EXHIBIT Q – ITS Test Report for Radio

FCC ID# PGU3021-100

APPLICATION FOR FCC CERTIFICATION

Symbol Technologies Inc.

2.4 GHz 100mW Radio

Model: LA3021-100

FCC ID: H9PLA3021-100

Job# J99013298 Report# J99013298b

Number of Pages: 34 pp. + Supporting Data and Documents

Date of Report: June 22, 1999

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. No quotations from reports or use of Intertek Testing Services's name is permitted except as expressly authorized by Intertek Testing Services in writing.

Table of Contents

1.0	Sumn	nary of Tests	2	
2.0	Gene	ral Description	3	
2.0	2.1	Product Description		
	2.2	Related Submittal(s) Grants.		
	2.3	Test Methodology		
	2.4	Test Facility		
3.0	System Test Configuration			
	3.1	Support Equipment	5	
	3.2	Block Diagram of Test Setup	5	
	3.3	Justification	6	
	3.4	Software Exercise Program	6	
	3.5	Mode of Operation During Test	6	
	3.6	Modifications Required for Compliance	6	
4.0	Measurement Results			
	4.1	Maximum Conducted Output Power at Antenna Terminals	7	
	4.2	Hopping Channel 20 dB RF Bandwidth	8	
	4.3	Minimum Number of Hopping Frequencies	9	
	4.4	Average Channel Occupancy Time	10	
	4.5	Out of Band Conducted Emissions	11	
	4.6	Out of Band Radiated Emissions	12	
	4.7	Transmitter Radiated Emissions in Restricted Bands	13	
	4.8	Radiated Emission Configuration Photograph	14	
	4.9	Radiated Emissions from Digital Section of Transceiver (Transmitter),	25	
	4.10	Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation),	26	
	4.11	AC Line Conducted Emission	27	
	4.12	AC Line Conducted Configuration Photograph	28	
5.0	<u>Equir</u>	oment Photographs	29	
6.0	Product Labeling			
	6.1	Label Artwork	30	
	6.2	Label Location	30	
7.0	Technical Specifications			
	7.1	Circuit Diagram	31	
	7.2	Block Diagram		
	7.3	Antenna gain and Mounting Information	33	
8.0	Instru	ection Manual	34	

Symbol Technologies Inc.

Date of Test: May 19 - June 9, 1999

FCC ID: **H9PLA3021-100**

1.0 Summary of Tests

Symbol Technologies Inc. - Model No.: LA-3021-100 FCC ID:

TEST	REFERENCE RESULTS	
Max. Output power	15.247(b)(3)	Pass
20 dB Bandwidth	15.247(a)(l)	Pass
Min. Hopping Channels	15.247(a)(l)] Pass
Average Channel Occupancy Time	15.47(a)(l)	[Pass
Out of Band Antenna Conducted Emission	[15.247(c)	Pass
Out of Band Radiated Emission	15.247(c)	Not Applicable
Radiated Emission in Restricted Bands	15.247(c), 15.209(a)	Pass
AC Conducted Emission	15.207	Pass
Radiated Emission from Digital Part	15.109	Pass
Radiated Emission from Receiver L.O.	15.109	Not Applicable
Antenna Requirement	15.203	Pass

Test Engineer:

EMC Site Mgr.:

Date: Sune 30, 1999

Chemoroidik Date: 1/7/99

Date of Test: May 19 - June 9, 1999

2.0 **General Description**

2.1 Product Description

The Symbol Technologies Inc. Model LA3021-100 is a 2.4 GHz frequency hopping spread spectrum device.

Overview of the EUT

Applicant	Symbol Technologies Inc.	
Trade Name & Model No.	Symbol Technologies, Model No. LA3021-100	
FCC Identifier	H9PLA3021-100	
Use of Product		
Manufacturer & Model of Spread Spectrum Module		
Type of Transmission	Frequency Hopping Spread Spectrum	
Rated RF Output (mW)	100	
Frequency Range (MHz)	2402 - 2480	
Number of Channel(s)	79	
Antenna(s) & Gain, dBi	21 antennas; see antenna data sheet	
Processing Gain Measurements	[X] Will be provided directly to the FCC reviewing engineer by the client or manufacturer of the spread spectrum module	
Antenna Requirement	[]The EUT uses a permanently connected antenna. [X] The antenna is affixed to the EUT using a unique connector which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector. [] The EUT requires professional installation (attach supporting documentation if using this option).	
Manufacturer name & address	Symbol Technologies 2145 Hamilton Avenue San Jose, CA 95125	

2.2 Related Submittal(s) Grants

None.

Date of Test: May 19 - June 9, 1999

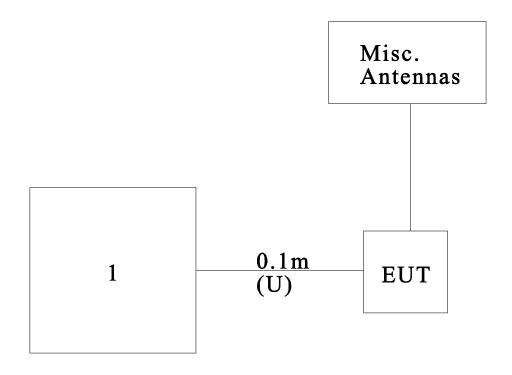
2.3 Test Methodology

Both AC mains line-conducted and radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Data Sheet**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at 1365 Adams Court, Menlo Park, CA 94025. This test facility and site measurement data have been fully placed on file with the FCC.

Symbol Technologies Inc.


Date of Test: May 19 - June 9, 1999
FCC ID: H9PLA3021-100

3.0 **System Test Configuration**

3.1 Support Equipment

Item #	Description	Model No.	Serial No.	FCC ID
1	Dell Computer	POS3410-N500	F999999	DoC

3.2 Block Diagram of Test Setup

m: Length in meters U: Unshielded

3.3 Justification

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions.

Date of Test: May 19 - June 9, 1999

For radiated emission measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

3.5 Mode of Operation During Test

For emissions testing, the units were setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

3.6 Modifications Required for Compliance

The following modifications were installed during compliance testing in order to bring the product into compliance (Please note that this list does not include changes made specifically by Symbol Technologies Inc. prior to compliance testing):

No modifications were made to the EUT by Intertek Testing Services.

Date of Test: May 19 - June 9, 1999

- 4.0 Measurement Results
- 4.1 Maximum Conducted Output Power at Antenna Terminals, FCC Ref: 15.247(b):

With the hopping function turned OFF:

- [] The antenna port of the EUT was connected to the input of a power meter. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals.
- [X] The antenna port of the EUT was connected to the input of a spectrum analyzer. The analyzer was set for maximum RES BW and power was read directly in dBm.

For antennas with gains of 6 dBi or less, maximum allowed transmitter output is 1 watt (+30 dBm).

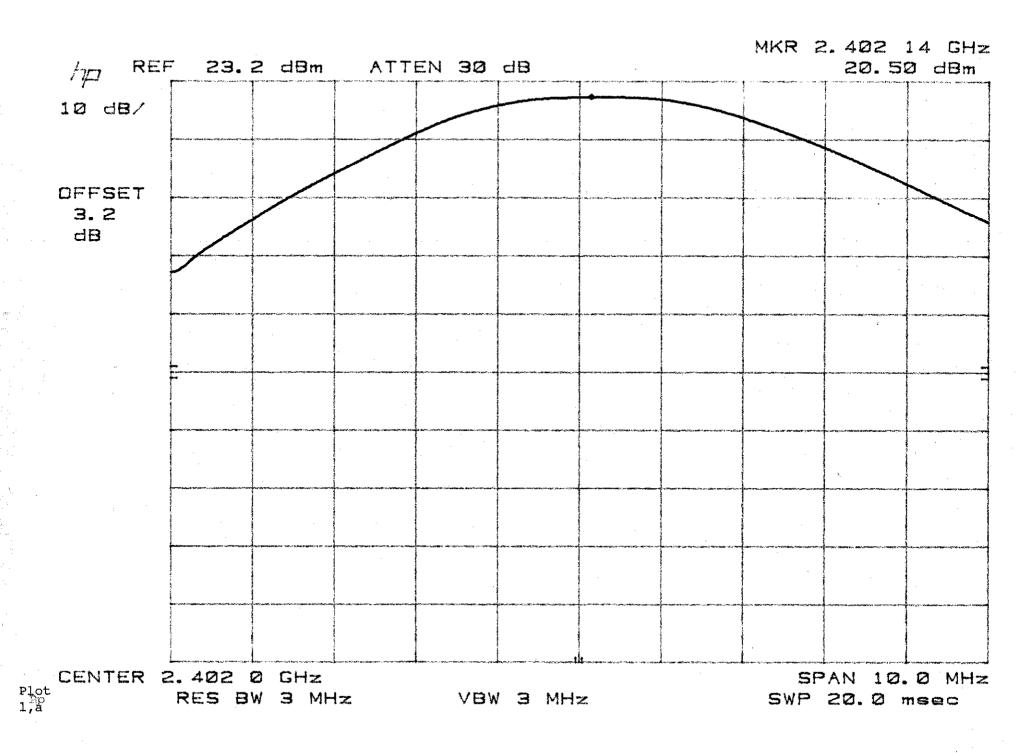
For antennas with gains greater than 6 dBi, transmitter output level must be decreased by an amount equal to (GAIN - 6)/3 dBm.

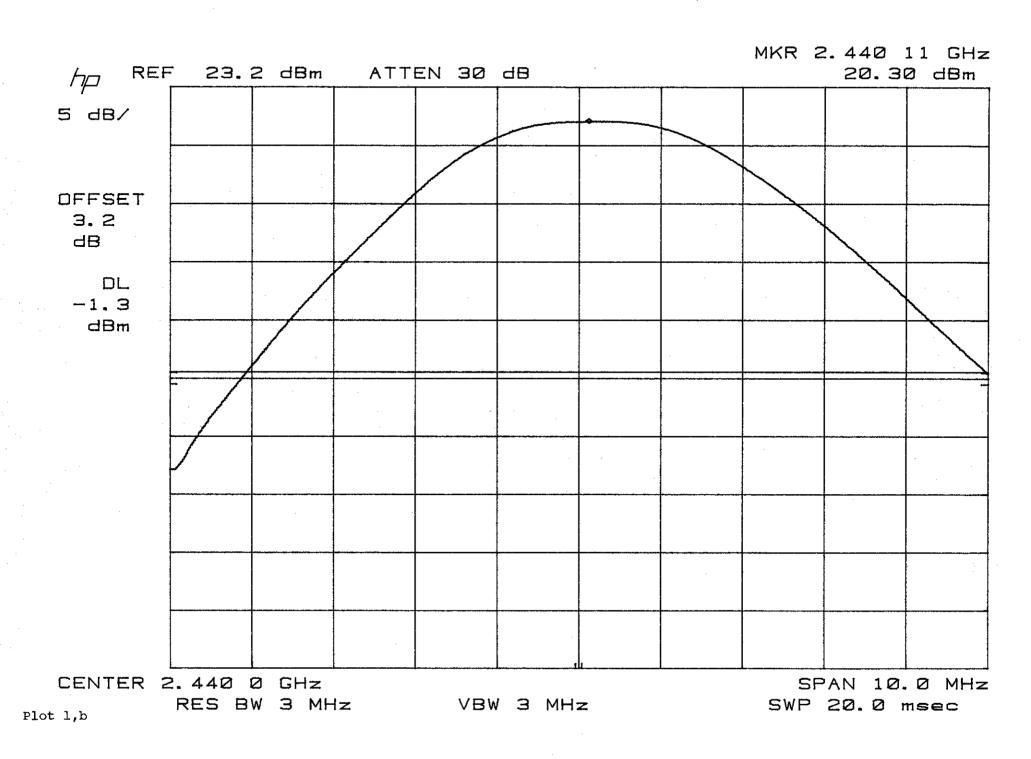
NOTE: Hopping function disabled during test

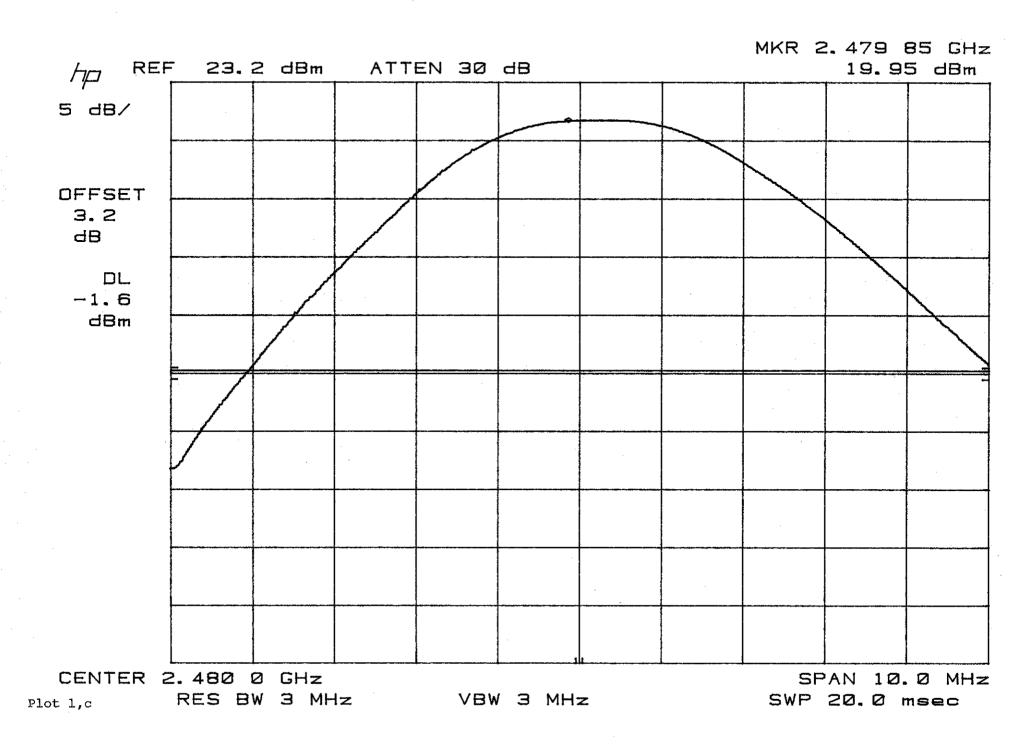
Frequency (MHz)	Output in dBm	Output in mWatt
2402	20.5	112
2440	20.3	107
2480	20.0	100

Cable loss: <u>0.2</u> dB External Attenuation: <u>3.0</u> dB

Cable loss, external attenuation: [X] included in OFFSET function


[] added to SA raw reading


EUT Transmit Antenna Gain (0 dBi) +20.3 dBm max. output level =20.3 dBm.


Please refer to the attached plots for details:

Plot 1.a: Low Channel Output Power Plot 1.b: Middle Channel Output Power

Plot 1.c: High Channel Output Power

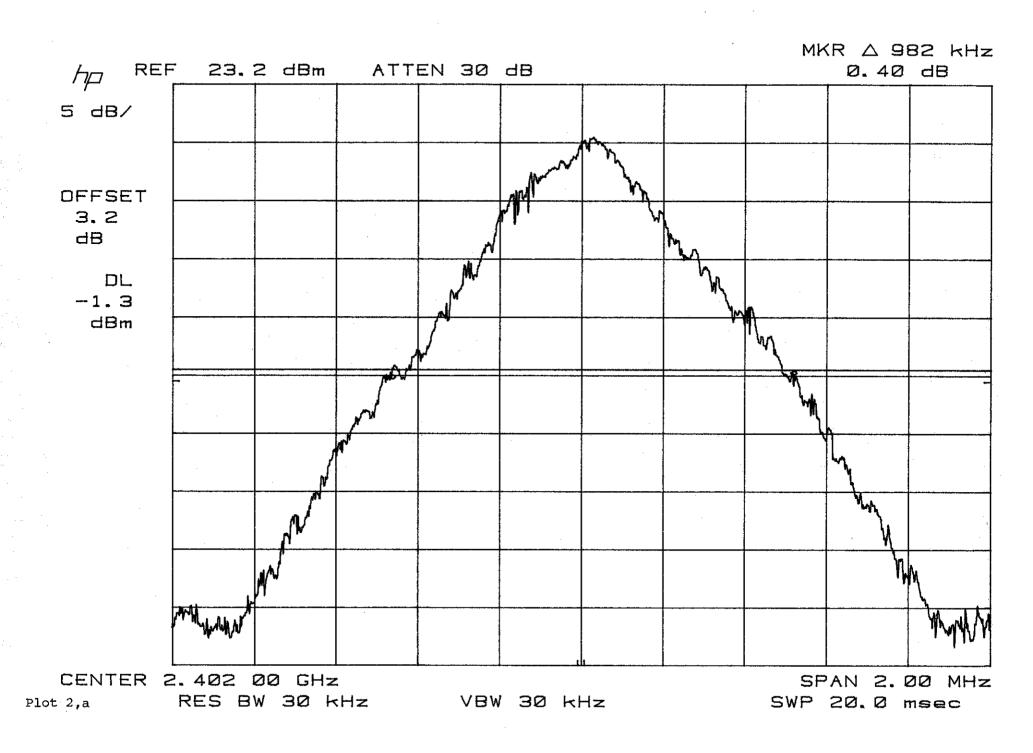
Symbol Technologies Inc.

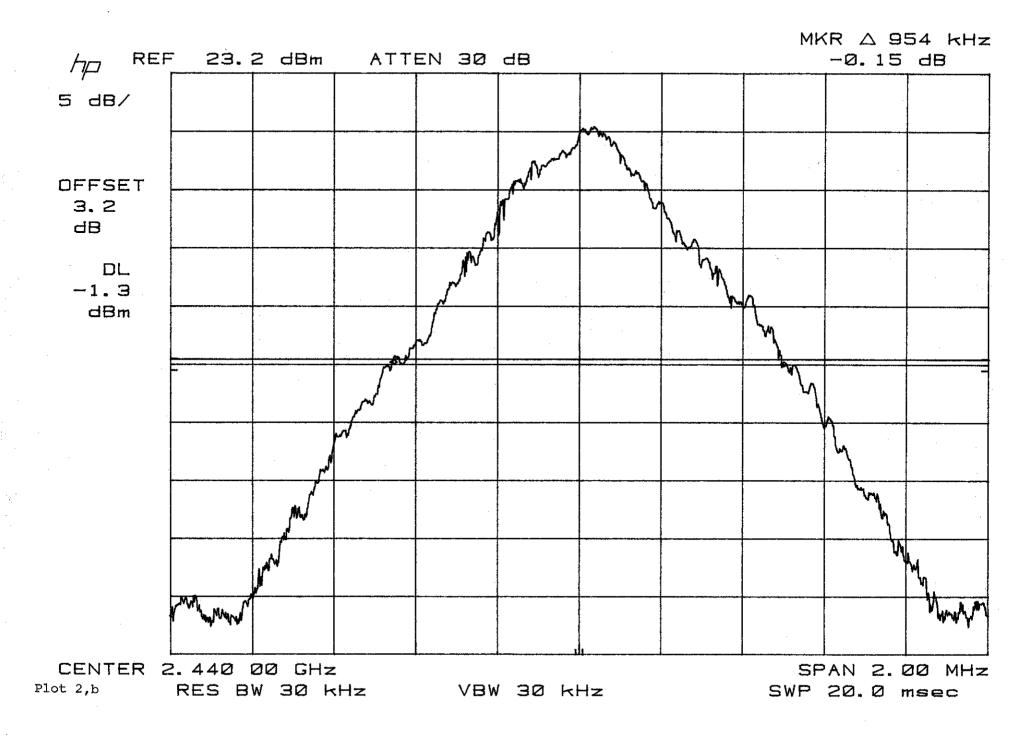
Date of Test: May 19 - June 9, 1999

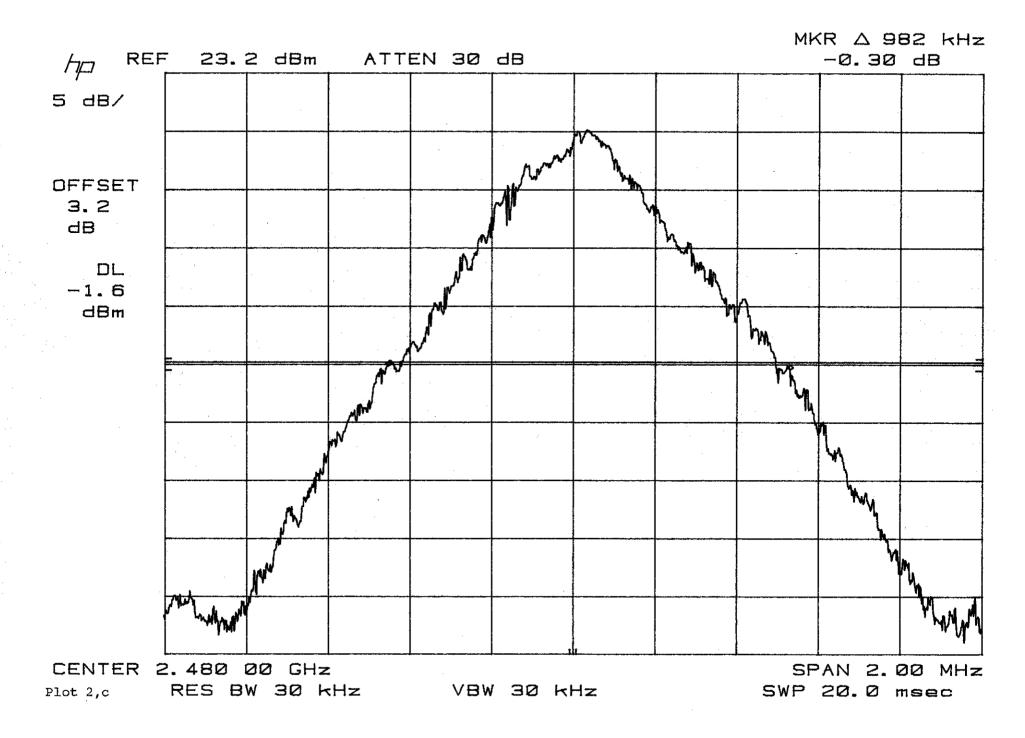
FCC ID: H9PLA3021-100

4.2 Hopping Channel 20 dB RF Bandwidth, FCC Ref: 15.247(a)(1)

Test results:


(Channel (Frequency, MHz)	20 dB Bandwidth (kHz)
Low,	2402	982
Middle,	2440	954
High,	2480	982


Please refer to the attached plots for details:

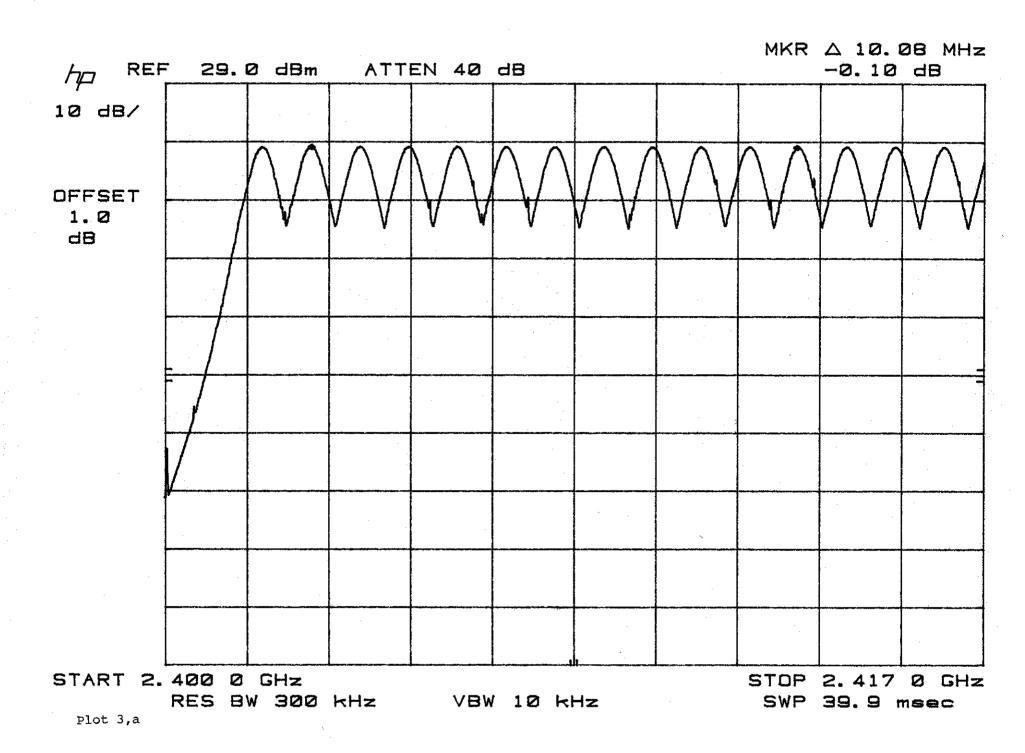

Plot 2.a: Low Channel

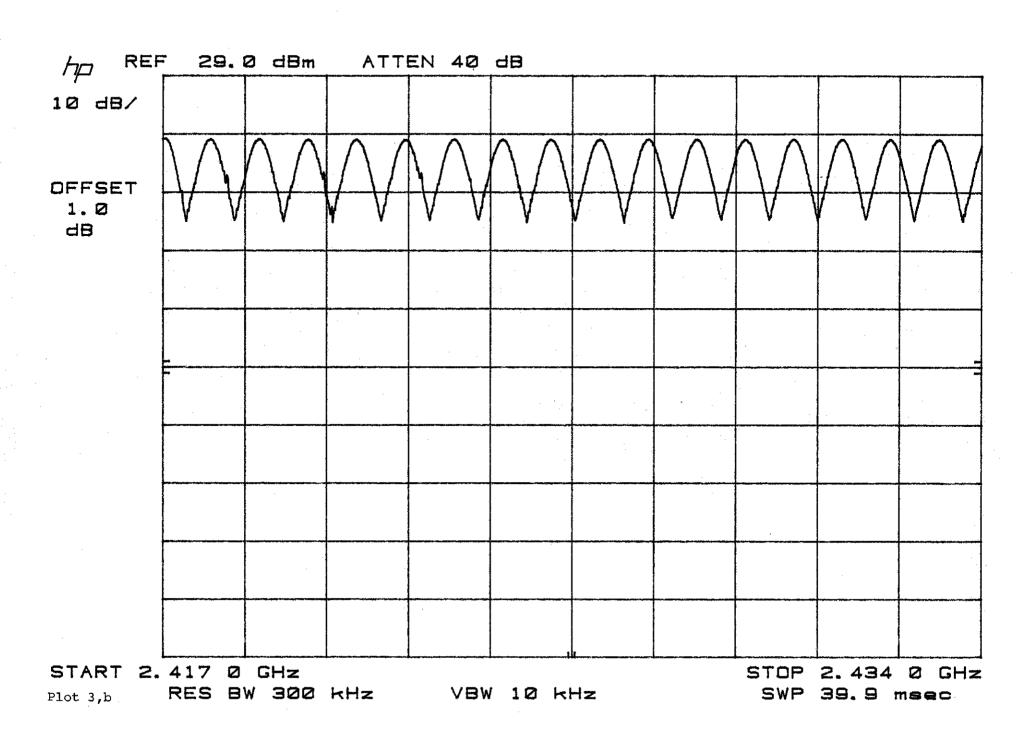
Plot 2.b: Middle Channel

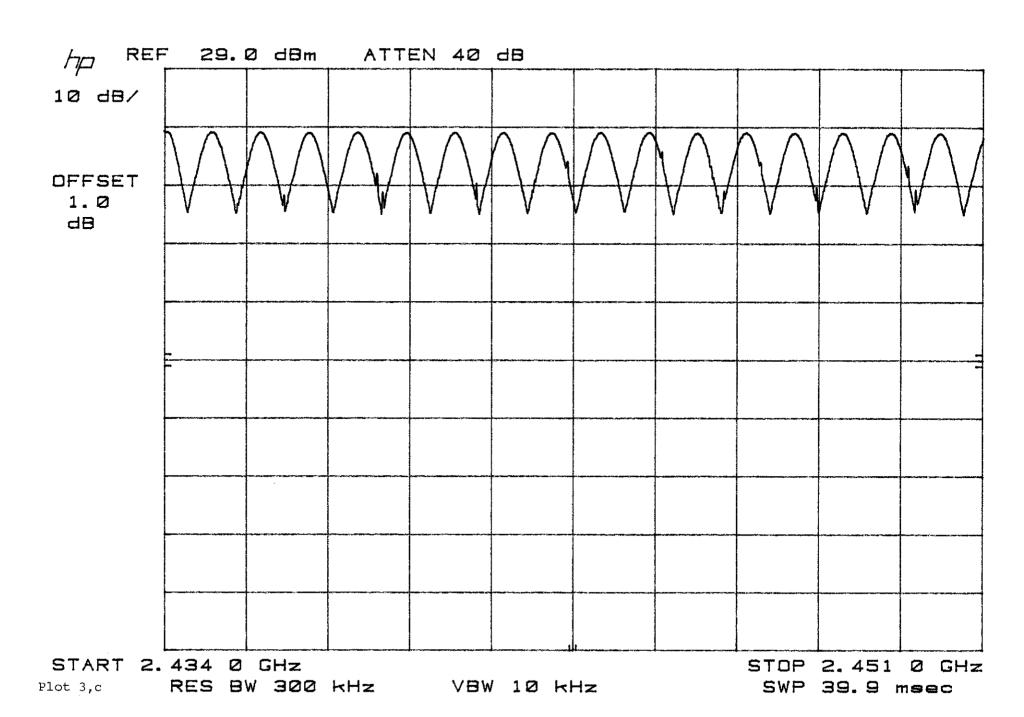
Plot 2.c: High Channel

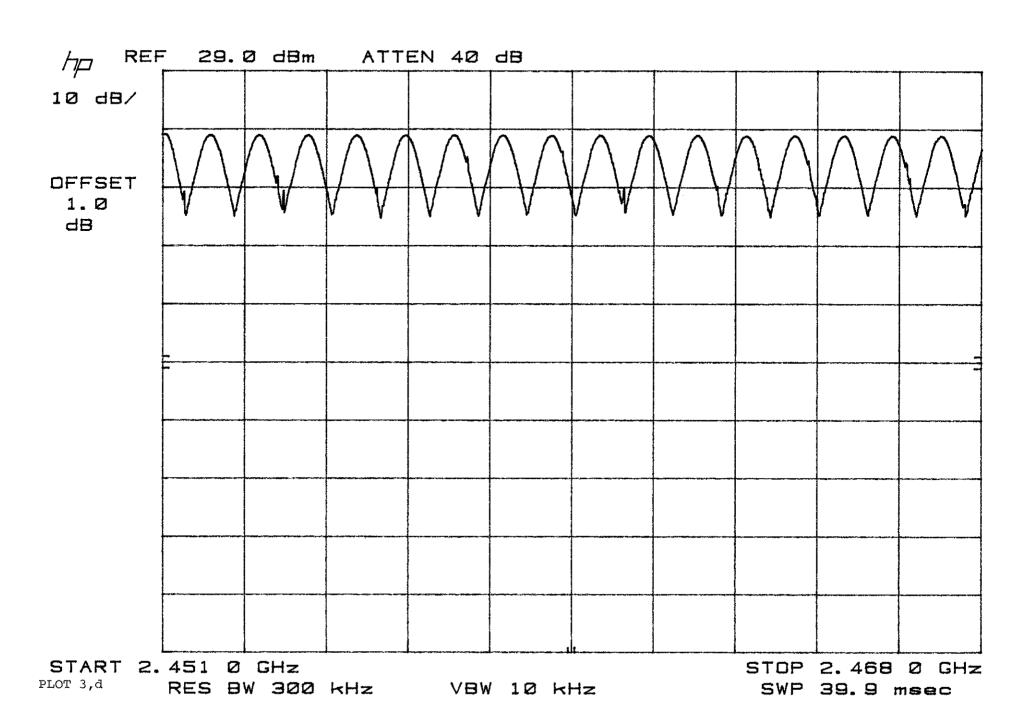
Date of Test: May 19 - June 9, 1999

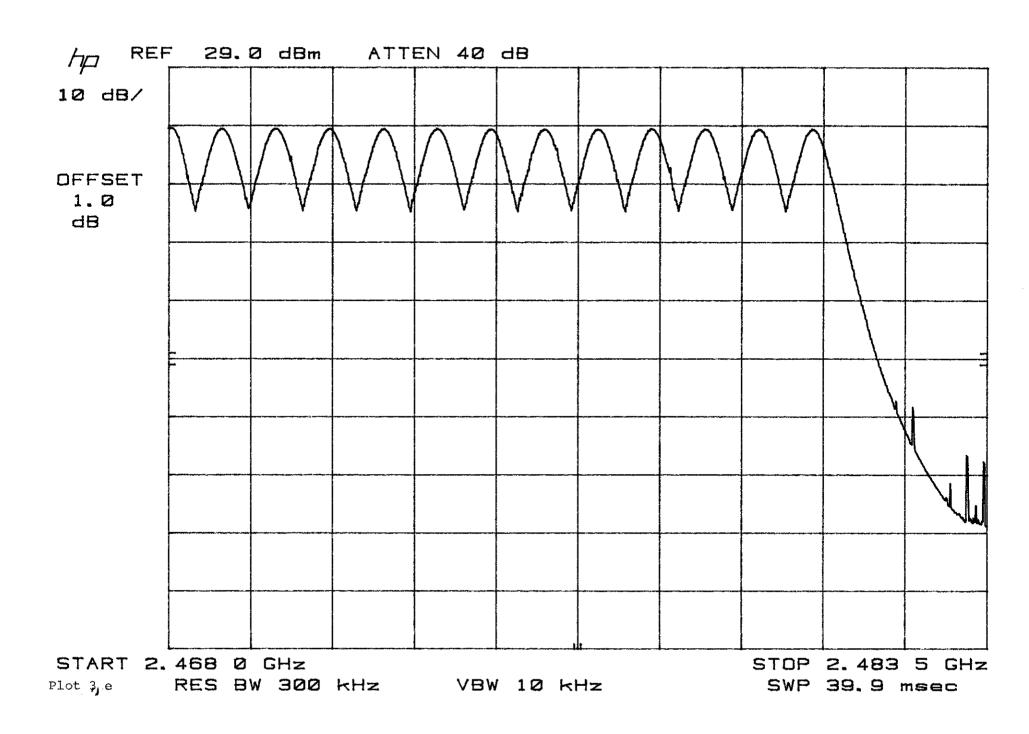
4.3 Minimum Number of Hopping Frequencies, FCC Ref: 15.247(a)(1)(I&ii)


The RF passband of the EUT was divided into 2 approximately equal bands. With the analyzer set to MAX HOLD readings were taken for 2 - 3 minutes in each band. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.


Number of hopping channels:	79
-----------------------------	----


Minimum Requirements:


at least 50 channels for 902 - 928 MHz band; at least 75 channels for 2400 - 2483.5 and 5725 - 5850 MHz systems Please refer to the attached plots for details:


Plots 3.a - 3.e

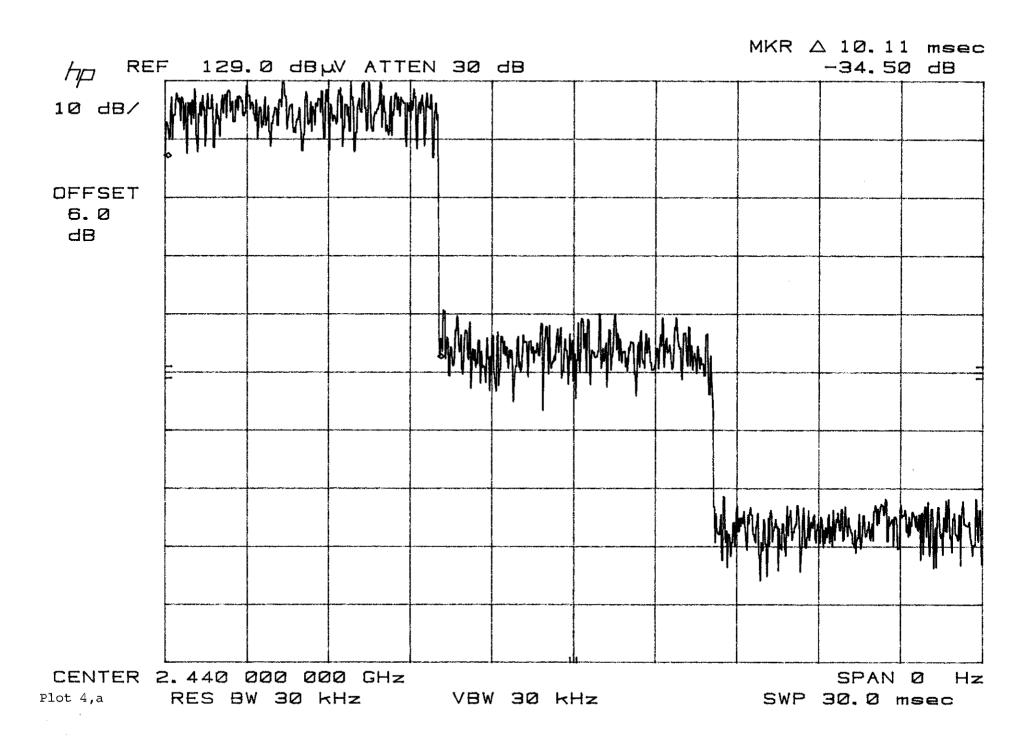
Date of Test: May 19 - June 9, 1999

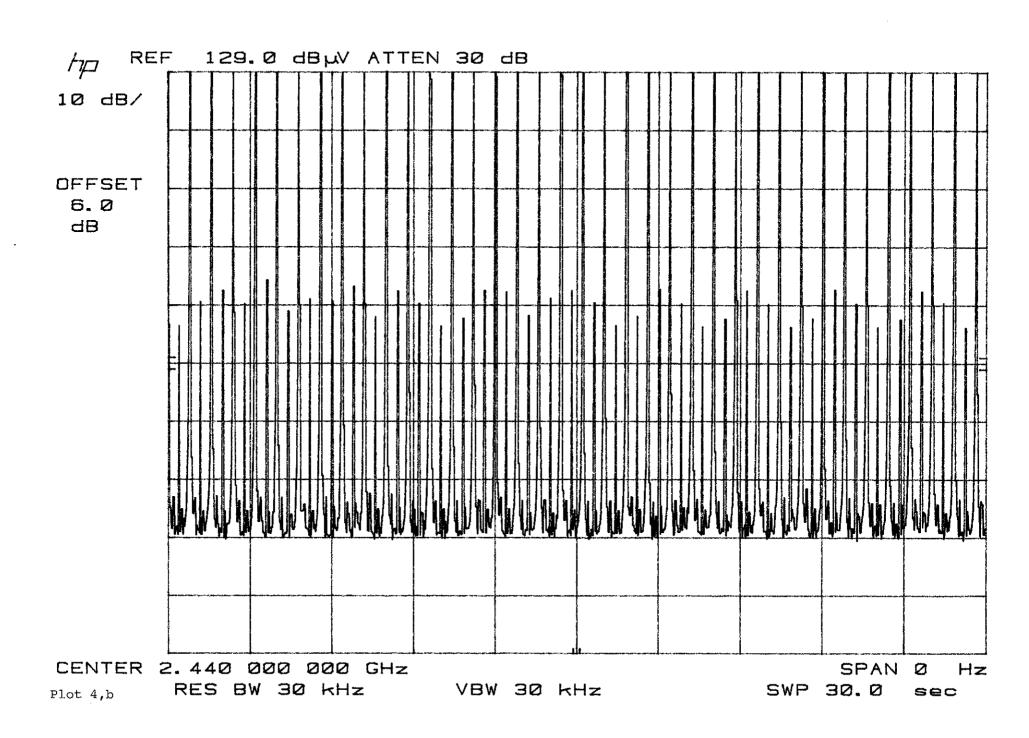
4.4 Average Channel Occupancy Time, FCC Ref: 15.247(a)(1)(I&ii)

Requirement:

Average 0.4 seconds maximum occupancy in 20 seconds, 902-928 MHz Average 0.4 seconds maximum occupancy in 30 seconds, 2400-2483.5/5725-5850 MHz

The spectrum analyzer center frequency was set to one of the known hopping channels. The SWEEP was set to 0.4 second, the SPAN was set to ZERO SPAN, and the TRIGGER was set to VIDEO. The time duration of the transmission so captured was measured with the MARKER DELTA function.


The SWEEP was then set to the time required by the regulation (20 seconds for 902-928 MHz devices, 30 seconds for all other bands). The analyzer was set to SINGLE SWEEP, the total ON time was added and compared against the limit (0.4 seconds).


The avergae time occupancy is:

$$39 \times 9.9 \text{ (ms)} = 386.1 \text{ ms}$$

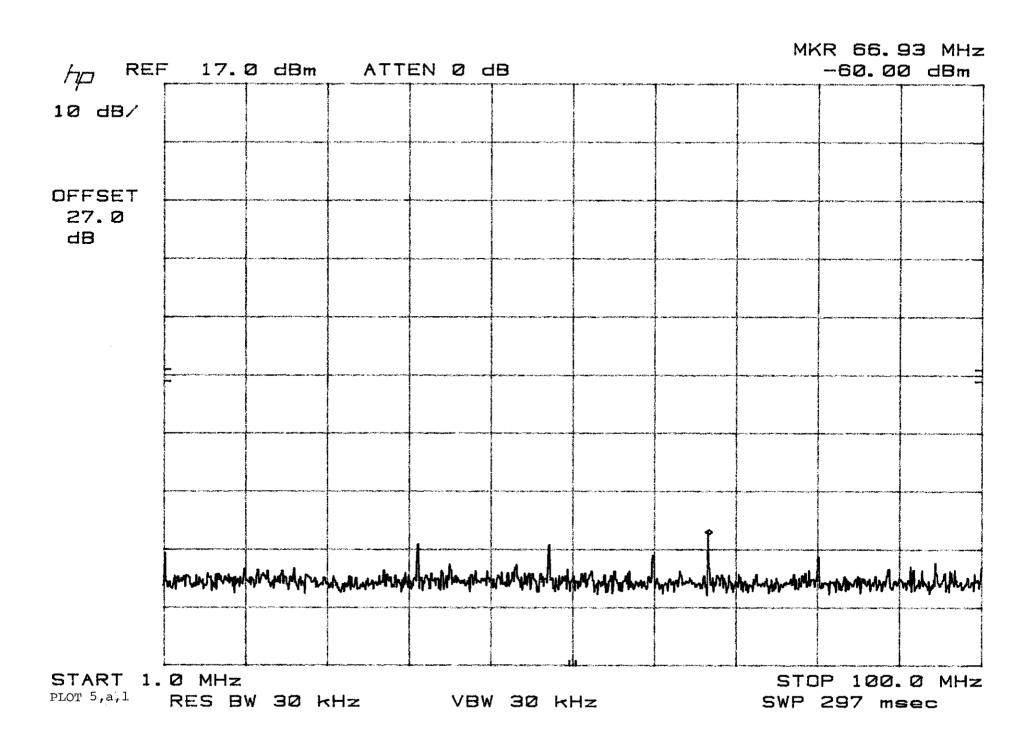
Please refer to the attached plots for details:

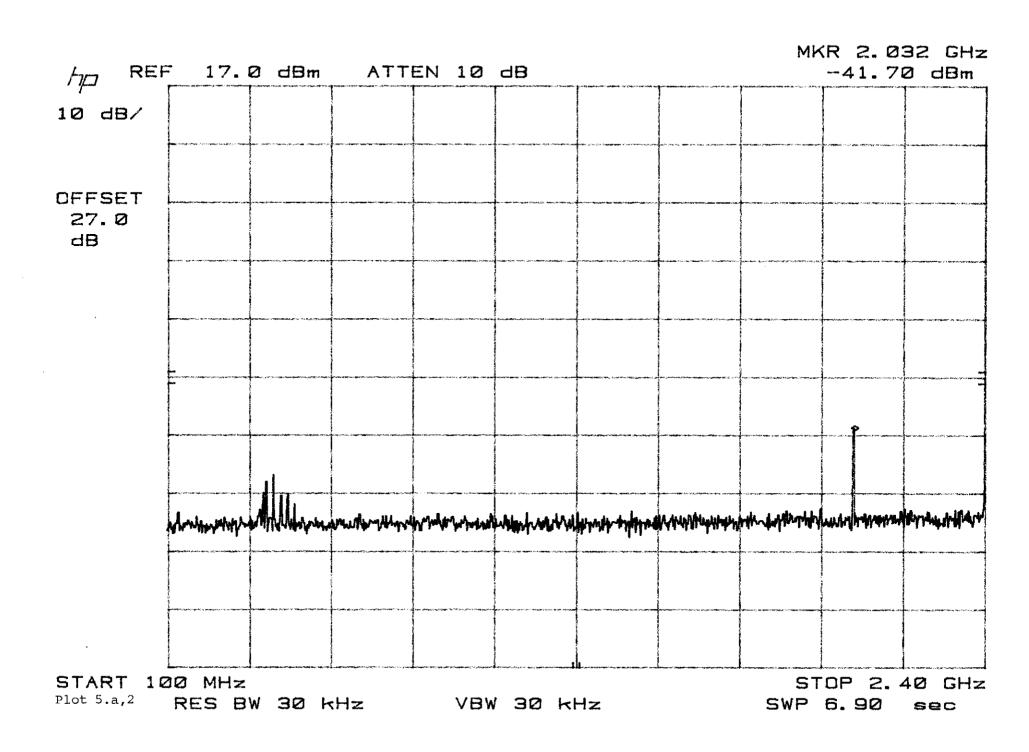
Plots 4.a - 4.b

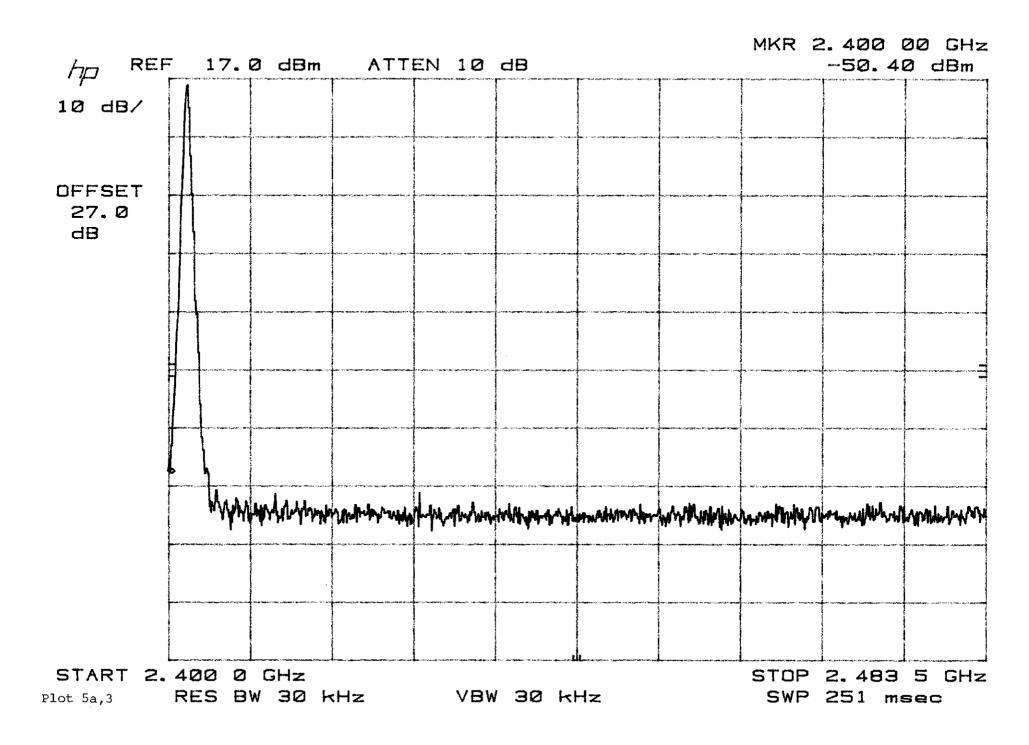
Symbol Technologies Inc.

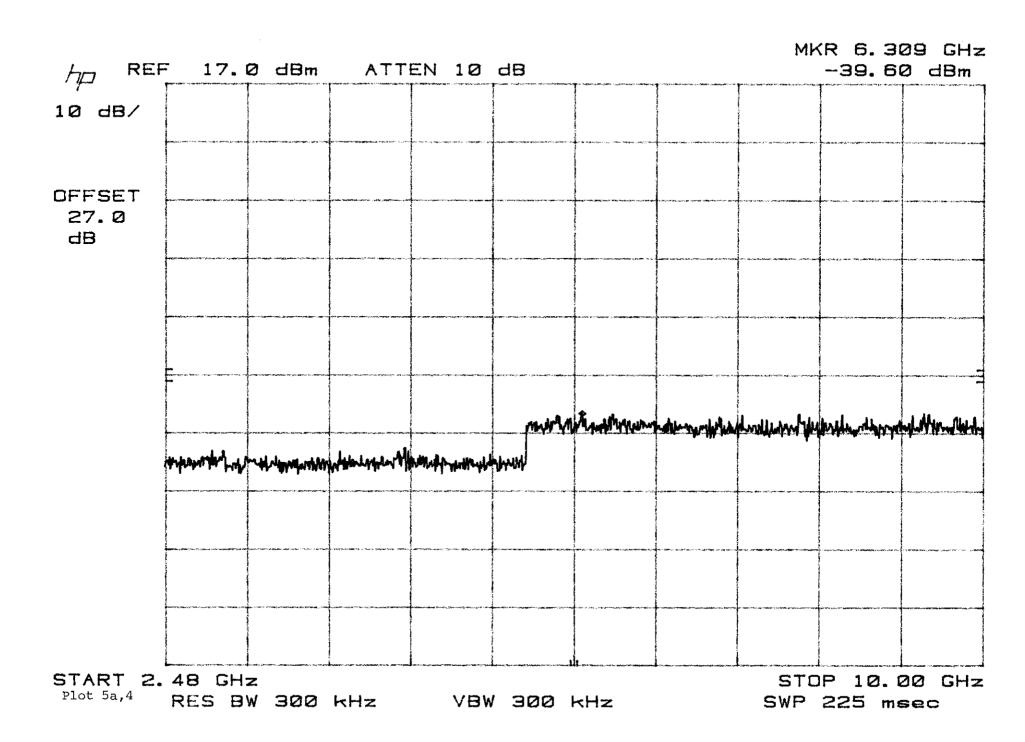
Date of Test: May 19 - June 9, 1999
FCC ID: H9PLA3021-100

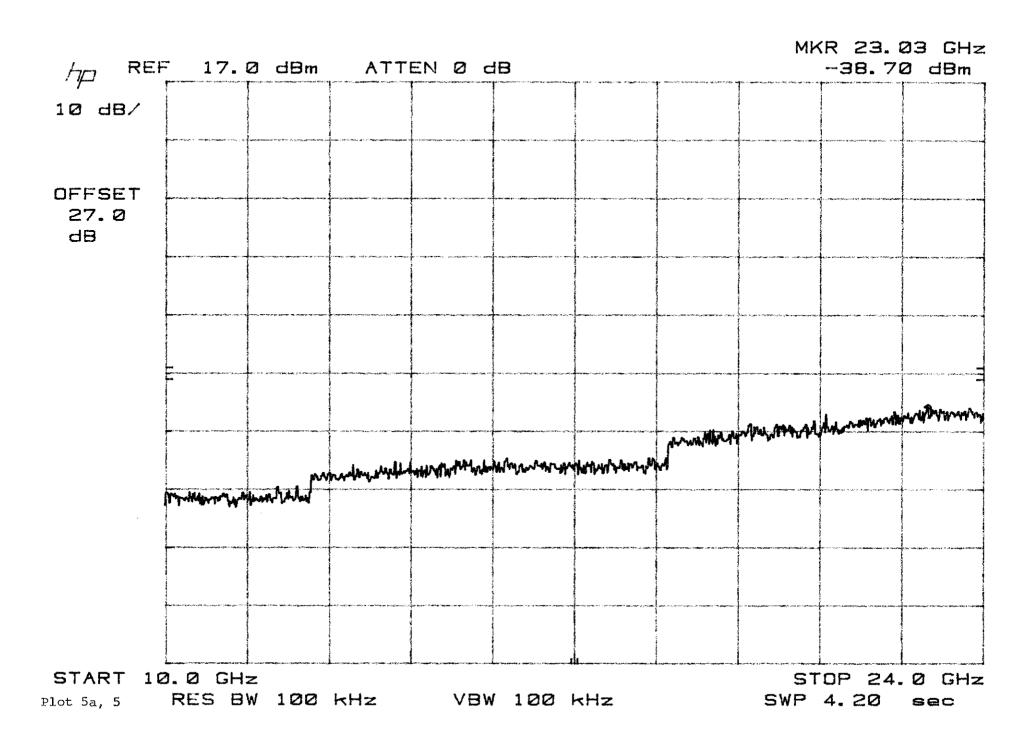
4.5 Out of Band Conducted Emissions, FCC Ref: 15.247(c)

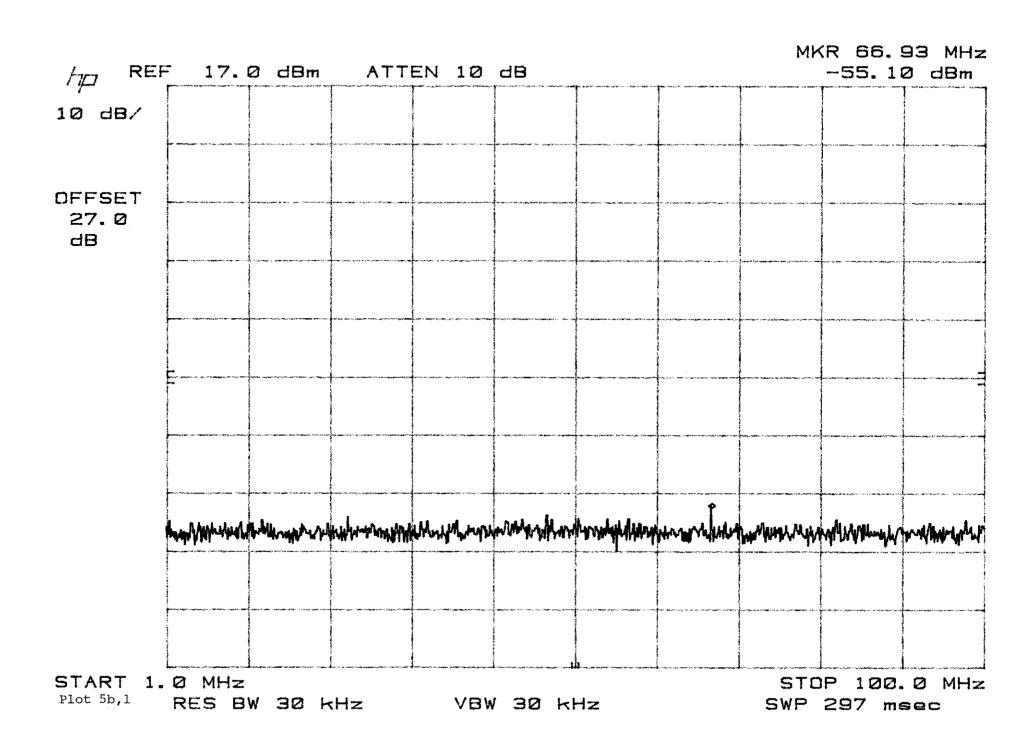

Requirement:

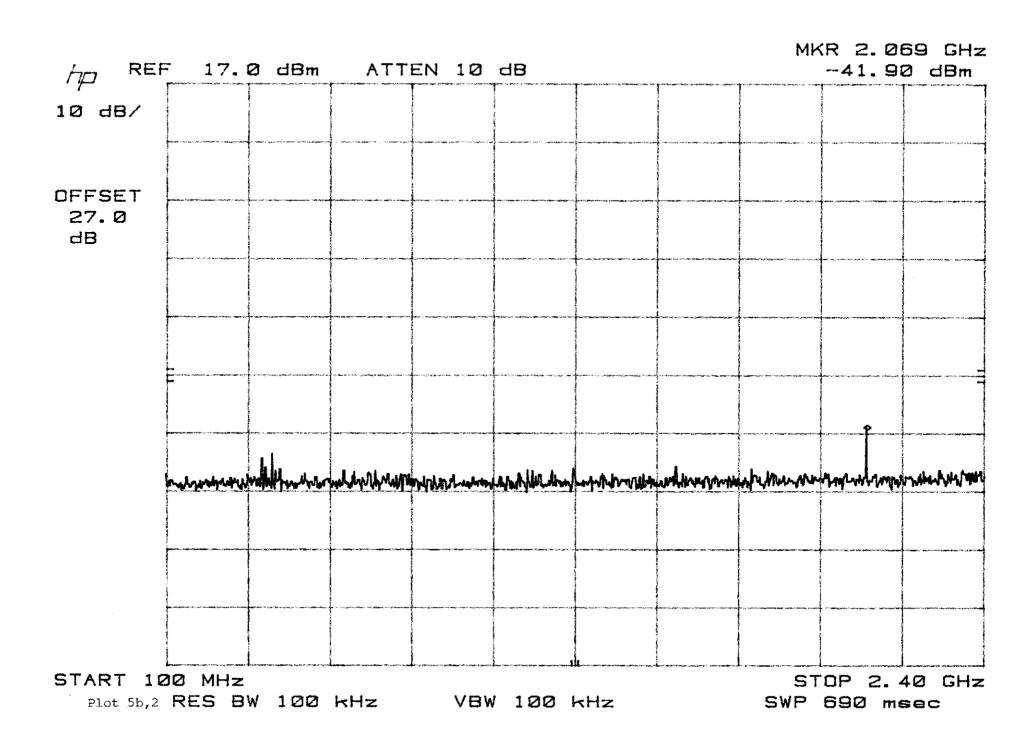

In any 100 kHz bandwidth outside the EUT passband, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission.

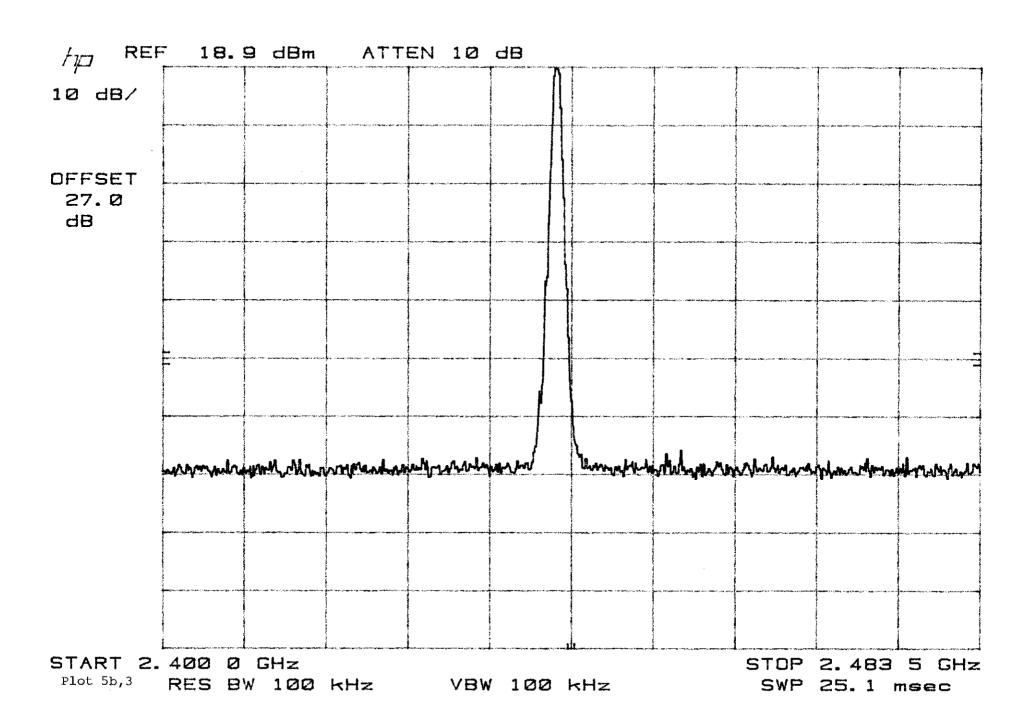

Result:

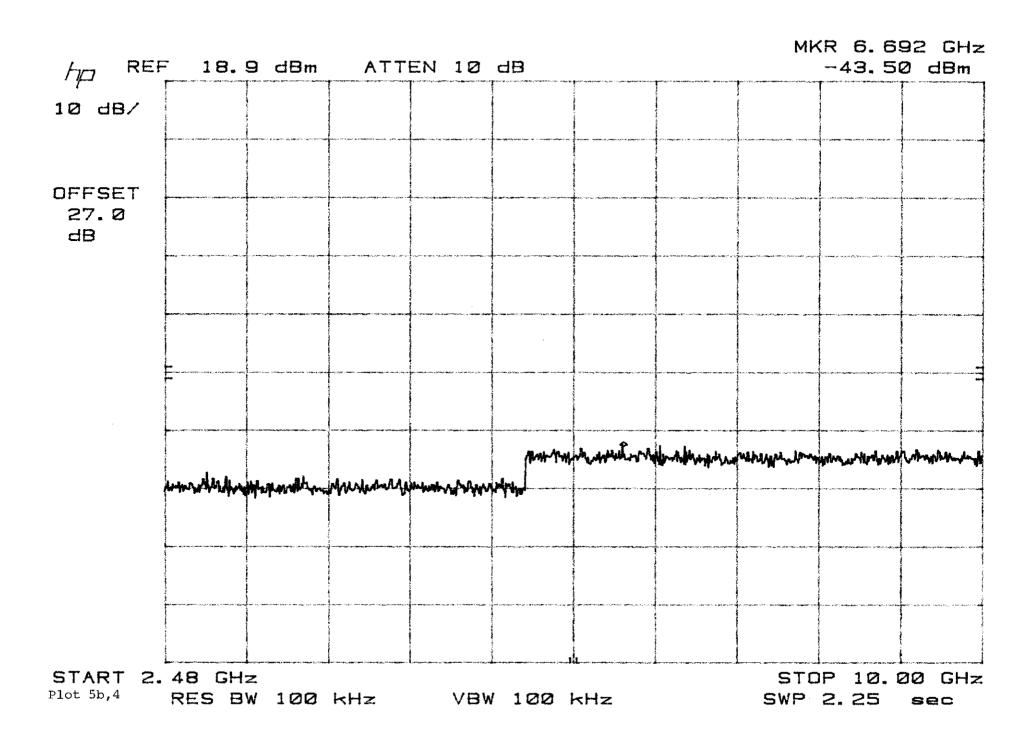

Please refer to the attached Plots for details:

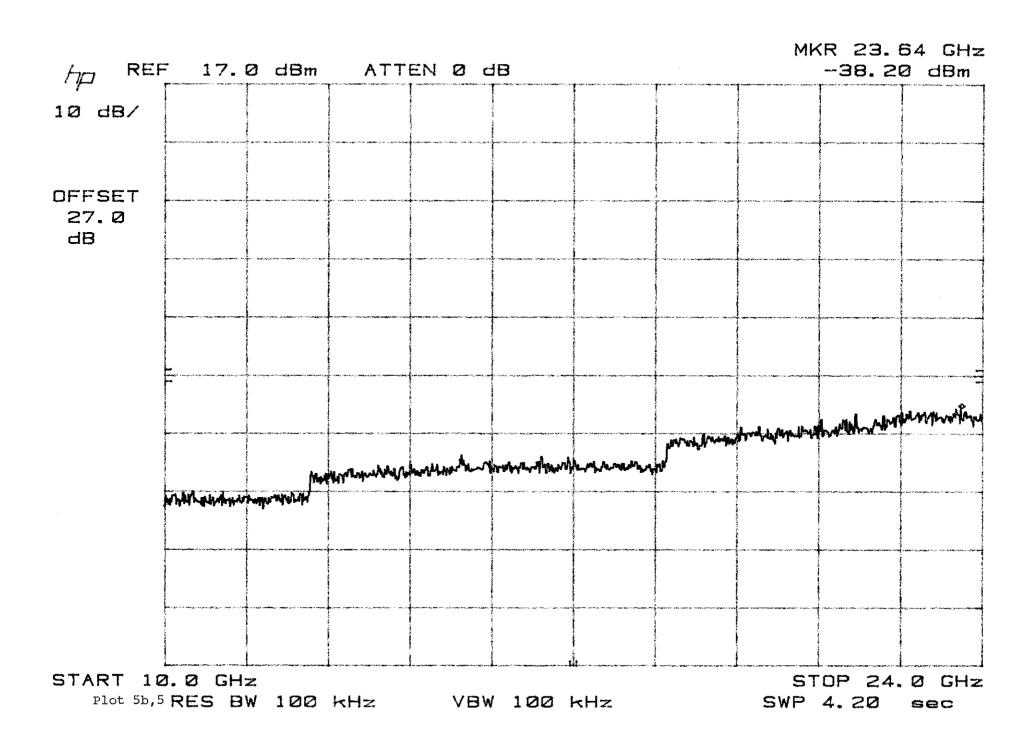

Low Channel	Plots 5.a.1 - 5.a.5
Middle Channel	Plots 5.b.1 - 5.b.5
High Channel	Plots 5.c.1 - 5.c.7

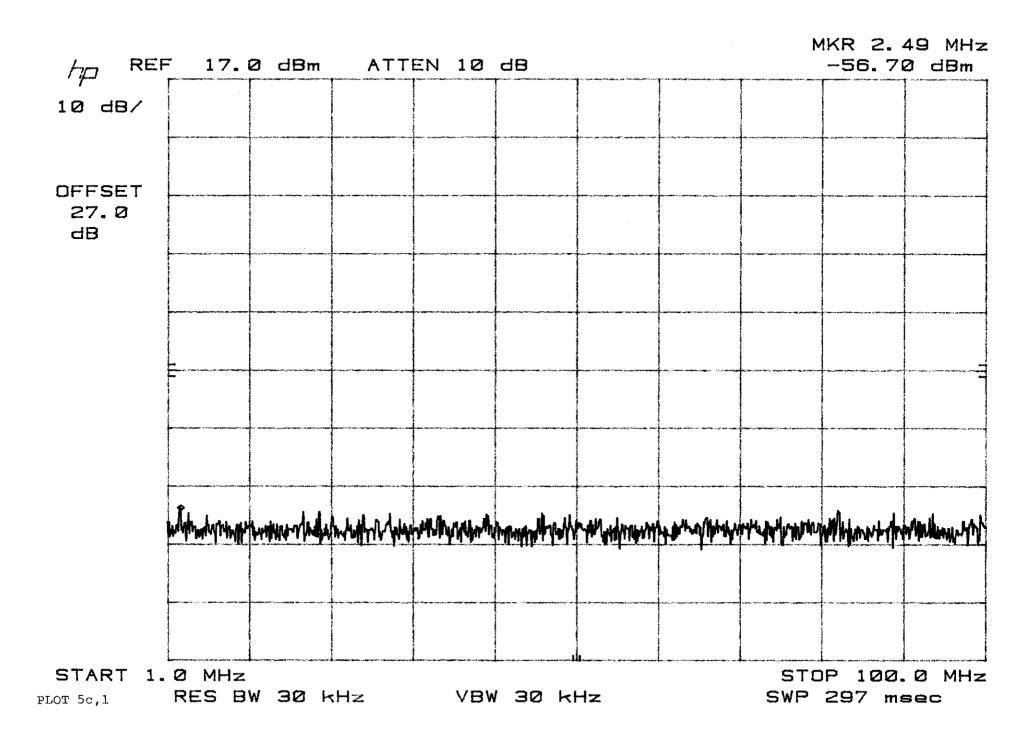


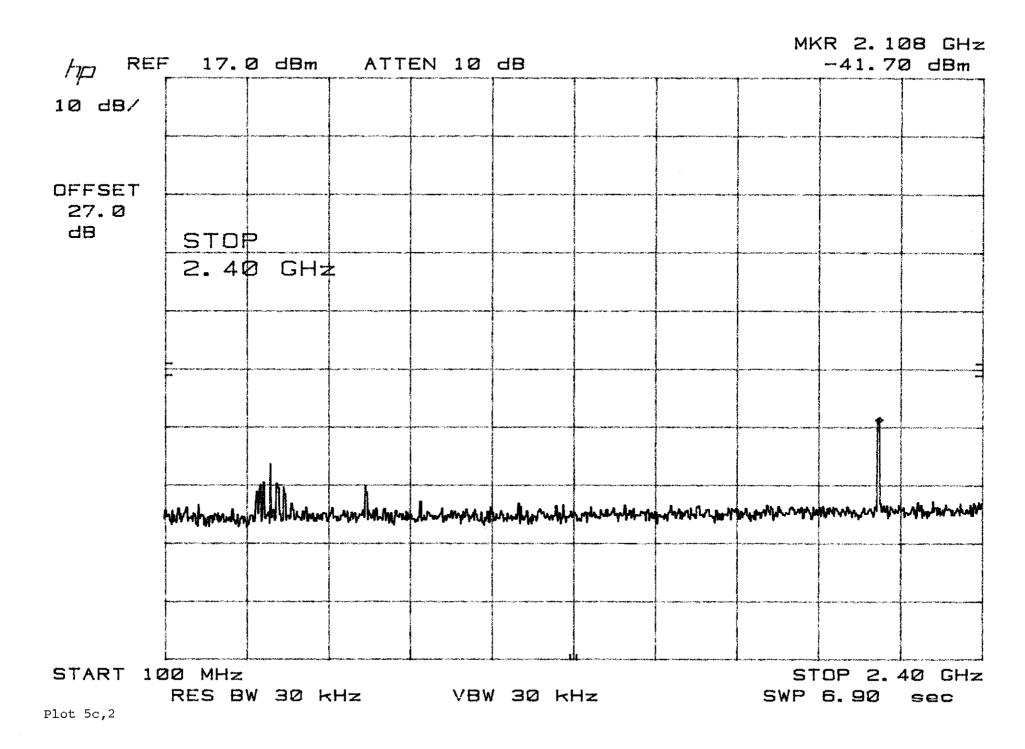


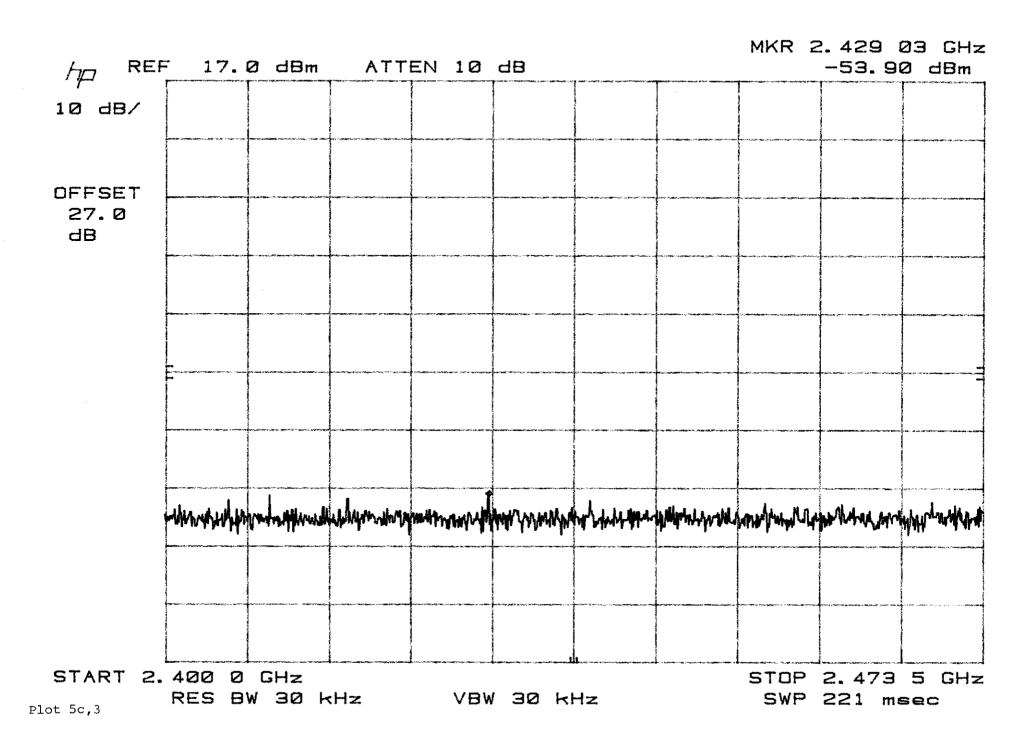


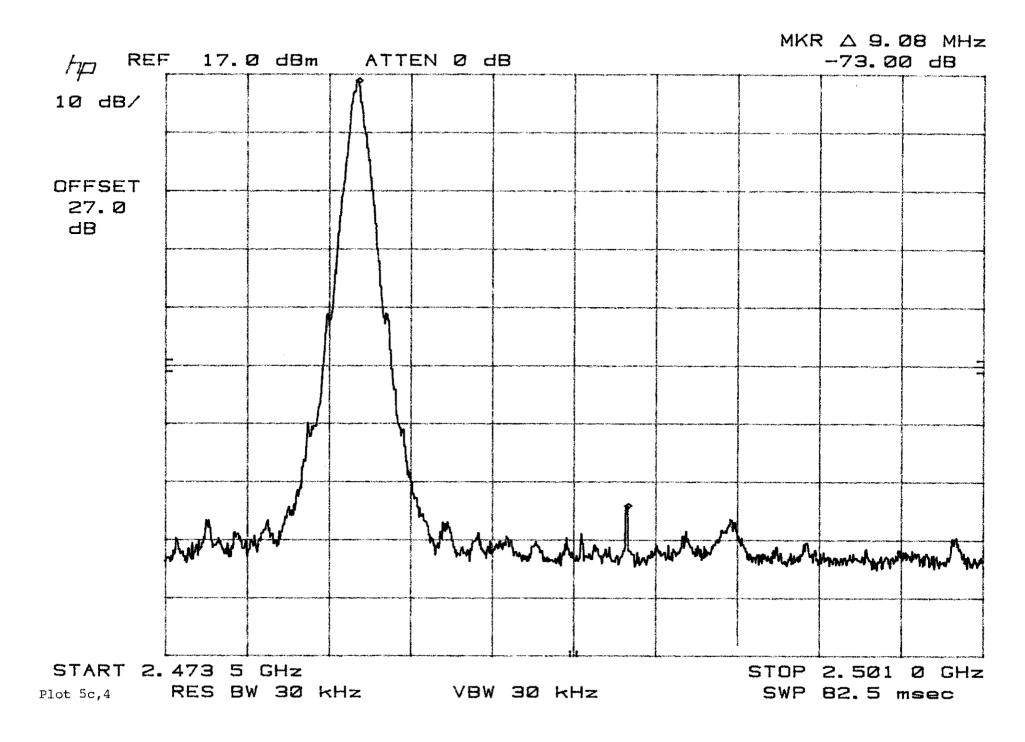


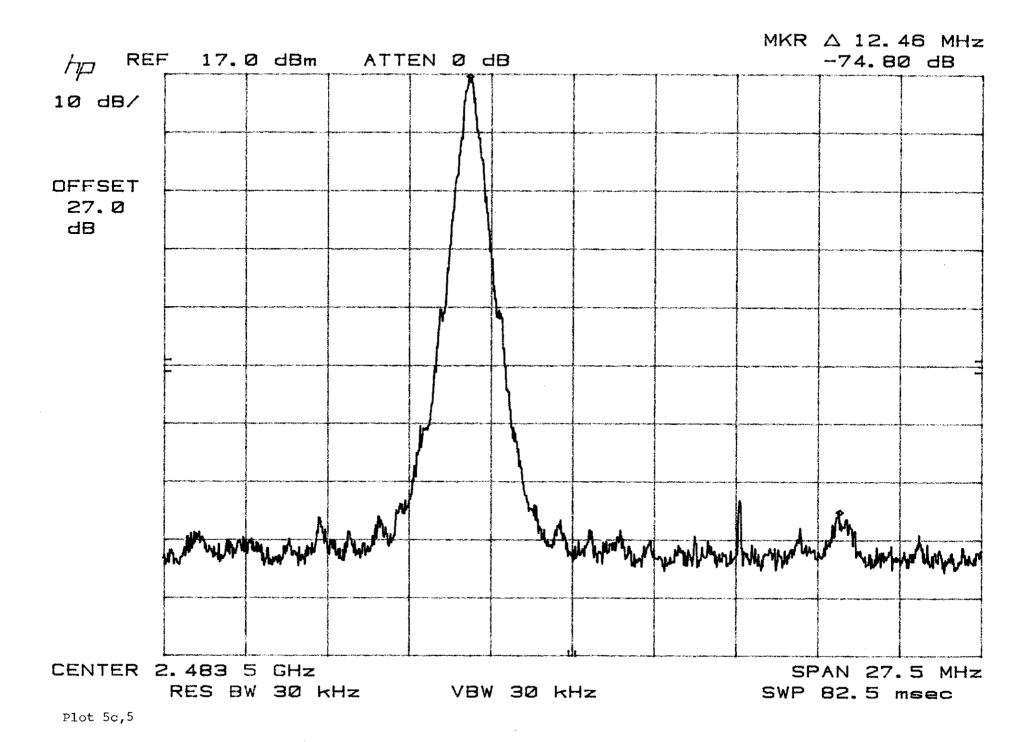


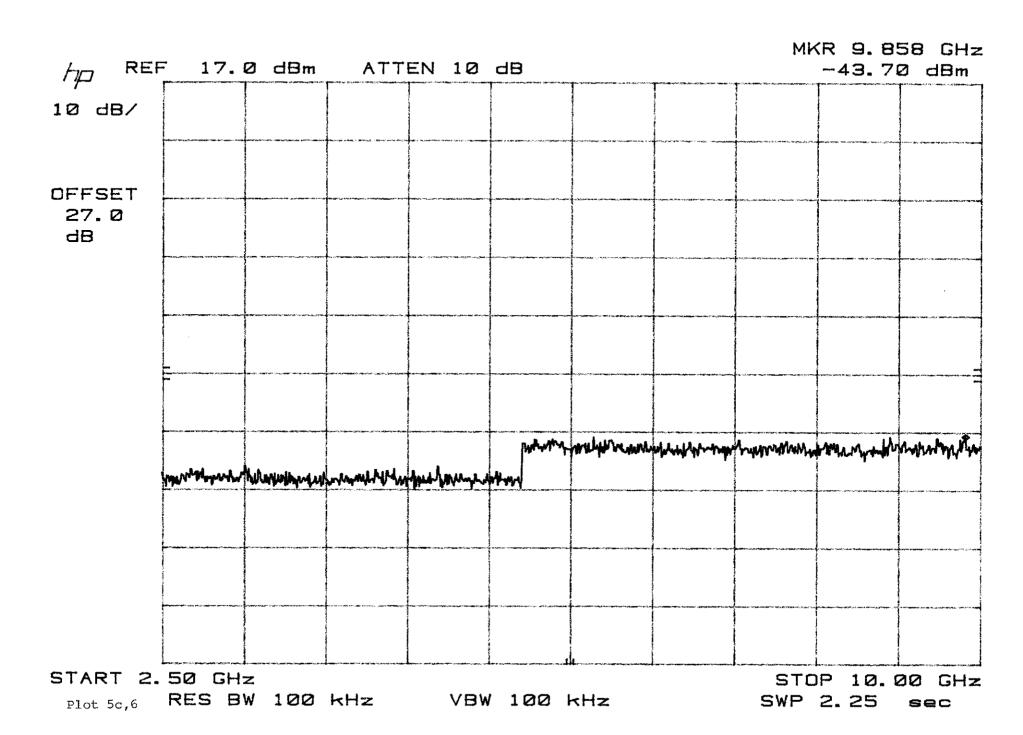


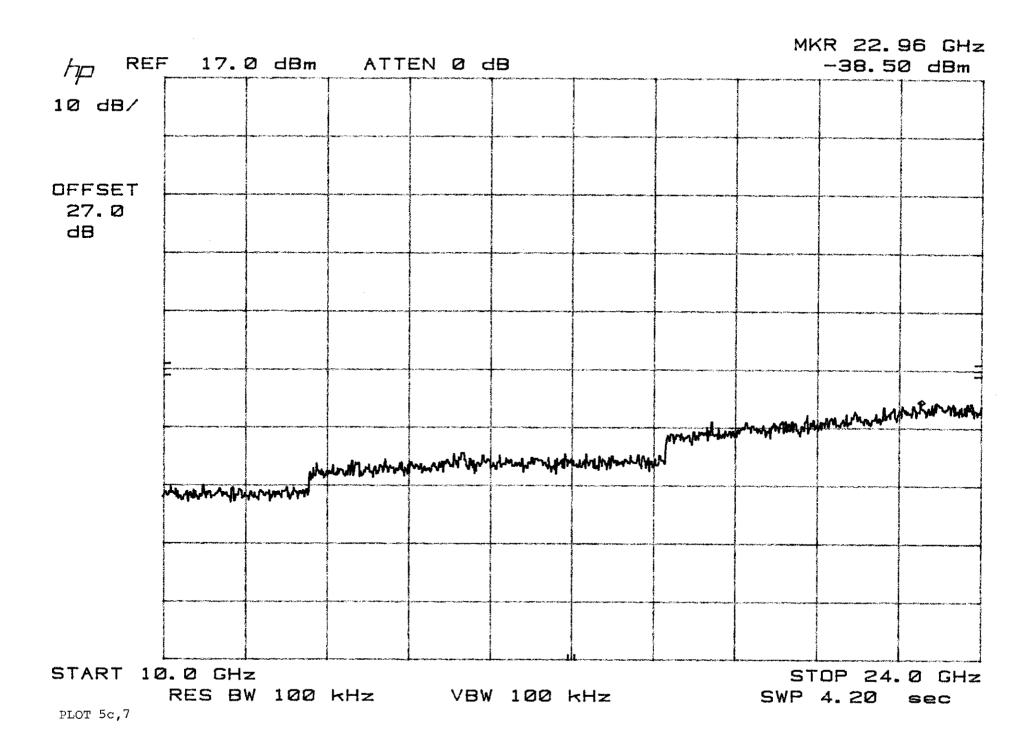












Symbol Technologies Inc. FCC ID: H9PLA3021-100

Date of Test: May 19 - June 9, 1999

4.6 Out of Band Radiated Emissions (for emissions in § 4.6 above that are less than 26 dB below carrier), FCC Ref: 15.247(c)

For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement.

- [] Test results are attached.
- [X] Not required, all emissions more than 26 dB below fundamental

Report# J99013298b

Symbol Technologies Inc. FCC ID: H9PLA3021-100

Date of Test: May 19 - June 9, 1999

4.7 Transmitter Radiated Emissions in Restricted Bands, FCC Ref: 15.247(c),

Radiated emission measurements were performed from 30 MHz to 25000 MHz. Analyzer resolution is 100 kHz or greater for frequencies from 30 MHz to 1000 MHz and 1 MHz for frequencies above 1000 MHz.

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection and average detection (above 1 GHz) unless otherwise specified.

On the following pages, the emissions on the harmonics frequencies, the limits, and the margin of compliance are presented. These tests were made when the transmitter is in full radiated power.

The additional test was performed to show compliance with the requirement at the band-edge frequency 2483.5 MHz and up to 2500 MHz.

The transmitter was setup to transmit at the highest channel. The spectrum analyzer with resolution bandwidth 1 MHz was connected to the antenna terminal of the transmitter. The antenna conducted emissions in the band 2400 - 2483.5 MHz were measured and plotted. The difference (delta) between the levels on fundamental frequency and on the frequency 2483.5 MHz was determined. Then the field strength (E_0 in dBuV/m) of radiated emission at the fundamental frequency at 3 m was measured.

The radiated emission (E₁ in dBuV/m) at 2483.5 MHz was calculated as follows:

$$E_1 = E_0$$
 - delta.

The same procedure was used to measure the radiated emissions at the frequency 2390 MHz and down to 2310 MHz.

For the test results, refer to plot numbers 5.c.4. and 5.c.5 in section 4.5.

For transmitters with hopping channel ON times < 100 msec, DUTY CYCLE CORRECTION is permitted for emissions above 1000 MHz: Duty Cycle of 0 dB was used.

Report# J99013298b

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 19, 1999

FCC 15.247 Radiated Emissions

Attenna	1	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	36.0	35.4	3.4	28.1	0.0	0.0	46.7	74.0	-27.3
4804.0	V	Average	26.0	35.4	3.4	28.1	0.0	0.0	36.7	54.0	-17.3
7206.0	V	Peak	37.0	36.9	4.6	28.0	0.0	0.0	50.5	74.0	-23.5
7206.0	V	Average	28.0	36.9	4.6	28.0	0.0	0.0	41.5	54.0	-12.5
12010.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12010.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 19, 1999

FCC 15.247 Radiated Emissions

Attenna	1	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	39.4	35.4	3.4	28.1	0.0	0.0	50.1	74.0	-23.9
4880.0	V	Average	31.9	35.4	3.4	28.1	0.0	0.0	42.6	54.0	-11.4
7320.0	V	Peak	39.0	36.9	4.6	28.0	0.0	0.0	52.5	74.0	-21.5
7320.0	V	Average	32.4	36.9	4.6	28.0	0.0	0.0	45.9	54.0	-8.1
12200.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12200.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 19, 1999

FCC 15.247 Radiated Emissions

Attenna	1	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	43.2	35.4	3.4	28.1	0.0	0.0	53.9	74.0	-20.1
4960.0	V	Average	33.2	35.4	3.4	28.1	0.0	0.0	43.9	54.0	-10.1
7440.0	V	Peak	40.9	36.9	4.6	28.0	0.0	0.0	54.4	74.0	-19.6
7440.0	V	Average	30.7	36.9	4.6	28.0	0.0	0.0	44.2	54.0	-9.8
12400.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12400.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19840.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 19, 1999

FCC 15.247 Radiated Emissions

Attenna	2	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	37.0	35.4	3.4	28.1	0.0	0.0	47.7	74.0	-26.3
4804.0	V	Average	27.0	35.4	3.4	28.1	0.0	0.0	37.7	54.0	-16.3
7206.0	V	Peak	37.5	36.9	4.6	28.0	0.0	0.0	51.0	74.0	-23.0
7206.0	V	Average	28.1	36.9	4.6	28.0	0.0	0.0	41.6	54.0	-12.4
12010.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12010.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 19, 1999

FCC 15.247 Radiated Emissions

Attenna	2	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	39.5	35.4	3.4	28.1	0.0	0.0	50.2	74.0	-23.8
4880.0	V	Average	34.8	35.4	3.4	28.1	0.0	0.0	45.5	54.0	-8.5
7320.0	V	Peak	43.3	36.9	4.6	28.0	0.0	0.0	56.8	74.0	-17.2
7320.0	V	Average	34.9	36.9	4.6	28.0	0.0	0.0	48.4	54.0	-5.6
12200.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12200.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 19, 1999

FCC 15.247 Radiated Emissions

Attenna	2	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	39.7	35.4	3.4	28.1	0.0	0.0	50.4	74.0	-23.6
4960.0	V	Average	34.2	35.4	3.4	28.1	0.0	0.0	44.9	54.0	-9.1
7440.0	V	Peak	41.4	36.9	4.6	28.0	0.0	0.0	54.9	74.0	-19.1
7440.0	V	Average	32.9	36.9	4.6	28.0	0.0	0.0	46.4	54.0	-7.6
12400.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12400.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19840.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	3	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	34.0	35.4	3.4	28.1	0.0	0.0	44.7	74.0	-29.3
4804.0	V	Average	26.5	35.4	3.4	28.1	0.0	0.0	37.2	54.0	-16.8
7206.0	V	Peak	38.0	36.9	4.6	28.0	0.0	0.0	51.5	74.0	-22.5
7206.0	V	Average	29.7	36.9	4.6	28.0	0.0	0.0	43.2	54.0	-10.8
12010.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12010.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	3	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	41.8	35.4	3.4	28.1	0.0	0.0	52.5	74.0	-21.5
4880.0	V	Average	37.0	35.4	3.4	28.1	0.0	0.0	47.7	54.0	-6.3
7320.0	V	Peak	38.2	36.9	4.6	28.0	0.0	0.0	51.7	74.0	-22.3
7320.0	V	Average	31.0	36.9	4.6	28.0	0.0	0.0	44.5	54.0	-9.5
12200.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12200.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19520.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	3	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	36.0	35.4	3.4	28.1	0.0	0.0	46.7	74.0	-27.3
4960.0	V	Average	28.4	35.4	3.4	28.1	0.0	0.0	39.1	54.0	-14.9
7440.0	V	Peak	37.1	36.9	4.6	28.0	0.0	0.0	50.6	74.0	-23.4
7440.0	V	Average	29.0	36.9	4.6	28.0	0.0	0.0	42.5	54.0	-11.5
12400.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12400.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19840.0	Н	Peak	8.0	40.2	7.5	23.3	-9.5	0.0	22.9	74.0	-51.1
19840.0	Н	Average	9.0	40.2	7.5	23.3	-9.5	0.0	23.9	54.0	-30.1
22320.0	V	Peak	9.0	40.3	9.1	24.0	-9.5	0.0	24.9	74.0	-49.1
22320.0	V	Average	10.0	40.3	9.1	24.0	-9.5	0.0	25.9	54.0	-28.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	4	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	36.3	35.4	3.4	28.1	0.0	0.0	47.0	74.0	-27.0
4804.0	V	Average	26.4	35.4	3.4	28.1	0.0	0.0	37.1	54.0	-16.9
7206.0	V	Peak	37.0	36.9	4.6	28.0	0.0	0.0	50.5	74.0	-23.5
7206.0	V	Average	28.0	36.9	4.6	28.0	0.0	0.0	41.5	54.0	-12.5
12010.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12010.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	4	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	37.3	35.4	3.4	28.1	0.0	0.0	48.0	74.0	-26.0
4880.0	V	Average	28.5	35.4	3.4	28.1	0.0	0.0	39.2	54.0	-14.8
7320.0	V	Peak	41.0	36.9	4.6	28.0	0.0	0.0	54.5	74.0	-19.5
7320.0	V	Average	32.3	36.9	4.6	28.0	0.0	0.0	45.8	54.0	-8.2
12200.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12200.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	4	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
2480.0	V	Peak	89.5	30.4	2.3	0.0	0.0	0.0	122.2		
2480.0	V	Average	87.5	30.4	2.3	0.0	0.0	0.0	120.2		
2489.0	V	Peak							49.3*	74.0	-24.7
2489.0	V	Average							47.3*	54.0	-6.7
2492.5	V	Peak							47.4#	74.0	-26.6
2492.5	V	Average							45.4#	54.0	-8.6
4960.0	V	Peak	34.9	35.4	3.4	28.1	0.0	0.0	45.6	74.0	-28.4
4960.0	V	Average	24.1	35.4	3.4	28.1	0.0	0.0	34.8	54.0	-19.2
7440.0	V	Peak	40.6	36.9	4.6	28.0	0.0	0.0	54.1	74.0	-19.9
7440.0	V	Average	30.3	36.9	4.6	28.0	0.0	0.0	43.8	54.0	-10.2
12400.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12400.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19840.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note:

- 1. All measurement were made at 3 meters
- 2. Negative signs (-) in the margin column signify levels below the limit.
- 4. Readings with * are fundamental minus attenuation from plot 4.c.4(73dB)
- 5. Readings with # are fundamental minus attenuation from plot 4.c.5(74.8dB)
- 6. Readings above 19 GHz were made with RBW=300KHz and they are noise floor. Measurements were preformed at 1m distance.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	5	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	35.6	35.4	3.4	28.1	0.0	0.0	46.3	74.0	-27.7
4804.0	V	Average	25.5	35.4	3.4	28.1	0.0	0.0	36.2	54.0	-17.8
7206.0	V	Peak	37.8	36.9	4.6	28.0	0.0	0.0	51.3	74.0	-22.7
7206.0	V	Average	29.0	36.9	4.6	28.0	0.0	0.0	42.5	54.0	-11.5
12010.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12010.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	5	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	38.2	35.4	3.4	28.1	0.0	0.0	48.9	74.0	-25.1
4880.0	V	Average	30.8	35.4	3.4	28.1	0.0	0.0	41.5	54.0	-12.5
7320.0	V	Peak	42.3	36.9	4.6	28.0	0.0	0.0	55.8	74.0	-18.2
7320.0	V	Average	33.3	36.9	4.6	28.0	0.0	0.0	46.8	54.0	-7.2
12200.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12200.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	5	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	37.0	35.4	3.4	28.1	0.0	0.0	47.7	74.0	-26.3
4960.0	V	Average	27.6	35.4	3.4	28.1	0.0	0.0	38.3	54.0	-15.7
7440.0	V	Peak	40.6	36.9	4.6	28.0	0.0	0.0	54.1	74.0	-19.9
7440.0	V	Average	30.2	36.9	4.6	28.0	0.0	0.0	43.7	54.0	-10.3
12400.0	V	Peak	33.7	39.0	5.9	39.0	0.0	0.0	39.6	74.0	-34.4
12400.0	Н	Average	25.8	39.0	5.9	39.0	0.0	0.0	31.7	54.0	-22.3
19840.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	6	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	35.4	35.4	3.4	28.1	0.0	0.0	46.1	74.0	-27.9
4804.0	V	Average	24.3	35.4	3.4	28.1	0.0	0.0	35.0	54.0	-19.0
7206.0	V	Peak	37.0	36.9	4.6	28.0	0.0	0.0	50.5	74.0	-23.5
7206.0	V	Average	29.0	36.9	4.6	28.0	0.0	0.0	42.5	54.0	-11.5
12010.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12010.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	6	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	38.3	35.4	3.4	28.1	0.0	0.0	49.0	74.0	-25.0
4880.0	V	Average	29.1	35.4	3.4	28.1	0.0	0.0	39.8	54.0	-14.2
7320.0	V	Peak	40.8	36.9	4.6	28.0	0.0	0.0	54.3	74.0	-19.7
7320.0	V	Average	31.0	36.9	4.6	28.0	0.0	0.0	44.5	54.0	-9.5
12200.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12200.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	6	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	36.7	35.4	3.4	28.1	0.0	0.0	47.4	74.0	-26.6
4960.0	V	Average	27.7	35.4	3.4	28.1	0.0	0.0	38.4	54.0	-15.6
7440.0	V	Peak	40.6	36.9	4.6	28.0	0.0	0.0	54.1	74.0	-19.9
7440.0	V	Average	29.4	36.9	4.6	28.0	0.0	0.0	42.9	54.0	-11.1
12400.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12400.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19840.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 19, 1999

FCC 15.247 Radiated Emissions

Attenna	7	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	38.5	35.4	3.4	28.1	0.0	0.0	49.2	74.0	-24.8
4804.0	V	Average	30.4	35.4	3.4	28.1	0.0	0.0	41.1	54.0	-12.9
7206.0	V	Peak	39.0	36.9	4.6	28.0	0.0	0.0	52.5	74.0	-21.5
7206.0	V	Average	30.0	36.9	4.6	28.0	0.0	0.0	43.5	54.0	-10.5
12010.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12010.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 19, 1999

FCC 15.247 Radiated Emissions

Attenna	7	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	40.3	35.4	3.4	28.1	0.0	0.0	51.0	74.0	-23.0
4880.0	V	Average	35.4	35.4	3.4	28.1	0.0	0.0	46.1	54.0	-7.9
7320.0	V	Peak	40.4	36.9	4.6	28.0	0.0	0.0	53.9	74.0	-20.1
7320.0	V	Average	30.1	36.9	4.6	28.0	0.0	0.0	43.6	54.0	-10.4
12200.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12200.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 19, 1999

FCC 15.247 Radiated Emissions

Attenna	7	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	40.2	35.4	3.4	28.1	0.0	0.0	50.9	74.0	-23.1
4960.0	V	Average	34.9	35.4	3.4	28.1	0.0	0.0	45.6	54.0	-8.4
7440.0	V	Peak	39.7	36.9	4.6	28.0	0.0	0.0	53.2	74.0	-20.8
7440.0	V	Average	28.5	36.9	4.6	28.0	0.0	0.0	42.0	54.0	-12.0
12400.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12400.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19840.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	8	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	37.9	35.4	3.4	28.1	0.0	0.0	48.6	74.0	-25.4
4804.0	V	Average	30.2	35.4	3.4	28.1	0.0	0.0	40.9	54.0	-13.1
7206.0	V	Peak	38.0	36.9	4.6	28.0	0.0	0.0	51.5	74.0	-22.5
7206.0	V	Average	29.0	36.9	4.6	28.0	0.0	0.0	42.5	54.0	-11.5
12010.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12010.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	8	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	36.2	35.4	3.4	28.1	0.0	0.0	46.9	74.0	-27.1
4880.0	V	Average	26.2	35.4	3.4	28.1	0.0	0.0	36.9	54.0	-17.1
7320.0	V	Peak	43.0	36.9	4.6	28.0	0.0	0.0	56.5	74.0	-17.5
7320.0	V	Average	35.8	36.9	4.6	28.0	0.0	0.0	49.3	54.0	-4.7
12200.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12200.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

- 2. Negative signs (-) in the margin column signify levels below the limit.
- 3. Readings above 19 GHz were made with RBW=300KHz and they are noise floor. Measurements were preformed at 1m distance.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	8	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	38.1	35.4	3.4	28.1	0.0	0.0	48.8	74.0	-25.2
4960.0	V	Average	29.8	35.4	3.4	28.1	0.0	0.0	40.5	54.0	-13.5
7440.0	V	Peak	42.6	36.9	4.6	28.0	0.0	0.0	56.1	74.0	-17.9
7440.0	V	Average	35.6	36.9	4.6	28.0	0.0	0.0	49.1	54.0	-4.9
12400.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12400.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19840.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	9	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	37.9	35.4	3.4	28.1	0.0	0.0	48.6	74.0	-25.4
4804.0	V	Average	29.9	35.4	3.4	28.1	0.0	0.0	40.6	54.0	-13.4
7206.0	V	Peak	38.0	36.9	4.6	28.0	0.0	0.0	51.5	74.0	-22.5
7206.0	V	Average	28.0	36.9	4.6	28.0	0.0	0.0	41.5	54.0	-12.5
12010.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12010.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	9	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	39.7	35.4	3.4	28.1	0.0	0.0	50.4	74.0	-23.6
4880.0	V	Average	33.8	35.4	3.4	28.1	0.0	0.0	44.5	54.0	-9.5
7320.0	V	Peak	40.8	36.9	4.6	28.0	0.0	0.0	54.3	74.0	-19.7
7320.0	V	Average	30.5	36.9	4.6	28.0	0.0	0.0	44.0	54.0	-10.0
12200.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12200.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

9	2480MHz									
Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
V	Peak	40.5	35.4	3.4	28.1	0.0	0.0	51.2	74.0	-22.8
V	Average	34.9	35.4	3.4	28.1	0.0	0.0	45.6	54.0	-8.4
V	Peak	41.4	36.9	4.6	28.0	0.0	0.0	54.9	74.0	-19.1
V	Average	33.5	36.9	4.6	28.0	0.0	0.0	47.0	54.0	-7.0
V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0
	Antenna Polarity H/V V V V V H H H V	Antenna Spec. Polarity Analyz H/V Detector V Peak V Average V Peak V Average V Peak H Average H Peak H Average V Peak Peak H Average Peak H Average Peak H Average Peak H Peak	Antenna Spec. Reading Polarity Analyz H/V Detector dB(uV) V Peak 40.5 V Average 34.9 V Peak 41.4 V Average 33.5 V Peak 42.4 H Average 32.3 H Peak 39.0 V Peak 39.0 V Peak 39.0	Antenna Spec. Reading Antenna Polarity Analyz Factor H/V Detector dB(uV) dB/m V Peak 40.5 35.4 V Average 34.9 35.4 V Peak 41.4 36.9 V Average 33.5 36.9 V Peak 42.4 39.0 H Average 32.3 39.0 H Peak 39.0 40.2 H Average 30.0 40.2 V Peak 39.0 40.3	Antenna Spec. Reading Antenna Cable Polarity Analyz Factor Loss H/V Detector dB(uV) dB/m dB V Peak 40.5 35.4 3.4 V Average 34.9 35.4 3.4 V Peak 41.4 36.9 4.6 V Average 33.5 36.9 4.6 V Peak 42.4 39.0 5.9 H Average 32.3 39.0 5.9 H Peak 39.0 40.2 7.5 H Average 30.0 40.2 7.5 V Peak 39.0 40.3 9.1	Antenna Spec. Reading Antenna Cable Pre-amp Polarity Analyz Factor Loss H/V Detector dB(uV) dB/m dB dB V Peak 40.5 35.4 3.4 28.1 V Average 34.9 35.4 3.4 28.1 V Peak 41.4 36.9 4.6 28.0 V Average 33.5 36.9 4.6 28.0 V Peak 42.4 39.0 5.9 39.0 H Average 32.3 39.0 5.9 39.0 H Peak 39.0 40.2 7.5 23.3 H Average 30.0 40.2 7.5 23.3 V Peak 39.0 40.2 7.5 23.3 V Peak 39.0 40.2 7.5 23.3	Antenna Spec. Reading Polarity Antenna Cable Cable Cable Pre-amp Pre-amp Poistance Distance Polarity H/V Detector Detector Detector Detector All Presents Detector Det	Antenna Spec. Reading Polarity Antenna Cable Cable Cable Pre-amp Poistance Distance Duty Distance Duty Distance Duty Distance H/V Detector dB(uV) dB/m dB dB <td>Antenna Spec. Reading Antenna Cable Pre-amp Distance Duty Corrected Polarity Analyz Factor Loss Factor Cycle Reading H/V Detector dB(uV) dB/m dB dB dB dB (uV/m) V Peak 40.5 35.4 3.4 28.1 0.0 0.0 51.2 V Average 34.9 35.4 3.4 28.1 0.0 0.0 45.6 V Peak 41.4 36.9 4.6 28.0 0.0 0.0 47.0 V Peak 42.4 39.0 5.9 39.0 0.0 0.0 48.3 H Average 32.3 39.0 5.9 39.0 0.0 0.0 38.2 H Peak 39.0 40.2 7.5 23.3 -9.5 0.0 53.9 H Average 30.0 40.2 7.5 23.3</td> <td>Antenna Spec. Reading Polarity Antenna Analyz Cable Factor Pre-amp Loss Distance Factor Duty Corrected Polarity Limit Polarity H/V Detector dB(uV) dB/m dB dB dB dB (uV/m) dB(uV/m) dB(uV/m)<!--</td--></td>	Antenna Spec. Reading Antenna Cable Pre-amp Distance Duty Corrected Polarity Analyz Factor Loss Factor Cycle Reading H/V Detector dB(uV) dB/m dB dB dB dB (uV/m) V Peak 40.5 35.4 3.4 28.1 0.0 0.0 51.2 V Average 34.9 35.4 3.4 28.1 0.0 0.0 45.6 V Peak 41.4 36.9 4.6 28.0 0.0 0.0 47.0 V Peak 42.4 39.0 5.9 39.0 0.0 0.0 48.3 H Average 32.3 39.0 5.9 39.0 0.0 0.0 38.2 H Peak 39.0 40.2 7.5 23.3 -9.5 0.0 53.9 H Average 30.0 40.2 7.5 23.3	Antenna Spec. Reading Polarity Antenna Analyz Cable Factor Pre-amp Loss Distance Factor Duty Corrected Polarity Limit Polarity H/V Detector dB(uV) dB/m dB dB dB dB (uV/m) dB(uV/m) dB(uV/m) </td

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	10	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	37.3	35.4	3.4	28.1	0.0	0.0	48.0	74.0	-26.0
4804.0	V	Average	27.8	35.4	3.4	28.1	0.0	0.0	38.5	54.0	-15.5
7206.0	V	Peak	37.5	36.9	4.6	28.0	0.0	0.0	51.0	74.0	-23.0
7206.0	V	Average	28.0	36.9	4.6	28.0	0.0	0.0	41.5	54.0	-12.5
12010.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12010.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	10	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	36.9	35.4	3.4	28.1	0.0	0.0	47.6	74.0	-26.4
4880.0	V	Average	26.0	35.4	3.4	28.1	0.0	0.0	36.7	54.0	-17.3
7320.0	V	Peak	42.3	36.9	4.6	28.0	0.0	0.0	55.8	74.0	-18.2
7320.0	V	Average	34.1	36.9	4.6	28.0	0.0	0.0	47.6	54.0	-6.4
12200.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12200.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	10	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	37.9	35.4	3.4	28.1	0.0	0.0	48.6	74.0	-25.4
4960.0	V	Average	31.1	35.4	3.4	28.1	0.0	0.0	41.8	54.0	-12.2
7440.0	V	Peak	42.4	36.9	4.6	28.0	0.0	0.0	55.9	74.0	-18.1
7440.0	V	Average	34.2	36.9	4.6	28.0	0.0	0.0	47.7	54.0	-6.3
12400.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12400.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19840.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	11	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	36.3	35.4	3.4	28.1	0.0	0.0	47.0	74.0	-27.0
4804.0	V	Average	26.7	35.4	3.4	28.1	0.0	0.0	37.4	54.0	-16.6
7206.0	V	Peak	37.9	36.9	4.6	28.0	0.0	0.0	51.4	74.0	-22.6
7206.0	V	Average	28.4	36.9	4.6	28.0	0.0	0.0	41.9	54.0	-12.1
12010.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12010.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	11	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	37.1	35.4	3.4	28.1	0.0	0.0	47.8	74.0	-26.2
4880.0	V	Average	27.8	35.4	3.4	28.1	0.0	0.0	38.5	54.0	-15.5
7320.0	V	Peak	44.4	36.9	4.6	28.0	0.0	0.0	57.9	74.0	-16.1
7320.0	V	Average	37.6	36.9	4.6	28.0	0.0	0.0	51.1	54.0	-2.9
12200.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12200.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	11	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	39.4	35.4	3.4	28.1	0.0	0.0	50.1	74.0	-23.9
4960.0	V	Average	33.3	35.4	3.4	28.1	0.0	0.0	44.0	54.0	-10.0
7440.0	V	Peak	43.0	36.9	4.6	28.0	0.0	0.0	56.5	74.0	-17.5
7440.0	V	Average	36.3	36.9	4.6	28.0	0.0	0.0	49.8	54.0	-4.2
12400.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12400.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19840.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	12	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	35.7	35.4	3.4	28.1	0.0	0.0	46.4	74.0	-27.6
4804.0	V	Average	26.0	35.4	3.4	28.1	0.0	0.0	36.7	54.0	-17.3
7206.0	V	Peak	37.4	36.9	4.6	28.0	0.0	0.0	50.9	74.0	-23.1
7206.0	V	Average	28.0	36.9	4.6	28.0	0.0	0.0	41.5	54.0	-12.5
12010.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12010.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	12	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	41.1	35.4	3.4	28.1	0.0	0.0	51.8	74.0	-22.2
4880.0	V	Average	35.6	35.4	3.4	28.1	0.0	0.0	46.3	54.0	-7.7
7320.0	V	Peak	41.9	36.9	4.6	28.0	0.0	0.0	55.4	74.0	-18.6
7320.0	V	Average	33.6	36.9	4.6	28.0	0.0	0.0	47.1	54.0	-6.9
12200.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12200.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 21, 1999

FCC 15.247 Radiated Emissions

Attenna	12	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	40.2	35.4	3.4	28.1	0.0	0.0	50.9	74.0	-23.1
4960.0	V	Average	34.7	35.4	3.4	28.1	0.0	0.0	45.4	54.0	-8.6
7440.0	V	Peak	40.5	36.9	4.6	28.0	0.0	0.0	54.0	74.0	-20.0
7440.0	V	Average	39.4	36.9	4.6	28.0	0.0	0.0	52.9	54.0	-1.1
12400.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12400.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19840.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	13	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	37.3	35.4	3.4	28.1	0.0	0.0	48.0	74.0	-26.0
4804.0	V	Average	32.4	35.4	3.4	28.1	0.0	0.0	43.1	54.0	-10.9
7206.0	V	Peak	38.0	36.9	4.6	28.0	0.0	0.0	51.5	74.0	-22.5
7206.0	V	Average	33.0	36.9	4.6	28.0	0.0	0.0	46.5	54.0	-7.5
12010.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12010.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	13	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	39.0	35.4	3.4	28.1	0.0	0.0	49.7	74.0	-24.3
4880.0	V	Average	35.4	35.4	3.4	28.1	0.0	0.0	46.1	54.0	-7.9
7320.0	V	Peak	39.0	36.9	4.6	28.0	0.0	0.0	52.5	74.0	-21.5
7320.0	V	Average	32.4	36.9	4.6	28.0	0.0	0.0	45.9	54.0	-8.1
12200.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12200.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19520.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	13	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	41.7	35.4	3.4	28.1	0.0	0.0	52.4	74.0	-21.6
4960.0	V	Average	39.5	35.4	3.4	28.1	0.0	0.0	50.2	54.0	-3.8
7440.0	V	Peak	37.7	36.9	4.6	28.0	0.0	0.0	51.2	74.0	-22.8
7440.0	V	Average	30.0	36.9	4.6	28.0	0.0	0.0	43.5	54.0	-10.5
12400.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12400.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19840.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	14	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	36.0	35.4	3.4	28.1	0.0	0.0	46.7	74.0	-27.3
4804.0	V	Average	30.0	35.4	3.4	28.1	0.0	0.0	40.7	54.0	-13.3
7206.0	V	Peak	38.8	36.9	4.6	28.0	0.0	0.0	52.3	74.0	-21.7
7206.0	V	Average	30.0	36.9	4.6	28.0	0.0	0.0	43.5	54.0	-10.5
12010.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12010.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19216.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
21618.0	V	Average	30.0	40.3	9.1	24.0	-9.5	0.0	45.9	54.0	-8.1

Note: 1. All measurement were made at 3 meters

- 2. Negative signs (-) in the margin column signify levels below the limit.
- 3. Readings above 19 GHz were made with RBW=300KHz and they are noise floor. Measurements were preformed at 1m distance

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	14	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	DB(uV/m)	dB
4880.0	V	Peak	35.0	35.4	3.4	28.1	0.0	0.0	45.7	74.0	-28.3
4880.0	V	Average	28.3	35.4	3.4	28.1	0.0	0.0	39.0	54.0	-15.0
7320.0	V	Peak	40.0	36.9	4.6	28.0	0.0	0.0	53.5	74.0	-20.5
7320.0	V	Average	33.4	36.9	4.6	28.0	0.0	0.0	46.9	54.0	-7.1
12200.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12200.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

- 2. Negative signs (-) in the margin column signify levels below the limit.
- 3. Readings above 19 GHz were made with RBW=300KHz and they are noise floor. Measurements were preformed at 1m distance.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	14	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	36.3	35.4	3.4	28.1	0.0	0.0	47.0	74.0	-27.0
4960.0	V	Average	30.6	35.4	3.4	28.1	0.0	0.0	41.3	54.0	-12.7
7440.0	V	Peak	38.4	36.9	4.6	28.0	0.0	0.0	51.9	74.0	-22.1
7440.0	V	Average	30.0	36.9	4.6	28.0	0.0	0.0	43.5	54.0	-10.5
12400.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12400.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19840.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

15	2402MHz									
Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
V	Peak	33.8	35.4	3.4	28.1	0.0	0.0	44.5	74.0	-29.5
V	Average	23.7	35.4	3.4	28.1	0.0	0.0	34.4	54.0	-19.6
V	Peak	35.9	36.9	4.6	28.0	0.0	0.0	49.4	74.0	-24.6
V	Average	26.7	36.9	4.6	28.0	0.0	0.0	40.2	54.0	-13.8
V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0
	Antenna Polarity H/V V V V V H H H V	Antenna Spec. Polarity Analyz H/V Detector V Peak V Average V Peak V Average V Peak H Average H Peak H Average V Peak Peak H Average Peak H Peak Peak H Peak Peak H Peak H Peak	Antenna Spec. Reading Polarity Analyz H/V Detector dB(uV) V Peak 33.8 V Average 23.7 V Peak 35.9 V Average 26.7 V Peak 42.3 H Average 32.1 H Peak 40.0 H Average 30.0 V Peak 40.0	Antenna Spec. Reading Antenna Polarity Analyz Factor H/V Detector dB(uV) dB/m V Peak 33.8 35.4 V Average 23.7 35.4 V Peak 35.9 36.9 V Average 26.7 36.9 V Peak 42.3 39.0 H Average 32.1 39.0 H Peak 40.0 40.2 H Average 30.0 40.2 V Peak 40.0 40.3	Antenna Spec. Reading Antenna Cable Polarity Analyz Factor Loss H/V Detector dB(uV) dB/m dB V Peak 33.8 35.4 3.4 V Average 23.7 35.4 3.4 V Peak 35.9 36.9 4.6 V Peak 42.3 39.0 5.9 H Average 32.1 39.0 5.9 H Peak 40.0 40.2 7.5 H Average 30.0 40.2 7.5 V Peak 40.0 40.3 9.1	Antenna Spec. Reading Antenna Cable Pre-amp Polarity Analyz Factor Loss H/V Detector dB(uV) dB/m dB dB V Peak 33.8 35.4 3.4 28.1 V Average 23.7 35.4 3.4 28.1 V Peak 35.9 36.9 4.6 28.0 V Average 26.7 36.9 4.6 28.0 V Peak 42.3 39.0 5.9 39.0 H Average 32.1 39.0 5.9 39.0 H Peak 40.0 40.2 7.5 23.3 H Average 30.0 40.2 7.5 23.3 V Peak 40.0 40.3 9.1 24.0	Antenna Spec. Reading Polarity Antenna Cable Cable Cable Pre-amp Pr	Antenna Spec. Reading Polarity Antenna Cable Cable Cable Pre-amp Poistance Distance Duty Distance Duty Distance Duty Distance H/V Detector dB(uV) dB/m dB dB <td>Antenna Spec. Reading Antenna Cable Pre-amp Distance Duty Corrected Reading Polarity Analyz Factor Loss Factor Cycle Reading H/V Detector dB(uV) dB/m dB dB dB dB (uV/m) V Peak 33.8 35.4 3.4 28.1 0.0 0.0 44.5 V Average 23.7 35.4 3.4 28.1 0.0 0.0 34.4 V Peak 35.9 36.9 4.6 28.0 0.0 0.0 49.4 V Average 26.7 36.9 4.6 28.0 0.0 0.0 40.2 V Peak 42.3 39.0 5.9 39.0 0.0 0.0 48.2 H Average 32.1 39.0 5.9 39.0 0.0 0.0 38.0 H Peak 40.0 40.2 7.5 23.3<td>Antenna Spec. Reading Polarity Antenna Analyz Cable Factor Pre-amp Loss Distance Factor Duty Corrected Polarity Limit Polarity H/V Detector dB(uV) dB/m dB dB dB dB (uV/m) dB(uV/m) dB(uV/m)<!--</td--></td></td>	Antenna Spec. Reading Antenna Cable Pre-amp Distance Duty Corrected Reading Polarity Analyz Factor Loss Factor Cycle Reading H/V Detector dB(uV) dB/m dB dB dB dB (uV/m) V Peak 33.8 35.4 3.4 28.1 0.0 0.0 44.5 V Average 23.7 35.4 3.4 28.1 0.0 0.0 34.4 V Peak 35.9 36.9 4.6 28.0 0.0 0.0 49.4 V Average 26.7 36.9 4.6 28.0 0.0 0.0 40.2 V Peak 42.3 39.0 5.9 39.0 0.0 0.0 48.2 H Average 32.1 39.0 5.9 39.0 0.0 0.0 38.0 H Peak 40.0 40.2 7.5 23.3 <td>Antenna Spec. Reading Polarity Antenna Analyz Cable Factor Pre-amp Loss Distance Factor Duty Corrected Polarity Limit Polarity H/V Detector dB(uV) dB/m dB dB dB dB (uV/m) dB(uV/m) dB(uV/m)<!--</td--></td>	Antenna Spec. Reading Polarity Antenna Analyz Cable Factor Pre-amp Loss Distance Factor Duty Corrected Polarity Limit Polarity H/V Detector dB(uV) dB/m dB dB dB dB (uV/m) dB(uV/m) dB(uV/m) </td

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	15	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	32.0	35.4	3.4	28.1	0.0	0.0	42.7	74.0	-31.3
4880.0	V	Average	23.8	35.4	3.4	28.1	0.0	0.0	34.5	54.0	-19.5
7320.0	V	Peak	37.9	36.9	4.6	28.0	0.0	0.0	51.4	74.0	-22.6
7320.0	V	Average	30.2	36.9	4.6	28.0	0.0	0.0	43.7	54.0	-10.3
12200.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12200.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	15	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
2480.0	V	Peak	93.0	30.4	2.3	0.0	0.0	0.0	125.7		
2480.0	V	Average	91.0	30.4	2.3	0.0	0.0	0.0	123.7		
2489.0	V	Peak							52.7*	74.0	-21.3
2489.0	V	Average							50.7*	54.0	-3.3
2492.5	V	Peak							50.9#	74.0	-23.1
2492.5	V	Average							48.9#	54.0	-5.1
4960.0	V	Peak	33.0	35.4	3.4	28.1	0.0	0.0	43.7	74.0	-30.3
4960.0	V	Average	24.0	35.4	3.4	28.1	0.0	0.0	34.7	54.0	-19.3
7440.0	V	Peak	37.7	36.9	4.6	28.0	0.0	0.0	51.2	74.0	-22.8
7440.0	V	Average	29.0	36.9	4.6	28.0	0.0	0.0	42.5	54.0	-11.5
12400.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12400.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19840.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	41.0	40.3	9.1	24.0	-9.5	0.0	56.9	74.0	-17.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note:

- 1. All measurement were made at 3 meters
- 2. Negative signs (-) in the margin column signify levels below the limit.
- 3. Readings with * are fundamental minus attenuation from plot 4.c.4(73dB)
- 4. Readings with # are fundamental minus attenuation from plot 4.c.5(74.8dB)
- 5. Readings above 19 GHz were made with RBW=300KHz and they are noise floor. Measurements were preformed at 1m distance.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	16	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	33.9	35.4	3.4	28.1	0.0	0.0	44.6	74.0	-29.4
4804.0	V	Average	24.0	35.4	3.4	28.1	0.0	0.0	34.7	54.0	-19.3
7206.0	V	Peak	37.6	36.9	4.6	28.0	0.0	0.0	51.1	74.0	-22.9
7206.0	V	Average	29.6	36.9	4.6	28.0	0.0	0.0	43.1	54.0	-10.9
12010.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12010.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

- 2. Negative signs (-) in the margin column signify levels below the limit.
- 3. Readings above 19 GHz were made with RBW=300KHz and they are noise floor. Measurements were preformed at 1m distance.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	16	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	32.0	35.4	3.4	28.1	0.0	0.0	42.7	74.0	-31.3
4880.0	V	Average	23.8	35.4	3.4	28.1	0.0	0.0	34.5	54.0	-19.5
7320.0	V	Peak	37.9	36.9	4.6	28.0	0.0	0.0	51.4	74.0	-22.6
7320.0	V	Average	30.2	36.9	4.6	28.0	0.0	0.0	43.7	54.0	-10.3
12200.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12200.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19520.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	16	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	33.0	35.4	3.4	28.1	0.0	0.0	43.7	74.0	-30.3
4960.0	V	Average	24.0	35.4	3.4	28.1	0.0	0.0	34.7	54.0	-19.3
7440.0	V	Peak	37.7	36.9	4.6	28.0	0.0	0.0	51.2	74.0	-22.8
7440.0	V	Average	29.0	36.9	4.6	28.0	0.0	0.0	42.5	54.0	-11.5
12400.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12400.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19840.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	17	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	36.1	35.4	3.4	28.1	0.0	0.0	46.8	74.0	-27.2
4804.0	V	Average	25.6	35.4	3.4	28.1	0.0	0.0	36.3	54.0	-17.7
7206.0	V	Peak	37.5	36.9	4.6	28.0	0.0	0.0	51.0	74.0	-23.0
7206.0	V	Average	28.0	36.9	4.6	28.0	0.0	0.0	41.5	54.0	-12.5
12010.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12010.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	17	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	38.8	35.4	3.4	28.1	0.0	0.0	49.5	74.0	-24.5
4880.0	V	Average	30.4	35.4	3.4	28.1	0.0	0.0	41.1	54.0	-12.9
7320.0	V	Peak	42.5	36.9	4.6	28.0	0.0	0.0	56.0	74.0	-18.0
7320.0	V	Average	33.9	36.9	4.6	28.0	0.0	0.0	47.4	54.0	-6.6
12200.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12200.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	17	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	39.5	35.4	3.4	28.1	0.0	0.0	50.2	74.0	-23.8
4960.0	V	Average	33.1	35.4	3.4	28.1	0.0	0.0	43.8	54.0	-10.2
7440.0	V	Peak	42.7	36.9	4.6	28.0	0.0	0.0	56.2	74.0	-17.8
7440.0	V	Average	34.7	36.9	4.6	28.0	0.0	0.0	48.2	54.0	-5.8
12400.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12400.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19840.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	18	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	34.0	35.4	3.4	28.1	0.0	0.0	44.7	74.0	-29.3
4804.0	V	Average	23.3	35.4	3.4	28.1	0.0	0.0	34.0	54.0	-20.0
7206.0	V	Peak	37.3	36.9	4.6	28.0	0.0	0.0	50.8	74.0	-23.2
7206.0	V	Average	28.4	36.9	4.6	28.0	0.0	0.0	41.9	54.0	-12.1
12010.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12010.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	18	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	33.6	35.4	3.4	28.1	0.0	0.0	44.3	74.0	-29.7
4880.0	V	Average	26.5	35.4	3.4	28.1	0.0	0.0	37.2	54.0	-16.8
7320.0	V	Peak	39.0	36.9	4.6	28.0	0.0	0.0	52.5	74.0	-21.5
7320.0	V	Average	32.4	36.9	4.6	28.0	0.0	0.0	45.9	54.0	-8.1
12200.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12200.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	18	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	37.1	35.4	3.4	28.1	0.0	0.0	47.8	74.0	-26.2
4960.0	V	Average	30.7	35.4	3.4	28.1	0.0	0.0	41.4	54.0	-12.6
7440.0	V	Peak	38.7	36.9	4.6	28.0	0.0	0.0	52.2	74.0	-21.8
7440.0	V	Average	29.2	36.9	4.6	28.0	0.0	0.0	42.7	54.0	-11.3
12400.0	V	Peak	42.1	39.0	5.9	39.0	0.0	0.0	48.0	74.0	-26.0
12400.0	Н	Average	32.2	39.0	5.9	39.0	0.0	0.0	38.1	54.0	-15.9
19840.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	19	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	32.4	35.4	3.4	28.1	0.0	0.0	43.1	74.0	-30.9
4804.0	V	Average	23.6	35.4	3.4	28.1	0.0	0.0	34.3	54.0	-19.7
7206.0	V	Peak	40.8	36.9	4.6	28.0	0.0	0.0	54.3	74.0	-19.7
7206.0	V	Average	33.0	36.9	4.6	28.0	0.0	0.0	46.5	54.0	-7.5
12010.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12010.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	19	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	35.0	35.4	3.4	28.1	0.0	0.0	45.7	74.0	-28.3
4880.0	V	Average	27.8	35.4	3.4	28.1	0.0	0.0	38.5	54.0	-15.5
7320.0	V	Peak	40.0	36.9	4.6	28.0	0.0	0.0	53.5	74.0	-20.5
7320.0	V	Average	33.6	36.9	4.6	28.0	0.0	0.0	47.1	54.0	-6.9
12200.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12200.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19520.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

- 2. Negative signs (-) in the margin column signify levels below the limit.
- 3. Readings above 19 GHz were made with RBW=300KHz and they are noise floor. Measurements were preformed at 1m distance.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	19	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	35.8	35.4	3.4	28.1	0.0	0.0	46.5	74.0	-27.5
4960.0	V	Average	30.5	35.4	3.4	28.1	0.0	0.0	41.2	54.0	-12.8
7440.0	V	Peak	37.3	36.9	4.6	28.0	0.0	0.0	50.8	74.0	-23.2
7440.0	V	Average	28.6	36.9	4.6	28.0	0.0	0.0	42.1	54.0	-11.9
12400.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12400.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19840.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	20	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	36.8	35.4	3.4	28.1	0.0	0.0	47.5	74.0	-26.5
4804.0	V	Average	27.6	35.4	3.4	28.1	0.0	0.0	38.3	54.0	-15.7
7206.0	V	Peak	37.0	36.9	4.6	28.0	0.0	0.0	50.5	74.0	-23.5
7206.0	V	Average	28.0	36.9	4.6	28.0	0.0	0.0	41.5	54.0	-12.5
12010.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12010.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.0	40.3	9.1	24.0	-9.5	0.0	46.9	54.0	-7.1

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	20	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	36.4	35.4	3.4	28.1	0.0	0.0	47.1	74.0	-26.9
4880.0	V	Average	25.6	35.4	3.4	28.1	0.0	0.0	36.3	54.0	-17.7
7320.0	V	Peak	41.7	36.9	4.6	28.0	0.0	0.0	55.2	74.0	-18.8
7320.0	V	Average	33.3	36.9	4.6	28.0	0.0	0.0	46.8	54.0	-7.2
12200.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12200.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19520.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 18, 1999

FCC 15.247 Radiated Emissions

Attenna	20	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	43.2	41.4	3.4	28.1	0.0	0.0	59.9	74.0	-14.1
4960.0	V	Average	33.2	33.2	3.4	28.1	0.0	0.0	41.7	54.0	-12.3
7440.0	V	Peak	40.9	41.9	4.6	28.0	0.0	0.0	59.4	74.0	-14.6
7440.0	V	Average	30.7	32.9	4.6	28.0	0.0	0.0	40.2	54.0	-13.8
12400.0	V	Peak	42.4	39.0	5.9	39.0	0.0	0.0	48.3	74.0	-25.7
12400.0	Н	Average	32.3	39.0	5.9	39.0	0.0	0.0	38.2	54.0	-15.8
19840.0	Н	Peak	39.0	40.2	7.5	23.3	-9.5	0.0	53.9	74.0	-20.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	39.0	40.3	9.1	24.0	-9.5	0.0	54.9	74.0	-19.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	21	2402MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	DB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4804.0	V	Peak	32.0	35.4	3.4	28.1	0.0	0.0	42.7	74.0	-31.3
4804.0	V	Average	22.0	35.4	3.4	28.1	0.0	0.0	32.7	54.0	-21.3
7206.0	V	Peak	39.5	36.9	4.6	28.0	0.0	0.0	53.0	74.0	-21.0
7206.0	V	Average	32.4	36.9	4.6	28.0	0.0	0.0	45.9	54.0	-8.1
12010.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12010.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19216.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19216.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21618.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21618.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	21	2440MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4880.0	V	Peak	34.0	35.4	3.4	28.1	0.0	0.0	44.7	74.0	-29.3
4880.0	V	Average	24.0	35.4	3.4	28.1	0.0	0.0	34.7	54.0	-19.3
7320.0	V	Peak	38.5	36.9	4.6	28.0	0.0	0.0	52.0	74.0	-22.0
7320.0	V	Average	31.0	36.9	4.6	28.0	0.0	0.0	44.5	54.0	-9.5
12200.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12200.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19520.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19520.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
21960.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
21960.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Company: Symbol Technologies

Project #: J99013298

Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: May 20, 1999

FCC 15.247 Radiated Emissions

Attenna	21	2480MHz									
Frequency	Antenna	Spec.	Reading	Antenna	Cable	Pre-amp	Distance	Duty	Corrected	Limit	Margin
	Polarity	Analyz		Factor	Loss		Factor	Cycle	Reading		
MHz	H/V	Detector	dB(uV)	dB/m	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
4960.0	V	Peak	34.0	35.4	3.4	28.1	0.0	0.0	44.7	74.0	-29.3
4960.0	V	Average	24.0	35.4	3.4	28.1	0.0	0.0	34.7	54.0	-19.3
7440.0	V	Peak	37.4	36.9	4.6	28.0	0.0	0.0	50.9	74.0	-23.1
7440.0	V	Average	31.0	36.9	4.6	28.0	0.0	0.0	44.5	54.0	-9.5
12400.0	V	Peak	42.3	39.0	5.9	39.0	0.0	0.0	48.2	74.0	-25.8
12400.0	Н	Average	32.1	39.0	5.9	39.0	0.0	0.0	38.0	54.0	-16.0
19840.0	Н	Peak	40.0	40.2	7.5	23.3	-9.5	0.0	54.9	74.0	-19.1
19840.0	Н	Average	30.0	40.2	7.5	23.3	-9.5	0.0	44.9	54.0	-9.1
22320.0	V	Peak	40.0	40.3	9.1	24.0	-9.5	0.0	55.9	74.0	-18.1
22320.0	V	Average	31.1	40.3	9.1	24.0	-9.5	0.0	47.0	54.0	-7.0

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Date of Test: May 19 - June 9, 1999

- 4.9 Radiated Emissions from Digital Section of Transceiver, FCC Ref: 15.109
- [] Not Applicable No digital part
- [X] Test results are attached

ITS Intertek Testing Services

Company: Symbol Technologies

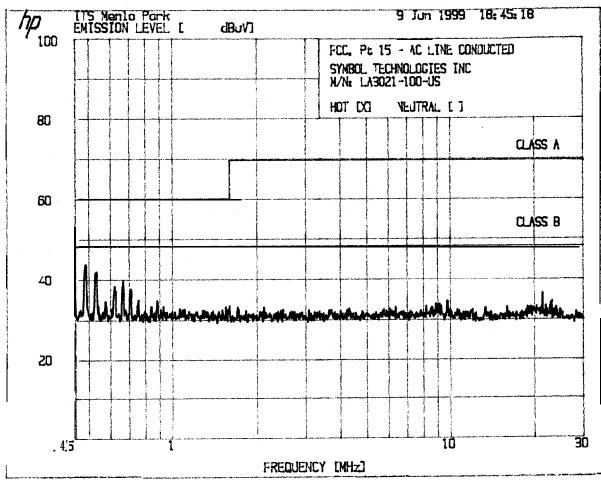
Project #: J99013298

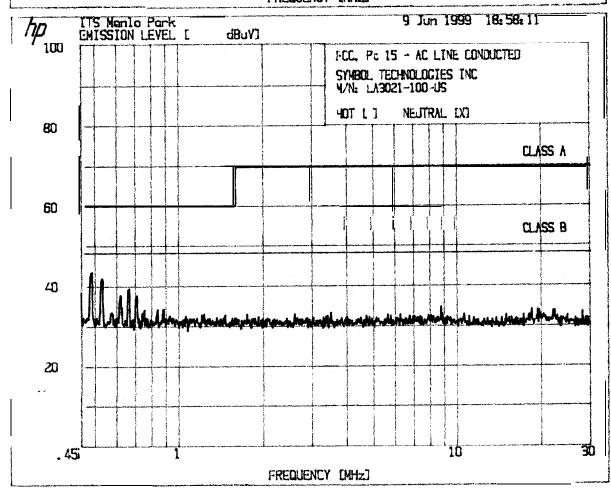
Model: LA 3021-100-US Engineer: Xi-Ming Yang Date of test: June 9, 1999

FCC 15 Class B Radiated Emissions

Frequency	Antenna	Reading	Antenna	Cable	Pre-amp	Distance	Corrected	Limit	Margin
	Polarity		Factor	Loss		Factor	Reading		
MHz	H/V	dB(uV)	dB/m	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
60.0	Н	31.1	4.7	0.0	0.0	0.0	35.8	40.0	-4.2
140.0	Н	28.0	8.4	0.0	0.0	0.0	36.4	43.5	-7.1
160.0	Н	31.1	8.8	0.0	0.0	0.0	39.9	43.5	-3.6
200.0	Н	30.0	10.2	0.0	0.0	0.0	40.2	43.5	-3.3
240.0	Н	31.0	11.0	0.0	0.0	0.0	42.0	46.0	-4.0
260.0	Н	30.4	12.0	0.0	0.0	0.0	42.4	46.0	-3.6
280.0	Н	30.0	12.1	0.0	0.0	0.0	42.1	46.0	-3.9
300.0	Н	29.0	13.1	0.0	0.0	0.0	42.1	46.0	-3.9
380.0	Н	25.0	15.0	0.0	0.0	0.0	40.0	46.0	-6.0
450.0	Н	25.4	16.0	0.0	0.0	0.0	41.4	46.0	-4.6
720.0	Н	11.0	20.4	0.0	0.0	0.0	31.4	46.0	-14.6

Note: 1. All measurement were made at 3 meters


2. Negative signs (-) in the margin column signify levels below the limit.


Date of Test: May 19 - June 9, 1999

- 4.10 Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation), FCC Ref: 15.109, 15.111
- [X] Not required EUT operation above 960 MHz only
- [] Not Applicable EUT is transmitter only
- [] Not performed; exempt until June 1999
- [] Test results are attached

Date of Test: May 19 - June 9, 1999

- 4.11 AC Line Conducted Emission, FCC Rule 15.207:
- [] Not required; battery operation only
- [X] Test data attached

ITS Menlo Park

9 Jun 1999 18:45:18

3. FCC CFR 47, Pt 15

3.1 FCC, Pt 15 - AC LINE CONDUCTED

SYMBOL TECHNOLOGIES INC

M/N: LA3021-100-US

HOT [X] NEUTRAL []

PEAKS FOUND ABOVE 37 dBuV

PEAK#	FREQ (MHz)	AMPL(dBuV)
1	.4935	43.8
2	.5390	42.0
3	.6268	38.2
-		
4	.6732	39.7
5	.7169	37.6

ITS Menlo Park

9 Jun 1999 18:58:11

的复数 医复数 医复数 医复数 医复数 医复数 医有性 医性性 医性性 医性性 医性性性 医性性性 医性性性 医性性性

3. FCC CFR 47, Pt 15

3.1 FCC, Pt 15 - AC LINE CONDUCTED

SYMBOL TECHNOLOGIES INC

M/N: LA3021-100-US

HOT [] NEUTRAL [X]

PEAKS FOUND ABOVE 38 dBuV

PEAK# FREQ (MHz) AMPL(dBuV)

1 .4914 43.4 2 .5367 41.8

3 .6704 39.3

Date of Test: May 19 - June 9, 1999

4.12 AC Line Conducted Configuration Photograph

Date of Test: May 19 - June 9, 1999

5.0 **Equipment Photographs**

Photographs of the EUT are attached.

Date of Test: May 19 - June 9, 1999

- 6.0 **Product Labeling**
- 6.1 Label Artwork
- 6.2 Label Location

See attached pages.

Date of Test: May 19 - June 9, 1999

7.0 <u>Technical Specifications</u>

7.1 Circuit Diagram

See attached pages.

Date of Test: May 19 - June 9, 1999

7.2 Block Diagram

See attached pages.

Date of Test: May 19 - June 9, 1999

7.3 Antenna gain and Mounting Information

See attached pages.

Date of Test: May 19 - June 9, 1999

8.0 **Instruction Manual**

Attached is a preliminary copy of the Instruction Manual.

Please note that the required FCC Information to the User can be found on Page ____ of this manual.

This manual will be provided to the end-user with each unit sold/leased in the United States.