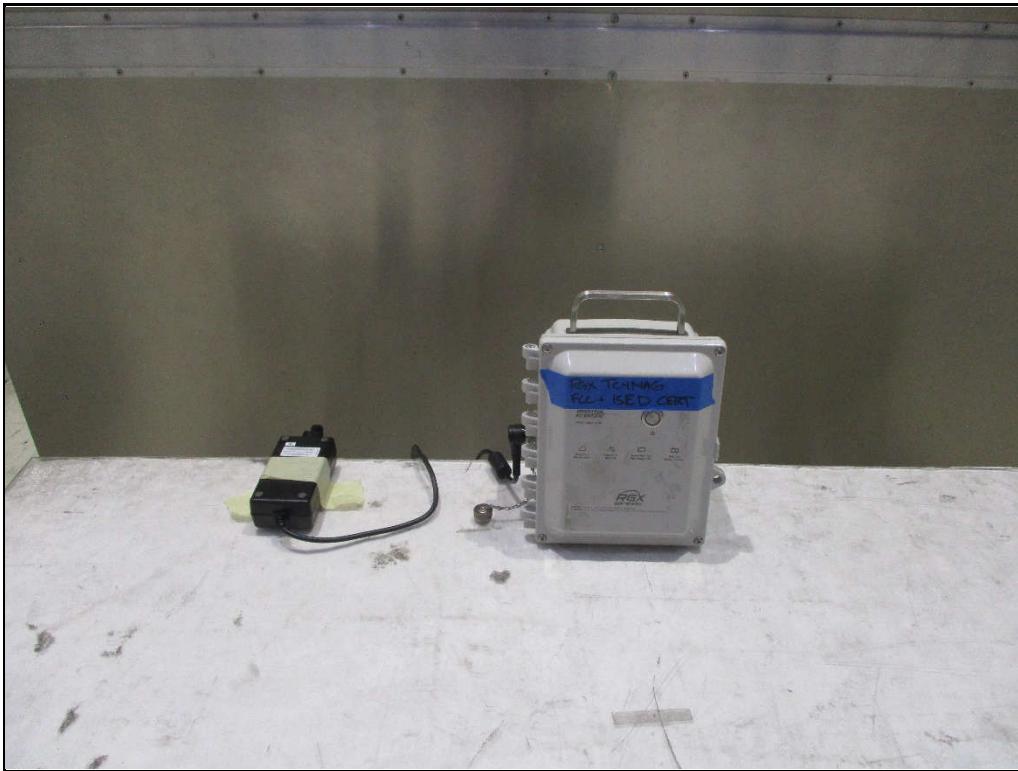
Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Conducted disturbance (mains port) (150 kHz – 30 MHz)	2.7

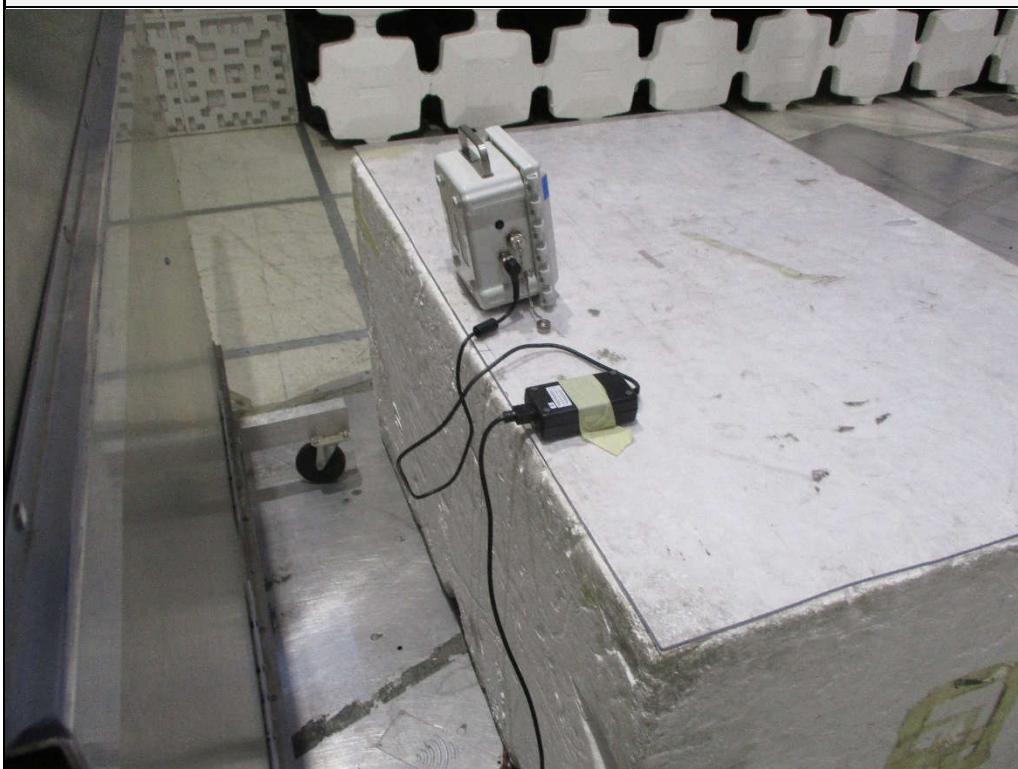

Requirements		
All radio frequency voltages on the power lines for any frequency or frequencies of an intentional radiator shall not exceed the limits in the following table:		
Frequency of Emission (MHz)		Conducted Limits (dB μ V)
Quasi-peak		Average
0.15-05	66 to 56*	56-46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency


Procedures

The interference on each power lead of the EUT was measured by connecting the measuring equipment to the appropriate meter terminal of the Line Impedance Stabilization Network (LISN). The meter terminal of the LISN not under test was terminated with 50 ohms.


- 1) The EUT was operated in the Tx mode.
- 2) Measurements were first made on the 115V, 60Hz high line.
- 3) The frequency range from 150 kHz to 30 MHz was broken up into smaller frequency sub-bands.
- 4) Conducted emissions measurements were taken on the first frequency sub-band using a peak detector with a 9kHz resolution bandwidth.
- 5) The data thus obtained was then searched by the computer for the highest levels. Any emissions levels that were within 10dB of the average limit were then measured again using both a quasi-peak detector and an average detector. (If no peak readings were within 10dB of the average limit, quasi-peak and average readings were taken on the highest emissions levels measured during the peak detector scan.)
- 6) Steps (4) and (5) were repeated for the remainder of the frequency sub-bands until the entire frequency range from 150kHz to 30MHz was investigated. The peak trace was automatically plotted. The plot also shows quasi-peak and average readings that were taken on discrete frequencies. A table showing the quasi-peak and average readings was also generated. This tabular data compares the quasi-peak and average conducted emissions to the applicable conducted emissions limits.
- 7) Steps (3) through (6) were repeated on the 115V, 60Hz neutral line.


Test Setup for Powerline Conducted Emissions (AC Mains)

Test Setup for Powerline Conducted Emissions (AC Mains)

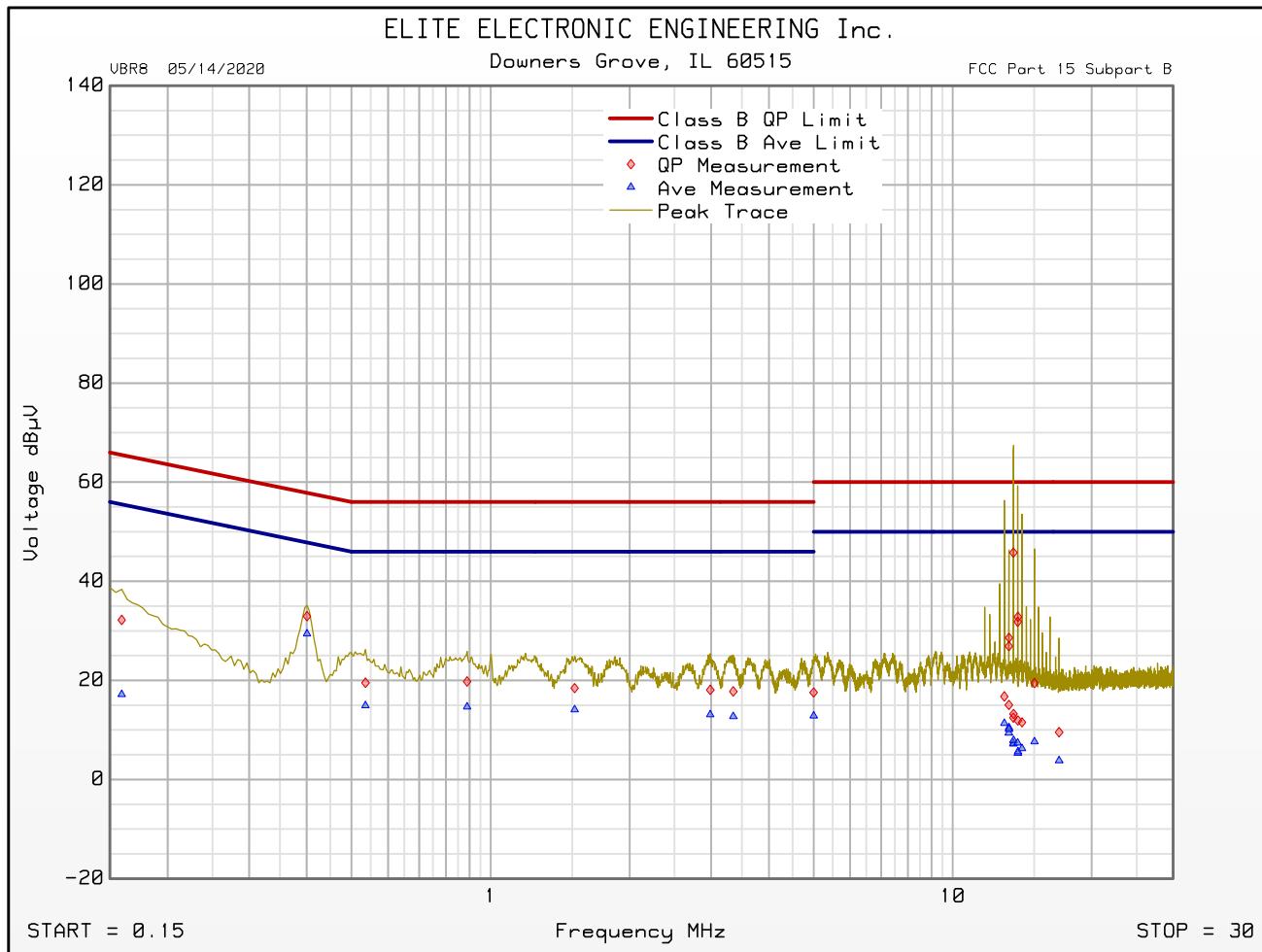
Test Setup for Powerline Conducted Emissions (AC Mains)

Test Setup for Powerline Conducted Emissions (AC Mains)

FCC Part 15 Subpart C Conducted Emissions Test

Significant Emissions Data

VBR8 05/14/2020


Manufacturer : Industrial Scientific Corporation
 Model : RGX
 DUT Revision : ---
 Serial Number : 22072A3-007
 DUT Mode : Tx
 Line Tested : Line
 Scan Step Time [ms] : 30
 Meas. Threshold [dB] : -10
 Notes : None
 Test Engineer : J. Cardenas
 Limit :
 Test Date : Sep 08, 2022 03:18:33 PM
 Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold over 10 dB margin below limit

Freq MHz	Quasi-peak Level dB μ V	Quasi-peak Limit dB μ V	Excessive Quasi-peak Emissions	Average Level dB μ V	Average Limit dB μ V	Excessive Average Emissions
0.159	32.2	65.5		17.2	55.5	
0.401	33.0	57.8		29.4	47.8	
0.536	19.5	56.0		14.9	46.0	
0.889	19.8	56.0		14.6	46.0	
1.520	18.4	56.0		14.1	46.0	
2.988	18.1	56.0		13.1	46.0	
3.352	17.8	56.0		12.7	46.0	
5.000	17.6	56.0		12.8	46.0	
13.532	45.8	60.0		7.2	50.0	
16.997	9.6	60.0		3.8	50.0	

FCC Part 15 Subpart C Conducted Emissions Test Cumulative Data

VBR8 05/14/2020

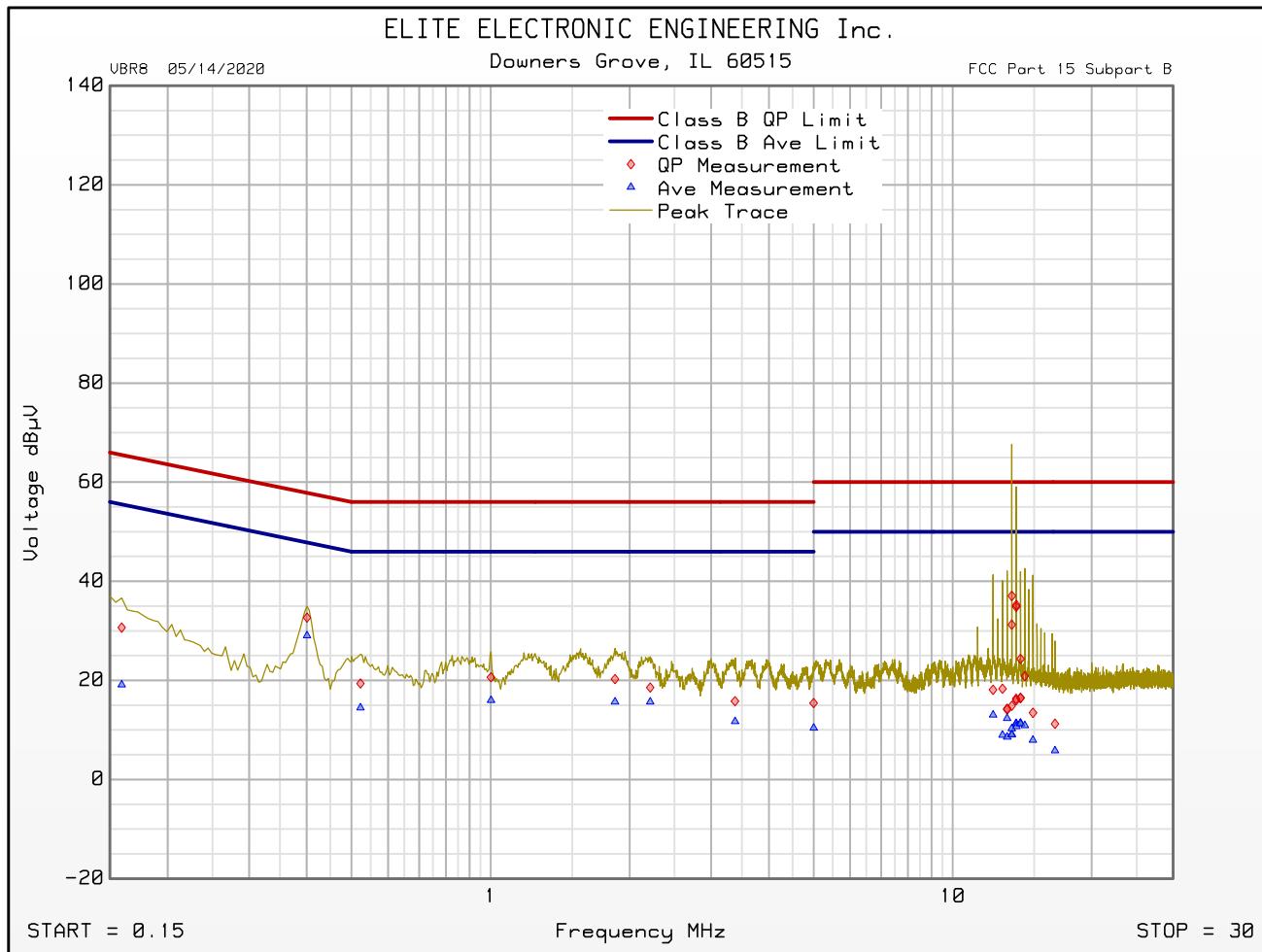
Manufacturer : Industrial Scientific Corporation
Model : RGX
DUT Revision : ---
Serial Number : 22072A3-007
DUT Mode : Tx
Line Tested : Line
Scan Step Time [ms] : 30
Meas. Threshold [dB] : -10
Notes : None
Test Engineer : J. Cardenas
Limit :
Test Date : Sep 08, 2022 03:18:33 PM

Emissions Meet QP Limit
Emissions Meet Ave Limit

FCC Part 15 Subpart C Conducted Emissions Test

Significant Emissions Data

VBR8 05/14/2020


Manufacturer : Industrial Scientific Corporation
 Model : RGX
 DUT Revision : ---
 Serial Number : 22072A3-007
 DUT Mode : Tx
 Line Tested : Neutral
 Scan Step Time [ms] : 30
 Meas. Threshold [dB] : -10
 Notes : None
 Test Engineer : J. Cardenas
 Limit :
 Test Date : Sep 08, 2022 03:12:41 PM
 Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold over 10 dB margin below limit

Freq MHz	Quasi-peak Level dB μ V	Quasi-peak Limit dB μ V	Excessive Quasi-peak Emissions	Average Level dB μ V	Average Limit dB μ V	Excessive Average Emissions
0.159	30.6	65.5		19.1	55.5	
0.401	32.7	57.8		29.0	47.8	
0.523	19.4	56.0		14.5	46.0	
1.002	20.6	56.0		16.0	46.0	
1.858	20.2	56.0		15.6	46.0	
2.214	18.6	56.0		15.6	46.0	
3.379	15.8	56.0		11.7	46.0	
5.000	15.4	56.0		10.4	46.0	
13.428	37.0	60.0		10.3	50.0	
16.651	11.2	60.0		5.8	50.0	

FCC Part 15 Subpart C Conducted Emissions Test Cumulative Data

VBR8 05/14/2020

Manufacturer : Industrial Scientific Corporation
Model : RGX
DUT Revision : ---
Serial Number : 22072A3-007
DUT Mode : Tx
Line Tested : Neutral
Scan Step Time [ms] : 30
Meas. Threshold [dB] : -10
Notes : None
Test Engineer : J. Cardenas
Limit :
Test Date : Sep 08, 2022 03:12:41 PM

Emissions Meet QP Limit
Emissions Meet Ave Limit

21. Spurious Radiated Emissions

Test Information	
Manufacturer	Industrial Scientific Corporation
Product	wireless industrial gateway
Model	RGX
Serial No	22072A3-007
Mode	Tx
Test Date	August 7/2022

Test Setup Details	
Setup Format	Tabletop
Height of Support	NA
Type of Test Site	Semi-Anechoic Chamber
Test site used	R29F
Notes	None

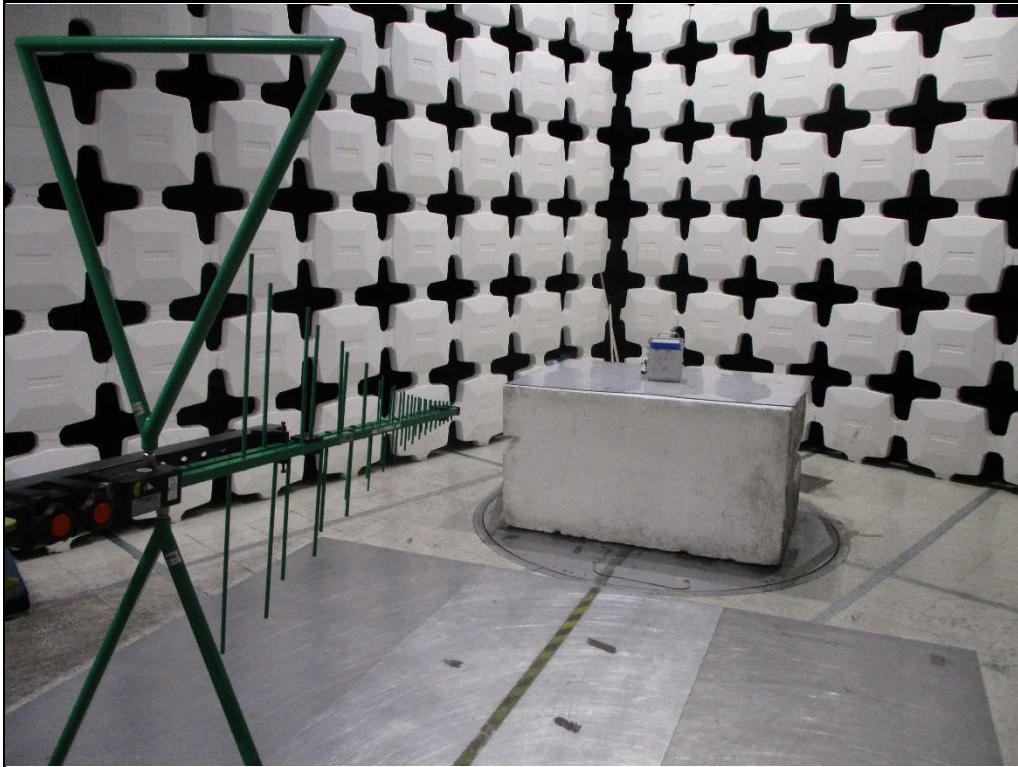
Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4

Requirements		
The EUT must comply with the requirements of FCC "Code of Federal Regulations Title 47", Part 15, Subpart C, Section 15.225 and 15.209 as well as the requirements of the RSS-GEN specification Section 8.10.		
Carrier Frequency (MHz)	Field Strength of Carrier (μ V/m)	Measurement Distance (m)
13.553-13.567	15.848	30
13.410-13.553	334	30
13.567-13.710	334	30
13.110-13.410	106	30
13.710-14.010	106	30
Carrier Frequency (MHz)	Field Strength of Spurious Emissions (μ V/m)	Measurement Distance (m)
0.009-0.490	$2400/(f\text{kHz})$	300
0.490-1.705	$24000/(f\text{kHz})$	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Procedures		
All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2014 for site attenuation.		
The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.		
A preliminary radiated emissions test was performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3-meter distance from the EUT. The entire frequency range from 30MHz to 200MHz was investigated using a peak detector function. The data was then processed by the computer to calculate equivalent field intensity.		
The final emission tests were then manually performed over the frequency range of 30MHz to 200MHz. Between 30MHz and 1000MHz, a bi-log antenna was used as the pick-up device. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.		
Above 1GHz, a broadband double ridged waveguide antenna was used as the pick-up device. The EUT was placed on an 150cm high non-conductive stand. A peak detector with a resolution bandwidth of 1 MHz was used on the spectrum analyzer.		
The peak detected levels were converted to average levels using a duty cycle factor which was computed from the pulse train.		
To ensure that maximum or worst case, emission levels were measured, the following steps were taken:		

- 1) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
- 2) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
- 3) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
- 4) For hand-held or body-worn devices, the EUT was rotated through three orthogonal axes to determine which orientation produces the highest emission relative to the limit.


In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer and the antenna cannot be raised to 4 meters. The measuring antenna is raised or lowered as much as the cable will allow and the EUT is rotated through all axis to ensure the maximum readings are recorded.


Test Setup for Spurious Radiated Emissions, 10-30MHz – Antenna Polarization
Horizontal

Test Setup for Spurious Radiated Emissions, 10-30MHz – Antenna Polarization
Vertical

Test Setup for Spurious Radiated Emissions, 30-200MHz – Antenna Polarization
Horizontal

Test Setup for Spurious Radiated Emissions, 30-200MHz – Antenna Polarization
Vertical

Test Details												
Manufacturer	Industrial Scientific Corporation											
Model	RGX											
S/N	22072A3-007											
Mode	Tx											
Carrier Frequency	13.56MHz											
Requirements	Field Strength of Carrier Limit = 29.9 μ V/m											
Notes	Powered by ACDC Adaptor											

Freq. (MHz)	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Dist. Corr. (dB)	Total (dBuV/m)	Total (uV/m)	Limit (uV/m)	Specified Test Distance (meters)	Margin (dB)
13.560	H	44.9		0.2	9.7	0.0	-40.0	14.8	5.5	15848.0	30.0	-69.2
13.560	V	59.7		0.2	9.7	0.0	-40.0	29.5	29.9	15848.0	30.0	-54.5
27.120	H	12.9	*	0.3	8.1	0.0	-40.0	-18.7	0.1	30.0	30.0	-48.3
27.120	V	14.6	*	0.3	8.1	0.0	-40.0	-17.1	0.1	30.0	30.0	-46.6
40.680	H	11.1	*	0.3	18.6	0.0	0.0	30.0	31.6	100.0	3.0	-10.0
40.680	V	11.0	*	0.3	18.6	0.0	0.0	29.9	31.2	100.0	3.0	-10.1
54.240	H	10.3	*	0.4	13.1	0.0	0.0	23.8	15.4	100.0	3.0	-16.2
54.240	V	10.2	*	0.4	13.1	0.0	0.0	23.7	15.3	100.0	3.0	-16.3
67.800	H	10.2	*	0.4	12.3	0.0	0.0	22.9	14.0	100.0	3.0	-17.1
67.800	V	11.3	*	0.4	12.3	0.0	0.0	24.0	15.9	100.0	3.0	-16.0
81.360	H	10.0	*	0.5	13.1	0.0	0.0	23.6	15.2	100.0	3.0	-16.4
81.360	V	9.9	*	0.5	13.1	0.0	0.0	23.5	15.0	100.0	3.0	-16.5
94.920	H	10.4	*	0.5	15.9	0.0	0.0	26.9	22.1	150.0	3.0	-16.7
94.920	V	10.6	*	0.5	15.9	0.0	0.0	27.0	22.3	150.0	3.0	-16.5
108.480	H	10.5	*	0.5	18.0	0.0	0.0	29.0	28.2	150.0	3.0	-14.5
108.480	V	10.6	*	0.5	18.0	0.0	0.0	29.1	28.5	150.0	3.0	-14.4
122.040	H	10.4	*	0.6	18.3	0.0	0.0	29.3	29.1	150.0	3.0	-14.3
122.040	V	10.3	*	0.6	18.3	0.0	0.0	29.2	28.7	150.0	3.0	-14.4
135.600	H	10.1	*	0.6	17.5	0.0	0.0	28.2	25.8	150.0	3.0	-15.3
135.600	V	10.4	*	0.6	17.5	0.0	0.0	28.5	26.7	150.0	3.0	-15.0

Test Details												
Manufacturer	Industrial Scientific Corporation											
Model	RGX											
S/N	22072A3-007											
Mode	Tx											
Carrier Frequency	13.56MHz											
Requirements	Field Strength of Carrier Limit = 28.9 μ V/m											
Notes	Battery Powered											

Freq. (MHz)	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Dist. Corr. (dB)	Total (dBuV/m)	Total (uV/m)	Limit (uV/m)	Specified Test Distance (meters)	Margin (dB)
13.560	H	46.2		0.2	9.7	0.0	-40.0	16.1	6.4	15848.0	30.0	-67.9
13.560	V	59.4		0.2	9.7	0.0	-40.0	29.2	28.9	15848.0	30.0	-54.8
27.120	H	11.9		0.3	8.1	0.0	-40.0	-19.7	0.1	30.0	30.0	-49.2
27.120	V	15.1		0.3	8.1	0.0	-40.0	-16.5	0.1	30.0	30.0	-46.0
40.680	H	10.3	*	0.3	18.6	0.0	0.0	29.2	28.8	100.0	3.0	-10.8
40.680	V	10.4	*	0.3	18.6	0.0	0.0	29.3	29.1	100.0	3.0	-10.7
54.240	H	10.5	*	0.4	13.1	0.0	0.0	24.0	15.8	100.0	3.0	-16.0
54.240	V	10.7	*	0.4	13.1	0.0	0.0	24.2	16.2	100.0	3.0	-15.8
67.800	H	9.8	*	0.4	12.3	0.0	0.0	22.5	13.4	100.0	3.0	-17.5
67.800	V	10.1	*	0.4	12.3	0.0	0.0	22.8	13.8	100.0	3.0	-17.2
81.360	H	9.9	*	0.5	13.1	0.0	0.0	23.5	15.0	100.0	3.0	-16.5
81.360	V	10.2	*	0.5	13.1	0.0	0.0	23.8	15.5	100.0	3.0	-16.2
94.920	H	10.5	*	0.5	15.9	0.0	0.0	26.9	22.2	150.0	3.0	-16.6
94.920	V	10.7	*	0.5	15.9	0.0	0.0	27.1	22.7	150.0	3.0	-16.4
108.480	H	10.3	*	0.5	18.0	0.0	0.0	28.8	27.6	150.0	3.0	-14.7
108.480	V	10.6	*	0.5	18.0	0.0	0.0	29.1	28.5	150.0	3.0	-14.4
122.040	H	10.3	*	0.6	18.3	0.0	0.0	29.2	28.7	150.0	3.0	-14.4
122.040	V	10.2	*	0.6	18.3	0.0	0.0	29.1	28.4	150.0	3.0	-14.5
135.600	H	10.3	*	0.6	17.5	0.0	0.0	28.4	26.4	150.0	3.0	-15.1
135.600	V	10.4	*	0.6	17.5	0.0	0.0	28.5	26.7	150.0	3.0	-15.0

22. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC.
1516 Centre Circle
Downers Grove, IL 60515
Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168
Email: rbugielski@elitetest.com
Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112
Email: cfanning@elitetest.com
Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163
Email: blugo@elitetest.com
Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123
Email: reking@elitetest.com
Website: www.elitetest.com

ELECTRICAL

Valid To: June 30, 2023

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following automotive electromagnetic compatibility and other electrical tests:

Test Technology:**Test Method(s):*****Transient Immunity***

ISO 7637-2 (including emissions); ISO 7637-3;
ISO 16750-2:2012, Sections 4.6.3 and 4.6.4;
CS-11979, Section 6.4; CS.00054, Section 5.9;
EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222);
GMW 3097, Section 3.5; SAE J1113-11; SAE J1113-12;
ECE Regulation 10.06 Annex 10

Electrostatic Discharge (ESD)

ISO 10605 (2001, 2008);
CS-11979 Section 7.0; CS.00054, Section 5.10;
EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13;
GMW 3097 Section 3.6

Conducted Emissions

CISPR 25 (2002, 2008), Sections 6.2 and 6.3;
CISPR 25 (2016), Sections 6.3 and 6.4;
CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2;
GMW 3097, Section 3.3.2;
EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421)

Radiated Emissions Anechoic

CISPR 25 (2002, 2008), Section 6.4;
CISPR 25 (2016), Section 6.5;
CS-11979, Section 5.3; CS.00054, Section 5.6.3;
GMW 3097, Section 3.3.1;
EMC-CS-2009.1 (RE 310); FMC1278 (RE310);

(A2LA Cert. No. 1786.01) Revised 08/08/2022

 Page 1 of 8

<u>Test Technology:</u>	<u>Test Method(s)^{1:}</u>
Vehicle Radiated Emissions	CISPR 12; CISPR 36; ICES-002; ECE Regulation 10.06 Annex 5
Bulk Current Injection (BCI)	ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1; GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112); ECE Regulation 10.06 Annex 9
Radiated Immunity Anechoic (Including Radar Pulse)	ISO 11452-2; ISO 11452-5; CS-11979, Section 6.2; CS.00054, Section 5.8.2; GMW 3097, Section 3.4.2; EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21; ECE Regulation 10.06 Annex 9
Radiated Immunity Magnetic Field	ISO 11452-8
Radiated Immunity Reverb	ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3; EMC-CS-2009.1 (RI114); FMC1278 (RI114); ISO 11452-11
Radiated Immunity (Portable Transmitters)	ISO 11452-9; EMC-CS-2009.1 (RI115); FMC1278 (RI115)
Vehicle Radiated Immunity (ALSE)	ISO 11451-2; ECE Regulation 10.06 Annex 6
Vehicle Product Specific EMC Standards	EN 14982; EN ISO 13309; ISO 13766; EN 50498; EC Regulation No. 2015/208; EN 55012
Electrical Loads	ISO 16750-2
Emissions Radiated and Conducted (3m Semi-anechoic chamber, up to 40 GHz)	47 CFR, FCC Part 15 B (using ANSI C63.4:2014); 47 CFR, FCC Part 18 (using FCC MP-5:1986); ICES-001; ICES-003; ICES-005; IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004); IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010); KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008); CISPR 11; EN 55011; KS C 9811; CNS 13803 (1997, 2003); CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; CISPR 16-2-1 (2008); CISPR 16-2-1; KS C 9814-1; KN 14-1; IEC/CISPR 22 (1997); EN 55022 (1998) + A1(2000); EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006); IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004); AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz); CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz); CISPR 32; EN 55032; KS C 9832; KN 32; ECE Regulation 10.06 Annex 7 (Broadband) ECE Regulation 10.06 Annex 8 (Narrowband) ECE Regulation 10.06 Annex 14 (Conducted)

<u>Test Technology:</u>	<u>Test Method(s)¹:</u>
Emissions (cont'd)	
Cellular Radiated Spurious Emissions	ETSI TS 151 010-1 GSM; 3GPP TS 51.010-1, Sec 12; ETSI TS 134 124 UMTS; 3GPP TS 34.124; ETSI TS 136 124 LTE; E-UTRA; 3GPP TS 36.124
Current Harmonics	IEC 61000-3-2; EN 61000-3-2; KN 61000-3-2; KS C 9610-3-2; ECE Regulation 10.06 Annex 11
Flicker and Fluctuations	IEC 61000-3-3; EN 61000-3-3; KN 61000-3-3; KS C 9610-3-3; ECE Regulation 10.06 Annex 12
Immunity	
Electrostatic Discharge	IEC 61000-4-2, Ed. 1.2 (2001); IEC 61000-4-2 (1995) + A1(1998) + A2(2000); EN 61000-4-2 (1995); EN 61000-4-2 (2009-05); KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2; KS C 9610-4-2; IEEE C37.90.3 2001
Radiated Immunity	IEC 61000-4-3 (1995) + A1(1998) + A2(2000); IEC 61000-4-3, Ed. 3.0 (2006-02); IEC 61000-4-3, Ed. 3.2 (2010); KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3; KS C 9610-4-3; IEEE C37.90.2 2004
Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07); IEC 61000-4-4, Ed. 2.1 (2011); IEC 61000-4-4 (1995) + A1(2000) + A2(2001); KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008); IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4; KS C 9610-4-4; ECE Regulation 10.06 Annex 15
Surge	IEC 61000-4-5 (1995) + A1(2000); IEC 61000-4-5, Ed 1.1 (2005-11); EN 61000-4-5 (1995) + A1(2001); KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5; KS C 9610-4-5; IEEE C37.90.1 2012; IEEE STD C62.41.2 2002; ECE Regulation 10.06 Annex 16

Test Technology:
Test Method(s)¹:
Immunity (cont'd)

Conducted Immunity

IEC 61000-4-6 (1996) + A1(2000);
 IEC 61000-4-6, Ed 2.0 (2006-05);
 IEC 61000-4-6 Ed. 3.0 (2008);
 KN 61000-4-6 (2008-5);
 RRL Notice No. 2008-4 (May 20, 2008);
 EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6;
 EN 61000-4-6; KN 61000-4-6; KS C 9610-4-6

 Power Frequency Magnetic Field
 Immunity (*Down to 3 A/m*)

IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009);
 EN 61000-4-8 (1994) + A1(2000);
 KN 61000-4-8 (2008-5);
 RRL Notice No. 2008-4 (May 20, 2008);
 IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8; KS C 9610-4-8

 Voltage Dips, Short Interrupts, and Line
 Voltage Variations

IEC 61000-4-11, Ed. 2 (2004-03);
 KN 61000-4-11 (2008-5);
 RRL Notice No. 2008-4 (May 20, 2008);
 IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11;
 KS C 9610-4-11

Ring Wave

IEC 61000-4-12, Ed. 2 (2006-09);
 EN 61000-4-12:2006;
 IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12;
 IEEE STD C62.41.2 2002

 Generic and Product Specific EMC
 Standards

IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1;
 KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2;
 KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3;
 AS/NZS 61000-6-3; KN 61000-6-3; KS C 9610-6-3;
 IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4;
 KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2;
 EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3;
 EN 55015; EN 60730-1; EN 60945; IEC 60533;
 EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2;
 AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2;
 IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24;
 IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35;
 KS C 9835; IEC 60601-1-2; JIS T0601-1-2

TxRx EMC Requirements

EN 301 489-1; EN 301 489-3; EN 301 489-9;
 EN 301 489-17; EN 301 489-19; EN 301 489-20

Test Technology:***European Radio Test Standards*****Test Method(s)¹:**

ETSI EN 300 086-1; ETSI EN 300 086-2;
ETSI EN 300 113-1; ETSI EN 300 113-2;
ETSI EN 300 220-1; ETSI EN 300 220-2;
ETSI EN 300 220-3-1; ETSI EN 300 220-3-2;
ETSI EN 300 330-1; ETSI EN 300 330-2;
ETSI EN 300 440-1; ETSI EN 300 440-2;
ETSI EN 300 422-1; ETSI EN 300 422-2;
ETSI EN 300 328; ETSI EN 301 893;
ETSI EN 301 511; ETSI EN 301 908-1;
ETSI EN 908-2; ETSI EN 908-13;
ETSI EN 303 413; ETSI EN 302 502;
EN 303 340; EN 303 345-2; EN 303 345-3; EN 303 345-4

Canadian Radio Tests

RSS-102 (RF Exposure Evaluation^{MEAS});
RSS-102 (Nerve Stimulation^{MEAS}) (5Hz to 400kHz);
SPR-002; RSS-111; RSS-112; RSS-117; RSS-119; RSS-123;
RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133;
RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141;
RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192;
RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210;
RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222;
RSS-236; RSS-238; RSS-243; RSS-244; RSS-247; RSS-248;
RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN

Mexico Radio Tests

IFT-008-2015; NOM-208-SCFI-2016

Japan Radio Tests

Radio Law No. 131, Ordinance of MPT No. 37, 1981,
MIC Notification No. 88:2004, Table No. 22-11;
ARIB STD-T66, Regulation 18

Taiwan Radio Tests

LP-0002 (July 15, 2020)

Australia/New Zealand Radio Tests

AS/NZS 4268; Radiocommunications (Short Range Devices)
Standard (2014)

Hong Kong Radio Tests

HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7;
HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057;
HKCA 1073

Korean Radio Test Standards

KN 301 489-1; KN 301 489-3; KN 301 489-9;
KN 301 489-17; KN 301 489-52; KS X 3124; KS X 3125;
KS X 3130; KS X 3126; KS X 3129

Vietnam Radio Test Standards

QCVN 47:2015/BTTTT; QCVN 54:2020/BTTTT;
QCVN 55:2011/BTTTT; QCVN 65:2013/BTTTT;
QCVN 73:2013/BTTTT; QCVN 74:2020/BTTTT;
QCVN 112:2017/BTTTT; QCVN 117:2020//BTTTT

Vietnam EMC Test Standards

QCVN 18:2014/BTTTT; QCVN 86:2019/BTTTT;
QCVN 96:2015/BTTTT; QCVN 118:2018/BTTTT

Test Technology:

Unlicensed Radio Frequency Devices
(3 Meter Semi-Anechoic Room)

Licensed Radio Service Equipment

OTA (Over the Air) Performance
GSM, GPRS, EGPRS
UMTS (W-CDMA)
LTE including CAT M1
A-GPS for UMTS/GSM
LTS A-GPS, A-GLONASS,
SIB8/SIB16
Large Device/Laptop/Tablet Testing
Integrated Device Testing
WiFi 802.11 a/b/g/n/a

Electrical Measurements and Simulation

AC Voltage / Current

(1mV to 5kV) 60 Hz
(0.1V to 250V) up to 500 MHz
(1µA to 150A) 60 Hz

FAA AC 150/5345-10H

FAA AC 150/5345-43J

FAA AC 150/5345-44K

DC Voltage / Current

(1mV to 15-kV) / (1µA to 10A)

FAA AC 150/5345-46E

FAA AC 150/5345-47C

Power Factor / Efficiency / Crest Factor

(Power to 30kW)

FAA EB 67D

Resistance

(1mΩ to 4000MΩ)

Surge

(Up to 10 kV / 5 kA) (Combination Wave and Ring Wave)

On the following products and materials:

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

¹ When the date, edition, version, etc. is not identified in the scope of accreditation, laboratories may use the version that immediately precedes the current version for a period of one year from the date of publication of the standard measurement method, per part C., Section 1 of A2LA R101 - *General Requirements- Accreditation of ISO-IEC 17025 Laboratories*.

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	40000
<u>Industrial, Scientific, and Medical Equipment</u> Part 18	FCC MP-5 (February 1986)	40000
<u>Intentional Radiators</u> Part 15C	ANSI C63.10:2013	40000
<u>Unlicensed Personal Communication Systems Devices</u> Part 15D	ANSI C63.17:2013	40000
<u>U-NII without DFS Intentional Radiators</u> Part 15E	ANSI C63.10:2013	40000
<u>U-NII with DFS Intentional Radiators</u> Part 15E	FCC KDB 905462 D02 (v02)	40000
<u>UWB Intentional Radiators</u> Part 15F	ANSI C63.10:2013	40000
<u>BPL Intentional Radiators</u> Part 15G	ANSI C63.10:2013	40000
<u>White Space Device Intentional Radiators</u> Part 15H	ANSI C63.10:2013	40000
<u>Commercial Mobile Services (FCC Licensed Radio Service Equipment)</u> Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>General Mobile Radio Services (FCC Licensed Radio Service Equipment)</u> Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Citizens Broadband Radio Services (FCC Licensed Radio Service Equipment)</u> Part 96	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000

(A2LA Cert. No. 1786.01) Revised 08/08/2022

 Page 7 of 8

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Maritime and Aviation Radio Services</u>		
Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015	40000
<u>Microwave and Millimeter Bands Radio Services</u>		
Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Broadcast Radio Services</u>		
Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Signal Boosters</u>		
Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90.219	ANSI C63.26:2015	40000

² Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (<https://apps.fcc.gov/oetcf/eas/>) for a listing of FCC approved laboratories.

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 *General requirements for the competence of testing and calibration laboratories*. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 19th day of May 2021.

Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 1786.01
Valid to June 30, 2023

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.