

Appendix A

Calibration Certificate

Note:

The calibration cycle for SAR field probes and related equipment is determined to one year. According to ETS 's internal quality management instruction based on EN 17025 the calibration cycle for other test equipment is determined to 2 years. Additionally, ETS has prolonged the calibration interval for SPEAG System Validation Dipoles by two additional years. These QM procedures are acknowledged by the accreditation bodies mentioned on page 3 of this report during several accreditation audits.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Issued: September 28, 2006

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

C

S

Client

Dr. Genz

Cardinate No. D2450V2-722_Sep.06

SISTEM TO THE STATE OF THE STAT Object QA CAL-05.NB Calibration procedure(s) Calibration procedure for dipo Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration ID# Cal Date (Calibrated by, Certificate No.) **Primary Standards** Power meter EPM-442A GB37480704 04-Oct-05 (METAS, No. 251-00516) Oct-06 Power sensor HP 8481A US37292783 04-Oct-05 (METAS, No. 251-00516) Oct-06 10-Aug-06 (METAS, No 217-00591) Aug-07 Reference 20 dB Attenuator SN: 5086 (20g) Aug-07 Reference 10 dB Attenuator SN: 5047.2 (10r) 10-Aug-06 (METAS, No 217-00591) Reference Probe ES3DV2 SN 3025 28-Oct-05 (SPEAG, No. ES3-3025_Oct05) Oct-06 DAE4 SN 601 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Dec-06 Secondary Standards ID# Check Date (in house) Scheduled Check MY41092317 18-Oct-02 (SPEAG, in house check Oct-05) In house check: Oct-07 Power sensor HP 8481A In house check: Nov-07 RF generator Agilent E4421B MY41000675 11-May-05 (SPEAG, in house check Nov-05) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov-06 **Function** Signature Name

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Claudio Leuble

Calibrated by:

Approved by:

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-722_Sep06 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.77 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	Mile Annual Spin Annual Sp	

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.6 mW / g
SAR normalized	normalized to 1W	54.4 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	53.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.31 mW/g
SAR normalized	normalized to 1W	25.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	25.0 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-722_Sep06 Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	1.97 mho/m ± 6 %
Body TSL temperature during test	(21.6 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 mW/g
SAR normalized	normalized to 1W	55.2 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	54.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.39 mW / g
SAR normalized	normalized to 1W	25.6 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	25.4 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-722_Sep06

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4 Ω + 6.4 jΩ
Return Loss	– 24.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.5 Ω + 6.3 jΩ
Return Loss	– 22.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 16, 2002

Certificate No: D2450V2-722_Sep06 Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 27.09.2006 11:58:51

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN722

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 2450 MHz; $\sigma = 1.77$ mho/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ES3DV2 - SN3025 (HF); ConvF(4.4, 4.4, 4.4); Calibrated: 28.10.2005

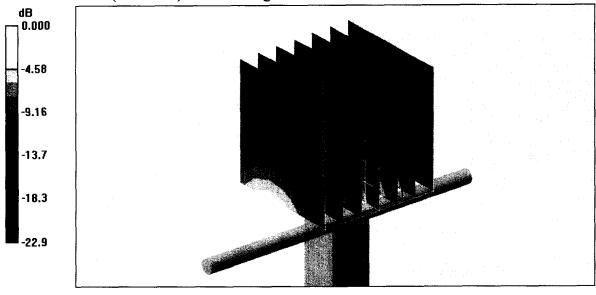
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 15.12.2005

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;

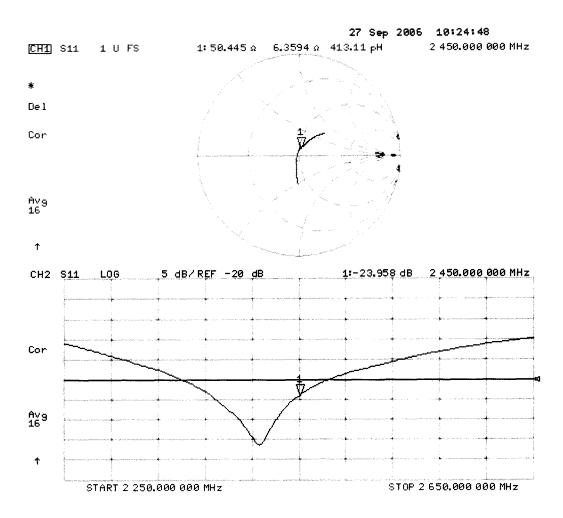
Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.6 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 28.4 W/kg


SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.31 mW/g

Maximum value of SAR (measured) = 15.2 mW/g

0 dB = 15.2 mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 27.09.2006 14:44:54

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN722

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

Medium parameters used: f = 2450 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 52.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ES3DV2 - SN3025 (HF); ConvF(4.06, 4.06, 4.06); Calibrated: 28.10.2005

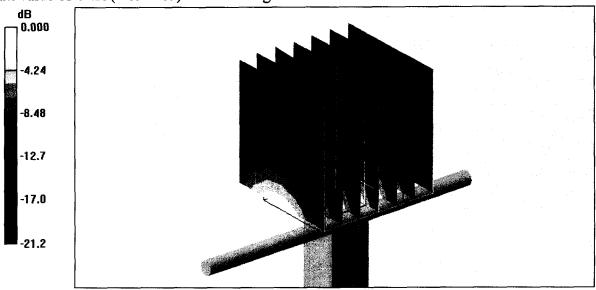
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 15.12.2005

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA;;

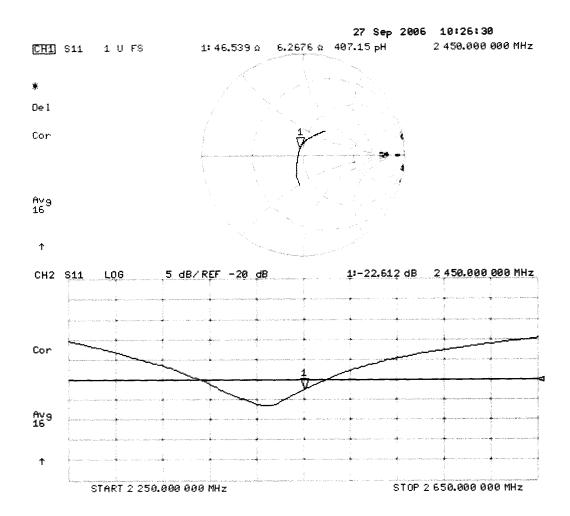
Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.4 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 29.3 W/kg


SAR(1 g) = 13.8 mW/g; SAR(10 g) = 6.39 mW/g

Maximum value of SAR (measured) = 15.7 mW/g

0 dB = 15.7 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

ers / Dr. Genz

Object QA CAL-01.v5 and QA CAL-12. Calibration procedure for desima Calibration procedure(s) Calibration date: Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Scheduled Calibration Primary Standards** Cal Date (Calibrated by, Certificate No.) Apr-07 Power meter E4419B GB41293874 5-Apr-06 (METAS, No. 251-00557) Power sensor E4412A MY41495277 5-Apr-06 (METAS, No. 251-00557) Apr-07 Apr-07 Power sensor E4412A MY41498087 5-Apr-06 (METAS, No. 251-00557) Aug-07 Reference 3 dB Attenuator SN: S5054 (3c) 10-Aug-06 (METAS, No. 217-00592) Apr-07 Reference 20 dB Attenuator SN: S5086 (20b) 4-Apr-06 (METAS, No. 251-00558) Reference 30 dB Attenuator SN: S5129 (30b) 10-Aug-06 (METAS, No. 217-00593) Aug-07 Jan-07 Reference Probe ES3DV2 SN: 3013 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) SN: 654 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Jun-07 DAE4 Scheduled Check Secondary Standards Check Date (in house) in house check: Nov-07 RF generator HP 8648C US3642U01700 4-Aug-99 (SPEAG, in house check Nov-05) Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov 06 Name **Function** Signature Calibrated by: Approved by: Issued: October 16, 2006

Certificate No: ET3-1711_Oct06

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z:* Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

October 16, 2006

Probe ET3DV6

SN:1711

Manufactured:

August 7, 2002

Last calibrated:

November 21, 2005

Repaired:

September 28, 2006

Recalibrated:

October 16, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1711 October 16, 2006

DASY - Parameters of Probe: ET3DV6 SN:1711

Sensitivity in Free Space ^A		Diode C	ompression ^B	ł	
NormX	1.94 ± 10.1%	μ V/(V/m) ²	DCP X	93 mV	
NormY	1.84 ± 10.1%	μ V/(V/m) ²	DCP Y	95 mV	
NormZ	2.04 ± 10.1%	μV/(V/m) ²	DCP Z	94 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900 MHz	Typical SAR	gradient: 5 %	per mm

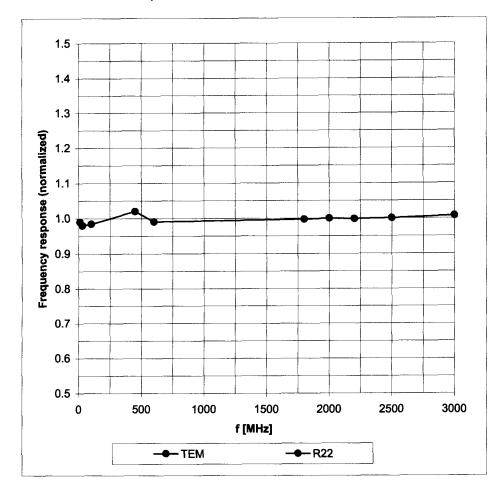
Sensor Center t	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	8.5	4.7
SAR _{be} [%]	With Correction Algorithm	0.1	0.1

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	7.2	3.8
SAR _{be} [%]	With Correction Algorithm	0.2	0.1

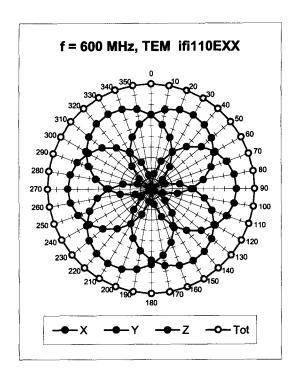
Sensor Offset

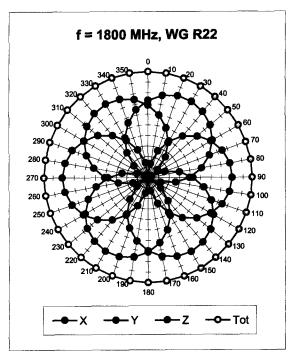
Probe Tip to Sensor Center 2.7 mm

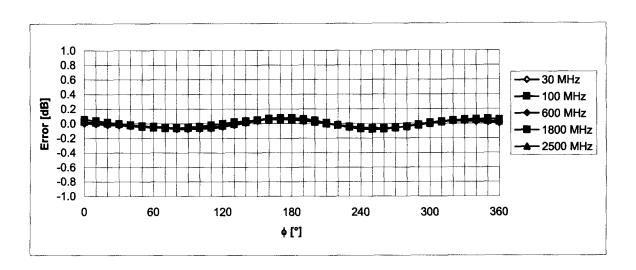

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

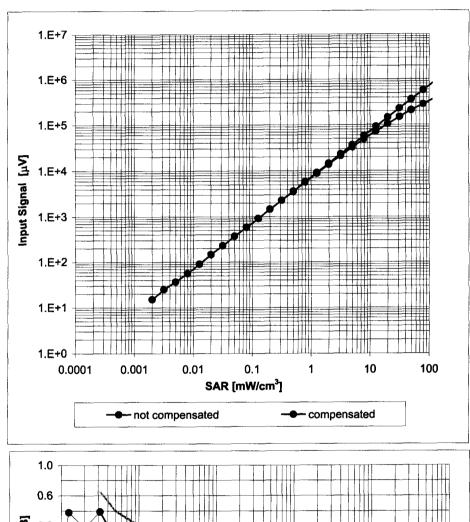

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)



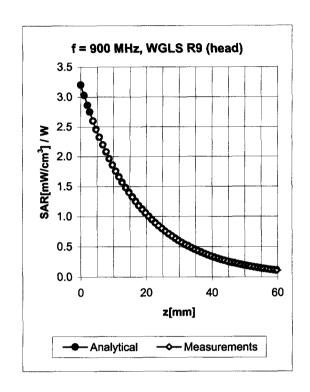
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

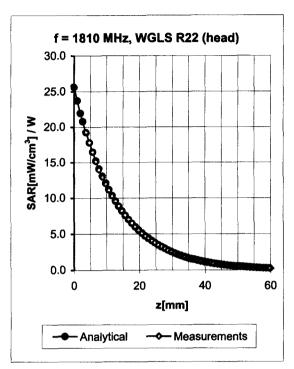
Receiving Pattern (ϕ), θ = 0°



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

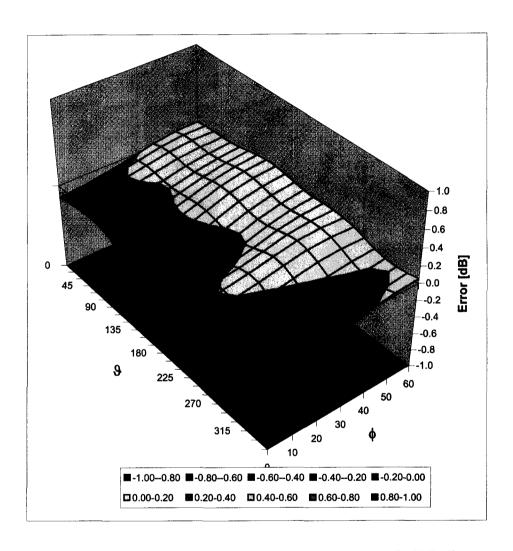
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.36	1.84	6.99 ± 13.3% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.55	1.90	6.38 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.49	2.67	5.16 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.58	2.45	4.89 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.65	2.07	4.52 ± 11.8% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.30	1.90	7.72 ± 13.3% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.51	2.05	6.11 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.63	2.57	4.57 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.72	2.42	4.42 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.64	1.92	4.06 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Issued: September 21, 2006

S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ETS

Certificate No: DAE3-522_Sep06

Accreditation No.: SCS 108

CALIBRATION C	ERTIFICATE		
Object	DAE3 - SD 000 D	03 AA - SN: 522	
Calibration procedure(s)	QA CAL-06.v12 Calibration proces	lure for the data acquisition electro	nics (DAE)
Calibration date:	September 21, 20	06	
Condition of the calibrated item	In Tolerance		
		onal standards, which realize the physical units on obability are given on the following pages and ar	
All calibrations have been conducted	ed in the closed laboratory	r facility: environment temperature (22 ± 3)°C an	d humidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Fluke Process Calibrator Type 702	SN: 6295803	7-Oct-05 (Sintrel, No.E-050073)	Oct-06
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1002	15-Jun-06 (SPEAG, in house check)	In house check Jun-07
Calibrated by:	Name Daniel Steinacher	Function Technician	Signature Skinada
Approved by:	Fin Bomholt	R&D Director 7.2	Esterado Esnhell

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-522_Sep06

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.296 ± 0.1% (k=2)	403.959 ± 0.1% (k=2)	404.794 ± 0.1% (k=2)
Low Range	3.95220 ± 0.7% (k=2)	3.93931 ± 0.7% (k=2)	3.94312 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	59°±1°

Certificate No: DAE3-522_Sep06 Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	200000	200000.1	0.00
Channel X	+ Input	20000	20004.16	0.02
Channel X	- Input	20000	-19999.50	0.00
Channel Y	+ Input	200000	200000.2	0.00
Channel Y	+ Input	20000	20004.75	0.02
Channel Y	- Input	20000	-19999.93	0.00
Channel Z	+ Input	200000	199999.7	0.00
Channel Z	+ Input	20000	20002.63	0.01
Channel Z	- Input	20000	-20001.06	0.01

Low Range		Input (μV)	Reading (μV)	Error (%)
Channel X +	Input	2000	1999.9	0.00
Channel X +	Input	200	199.36	-0.32
Channel X - I	nput	200	-200.02	0.01
Channel Y +	Input	2000	2000.1	0.00
Channel Y +	Input	200	199.32	-0.34
Channel Y - I	nput	200	-200.30	0.15
Channel Z +	Input	2000	1999.9	0.00
Channel Z +	Input	200	199.77	-0.12
Channel Z - I	nput	200	-200.39	0.19

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-4.35	-5.20
	- 200	6.12	5.53
Channel Y	200	0.14	0.72
	- 200	-0.21	-2.36
Channel Z	200	16.34	16.58
	- 200	-17.88	-18.43

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	_	3.41	-0.46
Channel Y	200	0.54	-	3.51
Channel Z	200	-2.42	-0.05	<u>-</u>

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15736	16552
Channel Y	15745	15304
Channel Z	16042	16452

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

input roivia	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	1.32	-0.10	4.21	0.65
Channel Y	-1.99	-4.00	-0.76	0.64
Channel Z	-0.69	-1.56	0.68	0.54

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.0
Channel Y	0.2000	199.7
Channel Z	0.2001	196.7

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Appendix B

Measurement Plots

Date/Time: 11/30/2006 08:33:53

Test Laboratory: ETS PRODUCT SERVICE AG

Dipol Valid.2400(m)_250mW_30.11.2006

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 722

Communication System: CW; Frequency: 2400 MHz; Duty Cycle: 1:1

Medium: Muscle 2450 MHz Medium parameters used: f = 2400 MHz; $\sigma = 1.93$ mho/m; $\varepsilon_r = 52.5$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(4.06, 4.06, 4.06); Calibrated: 10/16/2006

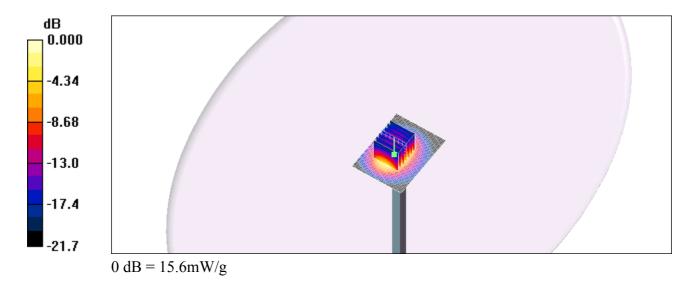
• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/21/2006

• Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013

• Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 171

Dipol 2400 (250mW)/Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.0 mW/g


Dipol 2400 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.6 V/m; Power Drift = -0.056 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.41 mW/g

Maximum value of SAR (measured) = 15.6 mW/g

Date/Time: 11/30/2006 13:30:36

Test Laboratory: ETS PRODUCT SERVICE AG

Wlan ch 1 flat back

DUT: HW90350 R5; Type: Skeye.pad; Serial: 60276391

Communication System: LAN 2450; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: Muscle 2450 MHz Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.95$

mho/m; $\varepsilon_r = 52.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(4.06, 4.06, 4.06); Calibrated: 10/16/2006

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

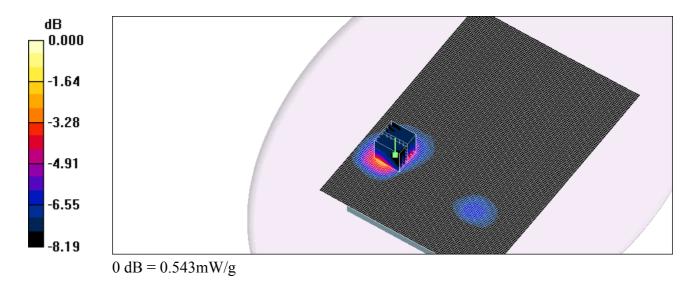
• Electronics: DAE3 Sn522; Calibrated: 9/21/2006

• Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013

• Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 171

HW 90350/R53/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.528 mW/g


HW 90350/R53/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.68 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 0.530 mW/g; SAR(10 g) = 0.251 mW/g

Maximum value of SAR (measured) = 0.543 mW/g

Date/Time: 11/30/2006 12:56:39

Test Laboratory: ETS PRODUCT SERVICE AG

Wlan ch 6 flat back

DUT: HW90350 R5; Type: Skeye.pad; Serial: 60276391

Communication System: LAN 2450; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: Muscle 2450 MHz Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.98$

mho/m; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(4.06, 4.06, 4.06); Calibrated: 10/16/2006

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

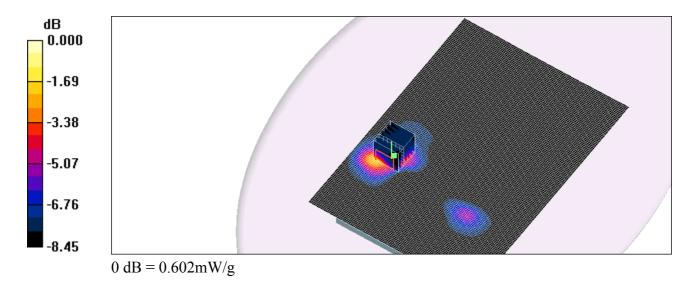
• Electronics: DAE3 Sn522; Calibrated: 9/21/2006

• Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013

• Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 171

HW 90350/R53/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.516 mW/g


HW 90350/R53/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.96 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 1.66 W/kg

SAR(1 g) = 0.571 mW/g; SAR(10 g) = 0.274 mW/g

Maximum value of SAR (measured) = 0.602 mW/g

Date/Time: 11/30/2006 10:48:37

Test Laboratory: ETS PRODUCT SERVICE AG

Wlan ch 6 flat front

DUT: HW90350 R5; Type: Skeye.pad; Serial: 60276391

Communication System: LAN 2450; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: Muscle 2450 MHz Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.98$

mho/m; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(4.06, 4.06, 4.06); Calibrated: 10/16/2006

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

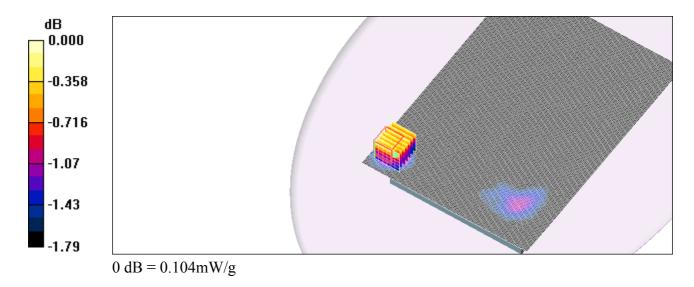
• Electronics: DAE3 Sn522; Calibrated: 9/21/2006

• Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013

• Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 171

HW 90350/R53/Area Scan (201x281x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.103 mW/g


HW 90350/R53/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.55 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 0.266 W/kg

SAR(1 g) = 0.105 mW/g; SAR(10 g) = 0.089 mW/g

Maximum value of SAR (measured) = 0.104 mW/g

Date/Time: 11/30/2006 14:05:40

Test Laboratory: ETS PRODUCT SERVICE AG

Wlan ch 11 flat back

DUT: HW90350 R5; Type: Skeye.pad; Serial: 60276391

Communication System: LAN 2450; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: Muscle 2450 MHz Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.01$

mho/m; $\varepsilon_{\rm r} = 52.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(4.06, 4.06, 4.06); Calibrated: 10/16/2006

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/21/2006

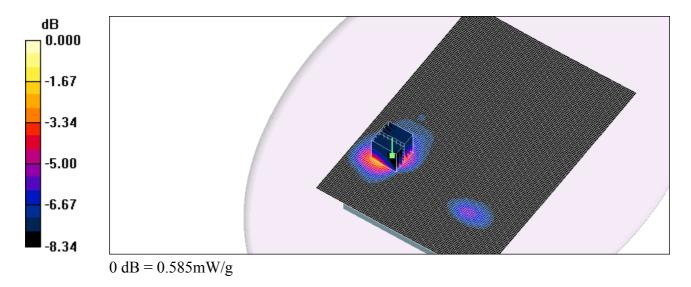
• Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1013

• Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 171

HW 90350/R53/Area Scan (101x141x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.592 mW/g

HW 90350/R53/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 5.75 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 1.60 W/kg

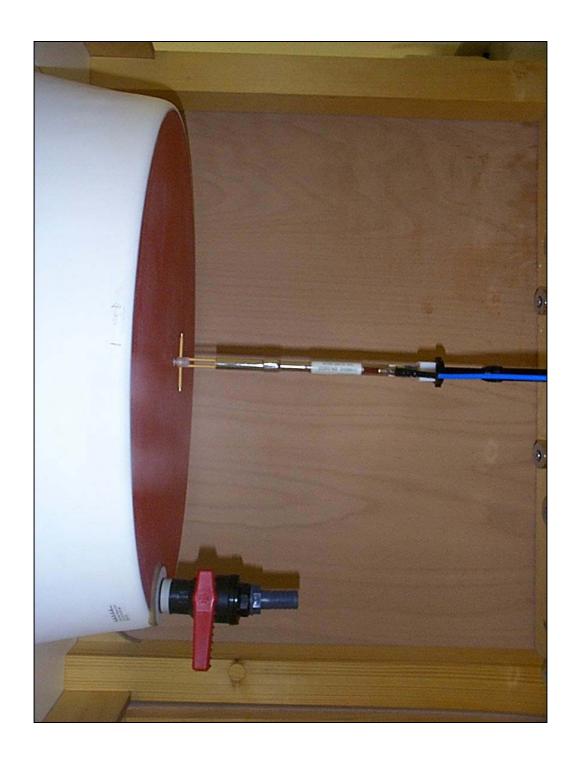
SAR(1 g) = 0.541 mW/g; SAR(10 g) = 0.261 mW/g

Maximum value of SAR (measured) = 0.585 mW/g

Appendix C

Pictures

Appendix


C. Pictures

