MODEL:36285 BLOCK DIAGRAM DESCRIPTION

BASE CORDLESS PHONE:

(1) TRANSMISSION CIRCUIT

RIGNER DETECTION:

THE RING SIGNAL FROM THE LINE TO CPU VIA IC LM 324.

COMMUNICATION CIRCUIT:

THE COMMUNICATION SIGNAL FROM THE LINE TO CPU VIA THE TRANSFORMER .. ALL SIGNAL ARE SENT FROM CPU TO TRANSMISSION ANT VIA IC TB31261AF,TX POWERAMPLIFIER, AND DUPLEXER.

(2) RECEIVING CIRCUIT

THE RECEIVING ANT PICK UP THE SIGNAL AND SEND THEM TO LINE VIA DUPLEXER,RFI AMPLIFIER & MIXER,10.7MHz FILTER,IC31261AF ,IC LM324 AND TRANSFORMER .

- (3) THE TRANSMISSION AND RECEIVING ANT IS MADE BY 26 TWISTED COPPER WIRES, THE DIAMETER OF THE COPPER WIRE IS 0.15mm.
- (4) MCU (EM78911)

MCU PROVIDES RING DETECTION, FSK DECODING ,CORDLESS PHONE CONTROLLER

(5) CRYSTAL 32.768 KHz PROVIDES THE CLOCK FOR CPU CRYSTAL 4.0MHz PROVIDES THE CLOCK FOR IC31261AF

BASE CLOCK RADIO

(1) AM BAND CIRCUIT:

THE AM ANT PICK-UP THE SIGNAL AND SEND IT TO IC1 (PIN ARI) VIA PVC, THE AUDIO SIGNAL FROM THE AFO PIN OF IC1 IS SENT TO DRIVE THE SPEAKER.

(2) FM BAND CIRCUIT:

THE FM ANT PICK-UP THE SIGNAL AND SEND IT TO IC1 (PIN FRI) VIA PVC, THE AUDIO SIGNAL FROM THE AFO PIN OF IC1 IS SENT TO DRIVE THE SPEAKER.

- (3) THE MCU (IC2 EC98001)PROVIDES TIME COUNTER AND LCD DRIVER, IT DRIVES THE LCD DISPLY DIRECTLY AND CONTROL THE RADIO POWER VIA Q1.
- (4) IC1 PROVIDES FM FE,AM FE,FM IF DET, AM IF DET, AF POWER AMP,POWER SUPPLY.
- (5) THE AM ANT IS MADE BY A COIL COPPER WIRE WITH A MAGNETIC CORE.
- (6) THE FM ANT IS MADE BY AWG#24(THE CONNECTION WIRE OF AC ADAPTER)
- (7) CRYSTAL 32.768 KHz PROVIDES THE CLOCK FOR CPU EC98001.

HANDSET:

(1) TRAMSMISSION CIRCUIT

COMMUNICATION:

THE MICROPHONE PICK UP THE VOICE SIGNAL AND SEND THEM TO ANT VIA IC TB31261AF,TX POWER AMPLIFIER AND DUPLEXER.

DTMF/DATA:

THE KEYBOARD IS CONSISTED OF 23 KEYS, DTMF & THE DATA ARE CONTROLED BY THE CORRESPONDING KEY WHICH CONNECT TO CPU.THE CPU SEND THE SIGNAL TO ANT VIA IC TB31261AF,TX POWER AMPLIFIER AND DUPLEXER.

(2) RECEIVING CIRCUIT

COMMUNICATION:

- RECEIVING ANT PICK UP THE SIGNAL AND SEND THEM TO RECEIVER VIA DUPLEXER,RFI AMPLIFIER&MIXER, 10.7MHz FILTER, AND IC TB31261AF
- (3) THE TRANSMISSION AND RECEIVING ANT IS MADE BY 26 TWISTED COPPER WIRES, THE DIAMETER OF THE COPPER WIRE IS 0.15mm.
- (4) MCU PROVIDES KEY BOARD SCANNING, LCD DRIVER, DIALER&CORDLESS PHONE CONTROLLER.
- (5) CRYSTAL 32.768KHz PROVIDES THE CLOCK FOR CPU. CRYSTAL 4.0MHz PROVIDES THE CLOCK FOR ICTB31261AF.

36285 Frequency table

Channel	Base TX (MHz)	Handset TX (MHz)
0	2401.000000	2473.500000
1	2401.100000	2473.600000
2	2401.200000	2473.700000
3	2401.300000	2473.800000
4	2401.400000	2473.900000
5	2401.500000	2474.000000
6	2401.600000	2474.100000
7	2401.700000	2474.200000
8	2401.800000	2474.300000
9	2401.900000	2474.400000
10	2402.000000	2474.500000
11	2402.100000	2474.600000
12	2402.200000	2474.700000
13	2402.300000	2474.800000
14	2402.400000	2474.900000
15	2402.500000	2475.000000
16	2402.600000	2475.100000
17	2402.700000	2475.200000
18	2402.800000	2475.300000
19	2402.000000	2475 400000
19	2402.900000	2475.400000
20	2403.00000	2475.500000
20 21 22	2403.00000 2403.100000 2403.200000	2475.500000
20 21 22 23	2403.00000 2403.100000	2475.500000 2475.600000
20 21 22 23 24	2403.00000 2403.100000 2403.200000 2403.300000 2403.400000	2475.500000 2475.600000 2475.700000
20 21 22 23	2403.00000 2403.100000 2403.200000 2403.300000	2475.500000 2475.600000 2475.700000 2475.800000
20 21 22 23 24 25 26	2403.00000 2403.100000 2403.200000 2403.300000 2403.400000	2475.500000 2475.600000 2475.700000 2475.800000 2475.900000
20 21 22 23 24 25 26 27	2403.00000 2403.100000 2403.200000 2403.300000 2403.400000 2403.500000	2475.500000 2475.600000 2475.700000 2475.800000 2475.900000 2476.000000 2476.200000
20 21 22 23 24 25 26 27 28	2403.00000 2403.100000 2403.200000 2403.300000 2403.400000 2403.500000 2403.600000 2403.700000 2403.800000	2475.500000 2475.600000 2475.700000 2475.800000 2475.900000 2476.000000 2476.100000 2476.200000 2476.300000
20 21 22 23 24 25 26 27 28 29	2403.00000 2403.100000 2403.200000 2403.300000 2403.400000 2403.500000 2403.600000 2403.700000	2475.500000 2475.600000 2475.700000 2475.800000 2475.900000 2476.000000 2476.100000 2476.200000 2476.300000 2476.400000
20 21 22 23 24 25 26 27 28 29 30	2403.00000 2403.100000 2403.200000 2403.300000 2403.400000 2403.500000 2403.600000 2403.700000 2403.800000 2403.900000 2404.000000	2475.500000 2475.600000 2475.700000 2475.800000 2475.900000 2476.000000 2476.100000 2476.200000 2476.300000
20 21 22 23 24 25 26 27 28 29 30 31	2403.00000 2403.100000 2403.200000 2403.300000 2403.400000 2403.500000 2403.600000 2403.700000 2403.800000 2403.900000 2404.000000 2404.100000	2475.500000 2475.600000 2475.700000 2475.800000 2475.900000 2476.000000 2476.100000 2476.200000 2476.300000 2476.400000 2476.500000 2476.600000
20 21 22 23 24 25 26 27 28 29 30 31 32	2403.00000 2403.100000 2403.200000 2403.300000 2403.400000 2403.500000 2403.600000 2403.700000 2403.800000 2403.900000 2404.000000 2404.100000 2404.200000	2475.500000 2475.600000 2475.700000 2475.800000 2475.900000 2476.000000 2476.100000 2476.200000 2476.300000 2476.400000 2476.600000 2476.700000
20 21 22 23 24 25 26 27 28 29 30 31 32 33	2403.00000 2403.100000 2403.200000 2403.300000 2403.400000 2403.500000 2403.600000 2403.700000 2403.800000 2404.000000 2404.100000 2404.200000 2404.300000	2475.500000 2475.600000 2475.700000 2475.800000 2475.800000 2476.000000 2476.100000 2476.200000 2476.300000 2476.400000 2476.500000 2476.600000 2476.700000 2476.800000
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	2403.00000 2403.100000 2403.200000 2403.300000 2403.400000 2403.500000 2403.600000 2403.700000 2403.800000 2404.000000 2404.100000 2404.200000 2404.300000 2404.300000	2475.500000 2475.600000 2475.700000 2475.800000 2475.900000 2476.000000 2476.100000 2476.200000 2476.300000 2476.400000 2476.600000 2476.700000 2476.800000 2476.800000
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	2403.00000 2403.100000 2403.200000 2403.300000 2403.400000 2403.500000 2403.600000 2403.700000 2403.800000 2404.000000 2404.100000 2404.200000 2404.300000 2404.400000 2404.500000	2475.500000 2475.600000 2475.700000 2475.800000 2475.900000 2476.000000 2476.100000 2476.200000 2476.300000 2476.400000 2476.500000 2476.600000 2476.700000 2476.800000 2476.900000 2477.000000
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	2403.00000 2403.100000 2403.200000 2403.300000 2403.500000 2403.600000 2403.700000 2403.800000 2404.000000 2404.100000 2404.200000 2404.300000 2404.500000 2404.500000 2404.600000	2475.500000 2475.600000 2475.700000 2475.800000 2475.900000 2476.000000 2476.100000 2476.200000 2476.300000 2476.400000 2476.600000 2476.600000 2476.800000 2476.900000 2477.000000 2477.1000000
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	2403.00000 2403.200000 2403.200000 2403.300000 2403.400000 2403.500000 2403.600000 2403.700000 2403.800000 2404.000000 2404.200000 2404.300000 2404.400000 2404.500000 2404.600000 2404.700000	2475.500000 2475.600000 2475.700000 2475.800000 2475.800000 2476.000000 2476.100000 2476.200000 2476.300000 2476.400000 2476.500000 2476.600000 2476.800000 2476.900000 2477.1000000 2477.200000
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	2403.00000 2403.100000 2403.200000 2403.300000 2403.500000 2403.600000 2403.700000 2403.800000 2404.000000 2404.100000 2404.200000 2404.300000 2404.500000 2404.500000 2404.600000	2475.500000 2475.600000 2475.700000 2475.800000 2475.900000 2476.000000 2476.100000 2476.200000 2476.300000 2476.400000 2476.600000 2476.600000 2476.800000 2476.900000 2477.000000 2477.1000000

TENTATIVE

TOSHIBA BI-COMS INTEGRATED CIRCUIT SILICON MONOLITHIC

TB31261AF

RF 1CHIP IC FOR 900MHz CORDLESS TELEPHONE

One packaging three systems PLL, IF detector, Compander. It is possible to reduce many external parts. This IC is suitable for radio section of 900MHz cordless telephone.

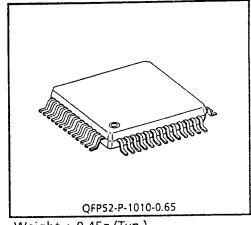
FEATURES

Low operating voltage : V_{CC} = 2.7~5.5V

PLL operating frequency : f = 400~1000MHz

Serial control for all status

Built-in clock output function for CPU


Built in receiver amp

Receiver output Level adjustment

Variable battery alarm setting (4 thresholds)

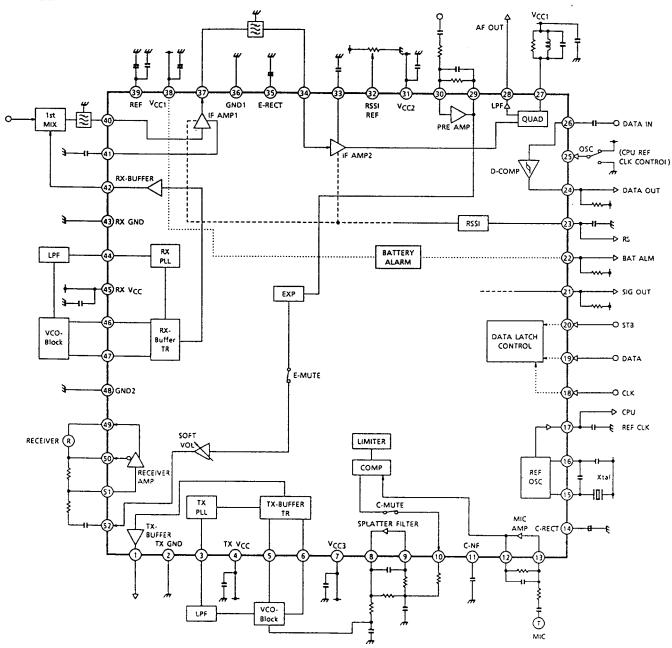
Built in battery saving function for intermittent receiving

Small package:QFP52pin (0.65mm pitch)

Weight: 0.45g (Typ.)

Handle with care to prevent devices from deterioration by static electricity.

The information contained herein is subject to change without notice.


[■] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

BLOCK DIAGRAM

PIN FUNCTION (The value of resistor capacitor are typical)

PIN No.	PIN NAME	FUNCTION	INTERNAL EQUIVALENT CIRCUIT
1	TX-OUT	Output terminal of TX frequency from TX-BUFFER TRANSISTOR.	0.*
2	TX-GND	GND terminal.	4 45
4	TX-V _{CC}	Power supply terminal.	
5	TX-Buffer E	Emitter terminal of TX-BUFFER TRANSISTOR.	1
6	TX-Buffer B	Base terminal of TX-BUFFER TRANSISTOR.	[
42	RX-OUT	Output terminal of RX frequency from RX-BUFFER TRANSISTOR.	6 7
43	RX-GND	GND terminal.	5 46
45	RX-V _{CC}	Power supply terminal.	
46	RX-Buffer E	Emitter terminal of RX-BUFFER TRANSISTOR.	,,, 43
47	RX-Buffer B	Base terminal of RX-BUFFER TRANSISTOR.	
3	ТХ-СР	Output terminal of CHARGE PUMP. CHARGE PUMP circuit outputs constant current which is varied by serial data.	V _{CC3}
44	RX-CP	Output terminal of CHARGE PUMP. CHARGE PUMP circuit outputs constant current which is varied by serial data.	(44) GND2
7	V _{CC3}	Power supply terminal.	-
8	SPLATTER- OUT	Output of Splatter Filter. And connected to Input of COMPRESSOR.	300Ω 300Ω 8
9	SPLATTER- IN	Output of SPLATTER FILTER.	400 t QND1
10	COMP-OUT	Output of COMPRESSOR.	V _{CC1} V _{CC1} V _{CC1} V _{CC1} GND1
11	C-NF	Feedback circuit of T type is formed by external capacitor with SUM AMP.	VCC1 A B O O O O O O O O O O O O

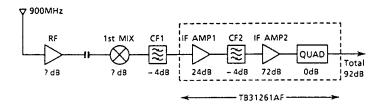
PIN No.	PIN NAME	FUNCTIO	ON	INTERNAL EQUIVALENT CIRCUIT
12	MIC-OUT	Output of MIC AMP and directly to Input of COM		Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ
13	MIC-IN	Input terminal of MIC A	MP.	$\begin{array}{c c} \hline \\ \hline $
14	C-RECT	Connected capacitor for circuit of COMPRESSOR.	foll-wave rectifier	300Ω 300Ω 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
15	REF-OSC1	REFERENCE OSCILLATOR terminals.	input and output	Vcc3
16	REF-OSC2	Colpitts oscillator is form emitter follower and ext	•	15 1 1 KD 4
17	OSC-OUT	Output terminal of BUFF signal for MPU clock.	FER AMP. Output	10 1kΩ 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
18	CLK	Input terminal of clock.		(18) 1kΩ
19	DATA	Input terminal of data.	Input the serial data control for	19
20	STB	Input terminal of strobe signal.	this IC.	J, GND2
21	SIG-OUT	Output terminal of dete the open drain output.	ction signal. It is	200Ω GND2
22	BAT-ALM	BATTERY ALARM termin decrease VBAT-L, this terminal is open co	rminal outputs troled by data bit.	(S)————————————————————————————————————
23	RSSI	This terminal outputs DO according to input signal Dynamic range is around	I level of IF AMP.	VCC1 GWS1 GND1

PIN No.	PIN NAME	FUNCTION	INTERNAL EQUIVALENT CIRCUIT
24	DATA-OUT	Output terminal of ware from shaping circuit. This terminal is open collector output.	Vcc1 (34) (34) (34)
25	OSC	Control terminal for REF CLK output. When voltage of this terminal is GND then whether REF CLK output or not is controlled by serial data setting, when voltage of this terminal is V _{CC} then REF CLK always output regardless of serial data setting.	25
26	D-COMP-IN	DATA COMPARATOR input terminal. This terminal input demodulated signal of DATA.	VCC1 4 26 SOKΩ GND1
27	QUAD	Phase shift signal input terminal of FM demodulator.	GND1 m GND1 m GND1
28	AF-OUT	Demodulated signal output terminal. Carrier leak is small as LPF is built-in.	VCC2 \(\rightarrow \frac{4}{8} \) \(\rightarrow \frac{4}{
29	PRE-OUT	Output terminal from PRE-AMP.	300Ω VREF 1 0 EXP VCC1 300Ω 23
30	PRE-IN	Input terminal to PRE-AMP.	GND1 GND1
31	V _{CC2}	Power supply terminal.	
32	RSSI-REF	DC voltage input terminal to control detection level of RSSI COMPARATOR.	30 VCC1 (32) (33) (36) (37) (37) (37) (37) (37) (37) (37) (37

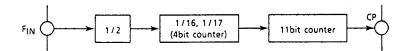
PIN No.	PIN NAME	FUNCTION	INTERNAL EQUIVALENT CIRCUIT
33	IF2-REF	IF AMP2 input and decoupling input for	170Ω VCC1 170Ω 170Ω
34	IF2-IN	bias.	33 170Ω GND1
40	IF1-IN	IF AMP1 input and decoupling input for	40 170Ω VCC1
41	IF1-REF	bias.	41 170Ω. 41 4 000 7 7 170Ω.
35	E-RECT	Terminal for rectifier of EXPANDER. Almost the same circuit as C-RECT terminal.	-
36	GND1	GND terminal.	
37	IF-OUT	Output terminal of IF AMP.	VCC1 270Ω 37 GND1
38	V _{CC1}	Power supply terminal.	_
39	REF	Reference terminal through internal buffer of compander block.	<u> </u>
48	GND2	GND terminal.	
49	RECEIVER 1	Receiving output for a dynamic receiver. Used for BTL output type, RO1 terminal	20kΩ (49) 5pF
50	RECEIVER 2	and RO2 terminal.	VREF TAREAUTH AND THE PROPERTY OF THE PROPERT
51	RECEIVER- IN	Inverted input of RECEIVER AMP.	VCC1 300Ω SD GND1

PIN No.	PIN NAME	FUNCTION	INTERNAL EQUIVALENT CIRCUIT
52	EXP-OUT	Output of SUM amp at EXPANDER. The signal from gain cell is gained by inverted amp. The gain level can be controlled by software.	ATT

7


1. General Description

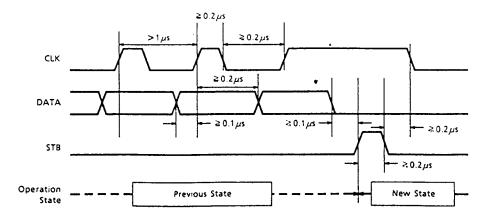
TB31261F is controlled all status by serial data. This IC is included IF detector, PLL and compander. IF detector function is wideband system, dual PLL function (~1000MHz), and compander with MIC AMP and RECEIVER AMP.


POWER SUPPLY BLOCK ASSIGN

V _{CC1}	GND1	IF-AMP1, IF-AMP2, DATA-COMP, RSSI, BATTERY-ALARM, SOFT-VOLUME, MIC-AMP, COMPRESSOR, SPLATTER-FILTER, PRE-AMP, EXPANDER, RECEIVER-AMP
V _{CC2}		IF-AMP2, QUAD
V _{CC3}	GND2	RX-PLL, TX-PLL, REF-OSC, DATA LATCH CONTROL
RX-V _{CC}	RX-GND	RX-PRESCALER, RX-BUFFER, RX-BUFFER TR
TX-V _{CC}	TX-GND	TX-PRESCALER, TX-BUFFER, TX-BUFFER TR

2. Gain Distribution for Receiving

3. PLL Block



4. Data Latch Control

This block has 4 registers assigned by 2 or 3 bits CODE.DATA is read on the time of up edge of CLK. When STB receivers high signal, DATA in shift register is sent into LATCH to control block which CODE indicates and the operation starts.

INPUT TIMING FOR SERIAL DATA

When both CLK "H" and DATA "L", STB "H" leads data active.

Code Assign

	CODE		CONTROL BLOCK	FUNCTION
*	1	0	TX divider (18bits)	Setting frequency for TX-PLL
*	0	1	RX divider (18bits)	Setting frequency for RX-PLL
*	1	1	REF divider (12bits)	Setting phase comparison frequency
0	0	0	Option control 1	Battery save, Mute control, BAT-ALM, etc
1	0	0	Option control 2	Volume control

Serial Data Format

(1) TX DIVIDER

Swallow Counter (4bit) Programmable Counter (11bit)										co	DE]						
A0	Α1	A2	А3	MO	M1	M2	МЗ	M4	M5	M6	М7	M8	M9	M10	*	1	0]
4- 1st	·																	4 STB

→ 1st * Don't care

 $N = 2 \times (16M + A) (480 - 65534)$

A = A0 + 2A1 + 4A2 + 8A3

M = M0 + 2M1 + 4M2 + 8M3 + 16M4 + 32M5 + 64M6 + 128M7 + 256M8 + 512M9 + 1024M10

(2) RX DIVIDER

Swall	ow Co	unter	(4bit)	Programmable Counter (11bit)											CODE		DE	
Α0	A1	A2	А3	MO	M1	M2	М3	M4	M5	М6	M7	M8	M9	M10	*	0	1	l
4-1st	·					4,,												A STB

* Don't care

 $N = 2 \times (16M + A)$ (480 - 65534)

A = A0 + 2A1 + 4A2 + 8A3

M = M0 + 2M1 + 4M2 + 8M3 + 16M4 + 32M5 + 64M6 + 128M7 + 256M8 + 512M9 + 1024M10

(3) REF DIVIDER

	Programmable Counter (10bit)													
RO	R1	R2	R3	R4	R5	R6	R7	R8	R9	1	1			
- 1st	<u> </u>		4									* :		

N = R (4 - 1023)

R = R0 + 2R1 + 4R2 + 8R3 + 16R4 + 32R5 + 64R6 + 128R7 + 256R8 + 512R9

(4) Option Control 1

	SIG OUT		REF	TX Control				RX Control				8.	AT-AL	M	CODE				
1	XLD	RXLD	RSSI	xosc	RF	AF	СР	MUT	RF	AF	СР	MUTE	BA1	BA2	BA3	0	0	0]
-	- 1st																		♦ STB

1. Battery Saving Control

0	Operation
1	Battery Saving

BIT	CONTROL BLOCK
RX-RF	RX-PLL, RX-BUFFER TR, IF AMP, QUAD, DATA COMP, RSSI
RX-AF	PRE AMP, EXPANDER, RECEIVER AMP
TX-RF	TX-PLL, TX-BUFFER TR
TX-AF	MIC AMP, COMPRESSOR, SPLATTER-FILTER
REF-OSC	REF-OSC

2. Charge Pump Output Current Select

СР	Current
0	400μΑ
1	800μA

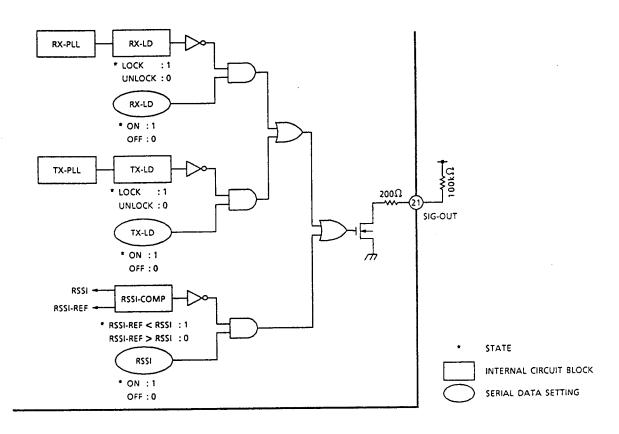
3. Mute Control

0	Operation
1	Mute On

TX-MUTE control for COMPRESSOR output. RX-MUTE control for EXPANDER output.

4. BATTERY ALARM Detection Setting

This IC has 4 threshold levels for detection of battery dropping. These threshold levels are given by below table.


BA1	BA2	BA3	DET VOLTAGE	BAT-ALM Out Put DET.VOL > Vcc DET.VOL < Vcc						
		5710	DE1.VOLTAGE	DET.VOL > Vo	cDET.VOL < Vc					
00	0	1	3.00v	Н	1					
0	1	0	3.15v	Н						
0	1	1	3.30v	Н	 					
1	0	0	3.45v	Н						
1	1	1	BS		H					

5. SIG OUT Selection

SIG OUT terminal generates combination states of RX and TX LOCK DETECTOR and RSSI. IF you set plual BIT to 1, then SIG OUT is "AND" output of each FUNCTION.

0	OFF
1	OUT PUT

BIT	FUNCTION	
TXLD	TX-PLL LOCK DETECTOR	·········
RXLD	RX-PLL LOCK DETECTOR	
RSSI	RSSI COMPARATOR OUTPUT	

<u> </u>			Г		_					_	_						- 5	Ť	٩T	Ē						_								
SERIAL RX-LD				1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	DATA	TX-LD	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	-	1	0	0	1	1	0	0	1	1
	SETTING	RSSI	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
INPUT		RX-LD	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	CIRCUIT	TX-LD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
I SIAIL		RSSI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ΟU	Н	L.	L	L	L	L	L	L	Н	Н	L	L	L	L	L	L	Н	L	Н	L	L	L	L	L	Н	Н	Η	Н	L	L	L	L		

																	5	ST,	ΑT	E.														
	SERIAL	(RX-LD)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	DATA	TX-LD	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	SETTING	RSSI	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
INPUT		RX-LD	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	CIRCUIT	TX-LD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	JIAIL	RSSI	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ΟU	OUTPUT sig-out			L	L	L	Н	L	L	L	Н	H,	L	L	Н	Н	L	L	Н	L	Н	L	Н	Ĺ	Н	L	Н	Н	Н	Н	Н	Н	Н	н

(5) Option Control 2

RECEIVER OUTPUT LEVEL CONTROL

It is possible to volume control to set these bits.

And this resister includes TEST bits which must be set 0 in customer side.

1.5dB steps from 0dB to -22.5dB.

	Recei	ver Vo		CODE						
VOL1	VOL2	VOL3	VOL4	*	1	0	0			

* You have to be sure to set 0.

					,
VOL1	VOL2	VOL3	VOL4	GAIN]
0	0	0	0	0dB	
0	0	0	1	√ – 1.5dB] v(
0	0	1	0	- 3.0dB	
0	0	1	1	- 4.5dB	
0	1	0	0	√ - 6.0dB](10)
0	1	0	1	- 7.5dB	
0	1	1	0	- 9.0dB	}
0	1	1	1	√ - 10.5dB] e(
1	0	0	0	– 12.0dB	Ì
1	0	0	1	- 13.5dB	
1	0	1	0	√ - 15.0dB	20
1	0	1	1	– 16.5dB	
1	1	0	0	- 18.0dB	
1	1	0	1	- 19.5dB	
1	1	1	0	- 21.0dB	
1	1	1	1	- 22.5dB	

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Power Supply Voltage	Vcc	6	V
Power Dissipation	PD	900 *1	mW
Operating Temperature	Topr	- 20~70	°C
Storage Temperature	T _{stg}	- 50~150	°C

^{*1} IC single unit

TENTATIVE ELECTRICAL CHARACTERISTICS

TOTAL CHARACTERISTIC ($V_{CC} = 3.6V$, $Ta = 25^{\circ}C$, $\Delta f = 25$ kHz, fmod = 1kHz)

IOTAL CHARACTERISTIC	vCC = 3.6 v,	a = 23	$C, \Delta I = 23 \text{KHZ}, \text{ IIII } \text{ IIII} \text{III} $				
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Power Supply Voltage	VCC (opr)		_	2.7	3.6	5.5	V
Consumption Current 1	^I CC1	1	ALL ON (Not including VCO current)	12.3	24.6	33.3	mA
Consumption Current 2	¹ CC2	1	RX-RF ON (Not including VCO current)	7.7	11.6	15.7	mA
Consumption Current 3	lcc3	1	RX-AF ON	2.4	3.5	4.8	mΑ
Consumption Current 4	¹CC4	1	TX-RF ON (Not including VCO current)	2.6	7.1	9.6	mA
Consumption Current 5	I _{CC5}	1	TX-AF ON	0.8	2.1	2.9	mΑ
Alarm Supply Current	ICC (A)	1	RL = 100 kΩ V _{BAT-L} = 3.30 Vモード	_	160	200	μΑ
Supply Current at BS	lcc (BS)	1	ALL OFF		0	50	μΑ
V _{REF} Voltage	VREF	1	_	1.0	1.45	1.8	V
	VIH	_	_	0.8 × V _C C	Vcc	5.5	. V
Data Input Threshold	VIL	-	<u> </u>	-0.2	0	0.2 × VCC	
	ин	 	V _{IH} = V _C C		0	1	μА
Data Input Current	IL	 	V _{IL} = GND		0	1	
CK Input Frequency	fcK	_	_	_	100	1000	kHz

DETECTOR SECTION (Unless Otherwise Specified, $V_{CC} = 3.6V$, $Ta = 25^{\circ}C$) BATTERY ALARM

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Datastias Valtaria 1	VBAT-L		-	2.85	3.00	3.15	v
Detection Voltage 1	V _{BAT-H}	,		-	3.08	3.23	*
2	VBAT-L		_	2.99	3.15	3.31	V
Detection Voltage 2	V _{BAT-H}	1 '			3.25	3.41	"
	VBAT-L			3.14	3.30	3.47	V
Detection Voltage 3	V _{BAT-} H	1 '		_	3.40	3.57	\ \ \
Data di a Malta da A	V _{BAT-L}	1		3.28	3.45	3.62	V
Detection Voltage 4	V _{BAT-} H	1 '		_	3.55	3.73	·
Output Low Level Voltage	V _{OL1}	1	ISINK = 0.1mA		0.1	0.3	V
Output Leak Current	ILEAK1	1	V _{ALM} = 3.6V		0	5	μΑ

DATA COMPARATOR

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Minimum Detection Level	V _{TH1}	2	f = 500Hz		_	50	mVrms
Output Low Level Voltage	V _{OL2}	1	I _{SINK} = 0.2mA	-	0.1	0.3	V
Output Leak Current	ILEAK2	1	H Level		0	5	μА
Duty Ratio	Duty	2	V _{IN} (Data comparator input) = 120mVrms, "H" Level, F = 1kHz	44		56	%

SIG OUT DETECTION

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Low Level Voltage	V _{OL3}	1	I _{SINK} = 0.2mA	_	0.1	0.5	V
Output Leak Current	ILEAK3	1	SIG out off mode		0	5	μА

PLL SECTION (Unless Otherwise Specified, $V_{CC} = 3.6V$, $Ta = 25^{\circ}C$)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
PLL Operating Frequency	f _{IN}	1		400	900	1000	MHz
PLL Input Sensitivity	VIN	1		90	103	110	dΒμV
XIN Operating Frequency	fXIN	1	V _{IN} = 110dBμV	2	4	24	MHz
XIN Input Sensitivity	VXIN	1	f _{IN} = 4MHz	100	110	115	dΒμV
Charge Pump Output	I _{CP1}	_	V _{CP} = 1.8V		± 400		μА
Current	ICP2	_	V _{CP} = 1.8V		± 800		μΛ
Charge Pump Leak Current	ILEAK4	1	_		0	5	μΑ

RECEIVING SECTION ($V_{CC} = 3.6V$, $T_a = 25^{\circ}C$, $\Delta f = 25kHz$, fmod = 1kHz)

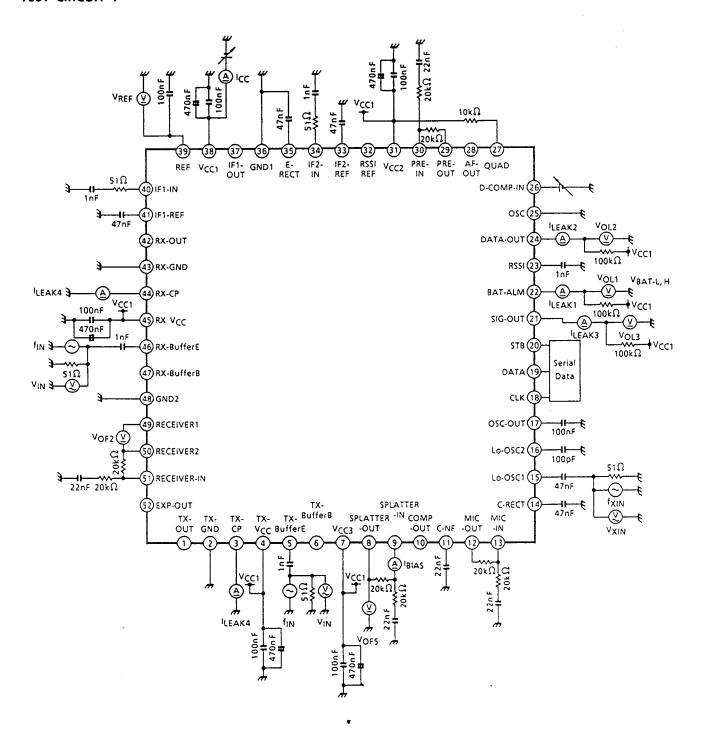
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	МАХ.	UNIT
12dB SINAD Sensitivity	12dB SINAD	_	INPUT 50Ω	_	13.5		dBµVEMF
IF AMP1 Gain	GIF1	2	_	-	24		dB
IF AMP2 Gain	GIF2	_	•		72		dB
Demodulated Output level	V _{OD}	2	VIN (IF1) = 70dBμVEMF	90	117	144	mVrms
S/N Ratio	SN	2	V_{IN} (IF1) = $70dB\mu VEMF$	50	69.5		dB
AM Rejection Ratio	AMR	2	VIN (IF1) = 70dB \(\mu \text{VEMF} \)		68.3		dB
IFAMP1 input Resistance	RIF1IN	_	IF1-IN		330	_	Ω
IFAMP1 Output Resistance	RIF1OUT		IF1-OUT	_	330		Ω
IFAMP2 Input Resistance	RIF2IN	_	IF2-IN		330		Ω
DCCL Output Valtage	VRSSI1	2	VIN (IF1-IN) = 20dBμVEMF	0.15	0.35	0.50	V
RSSI Output Voltage	VRSSI2	2	VIN (IF1-IN) = 70dB µVEMF	1.36	1.70	2.06	

15

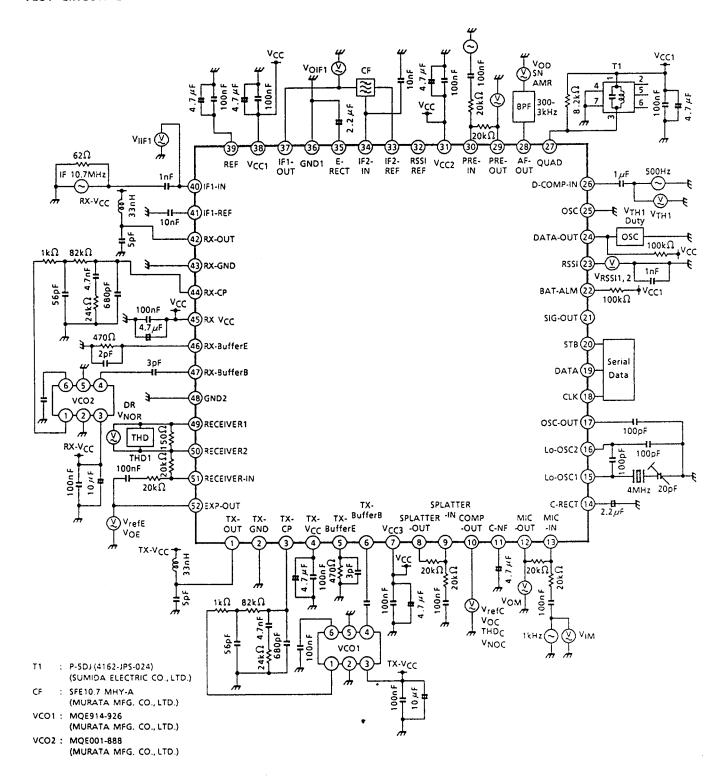
AUDIO SECTION (Unless Otherwise Specified, V_{CC} = 3.6V, f_{in} = 1kHz, Ta = 25°C) MIC AMP + COMPRESSOR

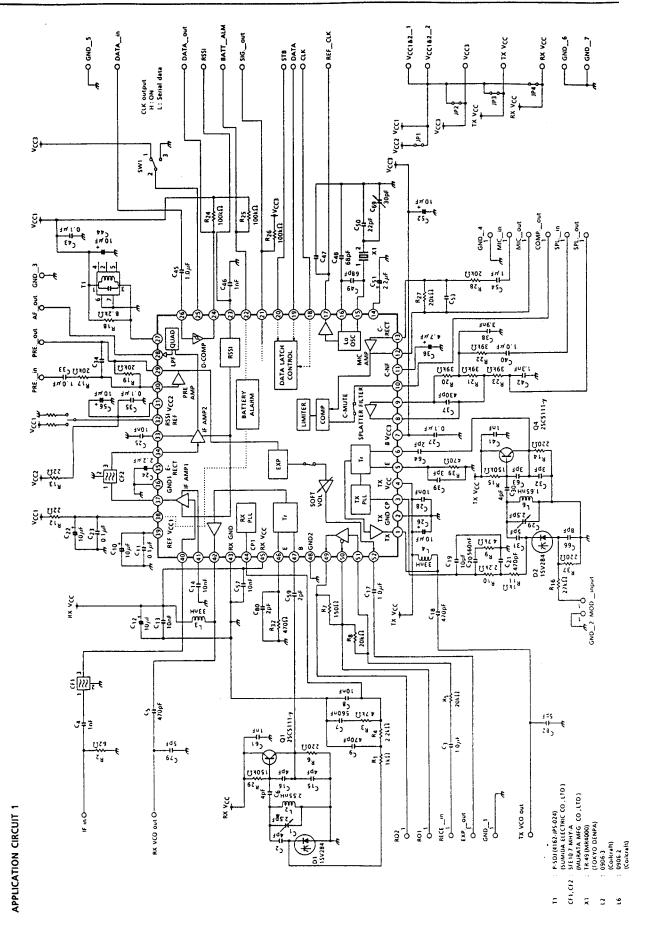
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
COMP Input Reference Level	V _{ref} C	2	V _{OM} = -10dBV	- 11.3	- 9.1	- 7.3	dBV
COMP Output Deviation	Voc	2	V _{OM} = -30dBV	- 0.7	- 0.1	+ 0.7	dВ
MIC AMP Voltage Gain Setting Range	VGRM	_		_	0	· 	dB
Total Harmonic Distortion	THDC	2	V _{OM} = -10dBV	—	0.3	1	%
Output Noise Level	V _{NOC}	2	Input-GND Short	_	- 62	- 48	dBV
Limitting Level	V _{lim1}		COMP OUT, V _{IM} = 0dBV		1.3	<u> </u>	Vn n
clinitung tevel	V _{lim2}	_	MIC OUT, V _{IM} = 0dBV	_	2.5	<u> </u>	Vp-p
MUTE Output Level	VMUTE	_		_	- 90		dBV
Crosstalk EC	CT_{EC}	_	V _{IP} = 0dBV		- 36.7	_	dBV
Attack Time	T _{AC}	_	$V_{\text{IM}} = -46 \rightarrow -34 \text{dBV}$	_	3.5		ms
Recovery Time	T _{RC}	_	V _{IM} = -34 → -46dBV		5.0		ms

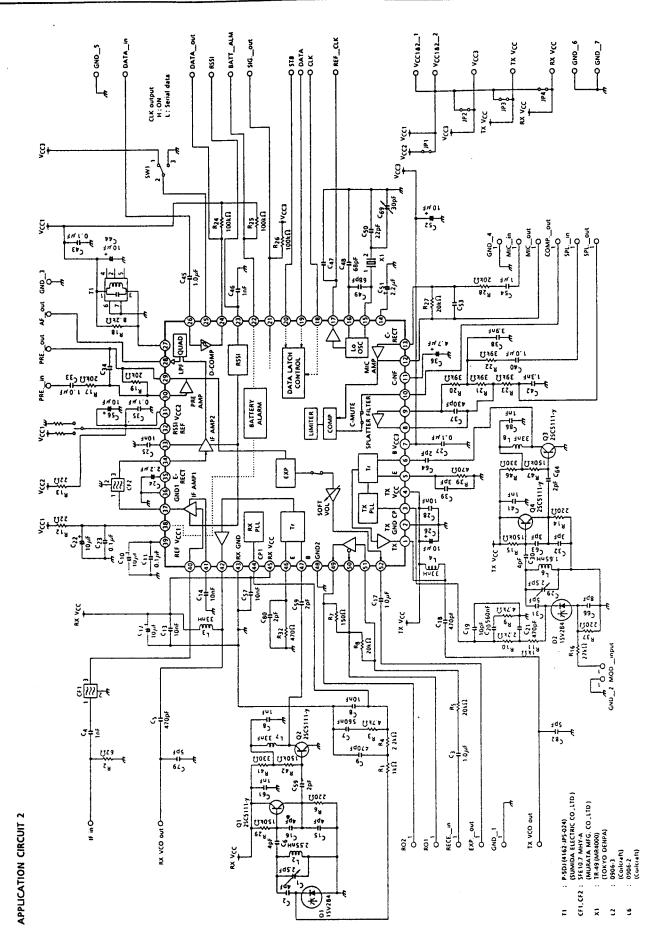
PRE AMP + EXPANDER + RECEIVER AMP

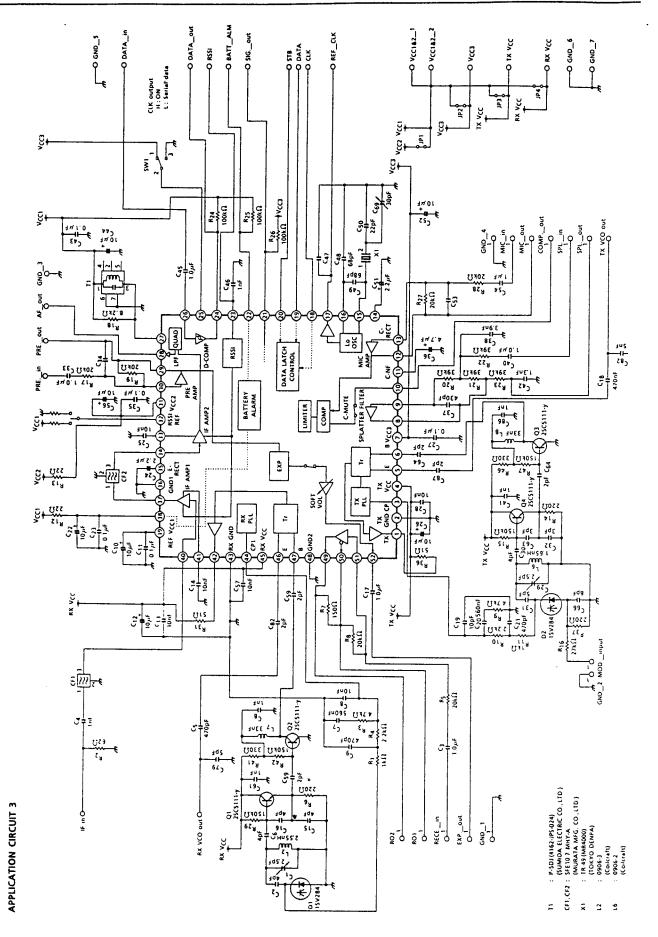

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
EXP Input Reference Level	V _{refE}	2	V _{OP} = - 10dBV	- 13.6	- 10.9	- 8.0	dBV
EXP Output Deviation	VOE	2	$V_{OP} = -35 dBV$	- 1.0	+ 0.3	+ 1.8	dB
RO1 Voltage Gain	G _{RO1}	_	$R_L = 150\Omega$		6		dB
Total Harmonic Distortion	THD1	2	$R_L = 150\Omega$, $V_{RI} = -15$ dBV		0.65	1.5	%
Output Noise Level	VNOR	2	Input-GND Short	_	- 76	- 65	dBV
Maximum Output Level	D _R	2	THD = 3%, 150 Ω load		2.63		Vp-p
MUTE Output Level	VMUTE	_			- 65	_	dBV
PRE AMP Voltage Gain Setting Range	VGRp		_	0	_	20	dB
RECEIVER AMP Voltage Gain Setting Range	VGR _R			6		20	dB
Offset Voltage	V _{OF2}	1	RO1·RO2	- 50	0	50	m۷
Crosstalk CE	CT_CE		$V_{IM} = -20 dBV$	_	- 79		dB
Attack Time	TAE		$V_{IP} = -18 \rightarrow -12 dBV$		8.5		ms
Recovery Time	T _{RE}		$V_{IP} = -12 \rightarrow -18 dBV$		4.5	_	ms

FILTER AMP

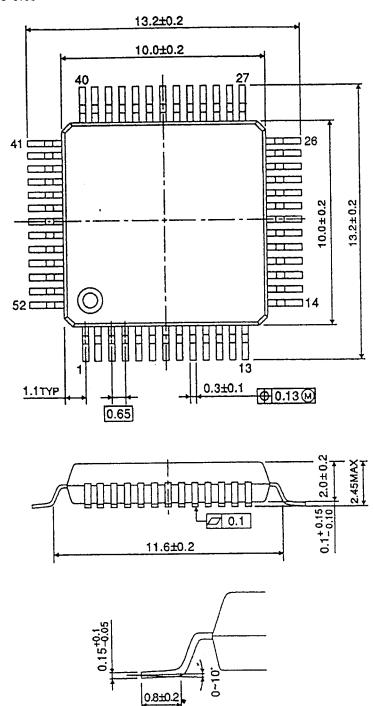

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Voltage Gain	G5			_	0		dВ
Maximum Output Level	D _{R5}	 -	THD = 3%	_	3		Vp-p
Input Bias Current	IBIAS	1	_		1.5	2.5	μΑ
Offset Voltage	V _{OF5}	1		- 35	0	35	mV


^{*} This specification is target value


TEST CIRCUIT 1



TEST CIRCUIT 2



22

OUTLINE DRAWING QFP52-P-1010-0.65

Unit: mm

Weight: 0.45g (Typ.)

• •