

RF EXPOSURE TEST REPORT

Test Report No. 15951622S-R1

Customer	AISIN CORPORATION
Description of EUT	UWB/NFC Module
Model Number of EUT	AP10
FCC ID	PENAP10
Test Regulation	FCC 47CFR 2.1093
Test Result	Complied
Issue Date	September 11, 2025
Remarks	-

Representative Test Engineer

Akihiro Oda
Engineer

Approved By

Toyokazu Imamura
Engineer

CERTIFICATE 1266.03

- The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.
 There is no testing item of "Non-accreditation".

Report Cover Page -Form-ULID-003532 (DCS:13-EM-F0429) Issue# 24.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
It does not cover administrative issues such as Manual or non-Radio test related Requirements.
(if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For any test report referred in this report, the latest version (including any revisions) is always referred to.
- If the latest version is a revision, it replaces the previous version. See the table below for revisions and versions.

REVISION HISTORY

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	15951622S	August 19, 2025	-
-R1	15951622S-R1	September 11, 2025	<ul style="list-style-type: none">● P5 Section 3.1 Added to *1) Simultaneous data refers to report No. "03 FCC RF Exposure_DXX,UWB".● P8 Section 4.2 Left 3.5 mm -> 3 mm● P10 Section 6.2 13 MHz 55.5 -> 55.0● P11 Section 7.2 Result: Simultaneous transmission is not existed on this host device alone -> Result: Since the EUT has single operation mode(RFID), single source and single antenna, simultaneous transmission is not existed.● P12 APPENDIX 1 Left side view 3.5 -> 3● P16 Appendix 2-1 Permittivity: 53.1 -> 52.9

CONTENTS

SECTION 1: Customer information.....	4
SECTION 2: Equipment under test (EUT).....	4
2.1 Identification of EUT	4
2.2 Product Description	4
SECTION 3: Maximum SAR, test specification and procedures.....	5
3.1 Summary of Maximum SAR Value	5
3.2 RF Exposure limit.....	5
3.3 Test specification	6
3.4 Published RF exposure KDB procedures and companion procedures	6
3.5 Additions or Deviations to Standards.....	6
3.6 Test Location	6
3.7 SAR measurement procedure	7
3.7.1 SAR Definition	7
3.7.2 Full SAR measurement procedure	7
SECTION 4: Operation of EUT during testing	8
4.1 Operating modes for testing	8
4.2 RF exposure conditions	8
SECTION 5: Confirmation before testing	9
5.1 Test reference measurement	9
SECTION 6: Tissue simulating liquid	10
6.1 Liquid measurement	10
6.2 Target of tissue simulating liquid	10
6.3 Simulated tissue composition	10
SECTION 7: Measurement results	11
7.1 Measurement results	11
7.1.1 SAR measurement results	11
7.2 Simultaneous transmission (including Co-location) evaluation	11
7.3 SAR Measurement Variability (Repeated measurement requirement)	11
7.4 Device holder perturbation verification (SAR)	11
7.5 Requirements on the Uncertainty Evaluation	11
7.5.1 SAR Uncertainty Evaluation	11
APPENDIX 1: Photographs of test setup	12
Appendix 1-1: Photograph of EUT and antenna location	12
Appendix 1-2: EUT and support equipment	13
Appendix 1-3: Photograph of test setup	14
APPENDIX 2: Measurement data	16
Appendix 2-1: Plot(s) of Worst Reported Exposure Value	16
APPENDIX 3: Test instruments	17
Appendix 3-1: Equipment used	17
Appendix 3-2: Measurement System	18
Appendix 3-2-1: SAR Measurement System	18
Appendix 3-2-2: SAR system check results	21
Appendix 3-2-3: SAR system check measurement data	21
Appendix 3-3: Measurement Uncertainty	22
Appendix 3-4: Calibration certificates.....	23

SECTION 1: Customer information

Company Name	AISIN CORPORATION
Address	2-1, Asahi-machi, Kariya, Aichi, 448-8650, JAPAN
Telephone Number	+81-50-3151-4983
Contact Person	Koji Nomura

The information provided from the customer is as follows;

- Customer name, Company name, Type of Equipment, Model No., FCC ID on the cover and other relevant pages.
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT)
- SECTION 4: Operation of EUT during testing
- APPENDIX 1: The part of Antenna location information, Description of EUT and Support Equipment

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Description	UWB/NFC Module
Model Number	AP10
Serial Number	Refer to Appendix 1-2
Rating	DC 7.1 V
Condition	Production prototype (Not for sale: The sample is equivalent to mass-produced items.)
Receipt Date	January 14, 2025(*. No modification by the Lab.)
Test Date	August 12, 2025

2.2 Product Description

General Specification

SAR Category Identified	Portable device (*. Since EUT may contact to a localized human body during wireless operation, the partial-body SAR (1 g) shall be observed.)
SAR Accessory	None, There are no accessories that would affect SAR test.

Radio specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

RFID

Equipment Type	Transceiver
Frequency of Operation	13.56 MHz
Type of Modulation	ASK (NFC-A)

SECTION 3: Maximum SAR, test specification and procedures

3.1 Summary of Maximum SAR Value

Mode / Band	Highest Reported SAR [W/kg]					
	Partial-body (Flat phantom, Separation 0 mm)		Head (SAM phantom)		Limbs	
	Type	Type	Type	Type	Type	Type
RFID	1g	0.05	1g	N/A	10g	N/A
Simultaneous Transmission	1g	*1)	1g	N/A	10g	N/A

*1) Simultaneous data refers to report No. "03 FCC RF Exposure_DXX_UWB".

Limit applied	Partial body, Head: 1.6 W/kg (SAR1 g), Limbs: 4.0 W/kg (SAR10 g), for general population/uncontrolled exposure is specified in FCC 47 CFR 2.1093.	
Test Procedure	Refer to Section 3.2 in this report. In addition: UL Japan's SAR measurement work procedures No. ULID-003599 (13-EM-W0430). UL Japan's SAR measurement equipment calibration and inspection work procedures No. ULID-003598 (13-EM-W0429).	

Conclusion

The SAR test values found for the device are separately below the maximum limit of 1.6 W/kg.

3.2 RF Exposure limit

For the purpose of this Regulation, FCC has adopted the SAR and RF exposure limits established in FCC 47 CFR 1.1310: Radiofrequency radiation exposure limits.

SAR Exposure Limit (100 kHz to 6 GHz)		
	General Population / Uncontrolled Exposure (*1)	Occupational / Controlled Exposure (*2)
Whole Body	0.08 W/kg	0.4 W/kg
Partial-Body, Head or Body (1 g)	1.6 W/kg	8 W/kg
Hands / Feet / Ankle / Wrist (10 g)	4 W/kg	20 W/kg

*1. General Population / Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.
Exposure may be averaged over a time period not to exceed 30 minutes to determine compliance with general population/uncontrolled SAR limits.

*2. Occupational / Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).
Exposure may be averaged over a time period not to exceed 6 minutes to determine compliance with occupational/controlled SAR limits.

The limit applied to this device which tested in this report is:

Limit of Spatial Peak SAR (Partial-Body)	1.6 W/kg	General population / uncontrolled exposure
--	----------	--

3.3 Test specification

47 CFR 2.1093	Radio frequency radiation exposure evaluation: portable devices
---------------	---

3.4 Published RF exposure KDB procedures and companion procedures

Name of documents	Title	Version
ANSI/IEEE C95.1	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz	1992
IEEE Std. 1528	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.	2013
KDB 447498 D04	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices	v01
KDB 447498 D03	OET Bulletin 65, Supplement C Cross-Reference	v01
KDB 865664 D01	SAR measurement 100 MHz to 6 GHz	v01r04
KDB 865664 D02	RF exposure compliance reporting and documentation considerations	v01r02
IEC/IEEE 62209-1528 (*1)	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz). - Secs. 6.1, 7.4.2, 7.7 - f above 4 MHz SAR provisions (TCB workshop, 2022-10)	2020

*1. The measurement uncertainty budget is suggested by IEC/IEEE 62209-1528:2020 and determined by SPEAG, DASY8 Manual. Refer to Appendix3-3.

In addition to the above, the following information was used:

TCB workshop 2016-10	(RF Exposure Procedure) Bluetooth Duty Factor.
TCB workshop 2016-10	(RF Exposure Procedure) DUT Holder Perturbations; When the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation verification is required for each antenna, using the highest SAR configuration among all applicable frequency bands.
TCB workshop 2017-05	(RF Exposure Procedure) Broadband liquid above 3 GHz. Allow application of 10% tissue dielectric tolerance correction in KDB 865664 D01.
TCB workshop 2018-04	(RF Exposure Procedure) Allow Expedited Area Scans. (including mother scans)
TCB workshop 2019-04	(RF Exposure Procedure) 802.11ax SAR Testing
TCB workshop 2019-04	(RF Exposure Procedure) Tissue Simulating Liquids (TSL) FCC has permitted the use of single head tissue simulating liquid specified in IEC 62209 for all SAR tests. If FCC parameters are used, 5 % tolerance. If IEC parameters, 10 %.
TCB workshop 2019-04	(RF Exposure Policy) SAR Zoom-Scan Update.
TCB workshop 2021-04	(RF Exposure Procedure) Application of specific phantoms. (case by case, PAG)
TCB workshop 2025-04	(RF Exposure Procedure) Interim RF Exposure Testing Guidance.

3.5 Additions or Deviations to Standards

No addition, exclusion nor deviation has been made from the test standard.

3.6 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number: +81 463 50 6400

*. A2LA Certificate Number: 1266.03 (FCC Test Firm Registration Number: 626366, ISED Lab Company Number: 2973D / CAB identifier: JP0001)

Place	Width × Depth × Height (m)	Size of reference ground plane (m) / horizontal conducting plane
No.7 Shielded room(SR7)	2.76 × 3.76 × 2.4	2.76 × 3.76

3.7 SAR measurement procedure

3.7.1 SAR Definition

SAR is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). The equation description is shown in right.	$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho * dV} \right)$
SAR measurement can be related to the electrical field in the tissue by the equation in right. SAR is expressed in units of Watts per kilogram (W/kg). Where : σ = conductivity of the tissue (S/m), ρ = mass density of the tissue (kg/m ³), E = RMS electric field strength in tissue (V/m)	$SAR = \frac{\sigma E ^2}{\rho}$

3.7.2 Full SAR measurement procedure

The SAR measurement procedures are as follows: (1) The EUT is installed engineering testing software that provides continuous transmitting signal; (2) Measure output power through RF cable and power meter; (3) Set scan area, grid size and other setting on the DASY software; (4) Find out the largest SAR result on these testing positions of each band; (5) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg.

- * According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:
Step 1) Power measurement -> SAR: Step 2) Power reference measurement -> Step 3) Area scan -> Step 4) Zoom scan -> Step 5) Power drift measurement

Step 1: Confirmation before SAR testing

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. This SAR reference power measurement was proceeded with the lowest data rate (which may have the higher time-based average power typically) on each operation mode and on the lower, middle (or near middle), upper and specified channels. The power measurement result is shown in Section 5.

- * The EUT transmission power used SAR test was verified that it was not more than 2 dB lower than the maximum tune-up tolerance limit. (KDB447498 D04 (v01))

Step 2: Power reference measurement

Measured psSAR value at a peak location of Fast Area Scan was used as a reference value for assessing the power drop.

Step 3: Area Scan

(Scan parameters: KDB 865664 D01, IEC/IEEE 62209-1528 (>6GHz))
Area Scans are used to determine the peak location of the measured field before doing a finer measurement around the hotspot. Peak location can be found accurately even on coarse grids using the advanced interpolation routines implemented in DASY8. Area Scans measure a two dimensional volume covering the full device under test area. DASY8 uses Fast Averaged SAR algorithm to compute the 1 g and 10 g of simulated tissue from the Area Scan. DASY8 can either manually or automatically generates Area Scan grid settings based on device dimensions. In automatically case, the scan extent is defined by the device dimensions plus additional 15mm on each side. In manually, the scan covered the entire dimension of the antenna of EUT.

Step 4: Zoom Scan and post-processing

(Scan parameters: KDB 865664 D01, IEC/IEEE 62209-1528 (> 6GHz))
Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

- * A minimum volume of 30 mm (x) x 30 mm (y) x 30 mm (z) was assessed by "Ratio step" method (*1), for 2.4 GHz band. (Step XY: 5 mm)
 - * A minimum volume of 24 mm (x) x 24 mm (y) x 24 mm (z) was assessed by "Ratio step" method (*1), for 5 GHz band (Step XY: 4 mm).
 - * A minimum volume of 24 mm (x) x 24 mm (y) x 24 mm (z) was assessed by "Ratio step" method (*1), for 6 GHz band (Step XY: 3.4 mm).
- When the SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are proceeded for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. If the zoom scan measured as defined above complies with both of the following criteria, or if the peak spatial-average SAR is below 0.1 W/kg, no additional measurements are needed.
- * The smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal grid steps in both x and y directions and recorded.
 - * The ratio of the SAR at the second measured point to the SAR at the closest measured point at the x-y location of the measured maximum SAR value shall be at least 30 % and recorded.

		$f \leq 3 \text{ GHz}$	$3 \text{ GHz} < f \leq 10 \text{ GHz}$
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		$5 \text{ mm} \pm 1 \text{ mm}$	$1/2 \times \delta \times \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location		$5^\circ \pm 1^\circ$ (flat phantom only) $30^\circ \pm 1^\circ$ (other phantom)	$5^\circ \pm 1^\circ$ (flat phantom only) $30^\circ \pm 1^\circ$ (other phantom)
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$		$\leq 2 \text{ GHz} : \leq 15 \text{ mm},$ $2 \text{~} 3 \text{ GHz} : \leq 12 \text{ mm}$	$3 \text{~} 4 \text{ GHz} : \leq 12 \text{ mm},$ $4 \text{~} 6 \text{ GHz} : \leq 10 \text{ mm}$ $> 6 \text{ GHz} : \leq 60/f \text{ mm, or half of the corresponding zoom scan length, whichever is smaller.}$
Maximum zoom scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.
Maximum zoom scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$		$\leq 2 \text{ GHz} : \leq 8 \text{ mm},$ $2 \text{~} 3 \text{ GHz} : \leq 5 \text{ mm } (*1)$	$3 \text{~} 4 \text{ GHz} : \leq 5 \text{ mm } (*1),$ $4 \text{~} 6 \text{ GHz} : \leq 4 \text{ mm } (*1)$ $> 6 \text{ GHz} : \leq 24/f \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{zoom}}(n)$	$\leq 5 \text{ mm}$	$3 \text{~} 4 \text{ GHz} : \leq 4 \text{ mm},$ $4 \text{~} 5 \text{ GHz} : \leq 3 \text{ mm},$ $5 \text{~} 6 \text{ GHz} : \leq 2 \text{ mm}$ $> 6 \text{ GHz} : \leq 10/(f-1) \text{ mm}$
		$\leq 4 \text{ mm}$	$3 \text{~} 4 \text{ GHz} : \leq 3 \text{ mm},$ $4 \text{~} 5 \text{ GHz} : \leq 2.5 \text{ mm},$ $5 \text{~} 6 \text{ GHz} : \leq 2 \text{ mm}$ $> 6 \text{ GHz} : \leq 12/f \text{ mm}$
Minimum zoom scan volume	x, y, z	$\leq 1.5 \times \Delta z_{\text{zoom}}(n-1) \text{ mm}$	
		$\geq 30 \text{ mm}$	$3 \text{~} 4 \text{ GHz} : \geq 28 \text{ mm},$ $4 \text{~} 5 \text{ GHz} : \geq 25 \text{ mm},$ $5 \text{~} 6 \text{ GHz} : \geq 22 \text{ mm}$ $> 6 \text{ GHz} : \geq 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 ($\leq 6 \text{ GHz}$) and IEC/IEEE 62209-1528 ($\leq 10 \text{ GHz}$) for details.

*1. When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. (KDB 865664 D01)

* The scan parameters of $> 6 \text{ GHz}$ is defined IEC/IEEE 62209-1528.

Step 5: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same project. The Power Drift Measurement gives the SAR difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. It was checked that the power drift was within $\pm 5\%$ (0.21 dB) in single SAR project run. The verification of power drift during the SAR test shown in SAR plot data of APPENDIX 2.

- * The most of SAR tests were conservatively performed with test separation distance 0 mm. The phantom bottom thickness is approx. 2mm. Therefore, the distance between the SAR probe tip to the surface of test device which is touched the bottom surface of the phantom is approx. 2.4 mm. Typical distance from probe tip to probe's dipole centers is 1 mm.

- *1. "Ratio step" method parameters used; the first measurement point: "1.4 mm" from the phantom surface, the initial z grid separation: "1.5 mm", subsequent graded grid ratio: "1.5" for 2.4 GHz band and the initial z grid separation: "1.4 mm", subsequent graded grid ratio: "1.4" for above 5 GHz. These parameters comply with the requirement of KDB 865664 D01 and recommended by Schmid & Partner Engineering AG (DASY8 manual).

SECTION 4: Operation of EUT during testing

4.1 Operating modes for testing

The test modes and frequencies used in the SAR test are shown in the table of power measurement results in Section 5 with markings. The control software in the power measurement and SAR test are shown in the following.

Controlled software	Test name	Software name	Version	Date	Storage location / Remarks
	SAR	ELECTRICAL KEY, L	00001	2024-12-10	Memory of EUT

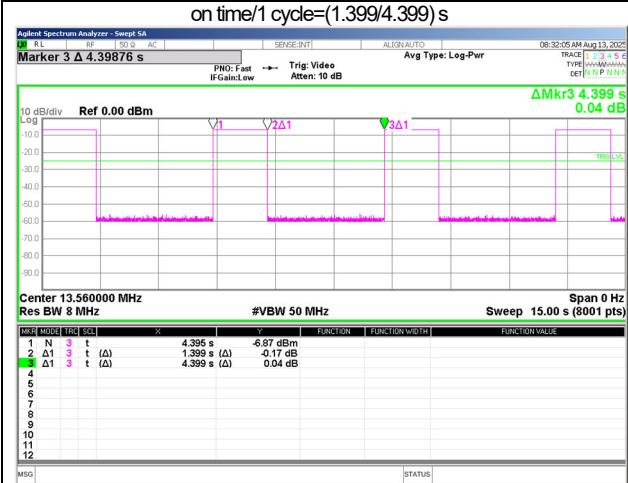
4.2 RF exposure conditions

Antenna separation distances of each test setup plan is shown as follows.

Front	3 mm
Left	3 mm
Right	3 mm
Back	7.5 mm
Top	5 mm
Bottom	78.5 mm

Below is the test reduction procedure for KDB.*.SAR test reduction considerations

(KDB 447498 D04(V01), General RF Exposure Guidance) Testing of other required channels within the operating mode of a frequency band is not required when the reported 1g or 10g SAR for the mid-band or highest output power channel is:


- (1) $\leq 0.8 \text{ W/kg}$ for 1g, or 2.0 W/kg for 10g respectively, when the transmission band is $\leq 100 \text{ MHz}$
- (2) $\leq 0.6 \text{ W/kg}$ for 1g, or 1.5 W/kg for 10g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3) $\leq 0.4 \text{ W/kg}$ for 1g, or 1.0 W/kg for 10g respectively, when the transmission band is $\geq 200 \text{ MHz}$

The SAR has been measured with highest transmission duty factor supported by the test mode tool for WLAN and/or Bluetooth. When the transmission duty factor could not be 100%, the reported SAR will be scaled to 100% transmission duty factor to determine compliance. When SAR is not measured at the maximum power level allowed for production unit, the measured SAR will be scaled to the maximum tune-up tolerance limit to determine compliance.

SECTION 5: Confirmation before testing

5.1 Test reference measurement

- Date measured: 2025-08-12 / Measured by: A. Oda / Place: Preparation room of No. 7 shield room. (23 deg.C./ 36 %RH)
- Chart of the worst duty cycle for each operation mode in right and in follows.

The time of NFC poll phase(on time) is fixed and this is the normal usage.

SECTION 6: Tissue simulating liquid

6.1 Liquid measurement

<SPC: System performance check>

Date measured	Freq. [MHz]	Liq. type	Target	Permittivity (*.measured)					Target	Conductivity (*.calculated)(*3)					ΔSAR	ΔSAR correct required	e',e''	Liq. Temp.	Liq. depth	Liquid usage conditions (*1)
(YYYY-MM-DD)			e'	e'	Δe'	Limit	e''	Δend	σ_tgt	σ	Δσ	Limit	Δend	1g	10g		Lerp ?	Temp. [deg.C]	depth [mm]	
2025-08-12	13	Head	55.00	53.08	-3.5	±10	1012.3700	begin	0.750	0.732	-2.4	±10	begin	-1.2	-1.2	Yes	No	22.7	150	begin

<SAR test>

Date measured	Freq. [MHz]	Liq. type	Target	Permittivity (*.measured)					Target	Conductivity (*.calculated)(*3)					ΔSAR	ΔSAR correct required	e',e''	Liq. Temp.	Liq. depth	Liquid usage conditions (*1)
(YYYY-MM-DD)			e'	e'	Δe'	Limit	e''	Δend	σ_tgt	σ	Δσ	Limit	Δend	1g	10g		Lerp ?	Temp. [deg.C]	depth [mm]	
2025-08-12	13.56	Head	55.00	52.93	-3.8	±10	970.5940	begin	0.750	0.732	-2.4	±10	begin	-1.1	-1.1	Yes	No	22.7	150	Measured before SAR test.

*. Lerp: Linear interpolation, Ref.: reference

*1. Definition of Δend, "begin": there are measured before SAR test; "< 24 hrs.": SAR test has ended within 24 hours from the liquid parameter measured; "< 48 hrs.": Since SAR test has ended within 48 hours from the liquid parameter measured and a change in the liquid temperature was within 1 degree, liquid parameters measured on first day were used on next day continuously; "> 48 hrs.": Since the SAR test series took longer than 48 hours, the liquid parameters were measured on every 48 hours period and on the date which was end of test series. Since the difference of liquid parameters between the beginning and next measurement was smaller than 5%, the liquid parameters measured in beginning were used until end of each test series.

Calculating formula: $\Delta\text{end} = (\text{end}(\text{when}, >48 \text{ hrs.}) \% - (\text{dielectric properties, end of test series}) / (\text{dielectric properties, beginning of test series}) - 1) \times 100$

*2. The electrical properties of the liquid at <6 GHz were controlled to within 5 % even with a limit of 10 %.

*3. (Calculating formula) $\sigma = 2 \times \pi \times f \times \epsilon_0 \times \epsilon''$, where $\epsilon_0 = 8.854 \text{ E-12 } \text{ F/m}$, ϵ'' : Imaginary permittivity [-], f: Frequency [Hz]

*. The electrical characteristics of the SAR test frequencies were measured using DAK software, DAK-3.5 and a network analyzer with the 2.4 GHz band swept at 1 MHz and the 5 GHz and 6 GHz bands swept at 5 MHz. In this way, the electrical characteristics of all test frequencies were measured directly at the individual frequencies without interpolation.

*. The target values refers to clause 6.2 of this report.

*. The coefficients in below are parameters defined in IEC/IEEE 62209-1528.

(Calculating formula, 4 MHz-6 GHz): $\Delta\text{SAR}(1\text{g}) = C\sigma \times \Delta\epsilon + C\sigma \times \Delta\sigma$, $C\sigma = 7.854\text{E-4} \times f^3 + 9.402\text{E-3} \times f^2 - 2.742\text{E-2} \times f - 0.2026 / C\sigma = 9.804\text{E-3} \times f^3 - 8.661\text{E-2} \times f^2 + 2.981\text{E-2} \times f + 0.7829$

$\Delta\text{SAR}(10\text{g}) = C\sigma \times \Delta\epsilon + C\sigma \times \Delta\sigma$, $C\sigma = 3.456 \times 10^{-3} \times f^3 - 3.531 \times 10^{-2} \times f^2 + 7.675 \times 10^{-2} \times f - 0.1860 / C\sigma = 4.479 \times 10^{-3} \times f^3 - 1.586 \times 10^{-2} \times f^2 - 0.1972 \times f + 0.7717$

(Calculating formula, above 6GHz): $\Delta\text{SAR}(1\text{g}) = C\sigma \times \Delta\epsilon + C\sigma \times \Delta\sigma$, $C\sigma = -0.198 / C\sigma = 0$, $\Delta\text{SAR}(10\text{g}) = C\sigma \times \Delta\epsilon + C\sigma \times \Delta\sigma$, $C\sigma = -0.250 / C\sigma = 0$

Since the ΔSAR values of the tested liquid had shown positive, the measured SAR was not ΔSAR corrected by the conservative reason.

(Calculating formula): ΔSAR corrected SAR (W/kg) = (Measured SAR (W/kg)) $\times (100 - (\Delta\text{SAR}(\%))) / 100$

6.2 Target of tissue simulating liquid

Frequency (MHz)	Real part of the complex relative permittivity, ϵ_r	Conductivity σ(S/m)	Value of Interpolated (I/P), Extrapolated (E/P)	Frequency (MHz)	Real part of the complex relative permittivity, ϵ_r	Conductivity σ(S/m)	Value of Interpolated (I/P), Extrapolated (E/P)			
13	55.0	0.75	(E/P)	5400	35.8	4.86	(I/P)	NOTE: For convenience, permittivity and conductivity values are linearly interpolated for frequencies that are not a part of the original data from Drossos et al (*a). The italicized values ("Value of Interpolated (I/P), Extrapolated (E/P)") were linearly interpolated between the non-italicized (below 5800 MHz) or extrapolated (above 5800 MHz) from the non-italicized values that are immediately above and below these values.		
2000	40.0	1.40	-	5600	35.5	5.07	(I/P)			
2100	39.8	1.49	(I/P)	5800	35.3	5.27	-			
2450	39.2	1.80	-	6000	35.1	5.48	(E/P)			
2600	39.0	1.96	(I/P)	6500	34.5	6.07	(E/P)			
3000	38.5	2.40	-	7000	33.9	6.65	(E/P)			
5000	36.2	4.45	(I/P)	7500	33.3	7.24	(E/P)			
5200	36.0	4.66	(I/P)							

*a. Drossos, A., Santomaa, V., and Kuster, N., "The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range of 300-3000 MHz," IEEE Trans. Microwave Theory Tech., Nov. 2000, vol. 48, no. 11, pp. 1988-1995.

6.3 Simulated tissue composition

Used	<input type="checkbox"/>	<input checked="" type="checkbox"/>
Model No. / Product No.	HBBL600-10000V6 / SL AAH U16 BC	
Frequency [MHz]	600 to 10000	
	Water: > 77	
	Ethanol: < 5.2	
Ingredient: Mixture [%]	5 < Non-ionic detergents < 50	
	Sodium acids, petroleum, sodium salts: < 3	
	Hexylene Glycol: < 3	
	Alkoxylated alcohol (>C ₁₆): < 2	
	Potassium hydroxide: < 1	
	Pyridine-2-thiol 1-oxide: < 0.1	
Tolerance specification [%]	± 10	
Manufacture	Schmid & Partner Engineering AG	

SECTION 7: Measurement results

7.1 Measurement results

7.1.1 SAR measurement results

RF Exposure condition	Setup position	Gap [mm]	Source power	Tx mode mode	Freq. [MHz]	Duty [%]	Duty S/F [-]	SAR1g [W/kg] (*b)			Limit [W/kg]	Setup photo#, Appx.1-3	Data plot#, Appx.2
								Meas.	Δsar(*a)	Report			
Body	Front	0	DC	RFID	13.56	31.8	3.14	0.015	N/A	0.047	1.6	S1	D1
Body	Left	0	DC	RFID	13.56	31.8	3.14	0.004	N/A	0.013	1.6	S2	-
Body	Right	0	DC	RFID	13.56	31.8	3.14	0.007	N/A	0.022	1.6	S3	-
Body	Back	0	DC	RFID	13.56	31.8	3.14	0.005	N/A	0.016	1.6	S4	-
Body	Top	0	DC	RFID	13.56	31.8	3.14	0.001	N/A	0.003	1.6	S5	-
Body	Bottom	0	DC	RFID	13.56	31.8	3.14	N/D	N/A	N/A	1.6	S6	-

- *: The highest Reported (scaled) SAR on each antenna are marked with yellow marker (xxx), respectively.
- *: Ant: Antenna; D/R: Data rate; Freq.: Frequency; Duty: Duty cycle; D.S/F: Duty Scaling Factor; Pmax: Max power (Tune-up tolerance power); Pmeas.: Measurement conducted power; P.S/F: Power Scaling Factor; Meas.: Measurement; Appx: Appendix; Gap: It is separation distance between the device surface and the bottom outer surface of phantom; N/D: Not Detected.
- *: All SAR tests were conservatively performed with test separation distance 0 mm.
- *: During SAR test, the radiated power is always monitored by Spectrum Analyzer or/and MAIA.

- *a. Since the calculated ΔSAR values of the tested liquid had shown positive correction even when error was more than 5 %, the measured SAR was not converted by ΔSAR correction.
Calculating formula: ΔSAR corrected SAR (W/kg) = (Measured SAR (W/kg)) × (100 - (ΔSAR(%))) / 100, when ΔSAR shows negative sign.
- *b. Calculating formula: Reported (Scaled) SAR (W/kg) = (Measured SAR (W/kg)) × (Duty scaled factor) × (Power scaled factor)
where, Duty scaled factor (D.S/F) [-] = 100% / (measured duty cycle, %), Power scaled factor (P.S/F) [-] = 10 ^ ((Max.power, dBm) - (Measured power, dBm)) / 10)

7.2 Simultaneous transmission (including Co-location) evaluation

Result: Since the EUT has single operation mode(RFID), single source and single antenna, simultaneous transmission is not existed.

7.3 SAR Measurement Variability (Repeated measurement requirement)

Result: Since all the measured SAR are less than 0.8 W/kg (SAR(1g)), the repeated measurement is not required.

7.4 Device holder perturbation verification (SAR)

Result: Since all the reported (scaled) SAR are less than 1.2 W/kg (SAR(1g)), the additional "device holder perturbation verification" measurement is not considered.

7.5 Requirements on the Uncertainty Evaluation

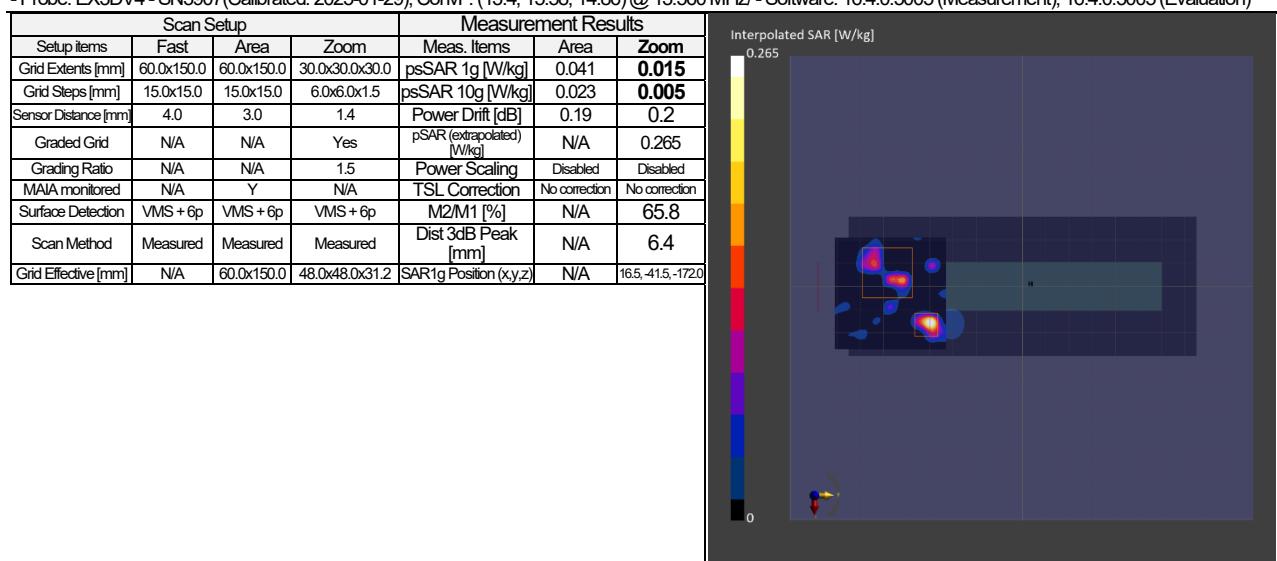
7.5.1 SAR Uncertainty Evaluation

Decision Rule

Uncertainty is not included.

Uncertainty is included.

- *: The highest measured SAR(1 g) is less than 1.5 W/kg and the highest measured SAR(10 g) is less than 3.75 W/kg. Thus, per KDB Publication 865664 D01, the extended measurement uncertainty analysis described in IEEE 1528 is not required. The uncertainty (k=2) of SAR measurement for 13 MHz is smaller than 30 %.


APPENDIX 2: Measurement data

Appendix 2-1: Plot(s) of Worst Reported Exposure Value

Plot D1:

Mode: RFID CW (UID: 0 (CW)) ; Frequency: 13.560 MHz ; Test Distance: 0.00 mm
TSL parameters used: HBBL4-250V3 ; $f = 13.560$ MHz; Conductivity: 0.732 S/m; Permittivity: 52.9

DASY8 Configuration: - Electronics: DAE4 - SN626 (Calibrated: 2025-01-13) / - Phantom: ELI V8.0 (20deg probe tilt) ; Serial: 2161. ; Phantom section: Flat - Probe: EX3DV4 - SN3907 (Calibrated: 2025-01-29); ConvF: (13.4, 15.58, 14.86) @ 13.560 MHz - Software: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evaluation)

Remarks: *. Order No.: 15951622 ; *. Date tested: 2025-08-12 ; Tested by: A. Oda; Tested location: UL Japan, Shonan EMC Lab. No.7 shielded room

*. Liquid temperature: 22.7 deg.C. ± 0.5 deg.C. (22.7 deg.C., in check); Ambient: (22~24) deg.C. / (50~70) %RH; *. Red cubic: big=SAR(10g) / small=SAR(1g)

*. Project file name-Measurement Group: 250812-15951622.d8sar- 1-8/12,front

APPENDIX 3: Test instruments

Appendix 3-1: Equipment used

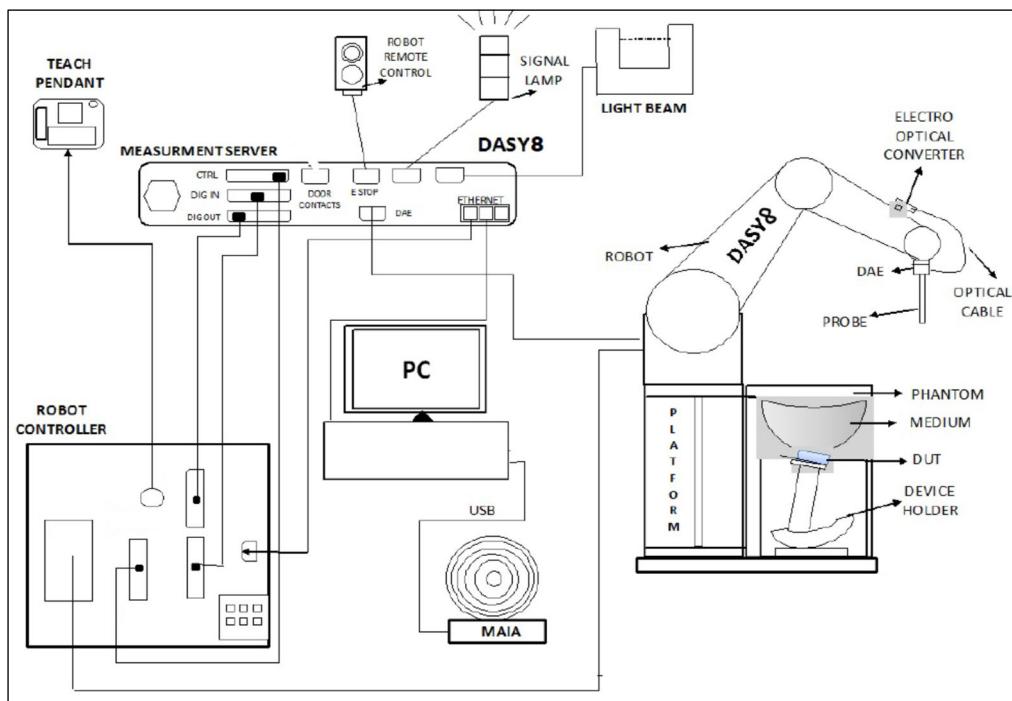
Test Name	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Interval (Month)
SAR	259562	0.1 mol/L Sodium Chloride Solution(N/10)	Kanto Chemical Co., Inc.	37834-08	-	-	-
SAR	224032	6-axis Robot	Schmid&Partner Engineering AG	TX2-60L spe	F/22/0033789/A/001	2025/08/05	12
SAR	144882	Attenuator	Weinschel - API Technologies Corp	24-10-34	BY5927	2024/12/17	12
SAR	226051	Confined Loop Antenna	Schmid & Partner Engineering AG	CLA13	1025	2025/06/19	12
SAR	224031	DASY8 Module SAR/APD soft	Schmid&Partner Engineering AG	ver.16.4.0.5005	9-2506F07D ver.16.4.0.5005	-	-
SAR	224020	DASY8 PC	Hewlett Packard	HP Z4 G4 Workstation	CZC1198G21	-	-
SAR	144944	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	626	2025/01/13	12
SAR	145596	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	2025/08/05	12
SAR	144886	Dielectric assessment kit soft	Schmid&Partner Engineering AG	DAK ver.3.0.6.14	9-0EE103A4 ver.3.0.6.14	-	-
SAR	201968	Digital thermomoter	HANNA	Checktemp-4	A01310946111	2024/08/10	12
SAR	146323	Digital thermometer	LKMelectonic	DTM3000	3171	2024/08/10	12
SAR	145466	Directional Coupler	WERLATONE	C5086-10	81074	2025/04/04	12
SAR	146235	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3907	2025/01/29	12
SAR	224026	Electro-Optical Converter	Schmid & Partner Engineering AG	EOC8-60	1027	-	-
SAR	224034	Flat Phantom	Schmid&Partner Engineering AG	ELIV8.0	2161	2024/08/05	12
SAR	259561	Head Tissue Simulating Liquid	Schmid&Partner Engineering AG	HBBL4-250V3	-	-	-
SAR	145358	Insertion Unit	Rohde & Schwarz	URV5-Z4	828208/010	2024/12/16	12
SAR	147482	Insertion Unit	Rohde & Schwarz	URV5-Z4	828208/009	2024/12/16	12
SAR	224027	Light Beam Unit	Schmid & Partner Engineering AG	LIGHTBEAM-85	2069	-	-
SAR	224025	Measurement Server	Schmid & Partner Engineering AG	DASY8 Measurement Server	10042	2025/01/28	12
SAR	224028	Modulation & Audio Interference Analyser	Schmid & Partner Engineering AG	MAIA	1582	-	-
SAR	225155	Mounting Platform	Schmid & Partner Engineering AG	MP8-E-TX2-60L Basic	-	-	-
SAR	146258	Network Analyzer	Keysight Technologies Inc	8753ES	US39171777	2024/10/10	12
SAR	146089	Power Meter	Rohde & Schwarz	NRVD	829268/039	2025/01/14	12
SAR	146265	Power Meter	Keysight Technologies Inc	E4418B	MY45109229	2024/09/11	12
SAR	146278	Power Sensor	Keysight Technologies Inc	E9304A	MY41498833	2024/09/11	12
SAR	250148	Probe	Schmid & Partner Engineering AG	DAK-12	1197	2025/06/17	12
SAR	145609	RF Power Amplifier	Amplifier Research	75A250	330791	2025/04/11	12
SAR	224023	Robot Controller	Schmid & Partner Engineering AG	CS9spe-TX2-60	F/22/0033789/C/001	-	-
SAR	145087	Ruler(100x50mm,L)	SHINWA	12101	-	2025/02/14	12
SAR	144993	Ruler(300mm)	SHINWA	13134	-	2025/02/14	12
SAR	146424	Search coil	Langer	RF-R 400-1	02-0628	-	-
SAR	145805	Signal Generator	Keysight Technologies Inc	N5181A	MY48181112	2024/09/09	12
SAR	227155	SP2 Manual Control Pendant	Schmid&Partner Engineering AG	D21144507 C	22066839	-	-
SAR	146176	Spectrum Analyzer	ADVANTEST	R3272	101100994	-	-
SAR	146223	Spectrum Analyzer	Keysight Technologies Inc	N9010A-526	MY48031482	2024/10/18	12
SAR	191844	Thermo-Hygrometer	CUSTOM, Inc	CTH-201	-	2024/08/10	12
SAR	144986	Thermo-Hygrometer data logger	SATO KEIRYOKI	SK-L200THlla/SK-LTHlla-2	015246/08169	2024/08/10	12
SAR	238557	Thermo-Hygrometer data logger	A&D Company	AD-5696	990127766	2024/08/10	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.


Test Item:

SAR: Specific Absorption Rate

Appendix 3-2: Measurement System

Appendix 3-2-1: SAR Measurement System

These measurements were performed with the automated near-field scanning system DASY8 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot, which positions the probes with a positional repeatability of better than ± 0.03 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probes EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The DASY8 SAR/APD system for performing compliance tests consist of the following items:

- 6-axis robotic arm (Stäubli TX2-60L) for positioning the probe
- Mounting Platform for keeping the phantoms at a fixed location relative to the robot
- Measurement Server for handling all time-critical tasks, such as measurement data acquisition and supervision of safety features
- EOC (Electrical to Optical Converter) for converting the optical signal from the DAE to electrical before being transmitted to the measurement server
- LB (Light-Beam unit) for probe alignment (measurement of the exact probe length and eccentricity)
- SAR probe (EX3DV4 probes) for measuring the E-field distribution in the phantom. The SAR distribution and the psSAR (peak spatial averaged SAR) are derived from the E-field measurement.
- SAR phantom that represents a physical model with an equivalent human anatomy. A Specific Anthropomorphic Mannequin (SAM) head is usually used for handheld devices, and a Flat phantom is used for body-worn devices.
- TSL (Tissue Simulating Liquid) representing the dielectric properties of used tissue, e.g. Head Simulating Liquid, HSL.
- DAE (Data Acquisition Electronics) for reading the probe voltages and transmitting it to the DASY8 PC.
- Device Holder for positioning the DUT beneath the phantom.
- MAIA (Modulation and Interference Analyzer) for confirming the accuracy of the probe linearization parameters
- Operator PC for running the DASY8 software to define/execute the measurements
- System validation kits for system check/validation purposes.

Platforms

The platform is a multi-phantom support structure made of a wood and epoxy composite ($\epsilon = 3.3$ and loss tangent $\delta < 0.07$). It is a strong and rigid structure transparent to electric and magnetic fields (nonmetallic components).

TX2-60L robot, CS9 robot controller

•Number of Axes : 6 •Repeatability : ± 0.03 mm •Manufacture : Stäubli

DASY8 Measurement server

The DASY8 Measurement Server handles all time critical tasks such as acquisition of measurement data, detection of phantom surface, control of robot movements, supervision of safety features.

•Manufacture : Schmid & Partner Engineering AG

Data Acquisition Electronic (DAE)

The DAE is used to acquire the probe sensor voltages and transfer them to the DASY8 Measurement Server, and to report mechanical surface detection and probe collisions. The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter, and a command decoder with a control logic unit. Transmission to the DASY8 Measurement Server is accomplished through an optical downlink for data and status information and an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts used for mechanical surface detection and probe collision detection.

•Measurement Range : $1 \mu\text{V}$ to $> 200 \text{ mV}$ (2 range settings: 4 mV (low), 400 mV (high))

•Input Offset voltage : $< 1 \mu\text{V}$ (with auto zero) •Input Resistance : $200 \text{ M}\Omega$

•Battery operation : > 10 hrs. (with two rechargeable 9 V battery)

•Manufacture : Schmid & Partner Engineering AG

Electro-Optical Converter (EOC8-TX2-60L)

The Electrical to Optical Converter (EOC8) supports as data exchange between the DAE and the measurement server (optical connector) and data acquisition based on Ethernet protocol.

•Manufacture : Schmid & Partner Engineering AG

Light Beam Switch

The light beam unit allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm, as well as the probe length and the horizontal probe offset, are measured. The software then corrects all movements within the measurement jobs, such that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

•Manufacture : Schmid & Partner Engineering AG

SAR measurement software

•Software version : Refer to Appendix 3-1 (Equipment used) •Manufacture : Schmid & Partner Engineering AG

E-Field Probe

•Model : EX3DV4 •Frequency : 4 MHz to 10 GHz, Linearity: ± 0.2 dB (30 MHz to 10 GHz)

•Construction : Symmetrical design with triangular core, Built-in shielding against static charges, PEEK enclosure material (resistant to organic solvents, e.g., DGBE).

•CF : Refer to calibration data of Appendix. (CF: Conversion Factors)

•Directivity : ± 0.1 dB in TSL (rotation around probe axis) / ± 0.3 dB in TSL (rotation normal to probe axis)

•Dynamic Range : $10 \mu\text{W/g}$ to $> 100 \text{ mW/g}$; Linearity: ± 0.2 dB (noise: typically $< 1 \mu\text{W/g}$)

•Dimension : Overall length: 330 mm (Tip: 20 mm) / Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1mm

•Application : High precision dosimetric measurement in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

•Manufacture : Schmid & Partner Engineering AG

ELI Phantom

The ELI phantom is used for compliance testing of handheld and body-mounted wireless devices in the frequency range of 4 MHz to 10 GHz. ELI is fully compatible with the IEC/IEEE 62209-1528 standard and all known tissue simulating liquids.

ELI V8.0 phantom shell has optimized pretension in the bottom surface during production, such that the phantom is more robust and with reduced sagging.

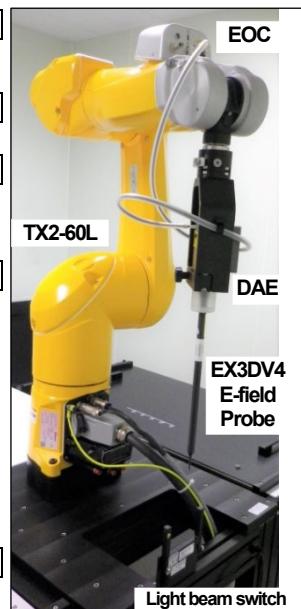
•Model Number : ELI V8.0 flat phantom •Shell Material : Vinyl ester, fiberglass reinforced (VE-GF)

•Shell Thickness : 2.0 ± 0.2 mm (bottom plate) •Dimensions : 600 mm \times 400 mm (oval) (volume: Approx. 30 liters)

•Manufacture : Schmid & Partner Engineering AG

Device Holder, Laptop holder, support material

Accurate device positioning is crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.


Device holder: In combination with the ELI phantom, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Transmitter devices can be easily and accurately positioned. The low-loss dielectric urethane foam was used for the mounting section of device holder.

•Material : Polyoxymethylene (POM) •Manufacture: Schmid & Partner Engineering AG

Laptop holder: A simple but effective and easy-to-use extension for the Mounting Device; facilitates testing of larger devices (e.g., laptops, cameras, etc.) according to IEC/IEEE 62209-1528.

•Material : Polyoxymethylene (POM), PET-G, Foam•Manufacture: Schmid & Partner Engineering AG

Support form: Urethane foam

Data storage and evaluation (post processing)

The uplink signal transmitted by the DUT is measured inside the TSL by the probe, which is accurately positioned at a precisely known distance and with a normal orientation with respect to the phantom surface. The dipole / loop sensors at the probe tips pick up the signal and generate a voltage, which is measured by the voltmeter inside the DAE. The DAE returns digital values, which are converted to an optical signal and transmitted via the EOC to the measurement server. The data is finally transferred to the DASY8 software for further post processing. In addition, the DASY8 software periodically requests a measurement with short-circuited inputs from the DAE to compensate the amplifier offset and drift. This procedure is called DAE zeroing.

The operator has access to the following low level measurement settings:

- the integration time is the voltage acquisition time at each measurement point. It is typically 0.5 s.
- the zeroing period indicates how often the DAE zeroing is performed.

In parallel, the MAIA measures the characteristics of the uplink signal via the air interface and sends this information to the DASY8 software, which compares them to the communication system defined by the operator. A warning is issued if any difference is detected.

The measurement data is now acquired and can be post processed to compute the psSAR1g /8g /10g.

The measured voltages are not directly proportional to SAR and must be linearized. The formulas below are based on [1] (*1).

The measured voltage is first linearized using the (a, b, c, d) set of parameters specific to the communication system and sensor:

$$V_{compi} = U_i + U_i^2 \cdot \frac{10^{10}}{d_{cp_i}}$$

with	V_{compi}	= compensated voltage of channel i (μ V)	$(i = x,y,z)$
	U_i	= input voltage of channel i (μ V)	$(i = x,y,z)$
	d	= PMR factor d (dB)	(Probe parameter)
	d_{cp_i}	= diode compression point of channel i (μ V)	(Probe parameter, $i = x,y,z$)

$$V_{compi \text{ dB}\sqrt{\mu\text{V}}} = 10 \cdot \log_{10}(V_{compi})$$

$$corr_i = a_i \cdot e^{-\left(\frac{b_i - 10 \log_{10}(V_{compi})}{c_i}\right)^2}$$

with	$corr_i$	= correction factor of channel i (dB)	$(i = x,y,z)$
	$V_{compi \text{ dB}\sqrt{\mu\text{V}}}$	= compensated voltage of channel i ($\text{dB}\sqrt{\mu\text{V}}$)	$(i = x,y,z)$
	a_i	= PMR factor a of channel i (dB)	(Probe parameter, $i = x,y,z$)
	b_i	= PMR factor b of channel i ($\text{dB}\sqrt{\mu\text{V}}$)	(Probe parameter, $i = x,y,z$)
	c_i	= PMR factor c of channel i (-)	(Probe parameter, $i = x,y,z$)

The voltage $V_{i \text{ dB}\sqrt{\mu\text{V}}}$ is the linearized voltage in $\text{dB}\sqrt{\mu\text{V}}$:

$$V_{i \text{ dB}\sqrt{\mu\text{V}}} = V_{compi \text{ dB}\sqrt{\mu\text{V}}} - corr_i$$

with	$V_{i \text{ dB}\sqrt{\mu\text{V}}}$	= linearized voltage of channel i ($\text{dB}\sqrt{\mu\text{V}}$)	$(i = x,y,z)$
	$V_{compi \text{ dB}\sqrt{\mu\text{V}}}$	= compensated voltage of channel i ($\text{dB}\sqrt{\mu\text{V}}$)	$(i = x,y,z)$
	$Corr_i$	= PMR factor a of channel i (dB)	$(i = x,y,z)$

Finally, the linearized voltage is converted in μ V:

$$V_i = 10^{\frac{V_{i \text{ dB}\sqrt{\mu\text{V}}}}{10}}$$

with	V_i	= linearized voltage of channel i (μ V)	$(i = x,y,z)$
	$V_{compi \text{ dB}\sqrt{\mu\text{V}}}$	= linearized voltage of channel i ($\text{dB}\sqrt{\mu\text{V}}$)	$(i = x,y,z)$

The Field data for each channel are calculated using the linearized voltage:

$$\text{E-fieldprobes: } E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

with	V_i	= linearized voltage of channel i in μ V	$(i = x,y,z)$
	$Norm_i$	= sensor sensitivity of channel i in μ V/(V/m) ² for E-field Probes	$(i = x,y,z)$
	$ConvF$	= sensitivity enhancement in solution	
	E_i	= electric field strength of channel i in V/m	$(i = x,y,z)$

The RMS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The E-field data value is used to calculate SAR :

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with	SAR	= local specific absorption rate in mW/g
	E_{tot}	= total field strength in V/m
	σ	= conductivity in [Ω/m] or [S/m]
	ρ	= equivalent tissue density in g/cm^3

Note: The resulting linearized voltage is only approximated because the probe UID is used 0 (CW) for the test signal in this test report.

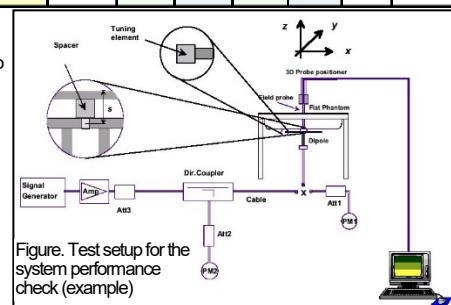
(*1) [1] Jagadish Nadakuduti, Sven Kuehn, Marcel Fehr, Mark Douglas Katja Pokovic and Niels Kuster, "The Effect of Diode Response of electromagnetic Field Probes for the Measurements of Complex Signals." IEEE Transactions on Electromagnetic Compatibility, vol. 54, pp. 1195–1204, Dec. 2012.

Appendix 3-2-2: SAR system check results

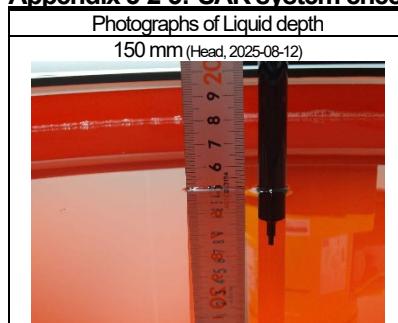
*. Prior to the SAR assessment of EUT, the Daily check was performed to test whether the SAR system was operating within its target of $\pm 10\%$. The Daily check results are in the table below.

Liquid type: Head	Liq.	Δ SAR	P.in	SAR (1g) [W/kg] (*b)						SAR (10g) [W/kg] (*b)						Dev. limit				
				Meas.	1W	Target (*c)	Dev. [%]	Pass	Meas.	1W	Target (*c)	Dev. [%]	Pass	Meas.	1W	Target (*c)	Dev. [%]			
	Date	Freq. [MHz]	Meas. [%]	Cal. [%]	STD	Cal.	STD	?	(*a)	scaled	Cal.	STD	Cal.	STD	?	(*a)				
2025-08-12	13	08-12	-1.2	-1.2	30	0.484	0.49	0.518	0.516	-5.4	-5.0	Pass	0.31	0.314	0.326	0.331	-3.7	-5.1	Pass	± 10

*. Freq.: Frequency, Meas.: Measurement, CAL.: Value of Calibration, STD: Value of Standard, Dev. Deviation.

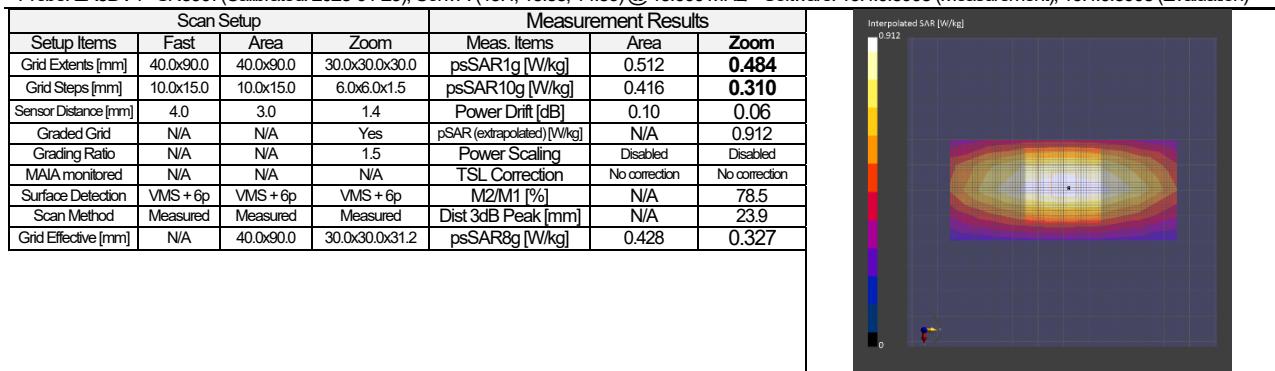

*a. The Measured SAR value is obtained at 1 W.

*b. The measured SAR value of Daily check was compensated for tissue dielectric deviations (Δ SAR) and scaled to 1W of output power in order to compare with the manufacturer's calibration target value which was normalized.


$$\Delta\text{SAR} \text{ corrected SAR (1g) (W/kg)} = (\text{Measured SAR(1g) (W/kg)}) \times (100 - (\Delta\text{SAR1g}(\%))) / 100$$

$$\Delta\text{SAR} \text{ corrected SAR (10g,8g) (W/kg)} = (\text{Measured SAR(10g,8g) (W/kg)}) \times (100 - (\Delta\text{SAR10g}(\%))) / 100$$

*c. The "CAL." target value is a parameter defined in the calibration data.


Appendix 3-2-3: SAR system check measurement data

Dipole: CLA-13 - SN1025 ; Mode: CW(0) ; Frequency: 13.000 MHz ; Test Distance: 0 mm (dipole to liquid) ; Power setting: 30.0 dBm

TSL parameters used: HBBL4-250V3 ; f= 13.000 MHz; Conductivity: 0.732 S/m; Permittivity: 53.1

DASY8 Configuration: - Electronics: DAE4 - SN626(Calibrated:2025-01-13) - Phantom: ELI V8.0 (20deg probe tilt) ; Serial: 2161. ; Phantom section: Flat - Probe: EX3DV4 - SN3907(Calibrated: 2025-01-29); ConvF: (13.4, 15.58, 14.86) @ 13.000 MHz - Software: 16.4.0.5005 (Measurement); 16.4.0.5005 (Evaluation)

Remarks: *. Order No.: 15951622 ; *. Date tested:2025-08-12 ; Tested by: A. Oda; Tested location: UL Japan, Shonan EMC Lab. No.7 shielded room

*. Liquid temperature: 22.5 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); Ambient: (22~24) deg.C. / (50~70) %RH ; *. Red cubic: big=SAR(10g) / small=SAR(1g)

*. Project file name-Measurement Group: 250812-15951622.d8sar- SPC Measurement Group

Appendix 3-3: Measurement Uncertainty

Uncertainty in the measured value of 1 g or 10 g psSAR from a DUT(13 MHz)									
Symbol	Input quantity (source of uncertainty)	Unc. [%]	Dist	Div	$u(x_i) =$ $a(x_i)/q_i$	ci (1 g)	ci (10 g)	$ui(1 g)$ [%]	$ui(10 g)$ [%]
Measurement System Errors									
CF	Probe Calibration	± 13.3	N	2	6.65	1	1	± 6.65	± 6.65
CFdrift	Probe Calibration Drift	± 1.7	R	1.73	0.98	1	1	± 0.98	± 0.98
LIN	Probe Linearity	± 4.7	R	1.73	2.71	1	1	± 2.71	± 2.71
BBS	Broadband Signal	± 0.0	R	1.73	0.00	1	1	± 0.00	± 0.00
ISO	Probe Isotropy	± 7.6	R	1.73	4.39	1	1	± 4.39	± 4.39
DAE	Other Probe+Electronic	± 0.7	N	1	0.70	1	1	± 0.70	± 0.70
AMB	RF Ambient	± 1.8	N	1	1.80	1	1	± 1.80	± 1.80
Δsys	Probe Positioning	± 0.6	N	1	0.63	0.34	0.34	± 0.21	± 0.21
DAT	Data Processing	± 1.2	N	1	1.15	1	1	± 1.15	± 1.15
Phantom and Device Errors									
LIQ(g)	Conductivity (meas.)	± 2.5	N	1	2.50	0.78	0.71	± 1.95	± 1.78
LIQ(T ₀)	Conductivity (temp.)	± 2.7	R	1.73	1.56	0.78	0.71	± 1.22	± 1.11
EPS	Phantom Permittivity	± 14.0	R	1.73	8.08	0.25	0.25	± 2.02	± 2.02
DIS	Distance DUT – TSL	± 2.0	N	1	1.99	2	2	± 3.98	± 3.98
Dxyz	Device Positioning	± 1.0	N	1	1.00	1	1	± 1.00	± 1.00
H	Device Holder	± 3.6	N	1	3.60	1	1	± 3.60	± 3.60
MOD	DUT Modulationm	± 2.4	R	1.73	1.39	1	1	± 1.39	± 1.39
TAS	Time-average SAR	± 0.0	R	1.73	0.00	1	1	± 0.00	± 0.00
RFdrift	DUT drift	± 4.7	N	2	2.35	1	1	± 2.35	± 2.35
VAL	Val Antenna Unc. val	± 0.0	N	1	0.00	1	1	± 0.00	± 0.00
RFin	Unc. Input Power val	± 0.0	R	1.73	0.00	1	1	± 0.00	± 0.00
Correction to the SAR results									
C(ε, σ)	Deviation to Target	± 1.9	N	1	1.90	1	0.84	± 1.90	± 1.60
C(R)	SAR scaling	± 0.0	R	1.73	0.00	1	1	± 0.00	± 0.00
u(ΔSAR)	Combined Uncertainty							± 11.3	± 11.2
U	Expanded Uncertainty							± 22.6	± 22.4
Uncertainty in the system check value of 1 g or 10 g psSAR(13 MHz)									
Symbol	Input quantity (source of uncertainty)	Unc. [%]	Dist	Div	$u(x_i) =$ $a(x_i)/q_i$	ci (1 g)	ci (10 g)	$ui(1 g)$ [%]	$ui(10 g)$ [%]
Measurement System Errors									
CF	Probe Calibration	± 13.3	N	2	6.65	1	1	± 6.65	± 6.65
CFdrift	Probe Calibration Drift	± 1.7	R	1.73	0.98	1	1	± 0.98	± 0.98
LIN	Probe Linearity	± 4.7	R	1.73	2.71	1	1	± 2.71	± 2.71
BBS	Broadband Signal	± 0.0	R	1.73	0.00	1	1	± 0.00	± 0.00
ISO	Probe Isotropy	± 4.7	R	1.73	2.71	1	1	± 2.71	± 2.71
DAE	Other Probe+Electronic	± 0.7	N	1	0.70	1	1	± 0.70	± 0.70
AMB	RF Ambient	± 1.8	N	1	1.80	1	1	± 1.80	± 1.80
Δsys	Probe Positioning	± 0.6	N	1	0.63	0.34	0.34	± 0.21	± 0.21
DAT	Data Processing	± 0.6	N	1	0.58	1	1	± 0.58	± 0.58
Phantom and Device Errors									
LIQ(g)	Conductivity (meas.)	± 2.5	N	1	2.50	0.78	0.71	± 1.95	± 1.78
LIQ(T ₀)	Conductivity (temp.)	± 2.7	R	1.73	1.56	0.78	0.71	± 1.22	± 1.11
EPS	Phantom Permittivity	± 14.0	R	1.73	8.08	0.25	0.25	± 2.02	± 2.02
DIS	Distance DUT – TSL	± 2.0	N	1	1.99	2	2	± 3.98	± 3.98
Dxyz	Device Positioning	± 0.0	N	1	0.00	0	0	± 0.00	± 0.00
H	Device Holder	± 0.0	N	1	0.00	1	1	± 0.00	± 0.00
MOD	DUT Modulationm	± 0.0	R	1.73	0.00	1	1	± 0.00	± 0.00
TAS	Time-average SAR	± 0.0	R	1.73	0.00	1	1	± 0.00	± 0.00
RFdrift	DUT drift	± 2.5	N	2	1.25	1	1	± 1.25	± 1.25
VAL	Val Antenna Unc. val	± 3.2	N	1	3.20	1	1	± 3.20	± 3.20
RFin	Unc. Input Power val	± 1.5	R	1.73	0.84	1	1	± 0.84	± 0.84
Correction to the SAR results									
C(ε, σ)	Deviation to Target	± 1.9	N	1	1.90	1	0.84	± 1.90	± 1.60
C(R)	SAR scaling	± 0.0	R	1.73	0.00	1	1	± 0.00	± 0.00
u(ΔSAR)	Combined Uncertainty							± 10.3	± 10.2
U	Expanded Uncertainty							± 20.5	± 20.3

- *. This uncertainty budget is suggested by IEC/IEEE 62209-1528 and determined by SPEAG, DASY8 Module SAR Manual, 2024-05 (Chapter 6.3, DASY8 Uncertainty Budget for Hand-held/Body-worn Devices, Frequency band: 4 MHz to 300 MHz range).
- *. Table of uncertainties are listed for ISO/IEC 17025.
- *. Although this standard determines only the limit value of uncertainty, there is no applicable rule of uncertainty in this. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

Appendix 3-4: Calibration certificates

LIMS ID	Description	Type/Model	Serial Number	Manufacture
146235	Dosimetric E-Field Probe	EX3DV4	3907	SPEAG

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client **UL Shonan**
Hiratsuka, Japan

Certificate No.

EX-3907_Jan25

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3907

Calibration procedure(s) QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,
QA CAL-25.v8
Calibration procedure for dosimetric E-field probes

Calibration date January 29, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.
Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Calibration Date (Certificate No.)	Sched. Cal.
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Short [S6019i] + Attenuator [S6020i]	SN: L1119	26-Mar-24 (No. 217-04048)	Mar-25
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4	SN: 1301	07-Nov-24 (No. DAE4-1301_Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Sched. Check
ACAP 2020 Calibration Box	SN: L1404	30-Sept-24 (No. Report_ACAP2020E-Cave_20240930s)	Sep-25

Calibrated by	Name: Jeffrey Katzman	Function: Laboratory Technician	Signature:
Approved by	Name: Sven Kühn	Function: Technical Manager	Signature:

Issued: January 29, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}; VR_{x,y,z}: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z} * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 - SN:3907

January 29, 2025

Parameters of Probe: EX3DV4 - SN:3907

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.59	0.64	0.55	$\pm 10.1\%$
DCP (mV) ^B	109.6	107.9	109.2	$\pm 4.7\%$

Calibration Results for Modulation Response

UID	Communication System Name	A dB	B $\text{dB}\sqrt{\mu\text{V}}$	C	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X 0.00	0.00	1.00	0.00	143.7	$\pm 1.2\%$	$\pm 4.7\%$
		Y 0.00	0.00	1.00		126.3		
		Z 0.00	0.00	1.00		135.0		
10352	Pulse Waveform (200Hz, 10%)	X 1.72	61.50	6.91	10.00	60.0	$\pm 3.1\%$	$\pm 9.6\%$
		Y 1.69	61.46	6.95		60.0		
		Z 1.55	60.66	6.36		60.0		
10353	Pulse Waveform (200Hz, 20%)	X 0.86	60.00	5.12	6.99	80.0	$\pm 2.5\%$	$\pm 9.6\%$
		Y 0.83	60.00	5.22		80.0		
		Z 10.00	72.00	9.00		80.0		
10354	Pulse Waveform (200Hz, 40%)	X 0.45	60.00	4.14	3.98	95.0	$\pm 1.9\%$	$\pm 9.6\%$
		Y 8.00	70.00	7.00		95.0		
		Z 2.00	64.00	5.00		95.0		
10355	Pulse Waveform (200Hz, 60%)	X 13.54	148.47	3.74	2.22	120.0	$\pm 1.8\%$	$\pm 9.6\%$
		Y 12.40	151.68	5.91		120.0		
		Z 10.79	156.79	11.12		120.0		
10387	QPSK Waveform, 1 MHz	X 0.49	61.81	11.12	1.00	150.0	$\pm 3.6\%$	$\pm 9.6\%$
		Y 0.52	62.56	11.37		150.0		
		Z 0.48	62.50	11.68		150.0		
10388	QPSK Waveform, 10 MHz	X 1.22	64.57	12.85	0.00	150.0	$\pm 1.2\%$	$\pm 9.6\%$
		Y 1.27	64.89	13.14		150.0		
		Z 1.24	65.30	13.36		150.0		
10396	64-QAM Waveform, 100 kHz	X 1.74	64.56	15.44	3.01	150.0	$\pm 0.9\%$	$\pm 9.6\%$
		Y 1.74	64.75	15.74		150.0		
		Z 1.73	64.83	15.82		150.0		
10399	64-QAM Waveform, 40 MHz	X 2.75	65.95	14.68	0.00	150.0	$\pm 1.6\%$	$\pm 9.6\%$
		Y 2.79	66.00	14.77		150.0		
		Z 2.75	66.16	14.88		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X 3.69	65.77	14.91	0.00	150.0	$\pm 2.8\%$	$\pm 9.6\%$
		Y 3.78	65.82	15.03		150.0		
		Z 3.68	65.86	15.04		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6).

^B Linearization parameter uncertainty for maximum specified field strength.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4 - SN:3907

January 29, 2025

Parameters of Probe: EX3DV4 - SN:3907

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
x	8.7	61.39	31.80	4.51	0.00	4.90	0.62	0.00	1.00
y	9.6	68.24	32.56	4.28	0.00	4.92	0.56	0.00	1.00
z	8.8	61.68	31.91	4.22	0.00	4.90	0.59	0.00	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	30.8°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3–4 mm for an Area Scan job.

EX3DV4 - SN:3907

January 29, 2025

Parameters of Probe: EX3DV4 - SN:3907

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
2450	39.2	1.80	6.81	6.96	6.91	0.31	1.27	±11.0%
5250	35.9	4.71	5.01	5.12	5.08	0.28	1.27	±13.1%
5600	35.5	5.07	4.67	4.77	4.73	0.26	1.27	±13.1%
5800	35.3	5.27	4.56	4.66	4.63	0.25	1.27	±13.1%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10% if SAR correction is applied.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

^H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

EX3DV4 - SN:3907

January 29, 2025

Parameters of Probe: EX3DV4 - SN:3907

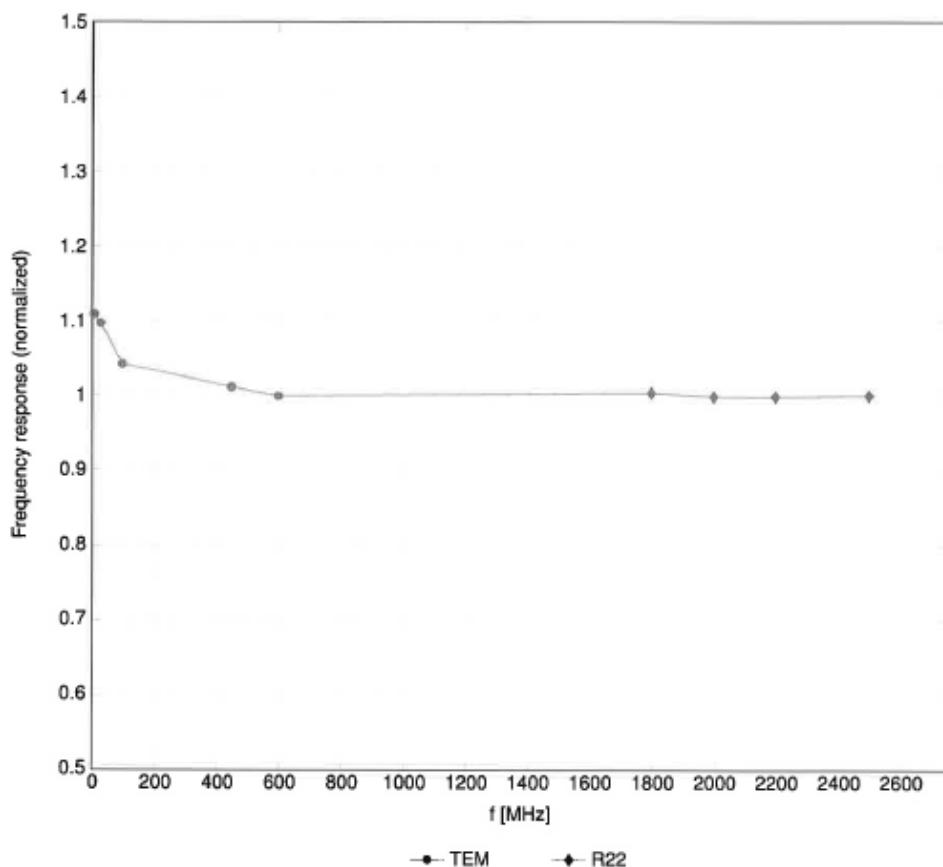
Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
6500	34.5	6.07	4.94	5.05	5.01	0.20	1.27	±18.6%

^C Frequency validity at 6.5 GHz is -600° +700 MHz, and ± 700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to $\pm 10\%$.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz; below $\pm 2\%$ for frequencies between 3–6 GHz; and below $\pm 4\%$ for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

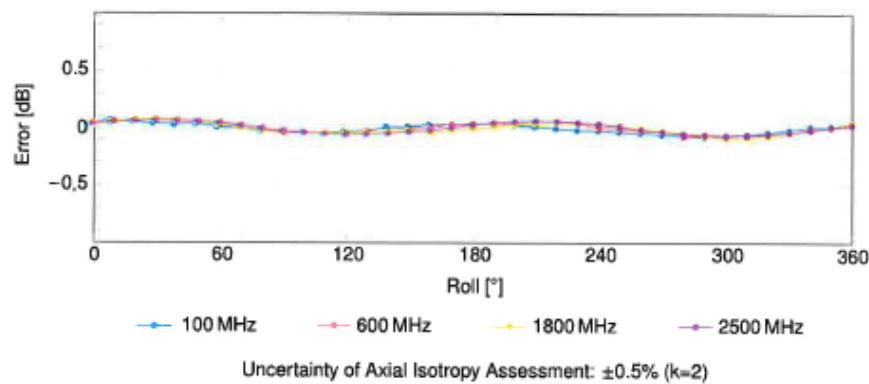
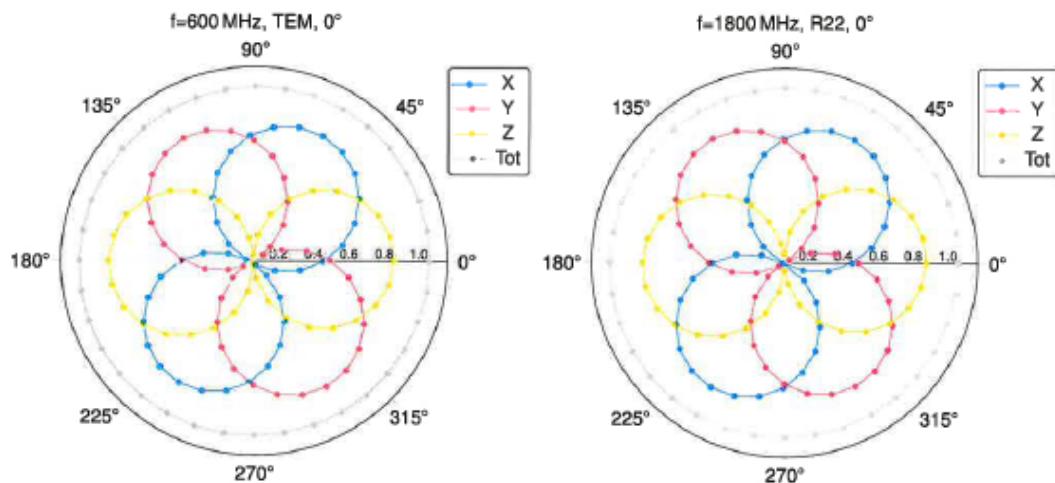

^H The stated uncertainty is the total calibration uncertainty ($k = 2$) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

EX3DV4 - SN:3907

January 29, 2025

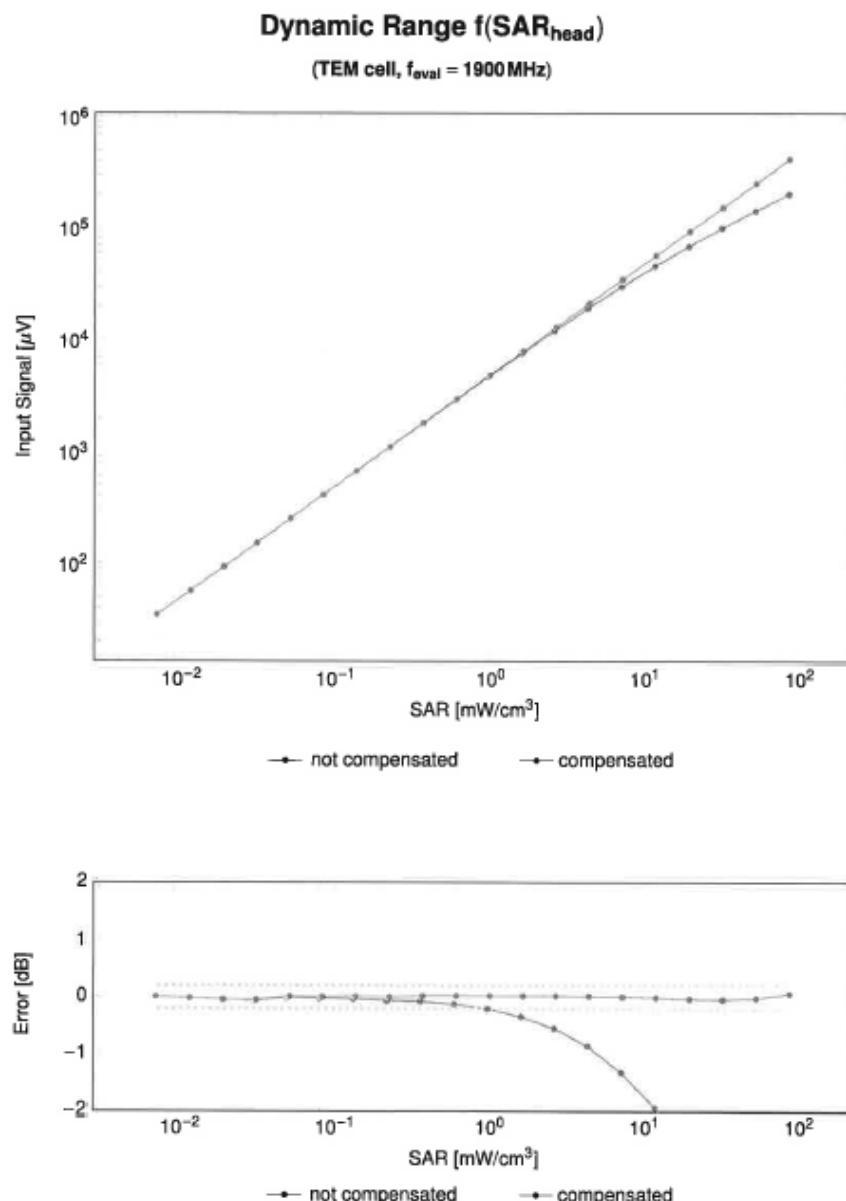
Frequency Response of E-Field

(TEM-Cell:fl110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

EX3DV4 - SN:3907

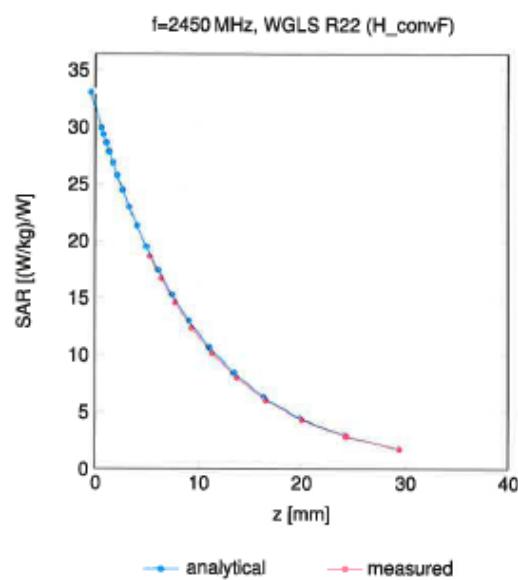

January 29, 2025

Receiving Pattern (ϕ), $\theta = 0^\circ$

EX3DV4 - SN:3907

January 29, 2025

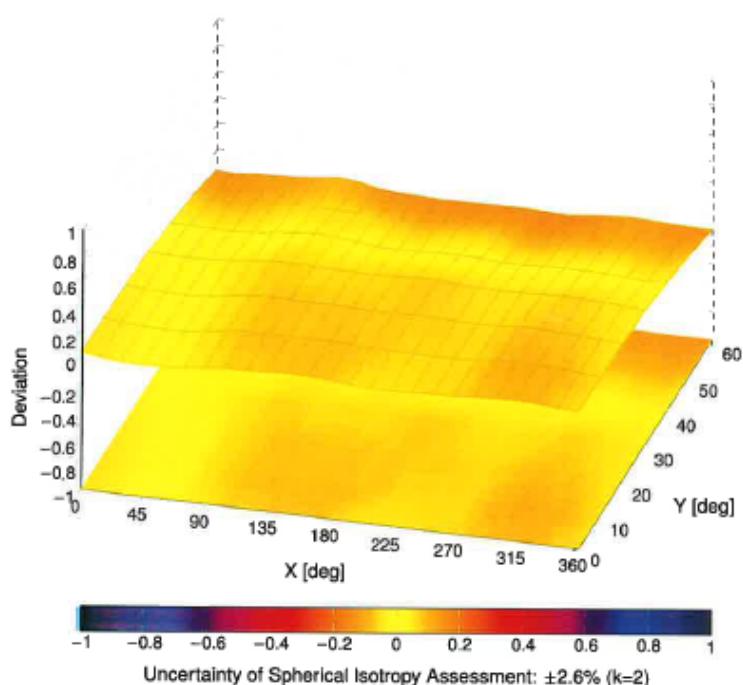
Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)


Certificate No: EX-3907_Jan25

Page 9 of 22

EX3DV4 - SN:3907

January 29, 2025


Conversion Factor Assessment

analytical measured

Deviation from Isotropy in Liquid

Error (ϕ, θ), f = 900 MHz

Certificate No: EX-3907_Jan25

Page 10 of 22

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
0		CW	CW	0.00	±4.7
10010	CAB	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAC	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.99	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSUPA)	WCDMA	3.98	±9.6
10098	CAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.80	±9.6
10103	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6
10105	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	±9.6
10108	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6
10109	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10110	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6
10111	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	±9.6

EX3DV4 - SN:3907

January 29, 2025

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10112	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAE	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAE	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAE	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAE	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAE	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAE	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10141	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10153	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10155	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10169	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10171	AAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10172	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6
10173	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10174	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAJ	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6
10182	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	AAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10185	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186	AAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189	AAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10193	CAE	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	CAE	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
10195	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
10196	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6
10197	CAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6
10198	CAE	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
10219	CAE	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6
10220	CAE	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6
10221	CAE	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6
10222	CAE	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6
10223	CAE	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6
10224	CAE	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6

Certificate No: EX-3907_Jan25

Page 12 of 22

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10225	CAC	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6
10232	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10233	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10234	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6
10235	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10239	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10240	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6
10247	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6
10249	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6
10250	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6
10251	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.80	±9.6
10254	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10255	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
10256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6
10257	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10258	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10259	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	±9.6
10260	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6
10263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6
10264	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10266	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
10270	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
10274	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6
10275	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6
10277	CAA	PHS (QPSK)	PHS	11.81	±9.6
10278	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10280	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.6
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10297	AAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10299	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10301	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)	WiMAX	12.03	±9.6
10302	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	WiMAX	12.57	±9.6
10303	AAA	IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	12.52	±9.6
10304	AAA	IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)	WiMAX	11.86	±9.6
10305	AAA	IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols)	WiMAX	15.24	±9.6
10306	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC, 18 symbols)	WiMAX	14.67	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10307	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols)	WiMAX	14.49	±9.6
10308	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WiMAX	14.46	±9.6
10309	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 18QAM, AMC 2x3, 18 symbols)	WiMAX	14.58	±9.6
10310	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols)	WiMAX	14.57	±9.6
10311	AAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6
10313	AAA	iDEN 1:3	iDEN	10.51	±9.6
10314	AAA	iDEN 1:6	iDEN	13.48	±9.6
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10317	AAE	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200Hz, 80%)	Generic	2.22	±9.6
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAF	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	±9.6
10401	AAF	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6
10402	AAF	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6
10406	AAB	CDMA2000, RC3, SC032, SCH0, Full Rate	CDMA2000	5.22	±9.6
10410	AAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10417	AAD	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preamble)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preamble)	WLAN	8.19	±9.6
10422	AAD	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6
10423	AAD	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10424	AAD	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10425	AAD	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
10426	AAD	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
10427	AAD	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10430	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6
10431	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10432	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	AAB	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10447	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.53	±9.6
10449	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.51	±9.6
10450	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10451	AAB	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6
10453	AAE	Validation (Square, 10 ms, 1ms)	Test	10.00	±9.6
10456	AAD	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	±9.6
10457	AAB	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	±9.6
10460	AAB	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	±9.6
10463	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.58	±9.6
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10465	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10466	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10467	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10468	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10469	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10470	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10471	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10472	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6
10473	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6
10474	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6
10475	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6
10477	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6
10478	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6
10480	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	± 9.6
10481	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	± 9.6
10482	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	± 9.6
10483	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	± 9.6
10484	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	± 9.6
10485	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	± 9.6
10486	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	± 9.6
10487	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	± 9.6
10488	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.70	± 9.6
10489	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	± 9.6
10490	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	± 9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	± 9.6
10494	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6
10495	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	± 9.6
10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6
10497	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	± 9.6
10498	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	± 9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	± 9.6
10500	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	± 9.6
10501	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	± 9.6
10502	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	± 9.6
10503	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	± 9.6
10504	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	± 9.6
10505	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6
10506	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6
10507	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	± 9.6
10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	± 9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	± 9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	± 9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	± 9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6
10513	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	± 9.6
10514	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	± 9.6
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	± 9.6
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	± 9.6
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	± 9.6
10518	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6
10519	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	± 9.6
10520	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	± 9.6
10521	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	± 9.6
10522	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	± 9.6
10523	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.06	± 9.6
10524	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	± 9.6
10525	AAD	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.36	± 9.6
10526	AAD	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.42	± 9.6
10527	AAD	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.21	± 9.6
10528	AAD	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.36	± 9.6
10529	AAD	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.36	± 9.6
10531	AAD	IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.43	± 9.6
10532	AAD	IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	± 9.6
10533	AAD	IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.38	± 9.6
10534	AAD	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.45	± 9.6
10535	AAD	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.45	± 9.6
10536	AAD	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.32	± 9.6
10537	AAD	IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	± 9.6
10538	AAD	IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.54	± 9.6
10540	AAD	IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.39	± 9.6

EX3DV4 - SN:3907

January 29, 2025

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10541	AAD	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.6
10542	AAD	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.6
10543	AAD	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6
10544	AAD	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.47	±9.6
10545	AAD	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
10546	AAD	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6
10547	AAD	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6
10548	AAD	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6
10550	AAD	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.38	±9.6
10551	AAD	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6
10552	AAD	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6
10553	AAD	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.45	±9.6
10554	AAE	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.48	±9.6
10555	AAE	IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
10556	AAE	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.50	±9.6
10557	AAE	IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.52	±9.6
10558	AAE	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.61	±9.6
10560	AAE	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.73	±9.6
10561	AAE	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.56	±9.6
10562	AAE	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.69	±9.6
10563	AAE	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.77	±9.6
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.25	±9.6
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.13	±9.6
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.00	±9.6
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	±9.6
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	±9.6
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.30	±9.6
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.99	±9.6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.99	±9.6
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.98	±9.6
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.98	±9.6
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.59	±9.6
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.60	±9.6
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.70	±9.6
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.49	±9.6
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.36	±9.6
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.76	±9.6
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.35	±9.6
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.67	±9.6
10583	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10584	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10585	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10586	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10587	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10588	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10589	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10590	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10591	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle)	WLAN	8.63	±9.6
10592	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10593	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle)	WLAN	8.64	±9.6
10594	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10595	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6
10596	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle)	WLAN	8.71	±9.6
10597	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle)	WLAN	8.72	±9.6
10598	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle)	WLAN	8.50	±9.6
10599	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.6
10600	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10601	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle)	WLAN	8.82	±9.6
10602	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle)	WLAN	8.94	±9.6
10603	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle)	WLAN	9.03	±9.6
10604	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle)	WLAN	8.76	±9.6
10605	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle)	WLAN	8.97	±9.6
10606	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10607	AAD	IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle)	WLAN	8.64	±9.6
10608	AAD	IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.77	±9.6

Certificate No: EX-3907_Jan25

Page 16 of 22

EX3DV4 - SN:3907

January 29, 2025

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10609	AAD	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6
10610	AAD	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6
10611	AAD	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10612	AAD	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10613	AAD	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.94	±9.6
10614	AAD	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.59	±9.6
10615	AAD	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10616	AAD	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6
10617	AAD	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.81	±9.6
10618	AAD	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.58	±9.6
10619	AAD	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6
10620	AAD	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.87	±9.6
10621	AAD	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10622	AAD	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6
10623	AAD	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10624	AAD	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.96	±9.6
10625	AAD	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6
10626	AAD	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10627	AAD	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10628	AAD	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.6
10629	AAD	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10630	AAD	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6
10631	AAD	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.81	±9.6
10632	AAD	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10633	AAD	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.83	±9.6
10634	AAD	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.80	±9.6
10635	AAD	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6
10636	AAE	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10637	AAE	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10638	AAE	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.86	±9.6
10639	AAE	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10640	AAE	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.6
10641	AAE	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6
10642	AAE	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6
10643	AAE	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.6
10644	AAE	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6
10645	AAE	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle)	WLAN	9.11	±9.6
10646	AAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10647	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6
10652	AAF	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
10653	AAF	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10654	AAF	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
10655	AAF	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAB	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6
10659	AAB	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6
10660	AAB	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6
10661	AAB	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6
10662	AAB	Pulse Waveform (200Hz, 80%)	Test	0.97	±9.6
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6
10671	AAC	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	9.09	±9.6
10672	AAC	IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.57	±9.6
10673	AAC	IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.6
10674	AAC	IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10675	AAC	IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.90	±9.6
10676	AAC	IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10677	AAC	IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.73	±9.6
10678	AAC	IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.78	±9.6
10679	AAC	IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.89	±9.6
10680	AAC	IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.6
10681	AAC	IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6
10682	AAC	IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.6
10683	AAC	IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10684	AAC	IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.26	±9.6
10685	AAC	IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
10686	AAC	IEEE 802.11ax (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.28	±9.6

Certificate No: EX-3907_Jan25

Page 17 of 22

EX3DV4 - SN:3907

January 29, 2025

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10687	AAC	IEEE 802.11ax (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.45	±9.6
10688	AAC	IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle)	WLAN	8.29	±9.6
10689	AAC	IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.55	±9.6
10690	AAC	IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10691	AAC	IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.25	±9.6
10692	AAC	IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle)	WLAN	8.29	±9.6
10693	AAC	IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle)	WLAN	8.25	±9.6
10694	AAC	IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle)	WLAN	8.57	±9.6
10695	AAC	IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.78	±9.6
10696	AAC	IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.91	±9.6
10697	AAC	IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.61	±9.6
10698	AAC	IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.89	±9.6
10699	AAC	IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.82	±9.6
10700	AAC	IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.73	±9.6
10701	AAC	IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.86	±9.6
10702	AAC	IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.70	±9.6
10703	AAC	IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10704	AAC	IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.56	±9.6
10705	AAC	IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle)	WLAN	8.69	±9.6
10706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle)	WLAN	8.66	±9.6
10707	AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.32	±9.6
10708	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
10709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
10710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.29	±9.6
10711	AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.39	±9.6
10712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle)	WLAN	8.67	±9.6
10713	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.33	±9.6
10714	AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.26	±9.6
10715	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.45	±9.6
10716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.30	±9.6
10717	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN	8.48	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle)	WLAN	8.24	±9.6
10719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.87	±9.6
10721	AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.76	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.55	±9.6
10723	AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10724	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.90	±9.6
10725	AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.72	±9.6
10727	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.66	±9.6
10728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle)	WLAN	8.64	±9.6
10730	AAC	IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle)	WLAN	8.67	±9.6
10731	AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10732	AAC	IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.46	±9.6
10733	AAC	IEEE 802.11ax (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.40	±9.6
10734	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.25	±9.6
10735	AAC	IEEE 802.11ax (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.33	±9.6
10736	AAC	IEEE 802.11ax (80 MHz, MCS5, 99pc duty cycle)	WLAN	8.27	±9.6
10737	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.36	±9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.42	±9.6
10739	AAC	IEEE 802.11ax (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.29	±9.6
10740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.46	±9.6
10741	AAC	IEEE 802.11ax (80 MHz, MCS10, 99pc duty cycle)	WLAN	8.40	±9.6
10742	AAC	IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle)	WLAN	8.43	±9.6
10743	AAC	IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.34	±9.6
10744	AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle)	WLAN	9.16	±9.6
10745	AAC	IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.93	±9.6
10746	AAC	IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle)	WLAN	9.11	±9.6
10747	AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle)	WLAN	9.04	±9.6
10748	AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle)	WLAN	8.93	±9.6
10749	AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle)	WLAN	8.90	±9.6
10750	AAC	IEEE 802.11ax (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.79	±9.6
10751	AAC	IEEE 802.11ax (160 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10752	AAC	IEEE 802.11ax (160 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6

Certificate No: EX-3907_Jan25

Page 18 of 22

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle)	WLAN	9.00	±9.6
10754	AAC	IEEE 802.11ax (160 MHz, MCS11, 90pc duty cycle)	WLAN	8.94	±9.6
10755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.64	±9.6
10756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.77	±9.6
10757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.77	±9.6
10758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.69	±9.6
10759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.58	±9.6
10760	AAC	IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle)	WLAN	8.49	±9.6
10761	AAC	IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.58	±9.6
10762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.49	±9.6
10763	AAC	IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.53	±9.6
10764	AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.54	±9.6
10765	AAC	IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle)	WLAN	8.54	±9.6
10766	AAC	IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle)	WLAN	8.51	±9.6
10767	AAG	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	±9.6
10768	AAE	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10769	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10770	AAE	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10771	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10772	AAE	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	±9.6
10773	AAF	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	±9.6
10774	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10775	AAF	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10776	AAE	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10778	AAE	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	±9.6
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	±9.6
10780	AAE	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10781	AAF	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10782	AAE	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	±9.6
10783	AAG	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10784	AAE	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	±9.6
10785	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	±9.6
10786	AAE	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.6
10787	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	±9.6
10788	AAE	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10789	AAF	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.6
10790	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10791	AAG	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	±9.6
10792	AAE	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6
10793	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	±9.6
10794	AAE	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10795	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	±9.6
10796	AAE	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10797	AAF	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	±9.6
10798	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10799	AAF	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10801	AAF	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10802	AAE	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	±9.6
10803	AAF	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10805	AAE	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	±9.6
10809	AAE	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10810	AAF	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10812	AAF	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10817	AAG	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10818	AAE	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6
10820	AAE	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	±9.6
10821	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10822	AAE	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10823	AAF	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	±9.6
10824	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	±9.6
10825	AAF	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10827	AAF	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	±9.6
10828	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	±9.6

EX3DV4 - SN:3907

January 29, 2025

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10829	AAF	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
10830	AAE	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6
10832	AAE	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10834	AAE	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6
10835	AAF	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6
10837	AAF	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	±9.6
10839	AAF	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10840	AAE	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6
10841	AAF	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	±9.6
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	±9.6
10844	AAE	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10846	AAE	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10854	AAE	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10856	AAE	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6
10858	AAE	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10859	AAF	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10860	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10861	AAF	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	±9.6
10863	AAF	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10884	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10865	AAF	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10866	AAF	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10868	AAF	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6
10869	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10870	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	±9.6
10871	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10872	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
10873	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10874	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10875	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10876	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	±9.6
10877	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	±9.6
10878	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10879	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	±9.6
10880	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6
10881	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10882	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
10883	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6
10884	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	±9.6
10885	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10886	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10887	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10888	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	±9.6
10889	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	±9.6
10890	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	±9.6
10891	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	±9.6
10892	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10897	AAE	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±9.6
10898	AAC	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10899	AAB	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10900	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10901	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10902	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10904	AAC	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10906	AAD	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10907	AAE	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	±9.6
10908	AAC	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10909	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	±9.6
10910	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6

Certificate No: EX-3907_Jan25

Page 20 of 22

EX3DV4 - SN:3907

January 29, 2025

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10911	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6
10912	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6
10913	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6
10914	AAC	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	± 9.6
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6
10916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6
10917	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6
10918	AAE	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6
10919	AAC	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	± 9.6
10920	AAB	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6
10921	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6
10922	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	± 9.6
10923	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6
10924	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6
10925	AAC	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	± 9.6
10926	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6
10927	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6
10928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6
10929	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6
10930	AAC	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6
10931	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6
10932	AAC	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6
10933	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6
10934	AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6
10935	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6
10936	AAD	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6
10937	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	± 9.6
10938	AAC	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6
10939	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	± 9.6
10940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	± 9.6
10941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6
10942	AAC	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6
10943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	± 9.6
10944	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	± 9.6
10945	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6
10947	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6
10948	AAC	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.84	± 9.6
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6
10950	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6
10951	AAD	5G NR DL (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	± 9.6
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	± 9.6
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	± 9.6
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	± 9.6
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	± 9.6
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	± 9.6
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	± 9.6
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	± 9.6
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	± 9.6
10960	AAE	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	± 9.6
10961	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	± 9.6
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	± 9.6
10963	AAC	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	± 9.6
10964	AAE	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	± 9.6
10965	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	± 9.6
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.6
10967	AAC	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	± 9.6
10968	AAD	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	± 9.6
10972	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	± 9.6
10973	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	± 9.6
10974	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	± 9.6
10978	AAA	ULLA BDR	ULLA	1.16	± 9.6
10979	AAA	ULLA HDR4	ULLA	8.58	± 9.6
10980	AAA	ULLA HDR8	ULLA	10.32	± 9.6
10981	AAA	ULLA HDRp4	ULLA	3.19	± 9.6
10982	AAA	ULLA HDRp8	ULLA	3.43	± 9.6

Certificate No: EX-3907_Jan25

Page 21 of 22

EX3DV4 - SN:3907

January 29, 2025

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10983	AAC	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAB	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAC	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAB	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAC	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAB	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAC	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAB	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6
11003	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	10.24	±9.6
11004	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	10.73	±9.6
11005	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.70	±9.6
11006	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.55	±9.6
11007	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.46	±9.6
11008	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.51	±9.6
11009	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.76	±9.6
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.95	±9.6
11011	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.96	±9.6
11012	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.68	±9.6
11013	AAB	IEEE 802.11be (320 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
11014	AAB	IEEE 802.11be (320 MHz, MCS2, 99pc duty cycle)	WLAN	8.45	±9.6
11015	AAB	IEEE 802.11be (320 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
11016	AAB	IEEE 802.11be (320 MHz, MCS4, 99pc duty cycle)	WLAN	8.44	±9.6
11017	AAB	IEEE 802.11be (320 MHz, MCS5, 99pc duty cycle)	WLAN	8.41	±9.6
11018	AAB	IEEE 802.11be (320 MHz, MCS6, 99pc duty cycle)	WLAN	8.40	±9.6
11019	AAB	IEEE 802.11be (320 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
11020	AAB	IEEE 802.11be (320 MHz, MCS8, 99pc duty cycle)	WLAN	8.27	±9.6
11021	AAB	IEEE 802.11be (320 MHz, MCS9, 99pc duty cycle)	WLAN	8.46	±9.6
11022	AAB	IEEE 802.11be (320 MHz, MCS10, 99pc duty cycle)	WLAN	8.36	±9.6
11023	AAB	IEEE 802.11be (320 MHz, MCS11, 99pc duty cycle)	WLAN	8.09	±9.6
11024	AAB	IEEE 802.11be (320 MHz, MCS12, 99pc duty cycle)	WLAN	8.42	±9.6
11025	AAB	IEEE 802.11be (320 MHz, MCS13, 99pc duty cycle)	WLAN	8.37	±9.6
11026	AAB	IEEE 802.11be (320 MHz, MCS0, 99pc duty cycle)	WLAN	8.39	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client **UL Shonan**
Hiratsuka, Japan

Certificate No. **EX-3907_Feb25**

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3907

Calibration procedure(s) QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,
QA CAL-25.v8
Calibration procedure for dosimetric E-field probes

Calibration date February 20, 2025 (Additional Conversion Factors)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Calibration Date (Certificate No.)	Sched. Cal.
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Short [S6019i] + Attenuator [S6020i]	SN: L1119	26-Mar-24 (No. 217-04048)	Mar-25
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4	SN: 1301	07-Nov-24 (No. DAE4-1301_Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Sched. Check
ACAP 2020 Calibration Box	SN: L1404	30-Sept-24 (No. Report_ACAP2020E-Cave_20240930s)	Sep-25

Calibrated by	Name Aidonia Georgiadou	Function Laboratory Technician	Signature
Approved by	Name Niels Kuster	Function Quality Manager	Signature

Issued: February 20, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

EX3DV4 - SN:3907

February 20, 2025 (Additional Conversion Factors)

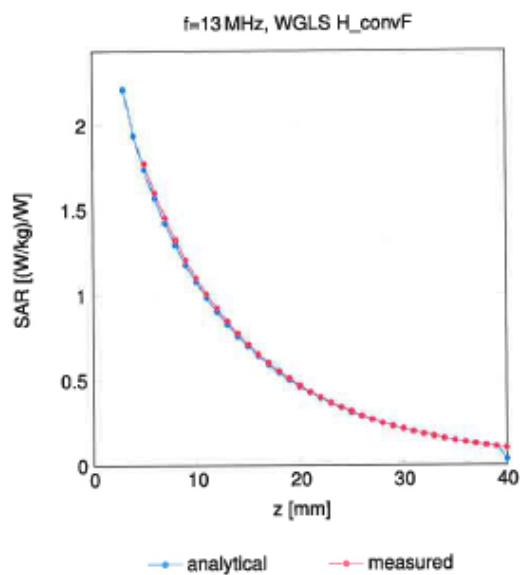
Parameters of Probe: EX3DV4 - SN:3907

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
13	55.0	0.75	13.40	15.58	14.86	0.00	1.25	±13.3%

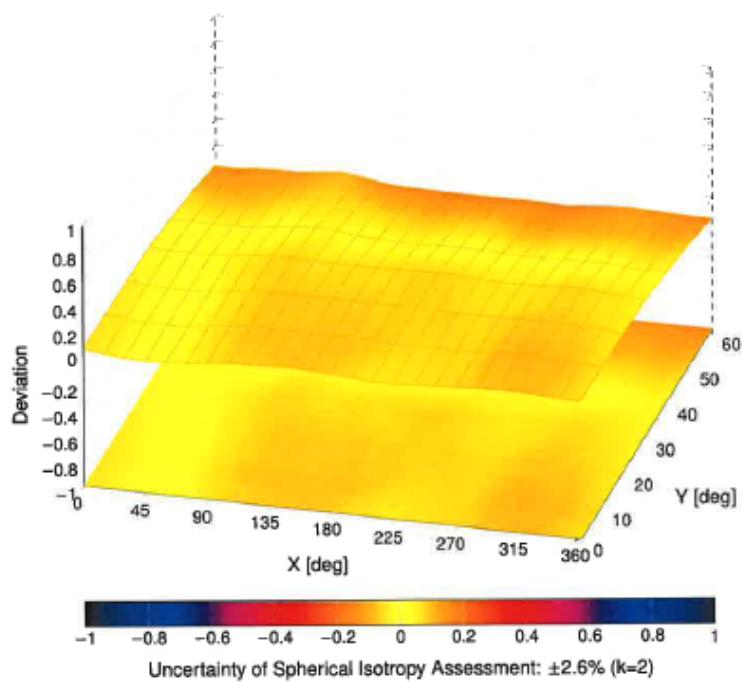
^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10% if SAR correction is applied.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

^H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528-2020.

EX3DV4 - SN:3907


February 20, 2025 (Additional Conversion Factors)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ) , $f = 900\text{ MHz}$

LIMS ID	Description	Type/Model	Serial Number	Manufacture
226051	Confined Loop Antenna	CLA13	1025	SPEAG

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client **UL Japan Head Office**
Mie, Japan

Certificate No. **CLA13-1025_Jun25**

CALIBRATION CERTIFICATE

Object **CLA13 - SN: 1025**

Calibration procedure(s) **QA CAL-15.v11**
Calibration Procedure for SAR Validation Sources below 700 MHz

Calibration date: **June 19, 2025**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-25 (No. 217-04289)	Mar-26
Power sensor NRP-Z91	SN: 103245	26-Mar-25 (No. 217-04289)	Mar-26
Reference 20 dB Attenuator	SN: CC2552 (20x)	26-Mar-25 (No. 217-04284)	Mar-26
3.5mm mismatch combination	SN: L1152	24-Mar-25 (No. 217-04293)	Mar-26
Reference Probe EX3DV4	SN: 3877	06-Jan-25 (No. EX3-3877_Jan25)	Jan-26
DAE4	SN: 654	18-Oct-24 (No. DAE4-654_Oct24)	Oct-25
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter NRP2	SN: 107193	08-Nov-21 (in house check Jun-24)	In house check: Jun-26
Power sensor NRP-Z91	SN: 100922	15-Dec-09 (in house check Jun-24)	In house check: Jun-26
Power sensor NRP Z01	SN: 100418	01-Jan-04 (in house check Jun-24)	In house check: Jun-26
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-24)	In house check: Jun-26
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Sep-24)	In house check: Sep-26

Calibrated by:	Name	Function	Signature
	Claudio Leubler	Laboratory Technician	

Approved by:	Name	Function	Signature
	Sven Kühn	Technical Manager	

Issued: June 19, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	$dx, dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)
Frequency	13 MHz ± 1 MHz	

HSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	55.0	0.75 mho/m
Measured HSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	0.72 mho/m ± 6 %
HSL temperature change during test	< 0.5 °C	---	---

SAR result with HSL

SAR averaged over 1 cm 3 (1 g) of HSL	Condition	
SAR measured	1 W input power	0.505 W/kg
SAR for nominal HSL parameters	normalized to 1W	0.518 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm 3 (10 g) of HSL	condition	
SAR measured	1 W input power	0.318 W/kg
SAR for nominal HSL parameters	normalized to 1W	0.326 W/kg ± 18.0 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with HSL

Impedance, transformed to feed point	48.2 Ω + 2.4 $j\Omega$
Return Loss	- 30.3 dB

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for HSL

Date: 19.06.2025

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1025

Communication System: UID 0 - CW; Frequency: 13 MHz

Medium parameters used: $f = 13$ MHz; $\sigma = 0.72$ S/m; $\epsilon_r = 53.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

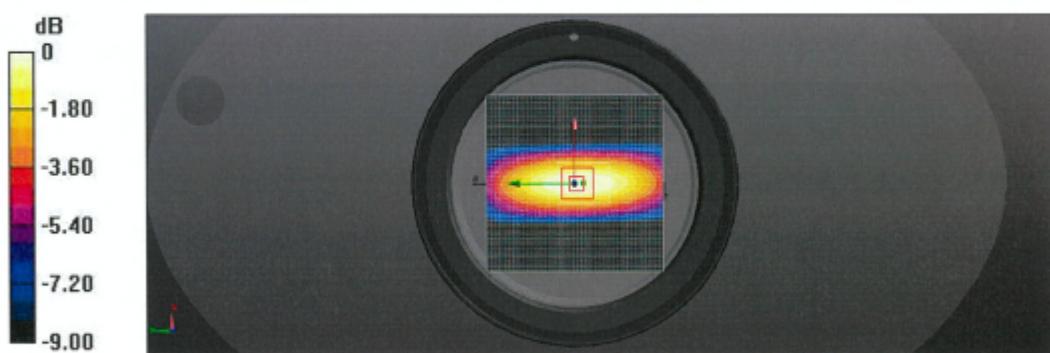
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN3877; ConvF(15.48, 15.48, 15.48) @ 13 MHz; Calibrated: 06.01.2025
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 18.10.2024
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

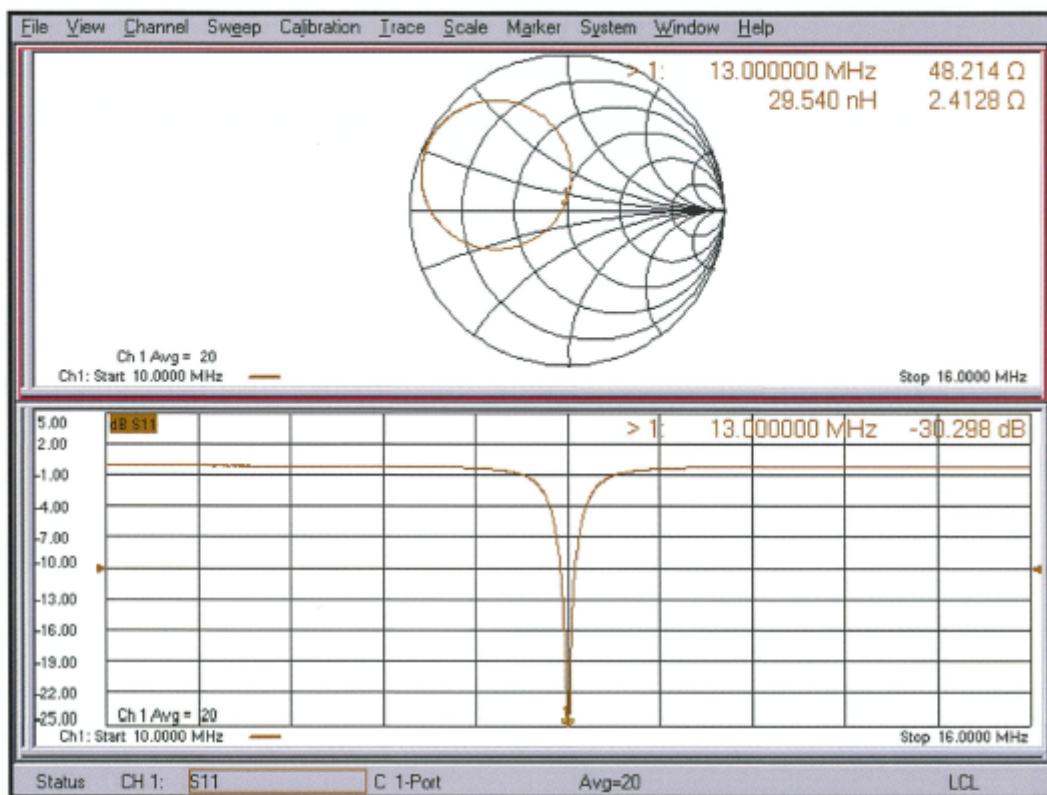
CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 30.45 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.505 W/kg; SAR(10 g) = 0.318 W/kg

Smallest distance from peaks to all points 3 dB below = 21.5 mm


Ratio of SAR at M2 to SAR at M1 = 76.9%

Maximum value of SAR (measured) = 0.747 W/kg

0 dB = 0.747 W/kg = -1.27 dBW/kg

Impedance Measurement Plot for HSL

