#### **Tested and Prepared By:**

ITC Engineering Services 9959Calaveras Road, Box 543 Sunol, CA 94586-0543

Tel: 925-862-2944 Fax: 925-862-9013 Email: docs@itcemc.com Web: www.itcemc.com



# RF Safety Exposure Calculation per FCC Requirement

Test Requirement: FCC 47 CFR PART 1.1307(b)1 Measurement Guide: EIA/IS-19-B-1988 FCC 47 CFR PART 15.247(b)4 TIA/EIA/IS-137-A-1996

#### Site Used

✓ Site 1 - 3m Open Field Radiated Site☐ Site 1 - 10m Open Field Radiated Site

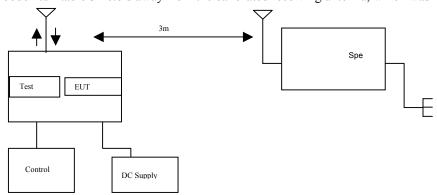
☐ Semi-Anechoic Absorber Lined Shielded Room

☐ EMC Test Lab 1

#### **Administrative Details**

| Test Date:     | October 2, 2002 |  |
|----------------|-----------------|--|
| Test Engineer: | Sandra Sohn     |  |

#### **Environmental Conditions**


| Temperature | 20°C |
|-------------|------|
| Humidity    | 21%  |

**Test Equipment for Signal Substitution** 

| Test Equipment           | Manufacturer       | Model Number | Serial Number |
|--------------------------|--------------------|--------------|---------------|
| Half-wave Dipole Antenna | EMCO               | 3121C-DB4    |               |
| RF Power Amplifier       | Amplifier Research | 5S1G4        | 18220         |
| Signal Generator         | Hewlett Packard    | 8673C        | 2918A00649    |

## **Test Procedure**

The RF-LAN Module was configured to operate at maximum power with carrier unmodulated. The equipment under test was placed on a wooden turntable 3meters away from the calibrated receiving antenna, which was in turn connected to the spectrum analyzer.



For each transmitter frequency, the received signal was maximized by rotating the turntable and adjusting the height of the receiving antenna. To obtain the actual Maximum Peak Output Power, the RF-LAN Module was replaced by a vertically polarized half-wave dipole antenna fed by an RF power amplifier and signal generator. The center of the dipole antenna was placed in the same location as the RF-LAN Module. The signal generator level was adjusted until the reading on the spectrum analyzer was identical to that obtained when the RF-LAN Module was on the turntable. The reading on the signal generator was recorded and the RF power amplifier level was added. The Maximum Peak Output Power was calculated from the formula below.

$$P_t = ((E \times R)^2 / 49.2)$$
 watts, where R=3m

The process was repeated with the EUT antenna in horizontal polarity and receive antenna also in horizontal polarity.

#### **Tested and Prepared By:**

ITC Engineering Services 9959Calaveras Road, Box 543 Sunol, CA 94586-0543

Tel: 925-862-9944 Fax: 925-862-9013 Email: docs@itcemc.com Web: www.itcemc.com



# **Test Procedure (cont)**

The EUT was tested for Maximum Peak Output Power at high, middle, and low frequencies with the Maximum Peak Output Power obtained at channels (Nos. 2, 10 and 16) with frequencies being 906.250MHz, 918.06MHz and 927.803MHz respectively. The test data is presented in this report under the section.

### **Maximum Peak Output Power ERP Calculation**

Test Name: Maximum Peak Output Power calculation (Vertical Antenna Polarization)

- a. 906.250 MHz (Low End)
  - SG = -8dBm, pre Amp = 25.25dB
  - $E_1 = -8dBm + 25.25dB = 17.25dBm \text{ or } 124.25dBmV \approx 1.63V/m$

 $P_t = (1.6 \text{ x } 3)^2 / 49.2 = 23.04/49.2 = 0.468 \text{watts}$ 

- b. 918.06 MHz (Mid-Range)
  - SG = -9dBm, pre Amp = 25.50dB

 $E_1 = -9dBm + 25.50dB = 16.5dBm \text{ or } 123.5dBmV \approx 1.5V/m$ 

 $P_t = (1.5 \text{ x } 3)^2 / 49.2 = 20.25/49.2 = 0.411 \text{ watts}$ 

- c. 927.803 MHz (High-End)
  - SG = -7dBm, pre Amp = 25.79dB

 $E_1 = -7dBm + 25.79dB = 18.79dBm \text{ or } 125.79dBmV \approx 1.9V/m$ 

 $P_t = (1.9 \text{ x } 3)^2 / 49.2 = 32.49/49.2 = 0.660 \text{ watts}$ 

Test Name: Maximum Peak Output Power calculation (Horizontal Antenna Polarization)

a. 906.250 MHz (Low End)

SG = -7dBm, pre Amp = 25.25dB

 $E_1 = -7dBm + 25.25dB = 18.25dBm \text{ or } 125.25dBmV \approx 1.83V/m$ 

 $P_t = (1.83 \times 3)^2 / 49.2 = 30.14/49.2 = 0.613$  watts

b. 918.06 MHz (Mid-Range)

SG = -7dBm, pre Amp = 25.50dB

 $E_1 = -7 dBm + 25.50 dB = 18.5 dBm \text{ or } 125.5 dBmV \approx 1.9 V/m$ 

 $P_t = (1.9 \text{ x } 3)^2 / 49.2 = 32.49/49.2 = 0.660 \text{ watts}$ 

c. 927.803 MHz (High-End)

SG = -8dBm, pre Amp = 25.79dB

 $E_1 = -8dBm + 25.79dB = 17.79dBm \text{ or } 124.79dBmV \approx 1.7V/m$ 

 $P_t = (1.7 \text{ x } 3)^2 / 49.2 = 26.01/49.2 = 0.528 \text{watts}$ 

### **Tested and Prepared By:**

ITC Engineering Services 9959Calaveras Road, Box 543 Sunol, CA 94586-0543

Tel: 925-862-9944 Fax: 925-862-9013 Email: docs@itcemc.com Web: www.itcemc.com



# **Maximum RF Safety Exposure Calculation**

The Maximum Permissible Exposure (MPE) power density per ANSI C95.1 table 2 for uncontrolled cellular phone environment is f/1500 [mW/cm<sup>2</sup>]. The numeric value of the gain for both antennas is 1.64. Therefore, by using the formula of the power density

 $S = ERP \; x \; G \; / \; 4\pi R^2,$  the power density is

MPE =

 $660 \text{mW} \times 1.64/(4\pi r^2) = 906.250 \text{ MHz}/1500[\text{mW/cm}^2]$ 

 $\frac{660 \text{mW}^*(1.64)}{4\pi r^2} = \frac{906.250 \text{ MHz}}{1500 \text{ mW/cm}^2}$ 

 $\frac{660 \text{mW} * (1.64) * (1500 \text{ cm}^2/\text{mW})}{906.250 * (4\pi)}$ 

 $r = (142.6)^{\frac{1}{2}}$  = 11.943cm

Therefore, the calculated MPE distance (r) is 11.943cm. The installation instructions shall indicate that at least 14.943cm (11.943 + 3 margin uncertainty) separation shall be provided between the antennas and the people.