

CC1000

Single Chip Very Low Power RF Transceiver

Applications


- Very low power UHF wireless data transmitters and receivers
- 315 / 433 / 868 and 915 MHz ISM/SRD band systems
- RKE Two-way Remote Keyless Entry
- Home automation
- Wireless alarm and security systems
- AMR Automatic Meter Reading
- Low power telemetry
- Toys

Product Description

cc1000 is a true single-chip UHF transceiver designed for very low power and very low voltage wireless applications. The circuit is mainly intended for the ISM (Industrial, Scientific and Medical) and SRD (Short Range Device) frequency bands at 315, 433, 868 and 915 MHz, but can easily be programmed for operation at other frequencies in the 300-1000 MHz range.

The main operating parameters of **CC1000** can be programmed via an easy-tointerface serial bus, thus making **CC1000** a very flexible and easy to use transceiver. In a typical system **CC1000** will be used together with a microcontroller and a few external passive components.

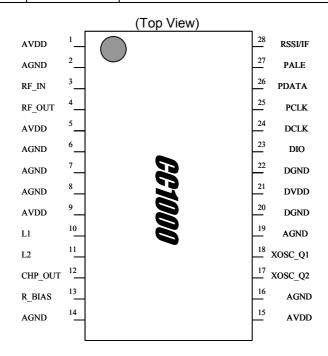
CC1000 is based on Chipcon's SmartRF® technology in 0.35 μm CMOS.

Features

- True single chip UHF RF transceiver
- Very low current consumption
- Frequency range 300 1000 MHz
- · Integrated bit synchroniser
- High sensitivity (typical -110 dBm at 2.4 kBaud)
- Programmable output power -20 to 10 dBm
- Small size (TSSOP-28 package)
- Low supply voltage (2.1 V to 3.6 V)
- Very few external components required
- No external RF switch / IF filter required
- RSSI output
- Single port antenna connection

- FSK data rate up to 76.8 kBaud
- Complies with EN 300 220 and FCC CFR47 part 15
- FSK modulation spectrum shaping
- Programmable frequency in 250 Hz steps makes crystal temperature drift compensation possible without TCXO
- Suitable for frequency protocols
- Development kit available
- Easy-to-use software for generating the **CC1000** configuration data

This document contains information on a pre-production product. Specifications and information herein are subject to change without notice.



Pin Assignment

Pin no.	Pin name	Pin type	Description				
1	AVDD	Power (A)	Power supply (3 V) for analog modules (mixer and IF)				
2	AGND	Ground (A)	Ground connection (0 V) for analog modules (mixer and IF)				
3	RF_IN	RF Input	RF signal input from antenna				
4	RF_OUT	RF output	RF signal output to antenna				
5	AVDD	Power (A)	Power supply (3 V) for analog modules (LNA and PA)				
6	AGND	Ground (A)	Ground connection (0 V) for analog modules (LNA and PA)				
7	AGND	Ground (A)	Ground connection (0 V) for analog modules (PA)				
8	AGND	Ground (A)	Ground connection (0 V) for analog modules (VCO and prescaler)				
9	AVDD	Power (A)	Power supply (3 V) for analog modules (VCO and prescaler)				
10	L1	Analog input	Connection no 1 for external VCO tank inductor				
11	L2	Analog input	Connection no 2 for external VCO tank inductor				
12	CHP_OUT	Analog output	Charge pump current output				
	(LOCK)		The pin can also be used as PLL Lock indicator. Output is high				
			when PLL is in lock.				
13	R_BIAS	Analog output	Connection for external precision bias resistor (82 k Ω , \pm 1%)				
14	AGND	Ground (A)	Ground connection (0 V) for analog modules (backplane)				
15	AVDD	Power (A)	Power supply (3 V) for analog modules (general)				
16	AGND	Ground (A)	Ground connection (0 V) for analog modules (general)				
17	XOSC_Q2	Analog output	Crystal, pin 2				
18	XOSC_Q1	Analog input	Crystal, pin 1, or external clock input				
19	AGND	Ground (A)	Ground connection (0 V) for analog modules (guard)				
20	DGND	Ground (D)	Ground connection (0 V) for digital modules (substrate)				
21	DVDD	Power (D)	Power supply (3 V) for digital modules				
22	DGND	Ground (D)	Ground connection (0 V) for digital modules				
23	DIO	Digital	Data input/output. Data input in transmit mode. Data output in				
		input/output	receive mode				
24	DCLK	Digital output	Data clock for data in both receive and transmit mode				
25	PCLK	Digital input	Programming clock for 3-wire bus				
26	PDATA	Digital	Programming data for 3-wire bus. Programming data input for				
		input/output	write operation, programming data output for read operation				
27	PALE	Digital input	Programming address latch enable for 3-wire bus. Internal pull-up.				
28	RSSI/IF	Analog output	The pin can be used as RSSI or 10.7 MHz IF output to optional external IF and demodulator. If not used, the pin should be left open (not connected).				

A=Analog, D=Digital

Absolute Maximum Ratings

Parameter	Min.	Max.	Units	Condition
Supply voltage, VDD	-0.3	5.0	V	
Voltage on any pin	-0.3	VDD+0.3,	V	
		max 5.0		
Input RF level		10	dBm	
Storage temperature range	-50	150	°C	
Operating ambient temperature	-40	85	°C	
range				
Lead temperature		260	°C	T = 10 s

Under no circumstances the absolute maximum ratings given above should be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

Electrical Specifications

Parameter	Min.	Тур.	Max.	Unit	Condition / Note
Overall					
RF Frequency Range	300		1000	MHz	Programmable in steps of 250 Hz
Transmit Section					
Transmit data rate	0.6		76.8	kBaud	NRZ or Manchester encoding. 76.8 kBaud equals 76.8 kbit/s using NRZ coding. See page 14.
Binary FSK frequency separation	0		65	kHz	The frequency corresponding to the digital "0" is denoted f_0 , while f_1 corresponds to a digital "1". The frequency separation is f_1 - f_0 . The RF carrier frequency, f_c , is then given by f_c = $(f_0+f_1)/2$. (The frequency deviation is given by f_d =+/- $(f_1-f_0)/2$) The frequency separation is programmable in 250 Hz steps. 65 kHz is the minimum guaranteed separation at 1 MHz reference frequency. Larger separations can be achieved at higher reference frequencies.
Output power 433 MHz 868 MHz	-20 -20		10 5	dBm	Delivered to 50 Ω load. The output power is programmable.
RF output impedance 433/868 MHz		140 / 80		Ω	Transmit mode. For matching details see "Input/ output matching" p.28.
Harmonics		-20		dBc	An external LC or SAW filter should be used to reduce harmonics emission to comply with SRD requirements. See p.34.

SmartRF® CC1000

Parameter	Min.	Тур.	Max.	Unit	Condition / Note
Receive Section					
Receiver Sensitivity, 433 MHz Optimum sensitivity (9.3 mA) Low current consumption (7.4 mA)		-110 -109		dBm	2.4 kBaud, Manchester coded data, 64 kHz frequency separation, BER = 10 ⁻³
Receiver Sensitivity, 868 MHz Optimum sensitivity (11.8 mA) Low current consumption (9.6 mA)		-107 -105		dBm	See Table 5 and Table 6 page 19 for typical sensitivity figures at other data rates.
System noise bandwidth		30		kHz	2.4 kBaud, Manchester coded data
Cascaded noise figure 433/868 MHz		12/13		dB	
Saturation	10			dBm	2.4 kBaud, Manchester coded data, BER = 10 ⁻³
Input IP3		-18		dBm	From LNA to IF output
Blocking		40		dBc	At +/- 1 MHz
LO leakage			-57	dBm	
Input impedance		88-j26 70-j26 52-j7 52-j4		Ω Ω Ω Ω	Receive mode, series equivalent at 315 MHz at 433 MHz at 868 MHz. at 915 MHz For matching details see "Input/ output matching" p. 28.
Turn on time	11		128	Baud	The turn-on time is determined by the demodulator settling time, which is programmable. See p. 17
IF Section					
Intermediate frequency (IF)		150	10.7	kHz MHz	Internal IF filter External IF filter
IF bandwidth		175		kHz	
RSSI dynamic range	-105		-50	dBm	
RSSI accuracy		± 6		dB	See p.30 for details
RSSI linearity		± 2		dB	
Frequency Synthesiser Section					
Crystal Oscillator Frequency	3		16	MHz	Crystal frequency can be 3-4, 6-8 or 9-16 MHz. Recommended frequencies are 3.6864, 7.3728, 11.0592 and 14.7456. See page 32 for details.

SmartRF® CC1000

Parameter	Min.	Тур.	Max.	Unit	Condition / Note
Crystal frequency accuracy requirement		± 50 ± 25		ppm	433 MHz 868 MHz The crystal frequency accuracy and drift (ageing and temperature dependency) will determine the frequency accuracy of the transmitted signal.
Crystal operation		Parallel			C171 and C181 are loading capacitors, see page 32
Crystal load capacitance	12 12 12	22 16 16	30 30 16	pF pF pF	3-8 MHz, 22 pF recommended 6-8 MHz, 16 pF recommended 9-16 MHz, 16 pF recommended
Crystal oscillator start-up time		5 1.5 2		ms ms ms	3.6864 MHz, 16 pF load 7.3728 MHz, 16 pF load 16 MHz, 16 pF load
Output signal phase noise		-85		dBc/Hz	At 100 kHz offset from carrier
PLL lock time (RX / TX turn time)		200		μs	Up to 1 MHz frequency step
PLL turn-on time, crystal oscillator on in power down mode		250		μs	Crystal oscillator running
Digital Inputs/Outputs					
Logic "0" input voltage	0		0.3*VDD	V	
Logic "1" input voltage	0.7*VDD		VDD	V	
Logic "0" output voltage	0		0.4	V	Output current -2.5 mA,
Logic "1" output voltage	2.5		VDD	V	3.0 V supply voltage Output current 2.5 mA,
Logic "0" input current	NA		-1	μΑ	3.0 V supply voltage Input signal equals GND
Logic "1" input current	NA		1	μΑ	Input signal equals VDD
DIO setup time	20			ns	TX mode, minimum time DIO
DIO hold time	10			ns	must be ready before the positive edge of DCLK TX mode, minimum time DIO must be held after the positive edge of DCLK
Serial interface (PCLK, PDATA and PALE) timing specification					See Table 2 page 12
Power Supply					
Supply voltage		3.0		V	Recommended operation voltage
	2.1		3.6	V	Operating limits
Power Down mode		0.2	1	μΑ	Oscillator core off
Current Consumption, receive mode 433/868 MHz		7.4/9.6		mA	Current is programmable and can be increased for improved sensitivity
Current Consumption, average in receive mode using polling 433/868 MHz		74/96		μА	Polling controlled by micro- controller using 1:100 receive to power down ratio

FCC ID: PDVRFLAN

SmartRF® CC1000

Parameter	Min.	Тур.	Max.	Unit	Condition / Note
Current Consumption, transmit mode 433/868 MHz:					
P=0.01mW (-20dBm)		5.3/8.6		mA	The ouput power is delivered to a
P=0.3mW (-5dBm)		8.9/13.8		mA	50Ω load, see also p. 29
P=1mW (0dBm)		10.4/16.5		mA	
P=3mW (5dBm)		14.8/25.4		mA	
P=10mW (10dBm)		26.7/NA		mA	
Current Consumption, crystal osc.		30 80 105		μΑ	3-8 MHz, 16 pF load 9-14 MHz, 12 pF load 14-16 MHz, 16 pF load
Current Consumption, crystal osc. and bias		860		μΑ	
Current Consumption, crystal osc., bias and synthesiser, RX/TX		4/5 5/6		mA mA	< 500 MHz > 500 MHz

SmartRF® CC1000

Circuit Description

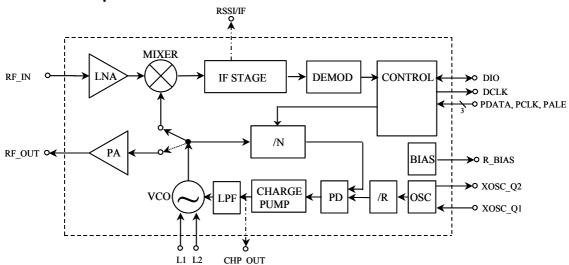


Figure 1. Simplified block diagram of the *CC1000*

A simplified block diagram of **CC1000** is shown in Figure 1. Only signal pins are shown.

In receive mode **CC1000** is configured as a traditional superheterodyne receiver. The RF input signal is amplified by the lownoise amplifier (LNA) and converted down to the intermediate frequency (IF) by the mixer (MIXER). In the intermediate frequency stage (IF STAGE) this downconverted signal is amplified and filtered before being fed the demodulator (DEMOD). As an option a RSSI signal, or the IF signal after the mixer is available at the RSSI/IF pin. After demodulation **CC1000** outputs the digital demodulated data on the pin DIO. Synchronisation is done on-chip providing data clock at DCLK.

In transmit mode the voltage controlled oscillator (VCO) output signal is fed directly to the power amplifier (PA). The RF output is frequency shift keyed (FSK) by the digital bit stream fed to the pin DIO. The internal T/R switch circuitry makes the antenna interface and matching very easy.

The frequency synthesiser generates the local oscillator signal which is fed to the MIXER in receive mode and to the PA in transmit mode. The frequency synthesiser consists of a crystal oscillator (XOSC), phase detector (PD), charge pump (CHARGE PUMP), VCO, and frequency dividers (/R and /N). An external crystal must be connected to XOSC, and only an external inductor is required for the VCO.

3-wire digital serial interface (CONTROL) is used for configuration.

Application Circuit

Very few external components required for the operation of **CC1000**. A typical application circuit is shown in Figure 2. Component values are shown in Table 1.

Input / output matching

C31/L32 is the input match for the receiver, and L32 is also a DC choke for biasing. C41, L41 and C42 are used to match the transmitter to 50 Ohm. An internal T/R switch circuit makes it possible to connect the input and output together and match the **CC1000** to 50 Ω in both RX and TX mode. See "Input/output matching" p.28 for details.

VCO inductor

The VCO is completely integrated except for the inductor L101.

Component values for the matching network and VCO inductor are easily calculated using the SmartRF Studio software.

Additional filtering

Additional external components (e.g. RF LC or SAW-filter) may be used in order to improve the performance in specific applications. See also "Optional LC filter" p.34 for further information.

Voltage supply decoupling

C10-C16 are voltage supply de-coupling capacitors. These capacitors should be placed as close as possible to the voltage supply pins of **CC1000**.

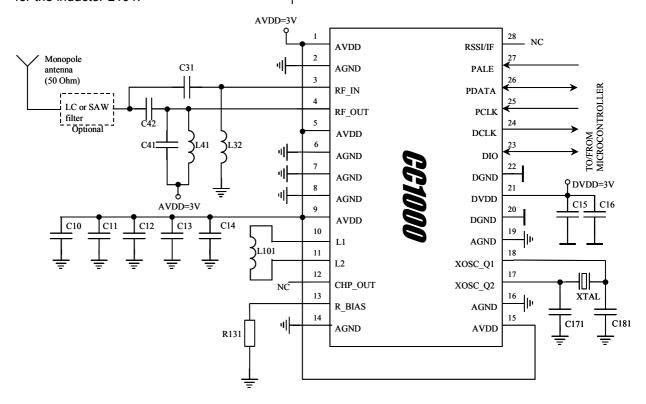


Figure 2. Typical *CC1000* application circuit

IF output

cc1000 has a built-in 10.7 MHz IF output buffer. This buffer could be applied in applications narrow-band requirements on mirror image filtering. The system is then built with **CC1000**, a 10.7 MHz ceramic filter and an external 10.7 MHz demodulator. The external network for IF output operation is shown in Figure 21. R281 = 470 Ω , C281 = 3.3nF.

The external network provides 330 Ω source impedance for the 10.7 MHz ceramic filter.

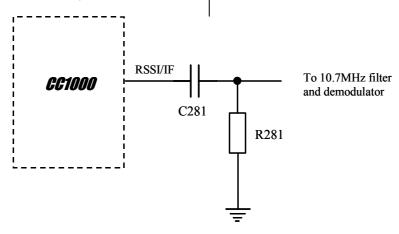


Figure 21. IF output circuit