

# RADIO TEST REPORT

## Test Report No. 15636654S-A-R1

|                     |                       |
|---------------------|-----------------------|
| Customer            | AISIN CORPORATION     |
| Description of EUT  | UWB/NFC Module        |
| Model Number of EUT | AP10                  |
| FCC ID              | PENAP10               |
| Test Regulation     | FCC Part 15 Subpart C |
| Test Result         | Complied              |
| Issue Date          | April 17, 2025        |
| Remarks             | -                     |

**Representative test engineer**Hiromasa Sato  
Engineer**Approved by**Toyokazu Immamura  
Engineer

CERTIFICATE 1266.03

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.  
 There is no testing item of "Non-accreditation".

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 24.0

## **ANNOUNCEMENT**

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.  
It does not cover administrative issues such as Manual or non-Radio test related Requirements.  
(if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where  
UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

## **REVISION HISTORY**

### **Original Test Report No. 15636656S-A**

This report is a revised version of 15636654S-A. 15636654S-A is replaced with this report.

| Revision        | Test Report No. | Date              | Page Revised Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------|-----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -<br>(Original) | 15636656S-A     | February 27, 2025 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1               | 15636654S-A-R1  | April 17, 2025    | <p>p.5, Correction antenna gain of UWB part (3.58 dBi to 4.04 dBi).</p> <p>p.6, Correction error ("The stable voltage was supplied by the ECU which was required to have a power supply regulator." to "The RF part has its own regulator. The RF part is constantly provided voltage through the regulator regards of input voltage.").</p> <p>p.9, Correction the operating mode of 20 dB Bandwidth and 99 % Occupied Bandwidth of test item.("Below 30 MHz: Tx, without Tag, Above 30 MHz: Tx, with Tag (Pattern 1)" to "Tx, without Tag"),<br/>Correction the operating mode of Electric Field Strength of Spurious Emission of test item.("Tx, without Tag" to "Below 30 MHz: Tx, without Tag, Above 30 MHz: Tx, with Tag (Pattern 1)")</p> |

## Reference: Abbreviations (Including words undescribed in this report)

|                |                                                                 |         |                                                     |
|----------------|-----------------------------------------------------------------|---------|-----------------------------------------------------|
| A2LA           | The American Association for Laboratory Accreditation           | ICES    | Interference-Causing Equipment Standard             |
| AC             | Alternating Current                                             | IEC     | International Electrotechnical Commission           |
| AFH            | Adaptive Frequency Hopping                                      | IEEE    | Institute of Electrical and Electronics Engineers   |
| AM             | Amplitude Modulation                                            | IF      | Intermediate Frequency                              |
| Amp, AMP       | Amplifier                                                       | ILAC    | International Laboratory Accreditation Conference   |
| ANSI           | American National Standards Institute                           | ISED    | Innovation, Science and Economic Development Canada |
| Ant, ANT       | Antenna                                                         | ISO     | International Organization for Standardization      |
| AP             | Access Point                                                    | JAB     | Japan Accreditation Board                           |
| ASK            | Amplitude Shift Keying                                          | LAN     | Local Area Network                                  |
| Atten., ATT    | Attenuator                                                      | LIMS    | Laboratory Information Management System            |
| AV             | Average                                                         | MCS     | Modulation and Coding Scheme                        |
| BPSK           | Binary Phase-Shift Keying                                       | MRA     | Mutual Recognition Arrangement                      |
| BR             | Bluetooth Basic Rate                                            | N/A     | Not Applicable                                      |
| BT             | Bluetooth                                                       | NIST    | National Institute of Standards and Technology      |
| BT LE          | Bluetooth Low Energy                                            | NS      | No signal detect.                                   |
| BW             | BandWidth                                                       | NSA     | Normalized Site Attenuation                         |
| Cal Int        | Calibration Interval                                            | NVLAP   | National Voluntary Laboratory Accreditation Program |
| CCK            | Complementary Code Keying                                       | OBW     | Occupied Band Width                                 |
| Ch., CH        | Channel                                                         | OFDM    | Orthogonal Frequency Division Multiplexing          |
| CISPR          | Comité International Special des Perturbations Radioélectriques | P/M     | Power meter                                         |
| CW             | Continuous Wave                                                 | PCB     | Printed Circuit Board                               |
| DBPSK          | Differential BPSK                                               | PER     | Packet Error Rate                                   |
| DC             | Direct Current                                                  | PHY     | Physical Layer                                      |
| D-factor       | Distance factor                                                 | PK      | Peak                                                |
| DFS            | Dynamic Frequency Selection                                     | PN      | Pseudo random Noise                                 |
| DQPSK          | Differential QPSK                                               | PRBS    | Pseudo-Random Bit Sequence                          |
| DSSS           | Direct Sequence Spread Spectrum                                 | PSD     | Power Spectral Density                              |
| EDR            | Enhanced Data Rate                                              | QAM     | Quadrature Amplitude Modulation                     |
| EIRP, e.i.r.p. | Equivalent Isotropically Radiated Power                         | QP      | Quasi-Peak                                          |
| EMC            | ElectroMagnetic Compatibility                                   | QPSK    | Quadri-Phase Shift Keying                           |
| EMI            | ElectroMagnetic Interference                                    | RBW     | Resolution Band Width                               |
| EN             | European Norm                                                   | RDS     | Radio Data System                                   |
| ERP, e.r.p.    | Effective Radiated Power                                        | RE      | Radio Equipment                                     |
| EU             | European Union                                                  | RF      | Radio Frequency                                     |
| EUT            | Equipment Under Test                                            | RMS     | Root Mean Square                                    |
| Fac.           | Factor                                                          | RSS     | Radio Standards Specifications                      |
| FCC            | Federal Communications Commission                               | Rx      | Receiving                                           |
| FHSS           | Frequency Hopping Spread Spectrum                               | SA, S/A | Spectrum Analyzer                                   |
| FM             | Frequency Modulation                                            | SG      | Signal Generator                                    |
| Freq.          | Frequency                                                       | SVSWR   | Site-Voltage Standing Wave Ratio                    |
| FSK            | Frequency Shift Keying                                          | TR      | Test Receiver                                       |
| GFSK           | Gaussian Frequency-Shift Keying                                 | Tx      | Transmitting                                        |
| GNSS           | Global Navigation Satellite System                              | VBW     | Video BandWidth                                     |
| GPS            | Global Positioning System                                       | Vert.   | Vertical                                            |
| Hori.          | Horizontal                                                      | WLAN    | Wireless LAN                                        |

| <b>CONTENTS</b>                                                                              | <b>PAGE</b> |
|----------------------------------------------------------------------------------------------|-------------|
| <b>SECTION 1: Customer Information .....</b>                                                 | <b>5</b>    |
| <b>SECTION 2: Equipment Under Test (EUT).....</b>                                            | <b>5</b>    |
| <b>SECTION 3: Test specification, procedures &amp; results .....</b>                         | <b>6</b>    |
| <b>SECTION 4: Operation of EUT during testing .....</b>                                      | <b>9</b>    |
| <b>SECTION 5: Radiated Emission (Fundamental, Spurious Emission and Spectrum Mask) .....</b> | <b>11</b>   |
| <b>SECTION 6: Other tests.....</b>                                                           | <b>14</b>   |
| <b>APPENDIX 1: Test data .....</b>                                                           | <b>15</b>   |
| Fundamental Emission and Spectrum Mask .....                                                 | 15          |
| Spurious Emission .....                                                                      | 16          |
| 20 dB Bandwidth and 99% Occupied Bandwidth .....                                             | 18          |
| Frequency Tolerance .....                                                                    | 19          |
| <b>APPENDIX 2: Test instruments .....</b>                                                    | <b>20</b>   |
| <b>APPENDIX 3: Photographs of test setup.....</b>                                            | <b>21</b>   |
| Radiated Emission (Below 30 MHz) .....                                                       | 21          |
| Radiated Emission (Above 30 MHz).....                                                        | 22          |
| Pre-check of Worst Case Position .....                                                       | 23          |
| Frequency Tolerance, 20 dB bandwidth & 99 % Occupied bandwidth .....                         | 25          |

## **SECTION 1: Customer Information**

|                  |                                                  |
|------------------|--------------------------------------------------|
| Company Name     | AISIN CORPORATION                                |
| Address          | 2-1, Asahi-machi, Kariya, Aichi, 448-8650, JAPAN |
| Telephone Number | +81-50-3151-4983                                 |
| Contact Person   | Koji Nomura                                      |

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

## **SECTION 2: Equipment Under Test (EUT)**

### **2.1 Identification of EUT**

|               |                                                                                           |
|---------------|-------------------------------------------------------------------------------------------|
| Description   | UWB/NFC Module                                                                            |
| Model Number  | AP10                                                                                      |
| Serial Number | Refer to SECTION 4.2                                                                      |
| Condition     | Production prototype<br>(Not for Sale: This sample is equivalent to mass-produced items.) |
| Modification  | No Modification by the test lab                                                           |
| Receipt Date  | January 14, 2025                                                                          |
| Test Date     | January 15 to January 16, 2025                                                            |

### **2.2 Product Description**

#### **General Specification**

|                       |                              |
|-----------------------|------------------------------|
| Rating                | DC 7.1 V (DC 6.0 V to 8.2 V) |
| Operating Temperature | -40 deg. C to +85 deg. C     |

#### **Radio Specification**

##### **NFC**

|                        |             |
|------------------------|-------------|
| Equipment Type         | Transceiver |
| Frequency of Operation | 13.56 MHz   |
| Type of Modulation     | ASK (NFC-A) |

##### **UWB**

|                        |                                                                                           |
|------------------------|-------------------------------------------------------------------------------------------|
| Equipment Type         | Transceiver                                                                               |
| Frequency of Operation | 6489.6 MHz (6240 MHz to 6739.2 MHz) (CH5),<br>7987.2 MHz (7737.6 MHz to 8236.8 MHz) (CH9) |
| Type of Modulation     | BPM-BPSK                                                                                  |
| Antenna Gain           | 4.04 dBi (max)                                                                            |

## **SECTION 3: Test specification, procedures & results**

### **3.1 Test Specification**

|                    |                                                                                                                                                                           |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Specification | FCC Part 15 Subpart C<br>The latest version on the first day of the testing period                                                                                        |
| Title              | FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators<br>Section 15.207 Conducted limits<br>Section 15.225 Operation within the band 13.110-14.010 MHz. |

### **3.2 Procedures and results**

| Item                                            | Test Procedure                                                                           | Specification                                                                              | Worst margin                                       | Results  | Remarks  |
|-------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------|----------|----------|
| Conducted Emission                              | <FCC><br>ANSI C63.10:2013<br>6 Standard test methods<br><br><ISED><br>RSS-Gen 8.8        | <FCC><br>Section 15.207<br><br><ISED><br>RSS-Gen 8.8                                       | N/A *1)                                            | N/A      | -        |
| Electric Field Strength of Fundamental Emission | <FCC><br>ANSI C63.10:2013<br>6 Standard test methods<br><br><ISED><br>RSS-Gen 6.4, 6.12  | <FCC><br>Section 15.225(a)<br><br><ISED><br>RSS-210 B.6                                    | 58.1 dB,<br>13.560 MHz,<br>Vertical,<br>QP, 0 deg. | Complied | Radiated |
| Spectrum Mask                                   | <FCC><br>ANSI C63.10:2013<br>6 Standard test methods<br><br><ISED><br>RSS-Gen 6.4, 6.13  | <FCC><br>Section 15.225(b)(c)<br><br><ISED><br>RSS-210 B.6                                 | 32.6 dB,<br>13.347 MHz,<br>Vertical,<br>QP, 0 deg. | Complied | Radiated |
| 20 dB Bandwidth                                 | <FCC><br>ANSI C63.10:2013<br>6 Standard test methods<br><br><ISED> -                     | <FCC><br>Section15.215(c)<br><br><ISED> -                                                  | See data                                           | Complied | Radiated |
| Electric Field Strength of Spurious Emission    | <FCC><br>ANSI C63.10:2013<br>6 Standard test methods<br><br><ISED><br>RSS-Gen 6.4, 6.13  | <FCC><br>Section 15.209,<br>Section 15.225 (d)<br><br><ISED><br>RSS-210 B.6<br>RSS-Gen 8.9 | 9.5 dB,<br>108.480 MHz,<br>Vertical, QP            | Complied | Radiated |
| Frequency Tolerance                             | <FCC><br>ANSI C63.10:2013<br>6 Standard test methods<br><br><ISED><br>RSS-Gen 6.11, 8.11 | <FCC><br>Section 15.225(e)<br><br><ISED><br>RSS-210 B.6                                    | See data                                           | Complied | Radiated |

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

\*1) The test was not performed since the EUT was DC device.

#### **FCC Part 15.31 (e)**

The RF part has its own regulator. The RF part is constantly provided voltage through the regulator regards of input voltage.

However, the supply voltage was varied and tested at 85 % and 115 % of the nominal rated supply voltage during frequency tolerance test according to Section 15.225(e).

#### **FCC Part 15.203 Antenna requirement**

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

### 3.3 Addition to standard

| Item                    | Test Procedure    | Specification | Worst margin | Results | Remarks  |
|-------------------------|-------------------|---------------|--------------|---------|----------|
| 99 % emission bandwidth | <ISED>RSS-Gen 6.7 | -             | N/A          | -       | Radiated |

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

Other than above, no addition, exclusion nor deviation has been made from the standard.

### 3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement.  
Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor  $k = 2$ .

| Item                                             | Frequency range   | Uncertainty (+/-) |
|--------------------------------------------------|-------------------|-------------------|
| Conducted Emission (AC Mains) LISN               | 150 kHz to 30 MHz | 3.0 dB            |
| Radiated Emission<br>(Measurement distance: 3 m) | 9 kHz to 30 MHz   | 3.3 dB            |
|                                                  | 30 MHz to 200 MHz | 4.8 dB            |
|                                                  | 200 MHz to 1 GHz  | 6.1 dB            |
|                                                  | 1 GHz to 6 GHz    | 4.7 dB            |
|                                                  | 6 GHz to 18 GHz   | 5.3 dB            |
|                                                  | 18 GHz to 40 GHz  | 5.5 dB            |

| Antenna terminal test             | Uncertainty (+/-)    |
|-----------------------------------|----------------------|
| Frequency Measurement (13.56 MHz) | $1.6 \times 10^{-7}$ |
| Bandwidth Measurement             | 0.012 %              |
| Temperature                       | 2.2 deg.C.           |
| Humidity                          | 3.4 %                |
| Voltage                           | 0.92 %               |

### 3.5 Test Location

UL Japan, Inc. Shonan EMC Lab.  
1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN  
Telephone: +81-463-50-6400  
A2LA Certificate Number: 1266.03  
(FCC test firm registration number: 626366, ISED lab company number: 2973D / CAB identifier: JP0001)

| Test room                          | Width x Depth x Height (m) | Size of reference ground plane (m) / horizontal conducting plane | Maximum measurement distance |
|------------------------------------|----------------------------|------------------------------------------------------------------|------------------------------|
| No.1 Semi-anechoic chamber (SAC1)  | 20.6 x 11.3 x 7.65         | 20.6 x 11.3                                                      | 10 m                         |
| No.2 Semi-anechoic chamber (SAC2)  | 20.6 x 11.3 x 7.65         | 20.6 x 11.3                                                      | 10 m                         |
| No.3 Semi-anechoic chamber (SAC3)  | 12.7 x 7.7 x 5.35          | 12.7 x 7.7                                                       | 5 m                          |
| No.4 Semi-anechoic chamber (SAC4)  | 8.1 x 5.1 x 3.55           | 8.1 x 5.1                                                        | -                            |
| Wireless anechoic chamber 1 (WAC1) | 9.5 x 6.0 x 5.4            | 9.5 x 6.0                                                        | 3 m                          |
| Wireless anechoic chamber 2 (WAC2) | 9.5 x 6.0 x 5.4            | 9.5 x 6.0                                                        | 3 m                          |
| No.1 Shielded room                 | 6.8 x 4.1 x 2.7            | 6.8 x 4.1                                                        | -                            |
| No.2 Shielded room                 | 6.8 x 4.1 x 2.7            | 6.8 x 4.1                                                        | -                            |
| No.3 Shielded room                 | 6.3 x 4.7 x 2.7            | 6.3 x 4.7                                                        | -                            |
| No.4 Shielded room                 | 4.4 x 4.7 x 2.7            | 4.4 x 4.7                                                        | -                            |
| No.5 Shielded room                 | 7.8 x 6.4 x 2.7            | 7.8 x 6.4                                                        | -                            |
| No.6 Shielded room                 | 7.8 x 6.4 x 2.7            | 7.8 x 6.4                                                        | -                            |
| No.8 Shielded room                 | 3.45 x 5.5 x 2.4           | 3.45 x 5.5                                                       | -                            |
| No.1 Measurement room              | 2.55 x 4.1 x 2.5           | -                                                                | -                            |
| No.2 Measurement room              | 4.5 x 3.5 x 2.5            | -                                                                | -                            |
| Wireless shielded room 1           | 3.0 x 4.5 x 2.7            | 3.0 x 4.5                                                        | -                            |
| Wireless shielded room 2           | 3.0 x 4.5 x 2.7            | 3.0 x 4.5                                                        | -                            |

### 3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

## **SECTION 4: Operation of EUT during testing**

### **4.1 Operating Mode(s)**

The mode is used:

| Test mode                             | Remarks                                                                         |
|---------------------------------------|---------------------------------------------------------------------------------|
| 1) Transmitting mode (Tx) (13.56 MHz) | The EUT Transmits and Receives at the same time and there is no receiving mode. |

The EUT was operated in a manner similar to typical use during the tests.

\*Power of the EUT was set by the software as follows;

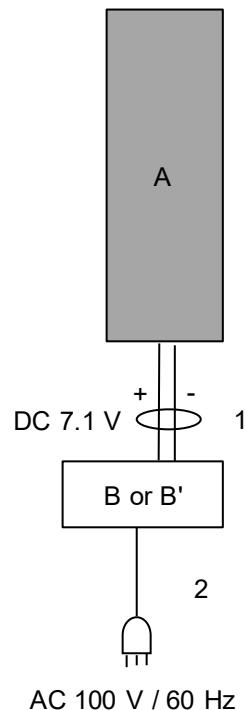
Software: SOFTWARE, ELECTRICAL KEY, L Version: 00001  
(Date: 2024.12.10, Storage location: EUT memory)

\*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Justification: The system was configured in typical fashion (as a user would normally use it) for testing.


| Test Item                                       | Operating mode*                                                         |
|-------------------------------------------------|-------------------------------------------------------------------------|
| Electric Field Strength of Fundamental Emission | Tx, without Tag                                                         |
| Spectrum Mask                                   | Tx, without Tag                                                         |
| 20 dB Bandwidth and 99 % Occupied Bandwidth     | Tx, without Tag                                                         |
| Electric Field Strength of Spurious Emission    | Below 30 MHz: Tx, without Tag<br>Above 30 MHz: Tx, with Tag (Pattern 1) |
| Frequency Tolerance                             | Tx, without Tag                                                         |

\* After the comparison of the test data between with Tag and without Tag, the tests were performed with the worst case.

| Frequency Tolerance |                                                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------------------|
| Temperature         | -20 deg. C to +50 deg.C Step 10 deg. C                                                                          |
| Voltage             | Normal Voltage DC 7.1 V<br>Maximum Voltage DC 8.2 V (DC 7.1 V +15 %)<br>Minimum Voltage DC 6 V (DC 7.1 V -15 %) |

\*This EUT provides stable voltage constantly to RF Part regardless of input voltage

## 4.2 Configuration and peripherals



\* Cabling and setup were taken into consideration and test data was taken under worse case conditions.

### Description of EUT and Support Equipment

| No. | Item              | Model number | Serial Number | Manufacturer              | Remark |
|-----|-------------------|--------------|---------------|---------------------------|--------|
| A   | UWB/NFC Module    | AP10         | SH2DN24171    | AISIN                     | EUT    |
| B   | Power Supply (DC) | PNA16-10A    | ER001085      | Kikusui Electronics Corp. | *1)    |
| B'  | Power Supply (DC) | PAN35-10A    | NA000955      | KIKUSUI                   | *2)    |

\*1) Used for Other Tests

\*2) Used for Radiated Emission Tests

### List of Cables Used

| No. | Name | Length (m) | Shield     |            | Remark |
|-----|------|------------|------------|------------|--------|
|     |      |            | Cable      | Connector  |        |
| 1   | DC   | 2.0        | Unshielded | Unshielded | -      |
| 2   | AC   | 1.8        | Unshielded | Unshielded | -      |

## **SECTION 5: Radiated Emission (Fundamental, Spurious Emission and Spectrum Mask)**

### **Test Procedure**

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

#### [Limit conversion]

The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to  $45.5 - 51.5 = -6.0$  dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

#### [Frequency: From 9 kHz to 30 MHz]

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., and 135 deg.) and horizontal polarization.

\*Refer to Figure 2 about Direction of the Loop Antenna.

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore the measured level of emissions may be higher than if measurements were made without a ground plane. However test results were confirmed to pass against standard limit.

#### [Frequency: From 30 MHz to 1 GHz]

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

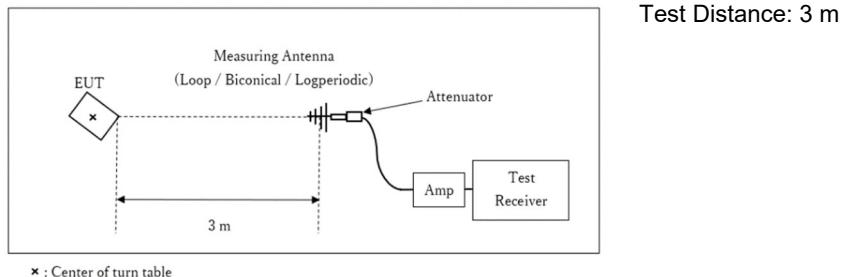
The measurements were performed for both vertical and horizontal antenna polarization.

#### [Test instruments and test settings]

| Frequency    | Below 30 MHz | 30 MHz to 200 MHz | 200 MHz to 1 GHz |
|--------------|--------------|-------------------|------------------|
| Antenna Type | Loop         | Biconical         | Logperiodic      |

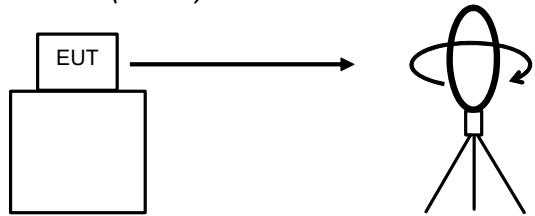
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

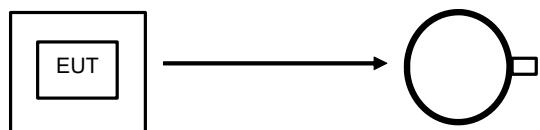

|                 |                                                  |                        |                         |                        |                      |
|-----------------|--------------------------------------------------|------------------------|-------------------------|------------------------|----------------------|
| Frequency       | From 9 kHz to 90 kHz and From 110 kHz to 150 kHz | From 90 kHz to 110 kHz | From 150 kHz to 490 kHz | From 490 kHz to 30 MHz | From 30 MHz to 1 GHz |
| Instrument used | Test Receiver                                    |                        |                         |                        |                      |
| Detector        | PK / AV                                          | QP                     | PK / AV                 | QP                     | QP                   |
| IF Bandwidth    | 200 Hz                                           | 200 Hz                 | 9 kHz                   | 9 kHz                  | 120 kHz              |
| Test Distance   | 3 m *1)                                          | 3 m *1)                | 3 m *1)                 | 3 m *2)                | 3 m                  |

\*1) Distance Factor:  $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

\*2) Distance Factor:  $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

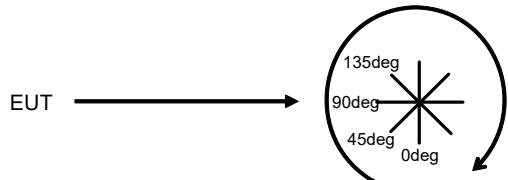

**Figure 1: Test Setup**

Below 1 GHz




**Figure 2: Direction of the Loop Antenna**

*Side View (Vertical)*




*Top View (Horizontal)*



Antenna was not rotated.

*Top View (Vertical)*



Front side: 0 deg.  
Forward direction: clockwise

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

| Frequency<br>Test<br>Antenna | Carrier | Below 30 MHz | Above 30 MHz |
|------------------------------|---------|--------------|--------------|
| Horizontal                   | Z       | Z            | X            |
| Vertical                     | Y       | Y            | X            |

The test results and limit are rounded off to one decimal place, so some differences might be observed.

**Measurement range** : 9 kHz to 1 GHz  
**Test data** : APPENDIX  
**Test result** : Pass

## SECTION 6: Other tests

| Test                                                                      | Span                                    | RBW   | VBW   | Sweep | Detector | Trace    | Instrument used          |
|---------------------------------------------------------------------------|-----------------------------------------|-------|-------|-------|----------|----------|--------------------------|
| 20 dB Bandwidth                                                           | 100 kHz                                 | 1 kHz | 3 kHz | Auto  | Peak     | Max Hold | Spectrum Analyzer        |
| 99 % Occupied Bandwidth                                                   | Enough width to display emission skirts | 1 kHz | 3 kHz | Auto  | Peak     | Max Hold | Spectrum Analyzer        |
| Frequency Tolerance                                                       | -                                       | -     | -     | -     | -        | -        | Spectrum Analyzer<br>*1) |
| Peak hold was applied as Worst-case measurement.                          |                                         |       |       |       |          |          |                          |
| *1) The measurement was performed with Marker Frequency Counter Function. |                                         |       |       |       |          |          |                          |

**Test data** : APPENDIX  
**Test result** : Pass

## APPENDIX 1: Test data

### Fundamental Emission and Spectrum Mask

Test place Shonan EMC Lab.  
 Semi Anechoic Chamber SAC2  
 Date January 15, 2025  
 Temperature / Humidity 20 deg. C / 38 % RH  
 Engineer Takahiro Suzuki  
 Mode Tx, without Tag  
 Remarks Axis: Horizontal Z  
 Vertical Y, Vertical polarization (antenna angle) of the worst case: 0 deg.

#### Fundamental emission

| No. | FREQ<br>[MHz] | Test Receiver<br>Reading |               | Antenna<br>Factor<br>[dB/m] | Loss<br>[dB] | AMP<br>GAIN<br>[dB] | Distance<br>factor<br>[dB] | RESULT          |                 | LIMIT<br>(30m)<br>[dBuV/m] | MARGIN      |             |
|-----|---------------|--------------------------|---------------|-----------------------------|--------------|---------------------|----------------------------|-----------------|-----------------|----------------------------|-------------|-------------|
|     |               | Hor<br>[dBuV]            | Ver<br>[dBuV] |                             |              |                     |                            | Hor<br>[dBuV/m] | Ver<br>[dBuV/m] |                            | Hor<br>[dB] | Ver<br>[dB] |
| 1   | 13.560        | 72.8                     | 81.8          | 9.4                         | 6.6          | 32.0                | -40.0                      | 16.8            | 25.8            | 83.9                       | 67.1        | 58.1        |

Calculation: Result[dBuV/m] = Reading[dBuV] + Ant.Fac[dB/m] + Loss(Cable+ATT)[dB] - Gain(AMP)[dB] + Distance factor[dB]

Distance factor:  $40 \times \log(3 \text{ m}/30 \text{ m}) = -40 \text{ dB}$

#### Spurious emission within the band

| No. | FREQ<br>[MHz] | Test Receiver<br>Reading |               | Antenna<br>Factor<br>[dB/m] | Loss<br>[dB] | AMP<br>GAIN<br>[dB] | Distance<br>factor<br>[dB] | RESULT          |                 | LIMIT<br>(30m)<br>[dBuV/m] | MARGIN      |             |
|-----|---------------|--------------------------|---------------|-----------------------------|--------------|---------------------|----------------------------|-----------------|-----------------|----------------------------|-------------|-------------|
|     |               | Hor<br>[dBuV]            | Ver<br>[dBuV] |                             |              |                     |                            | Hor<br>[dBuV/m] | Ver<br>[dBuV/m] |                            | Hor<br>[dB] | Ver<br>[dB] |
| 1   | 13.110        | 29.6                     | 34.9          | 9.6                         | 6.6          | 32.0                | -40.0                      | -26.2           | -21.0           | 29.5                       | 55.7        | 50.5        |
| 2   | 13.134        | 46.9                     | 56.7          | 9.6                         | 6.6          | 32.0                | -40.0                      | -9.0            | 0.8             | 40.5                       | 49.5        | 39.7        |
| 3   | 13.347        | 55.1                     | 63.8          | 9.5                         | 6.6          | 32.0                | -40.0                      | -0.9            | 7.9             | 40.5                       | 41.4        | 32.6        |
| 4   | 13.410        | 40.5                     | 50.0          | 9.4                         | 6.6          | 32.0                | -40.0                      | -15.4           | -6.01           | 40.5                       | 55.9        | 46.5        |
| 5   | 13.553        | 58.0                     | 66.6          | 9.4                         | 6.6          | 32.0                | -40.0                      | 2.0             | 10.6            | 50.4                       | 48.4        | 39.8        |
| 6   | 13.567        | 58.2                     | 66.7          | 9.4                         | 6.6          | 32.0                | -40.0                      | 2.2             | 10.7            | 50.4                       | 48.2        | 39.7        |
| 7   | 13.710        | 39.6                     | 47.4          | 9.4                         | 6.6          | 32.0                | -40.0                      | -16.4           | -8.61           | 40.5                       | 56.9        | 49.1        |
| 8   | 13.770        | 52.0                     | 60.0          | 9.4                         | 6.6          | 32.0                | -40.0                      | -4.1            | 4.0             | 40.5                       | 44.6        | 36.5        |
| 9   | 13.982        | 43.0                     | 51.8          | 9.3                         | 6.6          |                     | -40.0                      | -13.1           | -4.3            | 40.5                       | 53.6        | 44.8        |
| 10  | 14.010        | 28.0                     | 30.5          | 9.3                         | 6.6          | 32.0                | -40.0                      | -28.1           | -25.63          | 29.5                       | 57.6        | 55.1        |

Calculation: Result[dBuV/m] = Reading[dBuV] + Ant.Fac[dB/m] + Loss(Cable+ATT)[dB] - Gain(AMP)[dB] + Distance factor[dB]

Distance factor:  $40 \times \log(3 \text{ m}/30 \text{ m}) = -40 \text{ dB}$

Outside filed strength frequencies

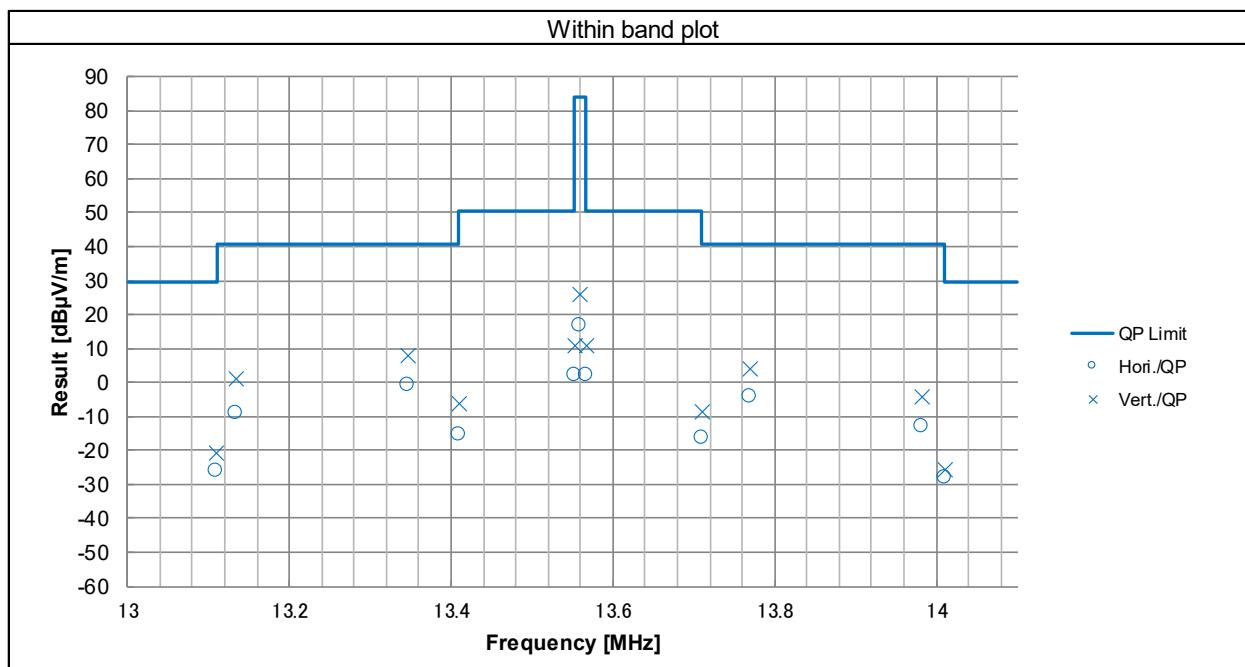
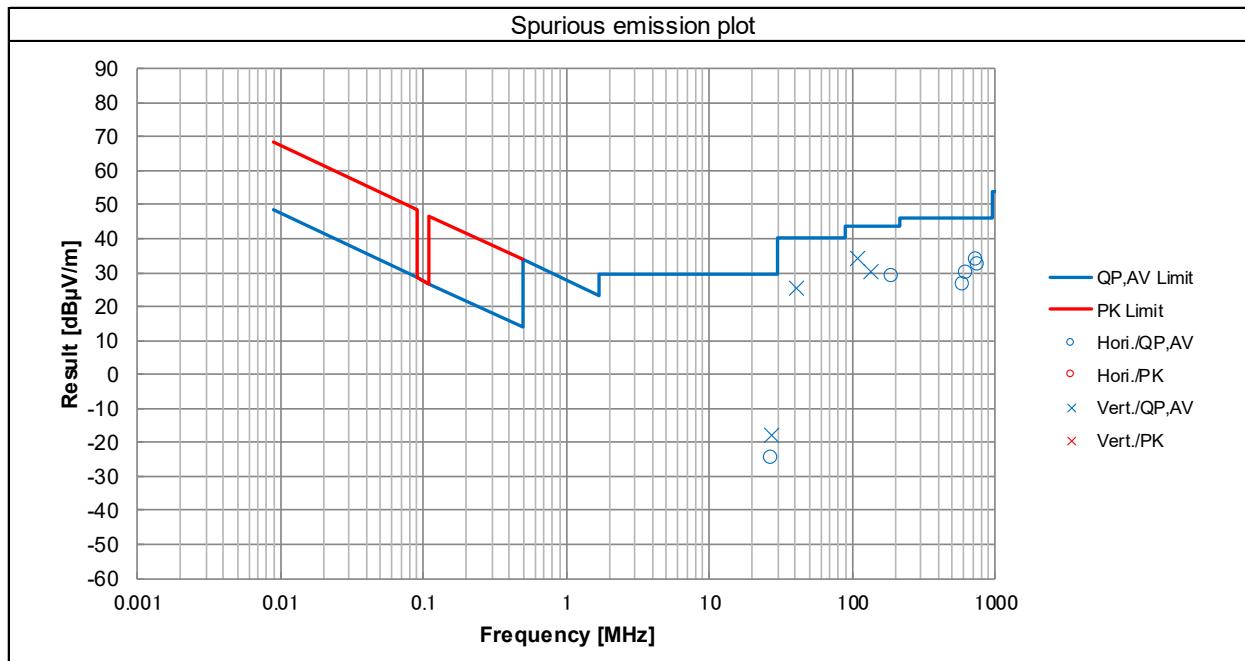
- $F_c \pm 7 \text{ kHz}$ : 13.553 MHz to 13.567 MHz
- $F_c \pm 150 \text{ kHz}$ : 13.410 MHz to 13.710 MHz
- $F_c \pm 450 \text{ kHz}$ : 13.110 MHz to 14.010 MHz

$F_c = 13.56 \text{ MHz}$

## Spurious Emission

Test place Shonan EMC Lab.  
Semi Anechoic Chamber SAC2  
Date January 15, 2025  
Temperature / Humidity 20 deg. C / 38 % RH  
Engineer Takahiro Suzuki  
Mode Tx  
Below 30 MHz (Horizontal: Z-axis, Vertical: Y-axis), without Tag  
Above 30 MHz (Horizontal: X-axis, Vertical: X-axis), with Tag (Pattern 1)

| Polarity | Frequency [MHz] | Detector | Reading [dBuV] | Ant.Fac. [dB/m] | Loss [dB] | Gain [dB] | Distance Factor [dB] | Result [dBuV/m] | Limit [dBuV/m] | Margin [dB] | Height [cm] | Angle [deg.] | Remark       |
|----------|-----------------|----------|----------------|-----------------|-----------|-----------|----------------------|-----------------|----------------|-------------|-------------|--------------|--------------|
| Hori.    | 27.12           | QP       | 33.1           | 7.5             | 6.9       | 32.0      | -40.0                | -24.5           | 29.5           | 54.0        | -           | 178          | * Limit: 30m |
| Hori.    | 189.840         | QP       | 35.4           | 16.4            | 8.9       | 31.8      | 0.0                  | 28.9            | 43.5           | 14.6        | 260         | 220          |              |
| Hori.    | 596.640         | QP       | 30.0           | 19.3            | 8.5       | 31.6      | 0.0                  | 26.2            | 46.0           | 19.8        | 162         | 90           |              |
| Hori.    | 623.760         | QP       | 33.2           | 19.8            | 8.7       | 31.6      | 0.0                  | 30.0            | 46.0           | 16.0        | 120         | 101          |              |
| Hori.    | 732.240         | QP       | 35.3           | 20.9            | 9.2       | 31.5      | 0.0                  | 33.9            | 46.0           | 12.1        | 100         | 70           |              |
| Hori.    | 759.360         | QP       | 33.2           | 21.3            | 9.4       | 31.5      | 0.0                  | 32.4            | 46.0           | 13.6        | 100         | 335          |              |
| Vert.    | 27.12           | QP       | 39.8           | 7.5             | 6.9       | 32.0      | -40.0                | -17.8           | 29.5           | 47.3        | -           | 181          | * Limit: 30m |
| Vert.    | 40.680          | QP       | 35.7           | 14.6            | 7.1       | 31.9      | 0.0                  | 25.6            | 40.0           | 14.5        | 100         | 322          |              |
| Vert.    | 108.480         | QP       | 46.2           | 11.7            | 8.0       | 31.9      | 0.0                  | 34.0            | 43.5           | 9.5         | 100         | 175          |              |
| Vert.    | 135.600         | QP       | 39.4           | 14.2            | 8.4       | 31.9      | 0.0                  | 30.1            | 43.5           | 13.4        | 100         | 252          |              |



Result = Reading + Ant Factor + Loss (Cable+ATT+ΔAF(above 30 MHz)) - Gain(Amprifier) + Distance factor(below 30 MHz)

\* Other frequency noises omitted in this report were not seen or have enough margin (more than 20 dB).

\* Carrier level (Result at 3 m): Hor= 56.8 dBuV/m, Ver= 65.8 dBuV/m

**Radiated Spurious Emission**  
**(Plot data, Worst case for Spurious Emission)**

Test place Shonan EMC Lab.  
Semi Anechoic Chamber SAC2  
Date January 15, 2025  
Temperature / Humidity 20 deg. C / 38 % RH  
Engineer Takahiro Suzuki  
Mode Tx  
Below 30 MHz (Horizontal: Z-axis, Vertical: Y-axis), without Tag  
Above 30 MHz (Horizontal: X-axis, Vertical: X-axis), with Tag (Pattern 1)




\*These plots data contains sufficient number to show the trend of characteristic features for EUT.

## 20 dB Bandwidth and 99% Occupied Bandwidth

Test place Shonan EMC Lab.  
Shielded Room No.5  
Date January 16, 2025  
Temperature / Humidity 24 deg. C / 40 % RH  
Engineer Hiromasa Sato  
Mode Tx, with Tag (Pattern 1)

| FREQ<br>[MHz] | 20dB Bandwidth<br>[kHz] | 99% Occupied Bandwidth<br>[kHz] |
|---------------|-------------------------|---------------------------------|
| 13.56         | 5.687                   | 24.2030                         |



Since the transmitter signal is CW-like it is impractical to use a RBW setting of 1 – 5 % of the emission bandwidth since the emission bandwidth will be proportional to the RBW.

## Frequency Tolerance

Test place Shonan EMC Lab.  
Shielded Room No.5  
Date January 16, 2025  
Temperature / Humidity 24 deg. C / 40 % RH  
Engineer Hiromasa Sato  
Mode Tx, without Tag

| Temp.<br>[deg. C] | Test condition<br>Voltage<br>[V] | Tested<br>timing | Measured<br>frequency<br>[MHz] | Frequency<br>error<br>[MHz] | Result   |       | Limit<br>[+/- %] |
|-------------------|----------------------------------|------------------|--------------------------------|-----------------------------|----------|-------|------------------|
|                   |                                  |                  |                                |                             | [%]      | [ppm] |                  |
| 50                | 7.1                              | Power on         | 13.560363                      | 0.000363                    | 0.00268  | 26.8  | 0.01             |
|                   |                                  | + 2 min.         | 13.560007                      | 0.000007                    | 0.00005  | 0.5   | 0.01             |
|                   |                                  | + 5 min.         | 13.560006                      | 0.000006                    | 0.00004  | 0.4   | 0.01             |
|                   |                                  | + 10 min.        | 13.560080                      | 0.000080                    | 0.00059  | 5.9   | 0.01             |
| 40                | 7.1                              | Power on         | 13.560052                      | 0.000052                    | 0.00039  | 3.9   | 0.01             |
|                   |                                  | + 2 min.         | 13.560027                      | 0.000027                    | 0.00020  | 2.0   | 0.01             |
|                   |                                  | + 5 min.         | 13.560020                      | 0.000020                    | 0.00015  | 1.5   | 0.01             |
|                   |                                  | + 10 min.        | 13.559949                      | -0.000051                   | -0.00038 | -3.8  | 0.01             |
| 30                | 7.1                              | Power on         | 13.559990                      | -0.000010                   | -0.00008 | -0.8  | 0.01             |
|                   |                                  | + 2 min.         | 13.560126                      | 0.000126                    | 0.00093  | 9.3   | 0.01             |
|                   |                                  | + 5 min.         | 13.560054                      | 0.000054                    | 0.00040  | 4.0   | 0.01             |
|                   |                                  | + 10 min.        | 13.560135                      | 0.000135                    | 0.00100  | 10.0  | 0.01             |
| 20                | 7.1                              | Power on         | 13.560138                      | 0.000138                    | 0.00102  | 10.2  | 0.01             |
|                   |                                  | + 2 min.         | 13.560097                      | 0.000097                    | 0.00072  | 7.2   | 0.01             |
|                   |                                  | + 5 min.         | 13.560097                      | 0.000097                    | 0.00071  | 7.1   | 0.01             |
|                   |                                  | + 10 min.        | 13.560096                      | 0.000096                    | 0.00071  | 7.1   | 0.01             |
| 20                | 6<br>(7.1V -15%)                 | Power on         | 13.560051                      | 0.000051                    | 0.00037  | 3.7   | 0.01             |
|                   |                                  | + 2 min.         | 13.560104                      | 0.000104                    | 0.00076  | 7.6   | 0.01             |
|                   |                                  | + 5 min.         | 13.559987                      | -0.000013                   | -0.00010 | -1.0  | 0.01             |
|                   |                                  | + 10 min.        | 13.559887                      | -0.000113                   | -0.00083 | -8.3  | 0.01             |
| 20                | 8.2<br>(7.1V +15%)               | Power on         | 13.560059                      | 0.000059                    | 0.00043  | 4.3   | 0.01             |
|                   |                                  | + 2 min.         | 13.560202                      | 0.000202                    | 0.00149  | 14.9  | 0.01             |
|                   |                                  | + 5 min.         | 13.560111                      | 0.000111                    | 0.00082  | 8.2   | 0.01             |
|                   |                                  | + 10 min.        | 13.560145                      | 0.000145                    | 0.00107  | 10.7  | 0.01             |
| 10                | 7.1                              | Power on         | 13.560098                      | 0.000098                    | 0.00073  | 7.3   | 0.01             |
|                   |                                  | + 2 min.         | 13.560071                      | 0.000071                    | 0.00053  | 5.3   | 0.01             |
|                   |                                  | + 5 min.         | 13.560152                      | 0.000152                    | 0.00112  | 11.2  | 0.01             |
|                   |                                  | + 10 min.        | 13.560149                      | 0.000149                    | 0.00110  | 11.0  | 0.01             |
| 0                 | 7.1                              | Power on         | 13.560215                      | 0.000215                    | 0.00158  | 15.8  | 0.01             |
|                   |                                  | + 2 min.         | 13.560144                      | 0.000144                    | 0.00106  | 10.6  | 0.01             |
|                   |                                  | + 5 min.         | 13.560191                      | 0.000191                    | 0.00141  | 14.1  | 0.01             |
|                   |                                  | + 10 min.        | 13.560188                      | 0.000188                    | 0.00139  | 13.9  | 0.01             |
| -10               | 7.1                              | Power on         | 13.560150                      | 0.000150                    | 0.00111  | 11.1  | 0.01             |
|                   |                                  | + 2 min.         | 13.560217                      | 0.000217                    | 0.00160  | 16.0  | 0.01             |
|                   |                                  | + 5 min.         | 13.560019                      | 0.000019                    | 0.00014  | 1.4   | 0.01             |
|                   |                                  | + 10 min.        | 13.560215                      | 0.000215                    | 0.00158  | 15.8  | 0.01             |
| -20               | 7.1                              | Power on         | 13.560193                      | 0.000193                    | 0.00142  | 14.2  | 0.01             |
|                   |                                  | + 2 min.         | 13.560206                      | 0.000206                    | 0.00152  | 15.2  | 0.01             |
|                   |                                  | + 5 min.         | 13.560157                      | 0.000157                    | 0.00116  | 11.6  | 0.01             |
|                   |                                  | + 10 min.        | 13.560159                      | 0.000159                    | 0.00117  | 11.7  | 0.01             |

Calculation formula:

Frequency error = Measured frequency - Tested frequency

Result [%] = Frequency error / Tested frequency \* 100

Tested frequency:

13.56 MHz

Limit (+/-):

0.01 %

(+/- 100 ppm)

\*The test was begun from 50 deg. C and the temperature was lowered each 10 deg. C.

## APPENDIX 2: Test instruments

### Test Equipment

| Test Item | LIMS ID | Description               | Manufacturer                                       | Model                                            | Serial                  | Last Calibration Date | Cal Int |
|-----------|---------|---------------------------|----------------------------------------------------|--------------------------------------------------|-------------------------|-----------------------|---------|
| BW,FT     | 201085  | Constant Climate Cabinet  | Espec                                              | LHU-124                                          | 1013000486              | 2024/10/11            | 12      |
| BW,FT     | 146178  | Search coil               | Langer                                             | RF-R 400-1                                       | 02-0634                 | -                     | -       |
| BW,FT     | 235604  | Spectrum Analyzer         | Keysight Technologies Inc                          | E4440A                                           | MY45300743              | 2024/05/23            | 12      |
| BW,FT     | 175822  | Thermo-Hygrometer         | CUSTOM. Inc                                        | CTH-201                                          | -                       | 2024/08/11            | 12      |
| RE        | 150921  | Attenuator                | JFW                                                | 50HF-003N                                        | -                       | 2024/02/13            | 12      |
| RE        | 167095  | Attenuator                | JFW                                                | 50HF-006N                                        | -                       | 2024/02/13            | 12      |
| RE        | 167096  | Attenuator                | JFW                                                | 50HF-006N                                        | -                       | 2024/02/13            | 12      |
| RE        | 145022  | Biconical Antenna         | Schwarzbeck Mess-Elektronik OHG                    | BBA9106                                          | 91032665                | 2024/04/10            | 12      |
| RE        | 194601  | Coaxial Cable             | Fujikura                                           | 5D-2W                                            | -                       | 2024/11/21            | 12      |
| RE        | 144975  | Coaxial Cable&RF Selector | Fujikura/Fujikura/Suhner/Suhner/Suhner/Suhner/TOYO | 8D2W/12DSFA/141PE/141PE/141PE/141PE/141PE/NS4906 | -/0901-270(RF Selector) | 2024/04/10            | 12      |
| RE        | 144976  | Coaxial Cable&RF Selector | Fujikura/Fujikura/Suhner/Suhner/Suhner/Suhner/TOYO | 8D2W/12DSFA/141PE/141PE/141PE/141PE/141PE/NS4906 | -/0901-270(RF Selector) | 2024/04/10            | 12      |
| RE        | 145793  | Digital Hitester          | HIOKI E.E. CORPORATION                             | 3805-50                                          | 80997819                | 2024/05/29            | 12      |
| RE        | 170932  | EMI Software              | TSJ (Techno Science Japan)                         | TEPTO-DV3(RE,CE,ME,PE)                           | Ver 3.1.0546            | -                     | -       |
| RE        | 236418  | Logperiodic Antenna       | Schwarzbeck Mess-Elektronik OHG                    | VULP 9118 B                                      | 00975                   | 2024/07/03            | 12      |
| RE        | 245074  | Loop(Active) Antenna      | ETS-Lindgren                                       | 6502                                             | 00262458                | 2024/04/02            | 12      |
| RE        | 145004  | Pre Amplifier             | SONOMA                                             | 310N                                             | 290212                  | 2024/02/13            | 12      |
| RE        | 145563  | Semi-Anechoic Chamber     | TDK                                                | SAEC-02(NSA)                                     | 2                       | 2024/03/22            | 12      |
| RE        | 207277  | Tape Measure              | ASKUL                                              | -                                                | -                       | -                     | -       |
| RE        | 150463  | Test Receiver             | Rohde & Schwarz                                    | ESW44                                            | 101581                  | 2024/08/06            | 12      |
| RE        | 235739  | Thermo-Hygrometer         | CUSTOM. Inc                                        | CTH-230                                          | -                       | 2024/04/28            | 12      |

**\*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.**

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

#### Test item:

**RE: Radiated Emission**

**FT: Frequency Tolerance**

**BW: 20 dB bandwidth & 99 % Occupied bandwidth**