

LABCODE: 500069-0

FCC PART 15B

TEST REPORT

For

Beijing Osee Digital Technology Ltd.

No.13 Central Building, No.68 zone, Beijing Road, Haidian District, Beijing, China

FCC ID: PGFBCM-215LCDM

Report Type: Original Report	Product Type: LCD Monitor
Test Engineer: <u>Star Xie</u> <i>Star Xie</i>	
Report Number: <u>R2BJ130401051-00A</u>	
Report Date: <u>2013-06-03</u>	
Reviewed By: <u>EMC Manager</u> <i>Jerry Zhang</i> <i>Jerry Zhang</i>	
Test Laboratory: Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

* This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk “★” (Rev.2), This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S).....	3
TEST FACILITY	4
SYSTEM TEST CONFIGURATION.....	5
JUSTIFICATION	5
EUT EXERCISE SOFTWARE	5
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL I/O CABLE.....	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC §15.107 – AC LINE CONDUCTED EMISSIONS.....	8
MEASUREMENT UNCERTAINTY	8
EUT SETUP	8
EMI TEST RECEIVER SETUP.....	9
TEST PROCEDURE	9
CORRECTED AMPLITUDE & MARGIN CALCULATION	9
TEST EQUIPMENT LIST AND DETAILS.....	9
TEST RESULTS SUMMARY	10
TEST DATA	10
FCC §15.109 - RADIATED EMISSIONS	12
MEASUREMENT UNCERTAINTY	12
EUT SETUP	12
EMI TEST RECEIVER SETUP.....	13
TEST PROCEDURE	13
CORRECTED AMPLITUDE & MARGIN CALCULATION	14
TEST EQUIPMENT LIST AND DETAILS.....	14
TEST RESULTS SUMMARY	14
TEST DATA	14
EXHIBIT - DECLARATION OF SIMILARITY	19

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Beijing Osee Digital Technology Ltd.* 's product, model *BCM-215-3HSV (FCC ID: PGFBCM-215LCDM)* or (the "EUT") in this report is a *LCD Monitor*, which was measured approximately: 51.9 cm (L) x 16.0 cm (W) x 36.5 cm (H). Rated input voltage: DC 12V from adapter. The highest operating frequency is 108 MHz.

Adapter Information:

MODULE: GP306A-120-500

INPUT: AC 100-240V, 1.5A MAX, 50/60Hz

OUTPUT: DC 12V, 5A

**Note: The serial product model BCM-215-3HSV,BCM-215-HSV,BCM-215-SV, BCM-215-V are electrically identical with the same electromagnetic compatibility characteristics, and we select model BCM-215-3HSV for the testing in this report, which was explained in the attached declaration letter.*

**All measurement and test data in this report was gathered from production sample serial number: 130401051 (Assigned by BACL, Dongguan). The EUT was received on 2013-04-07.*

Objective

This report is prepared on behalf of *Beijing Osee Digital Technology Ltd* in accordance with Part 2, Subpart J, Part 15, Subparts A and B of the Federal Communication Commissions rules.

The objective of the manufacturer is to determine compliance with FCC Part 15B, Class B.

Related Submittal(s)/Grant(s)

No related submittal grant.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Dongguan) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 500069-0).

The current scope of accreditations can be found at <http://ts.nist.gov/standards/scopes/5000690.htm>

SYSTEM TEST CONFIGURATION

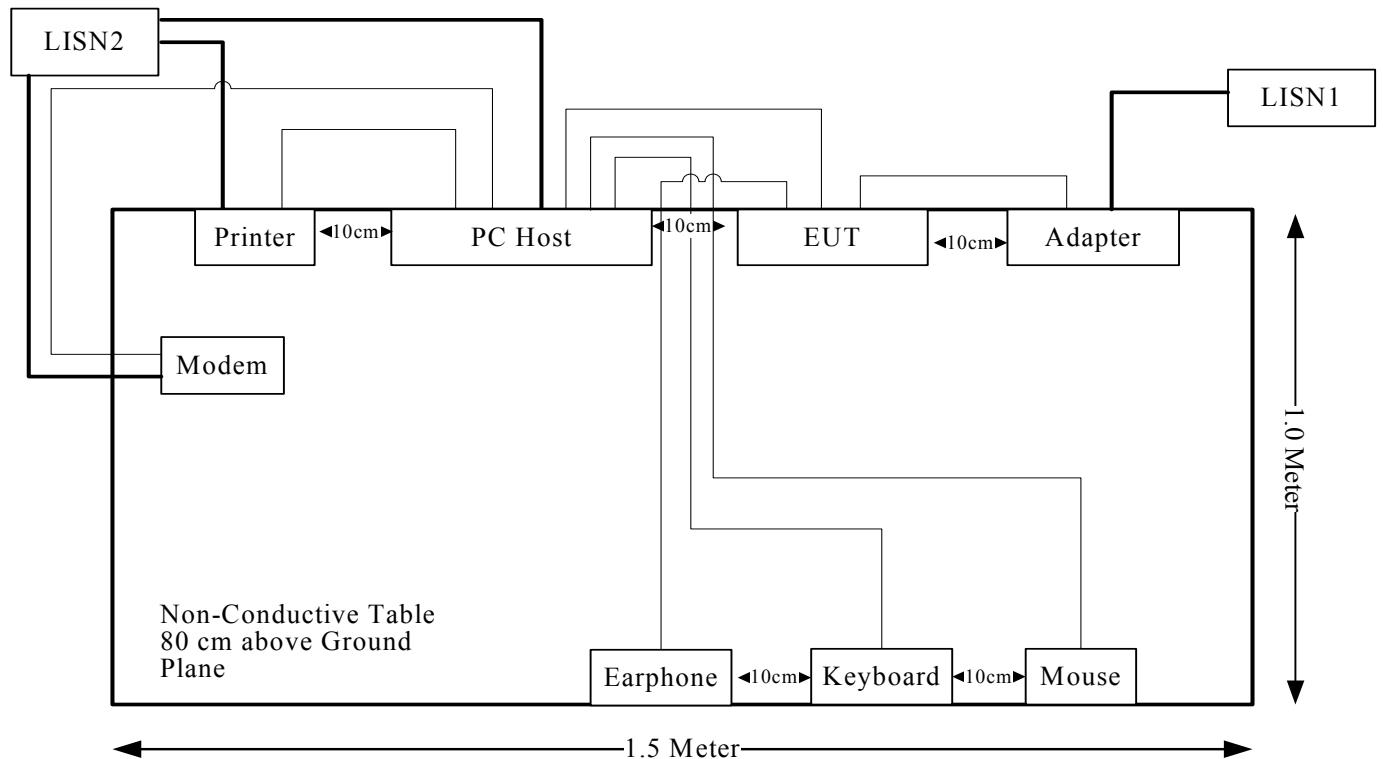
Justification

The system was configured for testing in a typical fashion (as normally used by a typical user). The highest operating frequency is 108MHz.

EUT Exercise Software

EMC Test V1.0 was used in the test.

Equipment Modifications


No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	PC	PP11L	QDS-BRCM1017
HP	Printer	C3941A	JPTV013237
SAST	Modem	AEM-2100	090200213
DELL	Keyboard	SK-8115	CN-0DJ313-716716-05A-0DSO
DELL	Mouse	MO56UOA	F0Y02P7Y
Turtle Beach	Earphone	X12	N/A

External I/O Cable

Manufacturer	Length(m)	Form/Port	To
Shielded Detachable Printer Cable	1.2	Parallel Port of PC	Printer
Shielded Detachable Serial Cable	1.2	Serial Port of PC	Modem
Shielded Detachable Keyboard Cable	2.0	USB Port of PC	Keyboard
Shielded Detachable Mouse Cable	1.8	USB Port of PC	Mouse
Shielded Detachable HDMI Cable	2.0	HDMI port of PC	EUT
Unshielded Detachable Earphone Cable	1.5	Earphone Port of EUT	Earphone

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§15.107	AC Line Conducted Emissions	Compliance
§15.109	Radiated Emissions	Compliance

FCC §15.107 – AC LINE CONDUCTED EMISSIONS

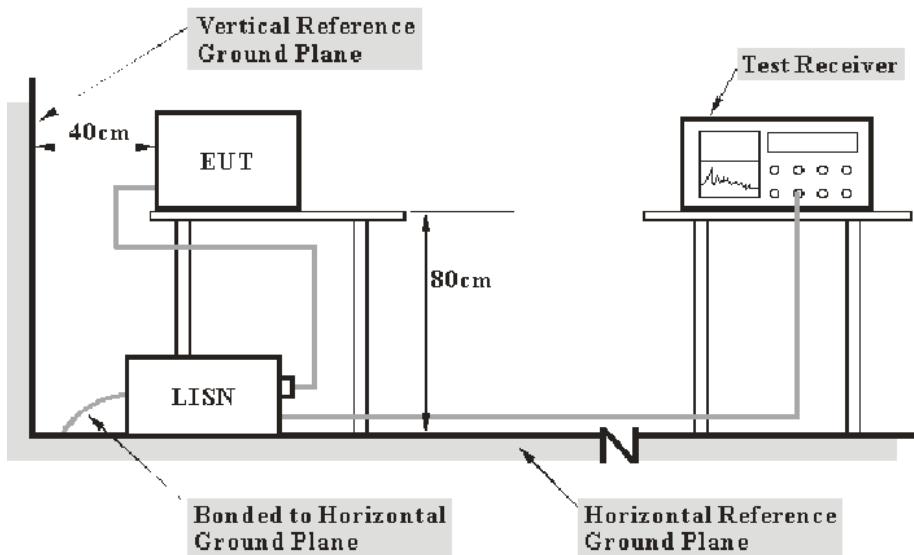
Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to $U_{\text{cisp}}_{\text{r}}$ of Table 1, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than $U_{\text{cisp}}_{\text{r}}$ of Table 1, then:


- compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cisp}}_{\text{r}})$, exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cisp}}_{\text{r}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2: 2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Dongguan) is 3.46 dB (150 kHz to 30 MHz).

Table 1 – Values of $U_{\text{cisp}}_{\text{r}}$

Measurement	$U_{\text{cisp}}_{\text{r}}$
Conducted disturbance at mains port using AMN (150 kHz to 30 MHz)	3.4 dB

EUT Setup

Note: 1. Support units were connected to second LISN.
 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.107 Class B limits.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the first LISN and the other support equipments were connected to the outlet of the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

$$C_f = A_C + VDF$$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R : reading voltage amplitude

A_C : attenuation caused by cable loss

VDF: voltage division factor of AMN

C_f : Correction Factor

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI TEST RECEIVER	ESCS 30	830245/006	2013-1-10	2014-1-9
R&S	L.I.S.N	ESH3-Z5	843331/015	2012-9-17	2013-9-16
R&S	L.I.S.N	ESH3-Z5	100113	2012-11-29	2013-11-28
BACL	Test Software	BACL-EMC	V1.0-2010	N/A	N/A

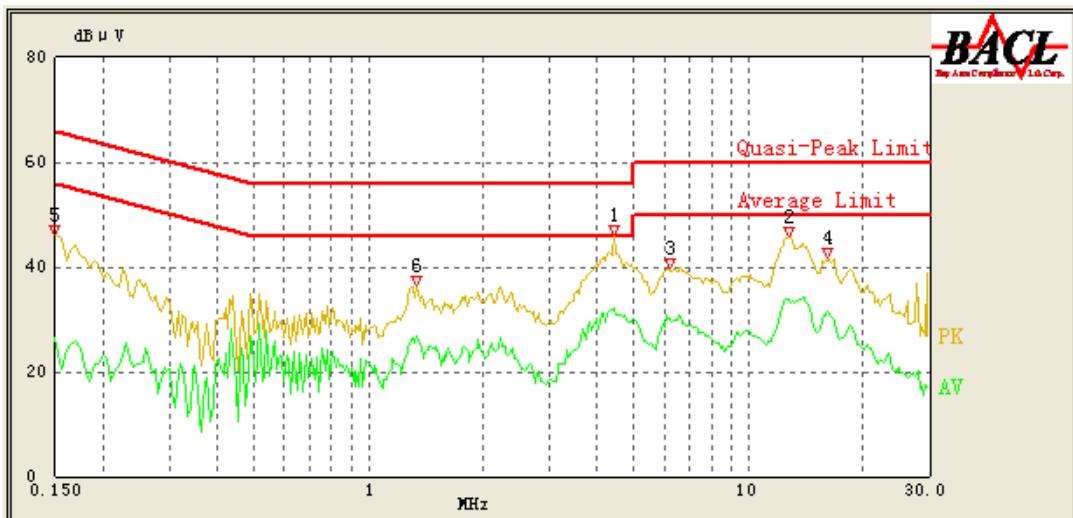
* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

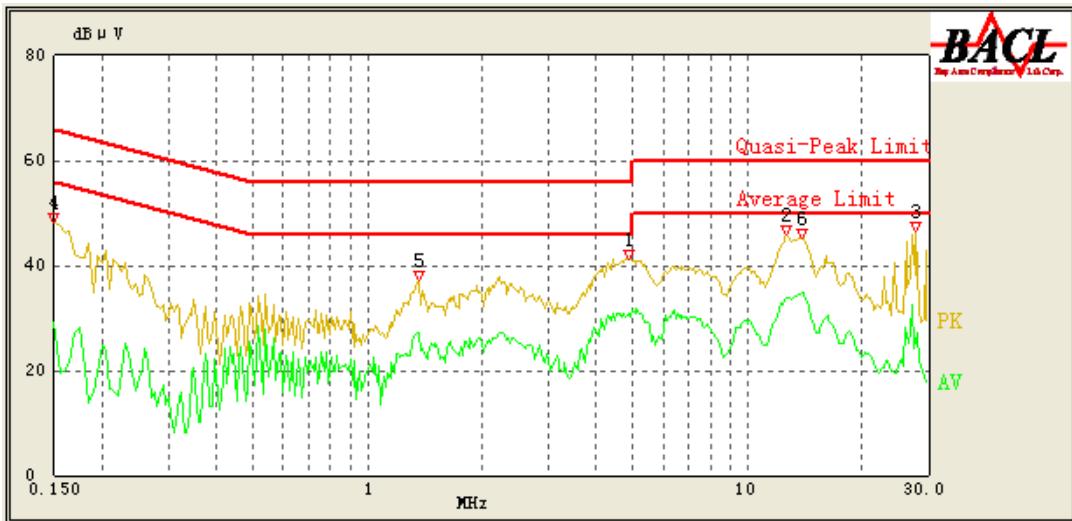
According to the recorded data in following table, the EUT complied with the FCC Part 15.107 CLASS B, with the worst margin reading of:

13.87 dB at 4.425MHz in the **Line** conducted mode.

Test Data


Environmental Conditions

Temperature:	25.8 °C
Relative Humidity:	55 %
ATM Pressure:	99.8 kPa


The testing was performed by Star Xie on 2013-05-13.

Test mode: HDMI Input

120 V, 60 Hz, Line:

Frequency (MHz)	Cord. Reading (dB μ V)	Correction Factor (dB)	Limit (dB μ V)	Margin (dB)	Detector (QP/AV/AV)
4.425	40.52	0.45	56.00	15.48	QP
4.425	32.13	0.45	46.00	13.87	AV
12.745	40.13	1.32	60.00	19.87	QP
12.735	33.69	1.32	50.00	16.31	AV
6.230	35.85	0.57	60.00	24.15	QP
6.240	30.15	0.57	50.00	19.85	AV
16.125	37.58	1.90	60.00	22.42	QP
16.210	31.50	1.91	50.00	18.50	AV
0.150	40.13	1.06	66.00	25.87	QP
0.150	26.45	1.06	56.00	29.55	AV
1.335	32.96	0.33	56.00	23.04	QP
1.335	26.94	0.33	46.00	19.06	AV

120 V, 60 Hz, Neutral:

Frequency (MHz)	Cord. Reading (dB μ V)	Correction Factor (dB)	Limit (dB μ V)	Margin (dB)	Detector (PK/AV/QP)
4.870	37.71	0.38	56.00	18.29	QP
4.870	30.79	0.38	46.00	15.21	AV
12.705	40.06	0.95	60.00	19.94	QP
12.770	33.79	0.95	50.00	16.21	AV
27.825	33.75	2.44	60.00	26.25	QP
28.000	27.18	2.47	50.00	22.82	AV
0.150	42.12	1.84	66.00	23.88	QP
0.150	29.26	1.84	56.00	26.74	AV
1.360	32.87	0.24	56.00	23.13	QP
1.360	27.24	0.24	46.00	18.76	AV
13.865	42.18	1.01	60.00	17.82	QP
13.800	34.36	1.01	50.00	15.64	AV

FCC §15.109 - RADIATED EMISSIONS

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cisp} of Table 2, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than U_{cisp} of Table 1, then:

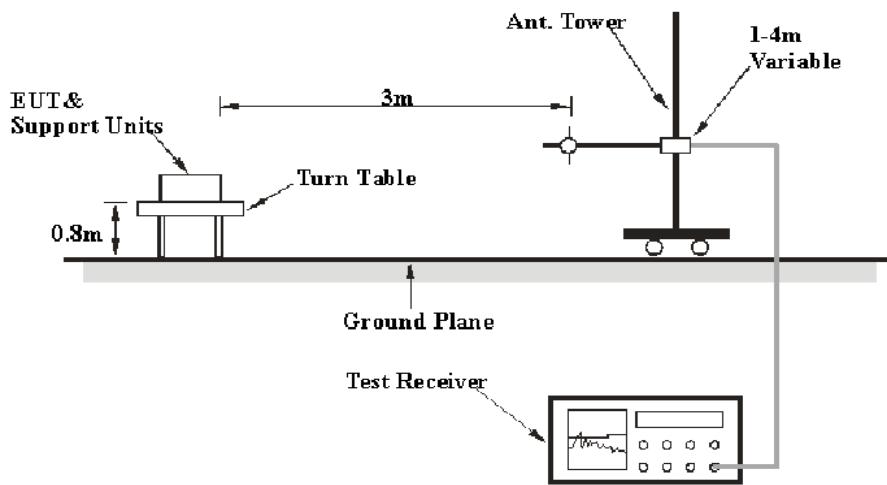
- compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cisp}})$, exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cisp}})$, exceeds the disturbance limit.

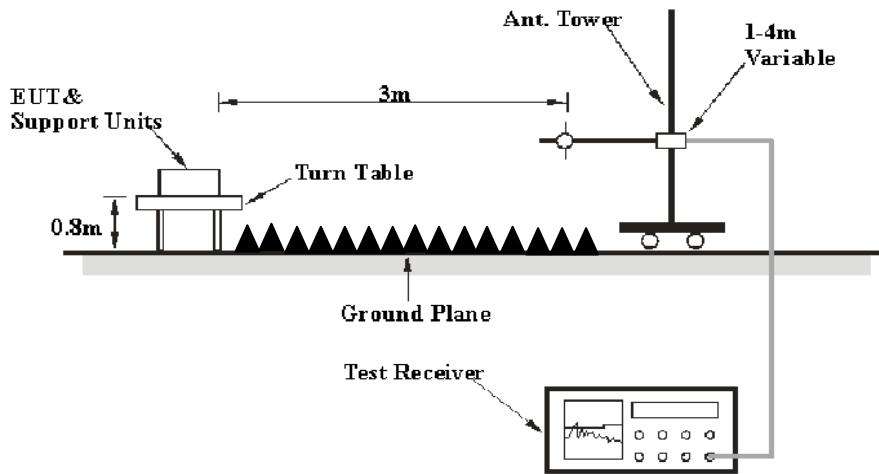
Based on CISPR 16-4-2: 2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Dongguan) is:

30M~200MHz: 5.0 dB

200M~1GHz: 6.2 dB

1G~6GHz: 4.45 dB


6G~18GHz: 5.23 dB


Table 2 – Values of U_{cisp}

Measurement	U_{cisp}
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB

EUT Setup

Below 1 GHz:

Above 1 G:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC Part 15.109, Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The adapter connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

According to FCC 15.33 requirements, the system was measured from 30 MHz to 2 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	QP
Above 1 GHz	1MHz	3 MHz	Peak
Above 1 GHz	1MHz	10 Hz	Ave

Test Procedure

For the radiated emissions test, the adapter was connected to the first AC floor outlet and the other support equipments were connected to the second AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The data was recorded in Quasi-peak detection mode for 30 MHz to 1 GHz, Peak and average detection mode above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Loss} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Equipment List and Details

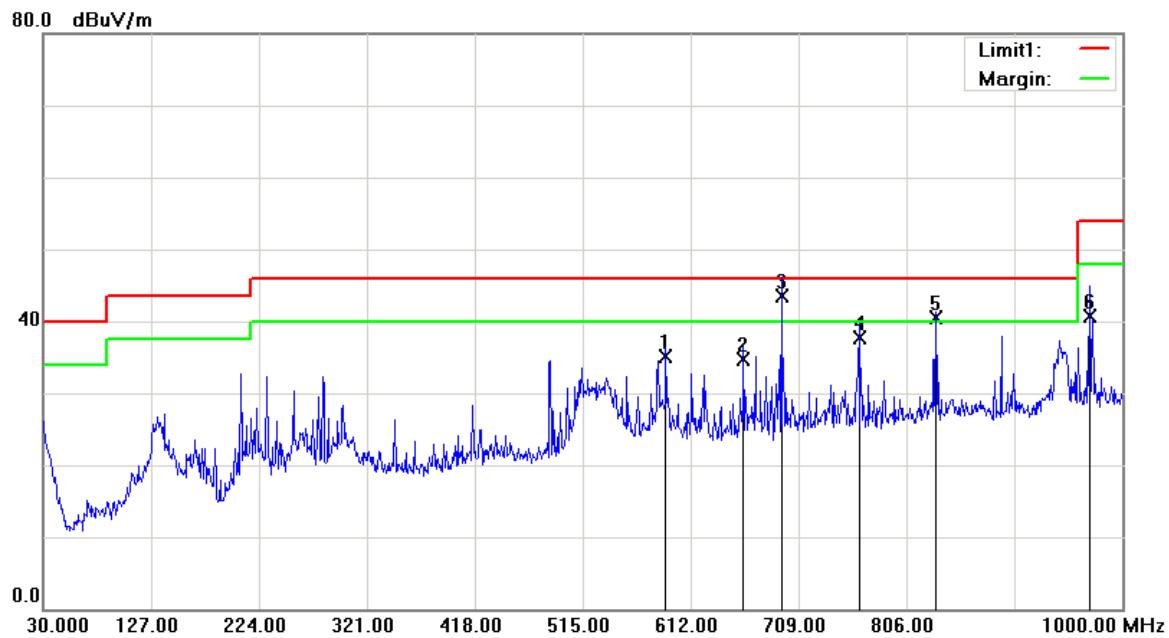
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI TEST RECEIVER	ESCI	100224	2013-5-6	2014-5-5
Sunol Sciences	Antenna	JB3	A060611-1	2012-9-6	2015-9-5
HP	HP AMPLIFIER	8447E	2434A02181	N/A	N/A
R&S	Spectrum analyzer	FSEM 30	849016/001	2012-9-4	2013-9-3
ETS LINDGREN	horn antenna	3115	000 527 35	2012-9-6	2015-9-5
Mini-Circuit	Amplifier	ZVA-213-S+	54201245	N/A	N/A
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

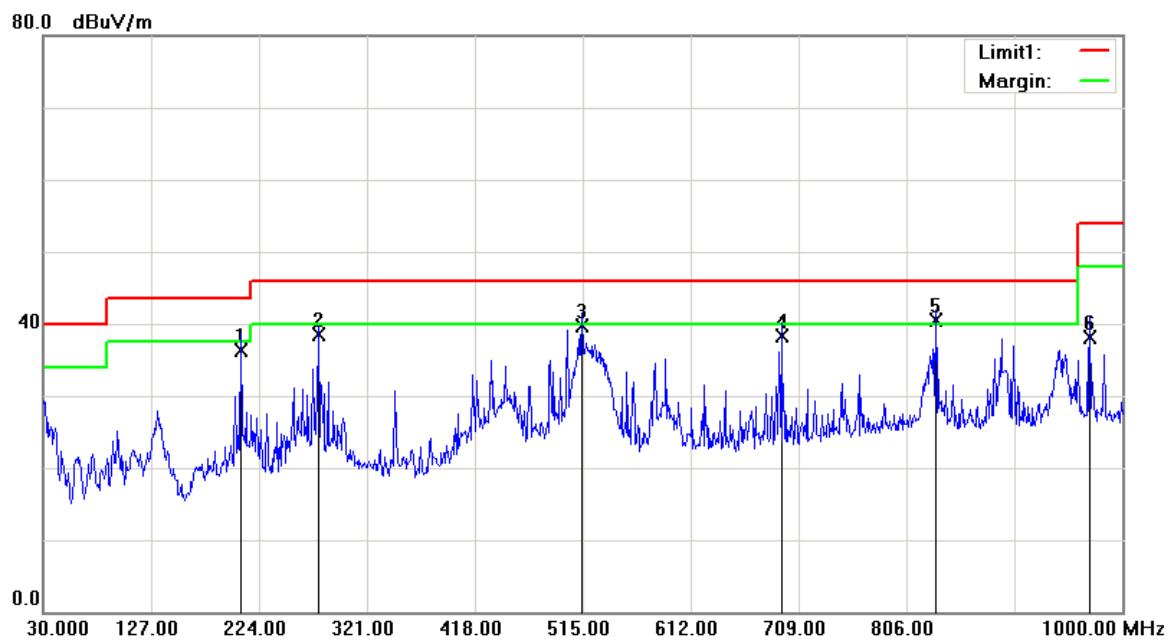
According to the data in the following table, the EUT complied with the FCC §15.109, Class B, with the worst margin reading of:

2.40 dB at 693.4800 MHz in the **Horizontal** polarization for below 1GHz
11.91 dB at 1911.824 MHz in the **Vertical** polarization for above 1GHz


Test Data

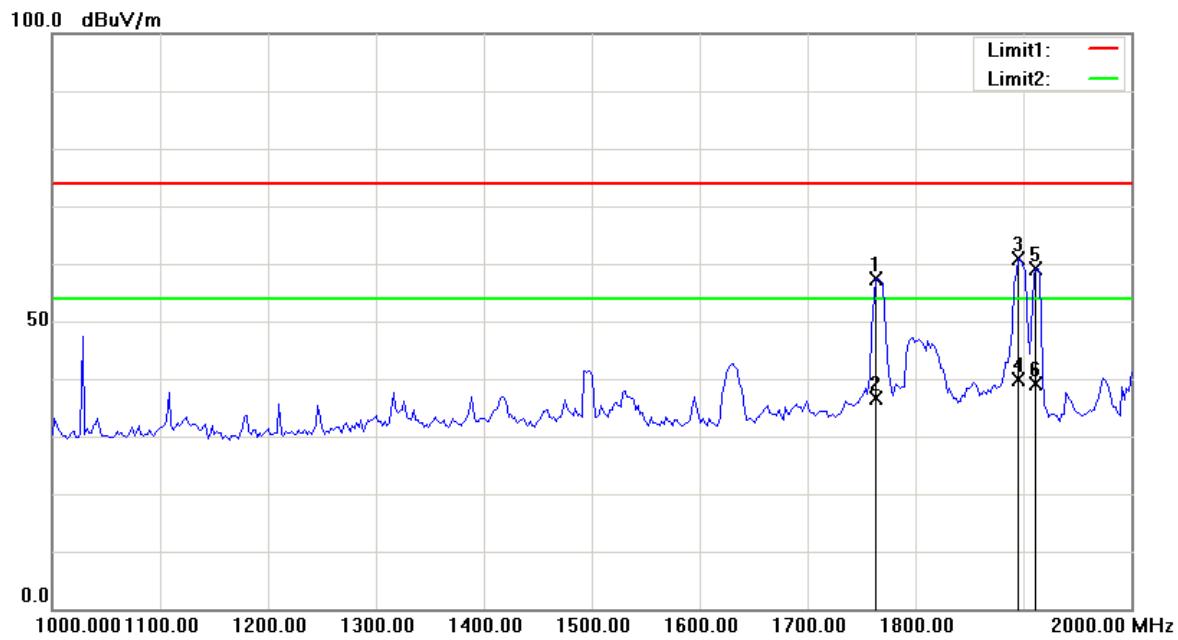
Environmental Conditions

Temperature:	24.8°C
Relative Humidity:	57 %
ATM Pressure:	100 kPa

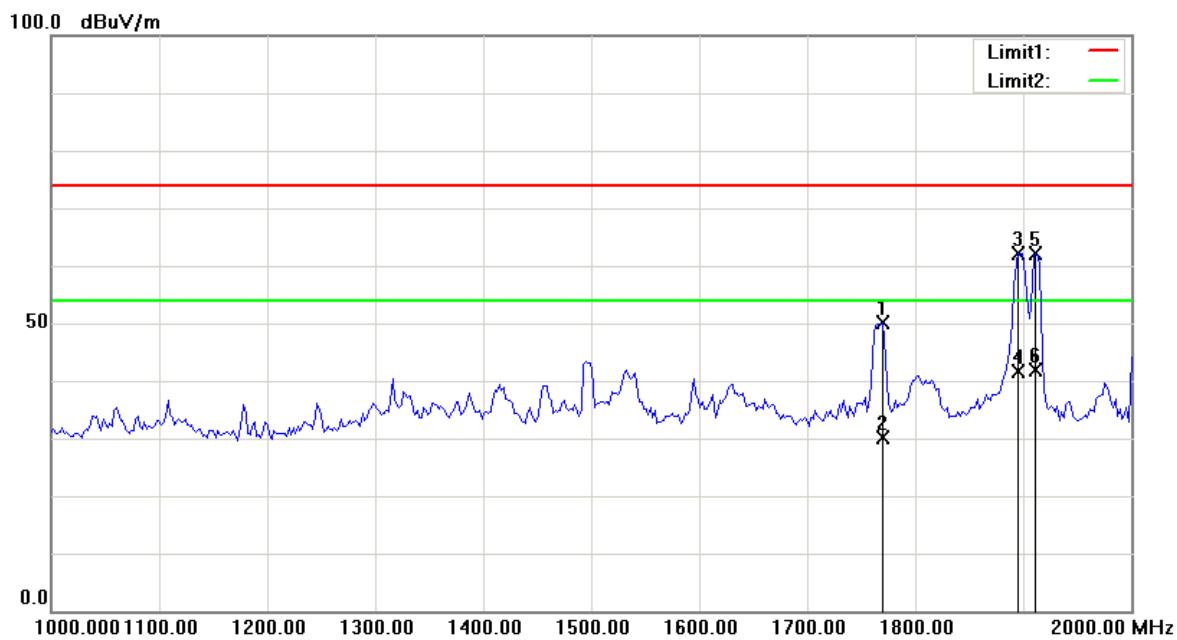

The testing was performed by Star Xie on 2013-05-24.

Test mode: HDMI Input

1) Below 1 GHz:**Horizontal:**


Frequency (MHz)	Receiver Reading (dBuV/m)	Detector (PK/QP/Ave)	Correction Factor (dB)	Cord. Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
589.6900	36.26	QP	-1.06	35.20	46.00	10.80
659.5300	35.00	QP	-0.30	34.70	46.00	11.30
693.4800	43.36	QP	0.24	43.60	46.00	2.40*
763.3200	36.52	QP	1.28	37.80	46.00	8.20
832.1900	38.46	QP	2.14	40.60	46.00	5.40*
970.9000	36.78	QP	4.02	40.80	54.00	13.20

*Within measurement uncertainty!


Vertical:

Frequency (MHz)	Receiver Reading (dBuV/m)	Detector (PK/QP/Ave)	Correction Factor (dB)	Cord. Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
207.5100	45.49	QP	-9.09	36.40	43.50	7.10
277.3500	44.97	QP	-6.47	38.50	46.00	7.50
514.0300	42.12	QP	-2.32	39.80	46.00	6.20
693.4800	38.16	QP	0.24	38.40	46.00	7.60
832.1900	38.36	QP	2.14	40.50	46.00	5.50 *
970.9000	34.18	QP	4.02	38.20	54.00	15.80

*Within measurement uncertainty!

2) Above 1 GHz:**Horizontal:**

Frequency (MHz)	Receiver Reading (dBuV/m)	Detector (PK/QP/Ave)	Correction Factor (dB)	Cord. Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1763.527	60.23	peak	-2.87	57.36	74.00	16.64
1763.527	39.38	AVG	-2.87	36.51	54.00	17.49
1895.792	63.55	peak	-2.68	60.87	74.00	13.13
1895.792	42.55	AVG	-2.68	39.87	54.00	14.13
1911.824	61.81	peak	-2.66	59.15	74.00	14.85
1911.824	41.83	AVG	-2.66	39.17	54.00	14.83

Vertical:

Frequency (MHz)	Receiver Reading (dBuV/m)	Detector (PK/QP/Ave)	Correction Factor (dB)	Cord. Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1769.539	52.89	peak	-2.86	50.03	74.00	23.97
1769.539	32.97	AVG	-2.86	30.11	54.00	23.89
1895.792	64.73	peak	-2.68	62.05	74.00	11.95
1895.792	44.32	AVG	-2.68	41.64	54.00	12.36
1911.824	64.75	peak	-2.66	62.09	74.00	11.91
1911.824	44.43	AVG	-2.66	41.77	54.00	12.23

EXHIBIT - DECLARATION OF SIMILARITY

Beijing Osee Digital Technology Ltd.
Add:No.13 Central Building, No.68 zone, Beiqing Road, Haidian District, Beijing, China
Tel: +86 010-62434168 Fax: +86 010-62434169

DECLARATION OF SIMILARITY

Apr 1, 2013

To:

Bay Area Compliance Laboratories Corp.(Dongguan)
No.69 Pulong Village, Puxinhu Industry Zone, Tangxia, Dongguan, China
Tel: +86 769 86858888 Fax: +86 769 86858892
<http://www.baclcorp.com>

Dear Sir or Madam:

We, Beijing Osee Digital Technology Ltd. hereby declare that product:LCD Monitor, model(s):BCM-215-3HSV, BCM-215-HSV, BCM-215-SV, BCM-215-V are electrically identical with the same electromagnetic emissions and electromagnetic compatibility characteristics. And BCM-215-3HSV is tested by BACL, the results of which are featured in BACL project: R2BJ130401051

A description of the differences between the tested model and those that are declared similar areas follows:

Models: BCM-215-3HSV, BCM-215-HSV, BCM-215-SV, BCM-215-V just have different model name.

Please contact me should there be need for any additional clarification or information.

Best Regards,

Iris Shao *Iris Shao*
Manager

***** END OF REPORT *****