

HYUNDAI CALIBRATION & CERTIFICATION TECH. CO., LTD.

PRODUCT COMPLIANCE DIVISION
SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL: +82 31 639 8518 FAX: +82 31 639 8525 www.hct.co.kr

CERTIFICATE OF COMPLIANCE

FCC Part 22 Certification

AXESSTEL INC.

6480 Weathers Place, Suite 300,
San Diego, CA 92121

Date of Issue: January 14, 2007
Test Report No.: HCT-SAR07-0105
Test Site: HYUNDAI CALIBRATION & CERTIFICATION
TECHNOLOGIES CO., LTD.

FCC ID

PH7MV420

APPLICANT

AXESSTEL INC.

EUT Type: Wireless Gateway-Prototype

Tx Frequency: 824.70 — 848.31 MHz (CDMA_EVDO)

Rx Frequency: 869.70 — 893.31 MHz (CDMA_EVDO)

Max. RF Output Power: 0.305W ERP CDMA_EVDO (24.9 dBm)

Trade Name/Model(s): AXESSTEL / MV420

FCC Classification: Licensed Non-Broadcast station Transmitter - TNB

Application Type: Certification

FCC Rule Part(s): §22(H), §2

Maximum SAR: 0.596W/kg EVDO CDMA Body SAR

Antenna Specifications: Manufacturer: HANKOOK ANTENNA CO., LTD.

PN: TB-P800-SMA (Length= 148.5± 1.0mm)

Emission Designator(s): 1M27F9W

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in 2.947.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Hyundai C-Tech Co., Ltd. Certifies that no party to this application has been denied FCC benefits pursuant to section 5301 of the Anti- Drug Abuse Act of 1998, 21 U.S. C. 853(a)

Report prepared by : Ki-Soo Kim

Manager of Product Compliance Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Table of Contents

ATTACHMENT A: COVER LETTER(S)

ATTACHMENT B: ATTESTATION STATEMENT(S)

ATTACHMENT C: TEST REPORT

1.1 SCOPE -----	3
2.1 INTRODUCTION -----	4
3.1 INSERTS PER §2.1033(d)-----	5
4.1 DESCRIPTION OF TESTS-----	6-13
5.1 EFFECTIVE RADIATED POWER OUTPUT -----	14
6.1 RADIATED MEASUREMENTS-----	15-17
7.1 FREQUENCY STABILITY -----	18
8.1 PLOTS OF EMISSIONS-----	19
9.1 LIST OF TEST EQUIPMENT -----	20
10.1 SAMPLE CALCULATIONS -----	21
11.1 CONCLUSION-----	22

ATTACHMENT D: TEST PLOTS

ATTACHMENT E: FCC ID LABEL & LOCATION

ATTACHMENT F: TEST SETUP PHOTOGRAPHS

ATTACHMENT G: EXTERNAL PHOTOGRAPHS

ATTACHMENT H: INTERNAL PHOTOGRAPHS

ATTACHMENT I: BLOCK DIAGRAM (S)

ATTACHMENT J: CIRCUIT DIAGRAMS & DESCRIPTION

ATTACHMENT K: PARTS LIST

ATTACHMENT L: OPERATIONAL DESCRIPTION

ATTACHMENT M: USER'S MANUAL

ATTACHMENT N: SAR MEASUREMENT REPORT

ATTACHMENT O: SAR TEST DATA

ATTACHMENT P: SAR TEST SETUP PHOTOGRAPHS

ATTACHMENT Q: DIPOLE VALIDATION

ATTACHMENT R: PROBE CALIBRATION

ATTACHMENT S: DIPOLE CALIBRATION

ATTACHMENT T: EMI MEASUREMENT REPORT

MEASUREMENT REPORT

1.1 SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

General Information

Company Name:	AXESSTEL INC.
Address:	6480 Weathers Place, Suite 300, San Diego, CA 92121
Attention:	Mr. David Kim
Tel. / Fax :	858- 625-2100 / 858- 625- 2110
E-Mail :	dskim@axesstel.com

- FCC ID: PH7 MV420
- Quantity: Quantity production is planned
- EUT Type: Wireless Gateway-Prototype
- Trade Name: AXESSTEL
- Model(s): MV420
- Serial Number(s): PH7MV420-20070101
- Emission Designator(s): 1M27F9W
- Tx Frequency: 824.70 — 848.31 MHz (CDMA)
- Rx Frequency: 869.70 — 893.31 MHz (CDMA)
- Application Type: Certification
- FCC Classification: Licensed Non-Broadcast station Transmitter - TNB
- FCC Rule Part(s): §22(H), §2
- Modulation(s): CDMA
- Antenna Type: Removable
- Date(s) of Tests: January 13, 2007
- Place of Tests: Hyundai C-Tech. EMC Lab.
Icheon, Kyounki-Do, KOREA
- Report Serial No.: HCT-SAR07-0105

2.1 INTRODUCTION

EUT DESCRIPTION

The AXESSTEL INC. MV420 Wireless Gateway (CDMA). Its basic purpose is used for communications. It transmits from CDMA(824.70~848.31)MHz and receives from CDMA(869.70~893.31)MHz. The RF power is rated at CDMA (0.305W).

MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Test Facility

The open area test site and conducted measurement facility used to collect the radiated data are located at the 254-1, Maekok-Ri, Hobup-Myun, Ichon-Si, Kyoungki-Do, 467-701, KOREA. The site is constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 6, 2006(Registration Number: 90661)

3.1 INSERTS

Function of Active Devices (Confidential)

The Function of active devices are shown in Attachment K.

Block/Circuit Diagrams & Description (Confidential)

The circuit diagrams & description are shown in Attachment J, and the block diagrams are shown in Attachment I.

Operating Instructions

The instruction manual is shown in Attachment M.

Parts List & Tune-Up Procedure (Confidential)

The parts list & tune-up procedure are shown in Attachment L.

Description of Freq. Stabilization Circuit (Confidential)

The description of frequency stabilization circuit is shown in Attachment K.

Description for Suppression of Spurious Radiation, for Limiting Modulation, and Harmonic Supresion Circuits (Confidential)

The description of suppression stabilization circuits are shown in Attachment K

4.1 DESCRIPTION OF TESTS

Conducted Output Power §2.1046

This device was tested under all R.C.s and S.O.s and the worst case is reported with EvDO RETAP with "All Up" power control bits.

SAR Measurement Conditions for CDMA2000

The following procedures were followed according to FCC "SAR Measurement Procedures for 3G Devices", June 2006.

Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by "SAR Measurement Procedures for 3G Devices", June 2006.

1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 6-2 parameters were applied.
3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH0 and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 6-3 was applied.
5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

Parameters for Max. Power for RC1

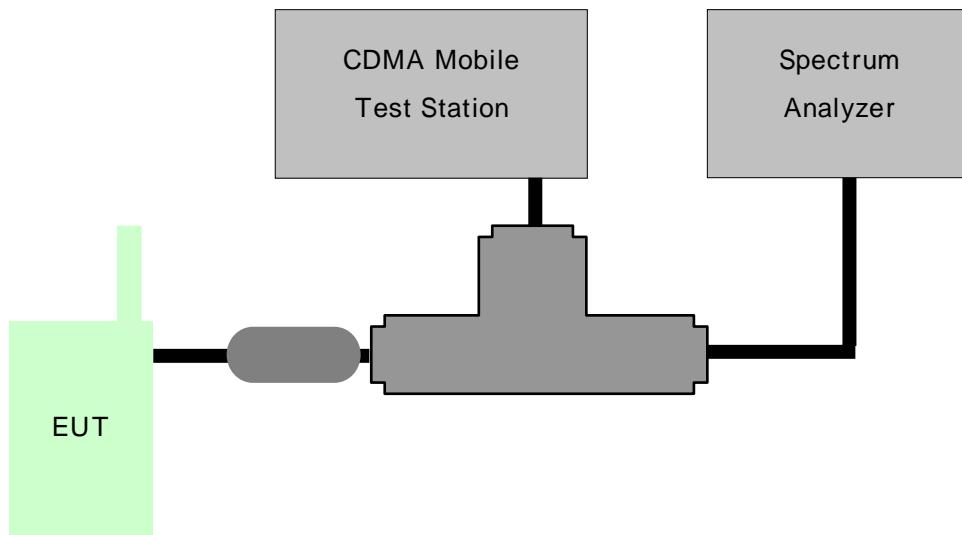
Parameter	Units	Value
\bar{I}_{or}	dBm/1.23 MHz	-104
$\frac{Pilot E_c}{I_{or}}$	dB	-7
$\frac{Traffic E_c}{I_{or}}$	dB	-7.4

Table. 1

Parameters for Max. Power for RC3

Parameter	Units	Value
\bar{I}_{or}	dBm/1.23 MHz	-86
$\frac{Pilot E_c}{I_{or}}$	dB	-7
$\frac{Traffic E_c}{I_{or}}$	dB	-7.4

Table. 2

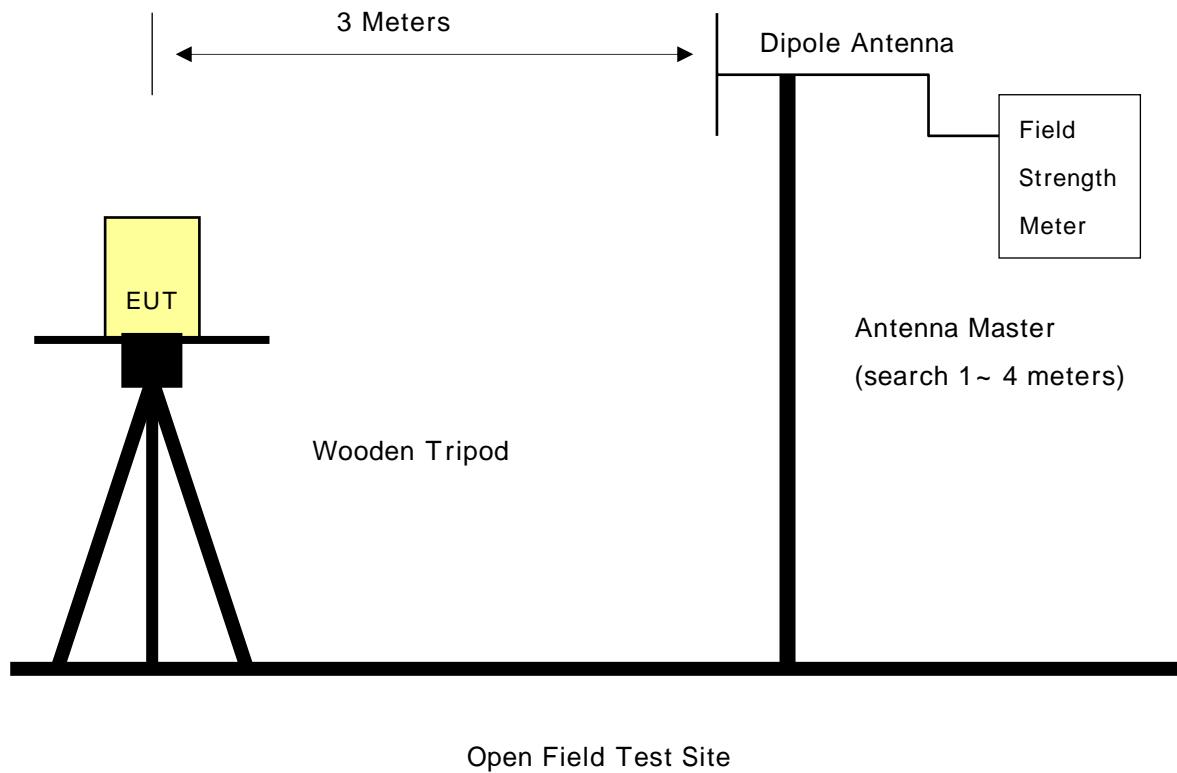

Maximum Power Output table for FCC ID: PH7MV420

Band	Channel	TDSO	1xEvDO	1xEvDO	1xEvDO	1xEvDO
		SO32	Rev.0	Rev.0	Rev. A	Rev. A
CDMA	1013	23.80	23.85	23.87	23.88	23.90
	384	23.82	23.86	23.88	23.88	23.89
	777	23.86	23.90	23.90	23.92	23.93

4.1 DESCRIPTION OF TESTS

4.1 Conducted RF Power Test

Test Set-up


Test Procedure

According to FCC §2.1046 (A), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

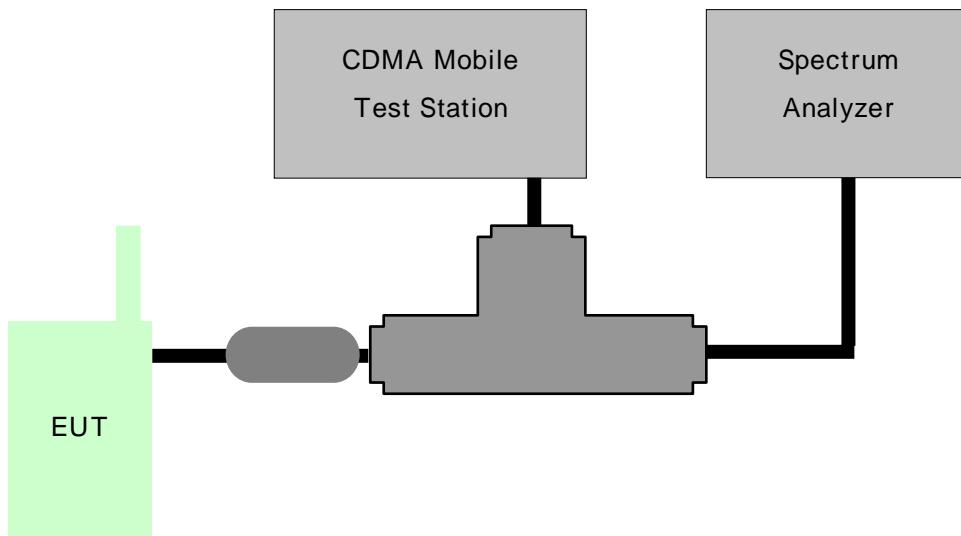
- 1) The EUT was coupled to the spectrum analyzer and the base station simulator through a power divider. The radio frequency load attached to the EUT antenna terminal was 50 Ohm. The loss of the cables the test system is calibrated to correct the reading.
- 2) The spectrum analyzer was set to Maxpeak Detector function and Maximum hold mode.
- 3) The resolution bandwidth of the spectrum analyzer was comparable to the emission bandwidth.
For GSM signal, VBW=RBW= 1MHz; for CDMA signal, VBW=RBW= 3MHz.

4.2 Effective Radiated Power.

Test Set-up

Open Field Test Site

Test Procedure


The measurement facilities used for this test have been documented in previous filings with the commission pursuant to section 2.948.

The open field test site is situated in open field with ground screen whose site attenuation characteristics meet ANSI C63.4 –2003. A mast capable of lifting the receiving antenna from a height of one to four meters is used together with a rotatable wooden platform mounted at three from the antenna mast.

- 1) The EUT mounted on a wooden tripod is 0.8 meter above test site ground level.
- 2) During the test, the turn table is rotated and the antenna height is also varied from 1 to 4 meters until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with $\lambda/2$ dipole antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item(4).
- 6) The signal generator output level is the rating of effective radiated power(ERP).
- 7) The instrument settings used (RBW/ VBW) during ERP/ EIRP output power measurement are as Belows ;
 - Below 1GHz : RBW 3MHz, VBW 3MHz
 - Above 1GHz : RBW 3MHz, VBW 3MHz

4.3 Occupied bandwidth.

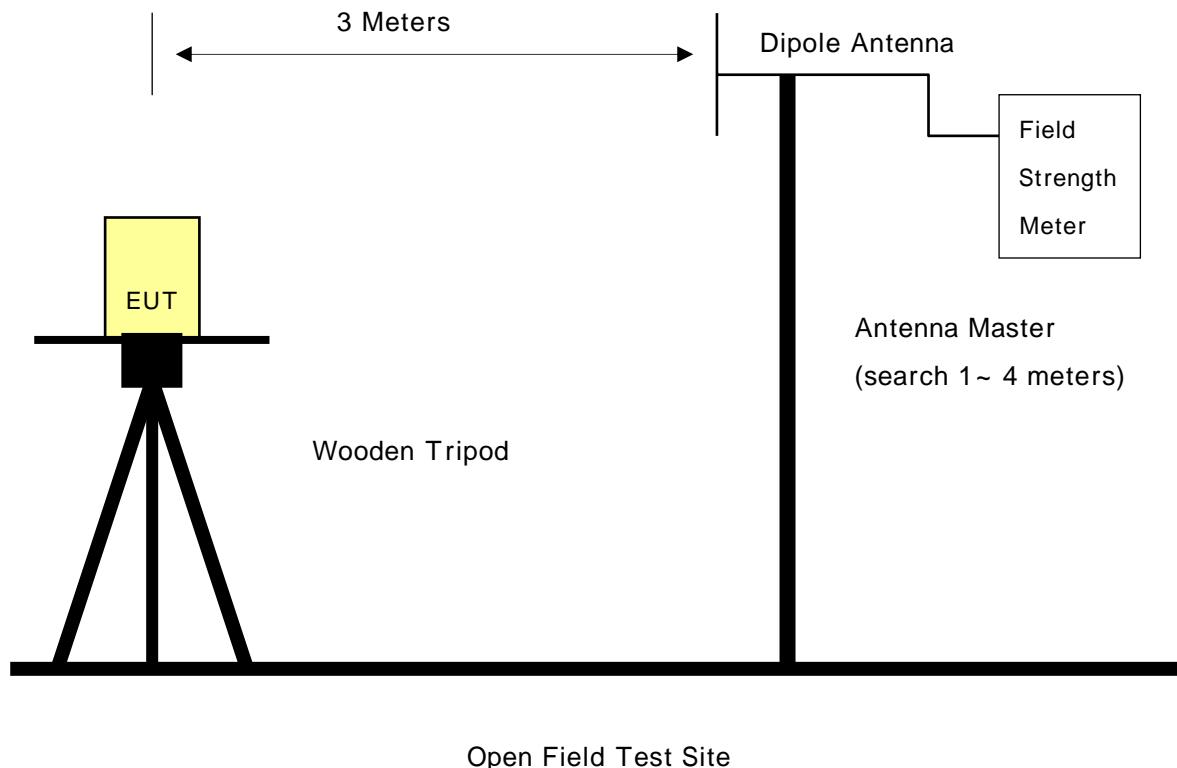
Test Set-up

Test Procedure

The EUT was setup to maximum output power at its lowest channel. The occupied bandwidth was measured using a spectrum analyzer. The measurements are repeated for the highest and a middle channel. The EUT's occupied bandwidth is measured as the width of the signal between two points, one below the carrier center frequency and one above the carrier frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power. Plots of the EUT's occupied bandwidth are shown herein.

4.4 Spurious and Harmonic Emissions at Antenna Terminal.

Test Set-up



Test Procedure

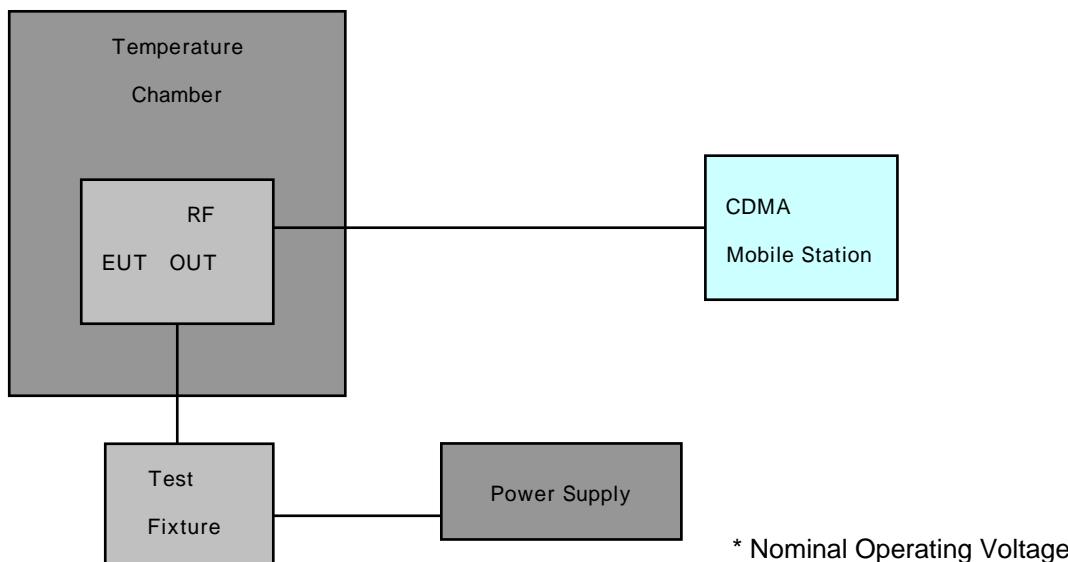
The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to 10 GHz. The transmitter is modulated with a 2500Hz tone at a level of 16dB greater than that required to provided 50% modulation. At the input terminals of the spectrum an analyzer, an isolator (RF circulator with on port terminated with 50 ohms) and an 870 MHz to 890 MHz bandpass filter is connected between the test transceiver (for conducted tests) or the receive antenna (for radiated tests) and the analyzer. The rejection of the bandpass filter to signals in the 825 — 845 MHz range is adequate to limit the transmit energy from the test transceiver which appears to a level which will allow the analyzer to measure signals less than —90dBm. Calibration of the test receiver is performed in the 870 — 890 MHz range to insure accuracy to allow variation in the bandpass filter insertion loss to be calibrated.

4.5 Field strength of spurious radiation .

Test Set-up

Test Procedure

The measurement facilities used for this test have been documented in previous filings with the commission pursuant to section 2.948.


The open field test site is situated in open field with ground screen whose site attenuation characteristics meet ANSI C63.4 –2003. A mast capable of lifting the receiving antenna from a height of one to four meters is used together with a rotatable wooden platform mounted at three from the antenna mast.

- 1) The unit mounted on a wooden table 1.5m × 1.0m × 0.80 is 0.8 meter above test site ground level.
- 2) During the emission test , the turntable is rotated and the EUT is manipulated to find the configuration resulting in maximum emission under normal condition of installation and operation.
- 3) The antenna height and polarization are also varied from 1 to 4 meters until the maximum signal is found.
- 4) The spectrum shall be scanned up to the 10th harmonic of the fundamental frequency.
- 5) The instrument settings used (RBW/ VBW) during ERP/ EIRP output power measurement are as belows ;
 - Below 1GHz : RBW 3MHz, VBW 3MHz
 - Above 1GHz : RBW 3MHz, VBW 3MHz

4.6 Frequency stability .

4.6.1 Frequency stability with variation of ambient temperature.

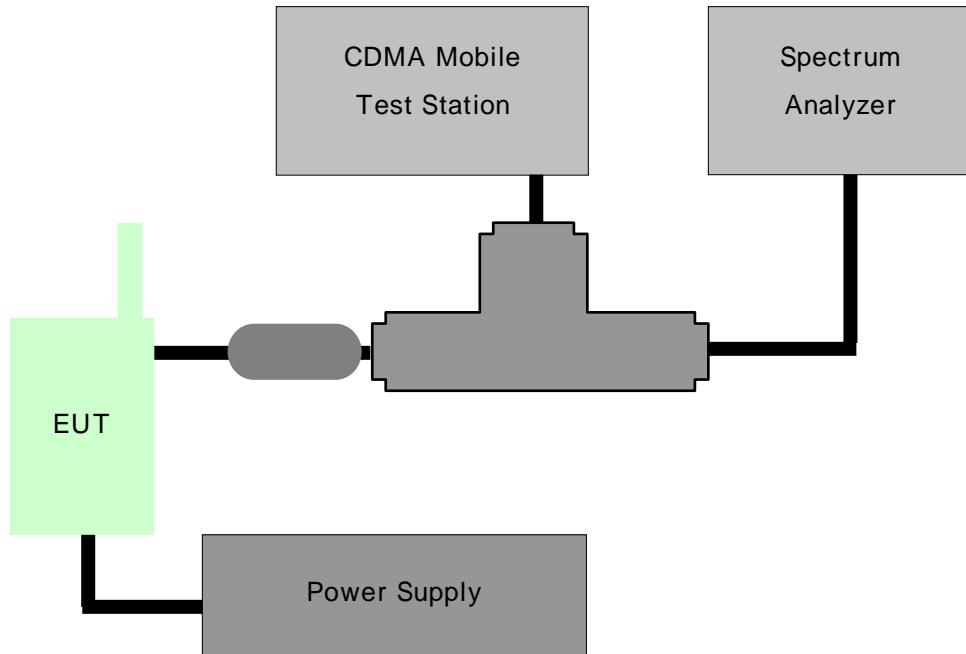
Test Set-up

Test Procedure

The frequency stability of the transmitter is measured by:

- Temperature:** The temperature is varied from -30 °C to +50 °C using an environmental chamber.
- Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification — The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ± 0.0001 (± 1 ppm) of the center frequency.


Time Period and Procedure:

- The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (25 °C to 27 °C to provide a reference).
- The equipment is subjected to an overnight "soak" at -30 °C without any power applied.
- After the overnight "soak" at 30 °C (usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- Frequency measurements are made at 10 °C interval up to room temperature. At least a period of one and one half-hour is provided to allow stabilization of the equipment at each temperature level.
- Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- Frequency were made at 10 intervals starting at 30 °C up to +50 °C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after applying power to the transmitter.
- The artificial load is mounted external to the temperature chamber.

NOTE: The EUT is tested down to the battery endpoint.

4.6.2 Frequency stability with variation of primary supply voltage.

Test Set-up

Test Procedure

- 1) The primary supply is varied in steps of 5% from 85 to 115% of the nominal supply voltage, or reduce primary supply voltage to the battery operating end point.
- 2) The frequency is recorded each 5% step.
- 3)

5.1 Effective Radiated Power Output (CDMA)

Radiated measurements at 3 meters

Modulation: CDMA

FREQ. TUNED (MHz)	REF. LEVEL (dBm)	POL (H/V)	ERP (W)	ERP (dBm)	BATTERY
824.70	-22.7	V	0.279	24.5	Standard
836.52	-22.6	V	0.285	24.6	Standard
848.31	-22.3	V	0.305	24.9	Standard

Note: Standard batteries are the only options for this phone

NOTES:

Effective Radiated Power Output Measurements by Substitution Method
according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

6.1 RADIATED MEASUREMENTS

6.2 CELLULAR CDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 824.70 MHz
CHANNEL: 1013 (Low)
MEASURED OUTPUT POWER: 24.9 dBm = 0.305 W
MODULATION SIGNAL: CDMA (Internal)
DISTANCE: 3 meters
LIMIT: $-(43 + 10 \log_{10} (W)) =$ -37.84dBc

Freq. (MHz)	LEVEL@ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1649.40	-56.9	7.3	-49.6	V	-69.2
2474.10	-65.1	8.3	-56.8	V	-75.9
3298.80	-64.8	9.7	-55.1	V	-73.3

NOTES:

Radiated Spurious Emission Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW=VBW=3MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW=VBW=1MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

6.1 Test Data (Continued)

6.3 CELLULAR CDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	836.52 MHz
CHANNEL:	0384 (Mid)
MEASURED OUTPUT POWER:	24.9 dBm = 0.305 W
MODULATION SIGNAL:	CDMA (Internal)
DISTANCE:	3 meters
LIMIT: $-(43 + 10 \log_{10} (W))$ =	-37.84dBc

Freq. (MHz)	LEVEL@ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1673.04	-54.8	7.3	-47.5	V	-67.1
2509.56	-64.2	8.3	-55.9	V	-75.0
3346.08	-65.8	9.7	-56.1	V	-74.3

NOTES:

Radiated Spurious Emission Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer.

For CDMA signals, a peak detector is used, with RBW=VBW=3MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW=VBW=1MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

6.1 Test Data (Continued)

6.4 CELLULAR CDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	848.31 MHz
CHANNEL:	0777 (High)
MEASURED OUTPUT POWER:	24.9 dBm = 0.305 W
MODULATION SIGNAL:	CDMA (Internal)
DISTANCE:	3 meters
LIMIT: $-(43 + 10 \log_{10} (W))$ =	-37.84dBc

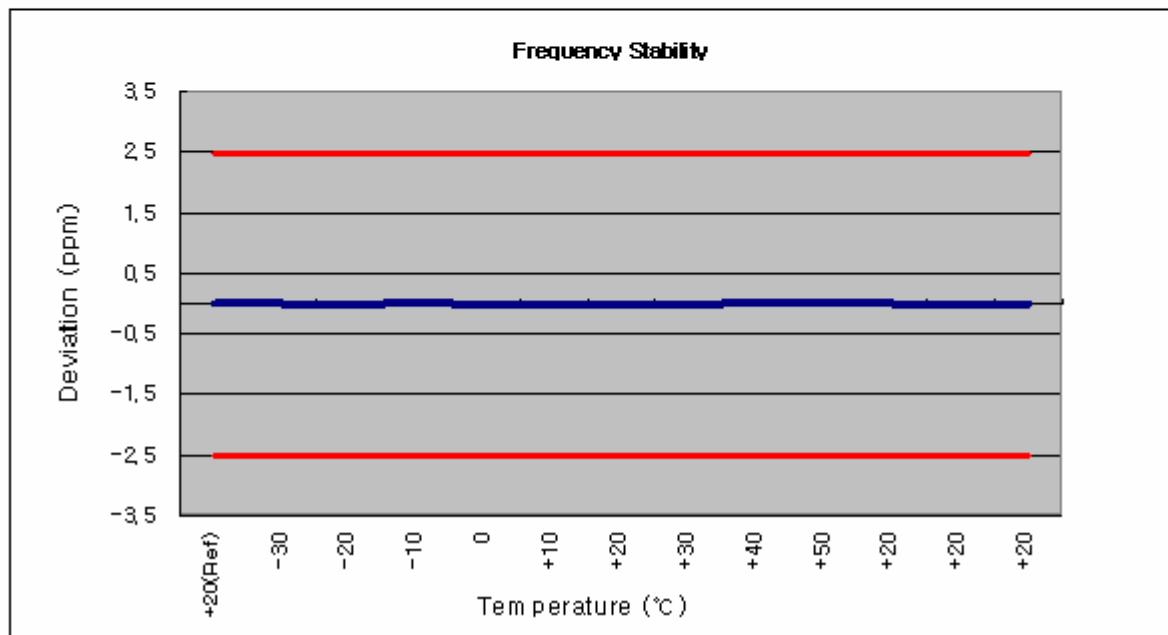
Freq. (MHz)	LEVEL@ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1696.62	-55.8	7.3	-48.5	V	-68.1
2544.93	-66.7	8.3	-58.4	V	-77.5
3393.24	-68.6	9.7	-58.9	V	-77.1

NOTES:

Radiated Spurious Emission Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer.


For CDMA signals, a peak detector is used, with RBW=VBW=3MHz. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW=VBW=1MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

7.1 Test Data

7.2 FREQUENCY STABILITY (CDMA)

OPERATING FREQUENCY: 836,520,032 Hz
 CHANNEL: 363
 REFERENCE VOLTAGE: 3.7 VDC
 DEVIATION LIM IT: $\pm 0.00025\%$ or 2.5 ppm

Voltage (%)	Power (VDC)	Temp. (°C)	Frequency (Hz)	Frequency Error (Hz)	Deviation (%)	ppm
100%	115,00	+20(Ref)	836,520,032	32	0,000004	0,017
100%		-30	836,520,029	29	0,000003	0,015
100%		-20	836,519,963	-37	-0,000004	-0,020
100%		-10	836,520,042	42	0,000005	0,022
100%		0	836,519,969	-31	-0,000004	-0,016
100%		+10	836,519,976	-24	-0,000003	-0,013
100%		+20	836,519,964	-36	-0,000004	-0,019
100%		+30	836,519,961	-39	-0,000005	-0,021
100%		+40	836,520,046	46	0,000006	0,024
100%		+50	836,520,037	37	0,000004	0,020
85%	97,75	+20	836,520,031	31	0,000004	0,016
115%	132,25	+20	836,519,958	-42	-0,000005	-0,022
Batt Endpoint	N/A	+20	836,520,034	34	0,000004	0,018

8.1 PLOT(S) OF EMISSION

(SEE ATTACHMENT D)

9.1 LIST OF TEST EQUIPMENT

Manufacture	Model/ Equipment	Serial Number	Calibration Date	Calibration Interval	Calibration Due
R&S	ESI40/ Spectrum Analyzer	831564/003	11/06/2006	Annual	11/06/2007
Advantest	R3273/ Spectrum Analyzer	J04821	03/15/2006	Annual	03/15/2007
Agilent	HP8373ED / Signal Generator	US8710152	06/14/2006	Annual	06/14/2007
Agilent	E4416A/ Power Meter	GB41291412	01/22/2006	Annual	01/22/2007
Agilent	E9327A/ Power Sensor	US40440910	01/24/2007	Annual	01/24/2008
Agilent	HP8901B/ Modulation Analyzer	3438A05231	08/04/2006	Annual	08/04/2007
Agilent	8903A/ Audio Analyzer	2433A04322	08/04/2006	Annual	08/04/2007
R&S	CMU200/ Base Station	839117/011	01/28/2006	Annual	01/28/2007
Agilent	8960 (E5515C)/ Base Station	US41070189	05/03/2006	Annual	05/03/2007
Tescom	TC-3000/ Bluetooth Simulator	3000A4900112	01/22/2006	Annual	01/22/2007
MITEQ	AMF-6D-01180-35-20P/ AMP	990893	02/24/2006	Annual	02/24/2007
Wainwright	WHK1.2/15G-10EF/H.P.F	2	06/28/2006	Annual	06/28/2007
Wainwright	WHK3.3/18G-10EF/H.P.F	1	06/28/2006	Annual	06/28/2007
Agilent	778D/ Dual Directional Coupler	16072	11/09/2006	Annual	11/09/2007
Agilent	1506A/ Power Divider	99441	11/10/2006	Annual	11/10/2007
Digital	EP-3010/ Power Supply	3110117	12/29/2006	Annual	12/29/2007
Schwarzbeck	UHAP/ Dipole Antenna	630	11/13/2006	Annual	11/13/2007
Schwarzbeck	UHAP/ Dipole Antenna	605	11/13/2006	Annual	11/13/2007
R&S	HFH2-Z2/ Loop Antenna	881056/070	12/11/2006	Annual	12/11/2007
Schwarzbeck	VULB9160/ TRILOG Antenna	3150	04/06/2006	Annual	04/06/2007
Schwarzbeck	VULB9160/ TRILOG Antenna	4150	01/23/2006	Annual	01/23/2007
Schwarzbeck	BBHA 9120D/ Horn Antenna	1099	03/31/2006	Annual	03/31/2007
Schwarzbeck	BBHA 9120D/ Horn Antenna	1201	05/02/2006	Annual	05/02/2007

10.1 SAMPLE CALCULATIONS

A. ERP Sample Calculation

Freq. Tuned (MHz)	LEVEL(1) (dBm)	POL (H/V)	ERP (W)	ERP(2) (dBm)	BATTERY
824.70	-29.73	H	0.346	25.393	Standard

- 1) The EUT mounted on a wooden tripod is 0.8 meter above test site ground level.
- 2) During the test , the turn table is rotated and the antenna height is also varied from 1 to 4 meters until the maximum signal is found.
- 3) Record the field strength meter's level.(**LEVEL**)
- 4) Replace the EUT with dipole antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item(3).
- 6) The signal generator output level with cable loss is the rating of effective radiated power(**ERP**).
(Cable loss means the factor between Signal Generator and Transmitting Antenna.)

For more details, please refer to the test set-up procedure.

B. Emission Designator

Emission Designator = 1M28F9W

CDMA BW = 1.28 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

(Measured at the 99.75% power bandwidth)

11.1 CONCLUSION

The data collected shows that the Wireless Gateway **FCC ID: PH7MV420** complies with all the requirements of Parts 2 and 22 of the FCC rules.