

N° 1-6736
Scope available
on www.cofrac.fr

TEST REPORT

EUT Description	WLAN and BT, 2x2 Wi-Fi and BT, M.2 1216 adapter card
Brand Name	Intel® BE211D2W
Model Name	BE211D2W, BE211D2W M
FCC/IC ID	FCC ID: PD9BE211D2 ; IC ID: 1000M-BE211D2
Date of Test Start/End	2025-06-11 /2025-07-19
Features	2x2 WiFi - Bluetooth® (see section 5)

Applicant	Intel Corporation SAS
Address	425 Rue de Goa – Le Cargo B6 – 06600 Antibes, FRANCE
Contact Person	Benjamin Lavenant
Telephone/Fax/ Email	Benjamin.lavenant@intel.com

Reference Standards	FCC CFR Title 47 Part 15 E RSS-248 issue 3, RSS-Gen issue 5 - A1 (see section 1)
---------------------	---

Test Report identification	250519-02.TR11
Revision Control	Rev 01 This test report revision replaces any previous test report revision (see section 8)

The test results relate only to the samples tested.
Reference to accreditation shall be used only by full reproduction of test report.

Issued by _____

Reviewed by _____

Khodor RIDA
(Test Engineer Lead)

Zayd OUACHICHA
(Technical Manager)

**Intel Corporation S.A.S – WRF Lab
425 rue de Goa – Le Cargo B6 - 06600, Antibes, France
Tel. +33493001400 / Fax +33493001401**

Table of Contents

1. Standards, reference documents and applicable test methods	3
2. General conditions, competences and guarantees	3
3. Environmental Conditions	3
4. Test samples	4
5. EUT Features	5
6. Remarks and comments	5
7. Test Verdicts summary	5
7.1. 802.11 AX – U-NII- 5 TO U-NII-8.....	5
8. Document Revision History	5
Annex A. Test & System Description	6
A.1 Measurement System	6
A.2 Test Equipment List	8
A.3 Measurement Uncertainty Evaluation	9
Annex B. Test Results UNII-5 to UNII-8.....	10
B.1 Test Conditions	10
B.2 Radiated spurious emission	11
B.2.1 TEST RESULTS.....	12
Annex C. Photographs	18
C.1 Test Setup	18
C.2 Test Sample	19

1. Standards, reference documents and applicable test methods

FCC	1. FCC Title 47 eCFR part 15 – Subpart E - Unlicensed National Information Infrastructure Devices. 2024-10-01 edition
	2. FCC Title 47 eCFR part 15 – Subpart C – §15.209 Radiated emission limits; general requirements. 2024-10-01 edition
	3. FCC OET KDB 987594 D01 U-NII 6GHz General Requirements v03
	4. FCC OET KDB 987594 D02 U-NII 6 GHz EMC Measurement v03
	5. FCC OET KDB 987594 D03 U-NII 6 GHz QA v03
	6. FCC OET KDB 789033 D02 v02r01 General U-NII Test Procedures New Rules – Guidelines for compliance testing of Unlicensed National Information Infrastructure (U-NII) Devices (Part 15, Subpart E).
	7. ANSI C63.10-2020 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
ISED	1. RSS-248 Issue 3 - Radio Local Area Network (RLAN) Devices in the 5925-7125 MHz band.
	2. RSS-Gen Issue 5 Amendment 1 - General Requirements for Compliance of Radio Apparatus.
	3. FCC OET KDB 987594 D01 U-NII 6GHz General Requirements v03
	4. FCC OET KDB 987594 D02 U-NII 6 GHz EMC Measurement v03
	5. FCC OET KDB 987594 D03 U-NII 6 GHz QA v03
	6. ANSI C63.10-2020+cor2023+Amd2024 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

2. General conditions, competences and guarantees

- ✓ Tests performed under FCC standards identified in section 1 are covered by A2LA accreditation.
- ✓ Tests performed under ISED standards identified in section 1 are covered by Cofrac accreditation.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 laboratory accredited by the American Association for Laboratory Accreditation (A2LA) with the certificate number 3478.01.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC, with Designation Number FR0011.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 testing laboratory accredited by the French Committee for Accreditation (Cofrac) with the certificate number 1-6736.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is a Registered Test Site listed by ISED, with ISED #1000Y and CAB identifier FR0005.
- ✓ Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- ✓ This report is only referred to the item that has undergone the test.
- ✓ This report does not imply an approval of the product by the Certification Bodies or competent Authorities.

3. Environmental Conditions

- ✓ At the site where the measurements were performed the following limits were not exceeded during the tests:

Temperature	Min: 22.20°C Max: 27.84°C Average: 26.03°C
Humidity	Min: 42.15% Max: 65.83% Average: 52.45%

4. Test samples

Sample	Control #	Description	Model	Serial #	Date of receipt	Note
#01	250528-01.S07	Module	BE211D2W	289200F96596	2025-05-28	Used for Radiated Spurious Emissions tests
	200803-01.S01	Extender	ADEXELEC	139245	2020-08-31	
	170000-01.S57	Adapter	BNJ C0 V3	ASS00959-00-0C	2025-03-24	
	200611-03.S30	Test PC	Latitude 5401	6DJLK13	2020-08-19	
	230223-02.S48	Triband Antenna	-	006	2023-04-20	
	230526-09.S08	Triband Antenna	-	016	2023-07-06	
#02	250528-01.S07	Module	BE211D2W	289200F96596	2025-05-28	Used for Radiated Spurious Emissions tests
	200904-01.S14	Extender	ADEXELEC	12	2023-06-22	
	170000-01.S56	Adapter	BNJ C0 V3	E1578726888186A	2025-03-24	
	170000-01.S55	Test PC	LATITUDE 5530	00425000000002AA5 21	2025-03-24	
	230526-09.S06	Triband Antenna	-	014	2023-07-06	
	230526-09.S05	Triband Antenna	-	013	2023-07-06	
#03	250528-01.S29	Module	BE211D2W	C0A810A3BB50	2025-07-16	Used for Radiated Spurious Emissions tests
	180001-01.S21	Socket	1216SD to M.2	-	2021-06-07	
	200904-01.S14	Extender	ADEXELEC	12	2023-06-22	
	170000-01.S56	Adapter	BNJ C0 V3	E1578726888186A	2025-03-24	
	170000-01.S55	Test PC	LATITUDE 5530	00425000000002AA5 21	2025-03-24	
	230526-09.S06	Triband Antenna	-	014	2023-07-06	
	230526-09.S05	Triband Antenna	-	013	2023-07-06	

5. EUT Features

The herein information is provided by the customer

Intel WRF Lab declines any responsibility for the accuracy of the stated customer provided information, especially if it has any impact on the correctness of test results presented in this report.

Brand Name	Intel® BE211D2W		
Model Name	BE211D2W, BE211D2W M		
Software Version	DRTU.08798.99.0.99		
Driver Version	99.0.99.2		
Prototype / Production	Production		
Supported Radios	802.11b/g/n/ac/ax/be	2.4GHz	
	802.11a/n/ac/ax/be	5.2GHz	
		5.6GHz	
		5.8GHz	
	802.11ax/be	6.0GHz	
	Bluetooth	2.4GHz	
Antenna Information	Transmitter	Chain A(1)	Chain B(2)
	Manufacturer	Intel WRF Lab	Intel WRF Lab
	Antenna type	PIFA	PIFA
	Part number	WRF-Tri Band-Antenna	WRF-Tri Band-Antenna
	Declared antenna gain (dBi)	+5.02	+5.02

6. Remarks and comments

1. No deviations were made from the test methods listed in section 1 of this report
2. This report only presents Radiated spurious emissions measurements, for the remaining test cases refer to report 250519-02.TR12

7. Test Verdicts summary

The statement of conformity to applicable standards in the table below are based on the measured values, without taking into account the measurement uncertainties.

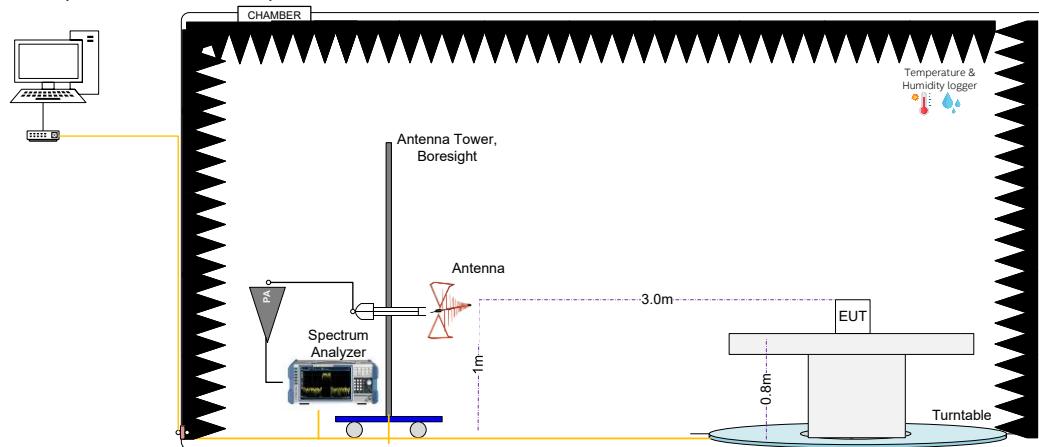
7.1. 802.11 ax – U-NII- 5 to U-NII-8

FCC Part	ISED Clause	Test name	Verdict
15.407 (b) (5) 15.209	RSS-248 Clause 4.6	Undesirable emissions limits (radiated)	Pass

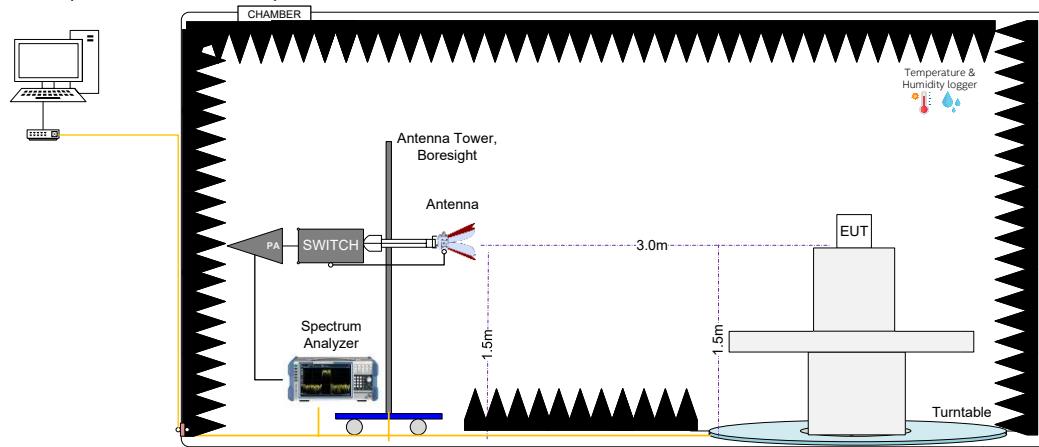
8. Document Revision History

Revision #	Modified by	Revision Details
Rev. 00	K.RIDA	First Issue
Rev. 01	K.RIDA	Update Test Condition section, upon customer request

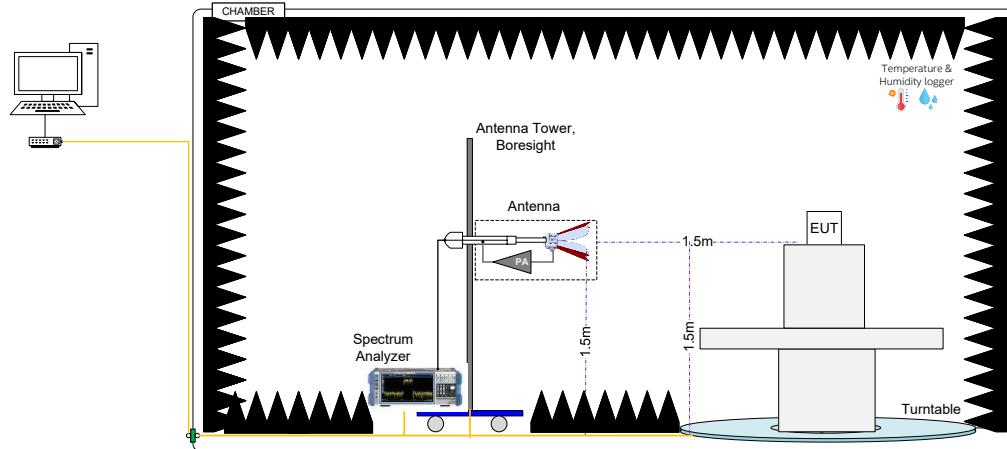
Annex A. Test & System Description


A.1 Measurement System

Measurements were performed using the following setups, made in accordance to the general provisions of ANSI 63.10-2020 Test Procedures.


The DUT is installed in a test fixture and this test fixture is connected to a laptop computer and AC/DC power adapter. The laptop computer was used to configure the EUT to continuously transmit at a specified output power using all different modes and modulation schemes, using the Intel proprietary tool DRTU.

Radiated test setup


Radiated Setup 30MHz - 1GHz (Transmitter tests)

Radiated Setup 1GHz – 11GHz (Transmitter tests)

Radiated Setup 11GHz – 40GHz (Transmitter tests)

Sample Calculation

The spurious received voltage $V(\text{dB}\mu\text{V})$ in the spectrum Analyzer is converted to Electric field strength using the transducer factor F corresponding to the Rx path Loss:

$$F (\text{dB}/\text{m}) = \text{Rx Antenna Factor } (\text{dB}/\text{m}) + \text{Cable losses } (\text{dB}) - \text{Amplifiers Gain } (\text{dBi})$$

$$E (\text{dB}\mu\text{V}/\text{m}) = V(\text{dB}\mu\text{V}) + F (\text{dB}/\text{m})$$

For field strength measurements made at other than the distance at which the applicable limit is specified, the field strength of the emission at the distance specified by the limit is deduced as follows:

$$E_{\text{SpecLimit}} = E_{\text{Meas}} + 20 \cdot \log(D_{\text{Meas}}/D_{\text{SpecLimit}})$$

where

$E_{\text{SpecLimit}}$ is the field strength of the emission at the distance specified by the limit, in $\text{dB}\mu\text{V}/\text{m}$

E_{Meas} is the field strength of the emission at the measurement distance, in $\text{dB}\mu\text{V}/\text{m}$

D_{Meas} is the measurement distance, in m

$D_{\text{SpecLimit}}$ is the distance specified by the limit, in m

A.2 Test Equipment List

Radiated Setup #1

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
006-000	Anechoic Chamber	FACT3	5720	ETS-Lindgren	2024-01-17	2026-01-17
006-001	Turn Table	ETS	-	ETS-Lindgren	N/A	N/A
094-002	Thermo-hygrometer sensor	RMS-HCD-S	24050486	Rotronic	2024-09-02	2026-09-02
006-011	Boresight antenna mast	BAM 4.0-P	P/278/2890.01	Maturo	N/A	N/A
006-002	Switch & Positioning systems	EMC Center	00159757	ETS-Lindgren	N/A	N/A
147-000	Spectrum analyzer	FSW43	101847	Rohde & Schwarz	2025-03-07	2027-03-07
006-008	Measurement SW, v11.3	EMC32	100623	Rohde & Schwarz	N/A	N/A
301-000	Amplifier 9kHz-1300MHz	8447F	3113A07440	HP	2025-02-11	2026-02-11
006-067	Low Pass Filter 1.6GHz	LPM17671	G002	Micro-Tronics	2025-02-11	2026-02-11
007-034	Broadband RF Power Amplifier 0.5-40.0GHz	DEPA0540-43	2024A02	Diamond Engineering	2025-02-11	2026-02-11
189-000	Double Horn Ridged antenna 10GHz-40GHz	3116C	227716	ETS-Lindgren	2024-05-29	2026-05-29
057-000	Double ridged horn antenna (1GHz to 18GHz)	ETS-Lindgren-3117	167062	ETS-Lindgren	2024-07-23	2026-07-23
006-061	Bi-Log Periodic antenna	CBL6143A	61382	Teseq	2024-11-13	2026-11-13
006-068	RF Switch DC-40GHz	LPM17671	G002	Mini-Circuits	2025-02-11	2026-02-11
261-000	RF Amplifier Used for 1 GHz-11GHz	ETS-Lindgren-3117-PA	00157993	ETS-Lindgren	2025-02-11	2026-02-11
009-007	Filter HPF 11GHz	Mini-Circuits-ZHSS-k11G+	84931831830	Mini-Circuits	2025-02-11	2026-02-11
006-051	RF Cable 1.0m	CBL-1.5M-SMSM+	202879	Mini-Circuits	2025-03-12	2026-03-12
006-066	Cable 7m – 25MHz to 40GHz	R286304174	20.46.370	Radiall	2025-02-10	2026-02-10
006-063	Cable 30cm – 1GHz to 40GHz	PE371-12	-	Pasternack	2025-02-10	2026-02-10
006-064	Cable 30cm – 1GHz to 40GHz	PE371-12	-	Pasternack	2025-02-10	2026-02-10
006-065	Cable 60cm – 25MHz to 1GHz	PE300-24	-	Pasternack	2025-02-10	2026-02-10

Radiated Setup #2

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
007-000	Anechoic chamber	RFD-FA-100	5996	ETS Lindgren	2024-01-18	2026-01-18
138-000	Spectrum Analyzer	FSV40**	101556	Rohde & Schwarz	2024-02-27	2026-02-27
137-000	Spectrum Analyzer	FSW67*	103266	Rohde & Schwarz	2025-02-11	2027-02-11
007-007	Double Ridge Horn Antenna (1-18GHz)	3117	00152266	ETS Lindgren	2024-03-26	2026-03-26
026-008	Low noise amplifier 1-18GHz	LA1018N3209	J10100000407	A-INFO	2025-02-19	2026-02-19
007-004	Switch & Positioner	EMCenter	00162359	ETS Lindgren	N/A	N/A
007-006	EMControl & EMSwitch	EMCenter	00151232	ETS Lindgren	N/A	N/A
007-036	SMA-SMA 6.5m Cable	140-8500-11-51-001	001	Atem	2025-03-12	2026-03-12
007-005	Measurement SW, v11.30.00	EMC32	100401	Rohde & Schwarz	N/A	N/A
007-001	Styrofoam Column, 151mm	-	-	-	N/A	N/A
007-002	Turntable	-	-	ETS Lindgren	N/A	N/A
007-003	Antenna Tower	2171B-3.0M	00150123	ETS Lindgren	N/A	N/A
007-015	N-SMA 1.5m Cable	-	-	Spirent	2025-02-19	2026-02-19
007-018	SMA-SMA 1.2m Cable	0500990991200KE	-	Radiall	2025-02-19	2026-02-19
094-001	Temp & Humidity Logger	RMS-HCD-S	24050487	Rotronic	2024-09-02	2026-09-02

*Used from 12/06/2025 to 16/06/2025

**Used since 17/06/2025

Shared Radiated Equipment

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
412-000	DRTU Power finder V2.1	-	-	Intel	N/A	N/A
139-000	Power Sensor	NRP-Z81	104383	Rohde & Schwarz	2025-05-20	2027-05-20
140-000	Power Sensor	NRP-Z81	104382	Rohde & Schwarz	2024-04-04	2026-04-04

N/A: Not Applicable

A.3 Measurement Uncertainty Evaluation

The system uncertainty evaluation is shown in the below table with a coverage factor of $k = 2$ to indicate a 95% level of confidence:

Measurement type	Uncertainty	Unit
Radiated tests <1GHz	±6.33	dB
Radiated tests 1GHz – 40 GHz	±6.72	dB

Annex B. Test Results UNII-5 to UNII-8

The herein test results were performed by:

Test case measurement	Test Personnel
Radiated spurious emissions	K. RIDA

B.1 Test Conditions

For 802.11ax20 (20 MHz channel bandwidth), 802.11ax40 (40MHz channel bandwidth), 802.11ax80 (80MHz channel bandwidth) and 802.11ax160 (160MHz channel bandwidth) modes the EUT can transmit at both CHAIN A and CHAIN B RF outputs individually, and also simultaneously.

The target power is specified in report 250519-02.TR33, and the Tx settings were configured using the DRTU Tool

The following data rates were selected based on preliminary testing that identified those rates as the worst cases for output power and spurious levels at the band edges:

Transmission Mode	Mode	Bandwidth (MHz)	Worst Case Data Rate
SISO	802.11ax/be	20/40/80/160	MCS0
SISO	802.11be	320	MCS0
MIMO	802.11ax/be	20/40/80/160	MCS0
MIMO	802.11be	320	MCS0

B.2 Radiated spurious emission

Standard references

FCC part	ISED Clause	Limits																				
15.407 (b) (5)	RSS-248 Clause 4.7.2	For transmitters operating within the 5.925-7.125 GHz band: Any emissions outside of the 5.925-7.125 GHz band must not exceed an e.i.r.p. of -27 dBm/MHz.																				
15.35 (b)	RSS-Gen Clause 8.1	When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.																				
15.407 (b) (8)	RSS-248 Clause 4.7.2	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in FCC Part 15.209 and RSS-Gen.																				
15.209	RSS-Gen Clause 8.9	<p>Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a):</p> <table border="1"> <thead> <tr> <th>Freq Range (MHz)</th> <th>Field Strength (μV/m)</th> <th>Field Strength (dBμV/m)</th> <th>Meas. Distance (m)</th> </tr> </thead> <tbody> <tr> <td>30-88</td> <td>100</td> <td>40</td> <td>3</td> </tr> <tr> <td>88-216</td> <td>150</td> <td>43.5</td> <td>3</td> </tr> <tr> <td>216-960</td> <td>200</td> <td>46</td> <td>3</td> </tr> <tr> <td>Above 960</td> <td>500</td> <td>54</td> <td>3</td> </tr> </tbody> </table> <p>The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands above 1000 MHz. Radiated emission limits in this band is based on measurements employing an average detector.</p> <p>For average radiated emission measurements above 1000 MHz, there is also a limit specified when measuring with peak detector function, corresponding to 20 dB above the indicated values in the table.</p>	Freq Range (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Meas. Distance (m)	30-88	100	40	3	88-216	150	43.5	3	216-960	200	46	3	Above 960	500	54	3
Freq Range (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Meas. Distance (m)																			
30-88	100	40	3																			
88-216	150	43.5	3																			
216-960	200	46	3																			
Above 960	500	54	3																			

Test procedure

The radiated setups shown in section *Test & System Description* were used to measure the radiated spurious emissions.

Depending of the frequency range and bands being tested, different antennas and filters were used.

- For frequencies less than or equal to 1000 MHz, measurements were made with the CISPR quasi-peak detector with a resolution bandwidth of 120kHz and a video bandwidth 3 times of the resolution bandwidth.
- For restricted bands, measurements above 1000 MHz were performed using average and peak detectors with a minimum resolution bandwidth of 1 MHz and a video bandwidth 3 times of the resolution bandwidth
- For unrestricted bands, measurements above 1000 MHz were performed using RMS* and peak detectors with a minimum resolution bandwidth of 1 MHz and a video bandwidth 3 times of the resolution bandwidth

*RMS detector is required only for FCC. For ISED tests, only average and peak detectors are measured for both restricted and unrestricted bands above 1GHz.

The final measurement is performed by varying the antenna height from 1 m to 4 m, the EUT rotating in azimuth over 360° for both vertical and horizontal polarizations.

According to KDB 987594 D03, Low, Mid and High channels were tested for the narrowest and widest bandwidth of each band (UNII-5, UNII-6, UNII-7 and UNII-8), covering also the lowest and highest channels as required by the RSS-248 issue 3.

For the 20 MHz and 320 MHz bandwidths, only the operational modes identified as worst-case were retained and reported in this test report.

B.2.1 Test Results

30 MHz – 1 GHz, Radiated spurious emissions

Radiated Spurious – All modes

Frequency	QuasiPeak	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB	---
37.0	23.4	40.0	16.6	V
125.0	33.4	43.5	10.2	V

Note 1: The detected spurious signals do not depend on either the operating channel or the modulation mode.

UNII 5

1 GHz – 40 GHz, 802.11ax/be20, HE0, Chain A

Radiated Spurious – CH1

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dB μ V/m	---	dB μ V/m	dB	---
2660.8	38.8	Average	54.0	15.2	H
2660.8	49.0	Peak	74.0	25.0	V
11912.0	36.0	Average	54.0	17.9	V
11912.0	46.5	Peak	74.0	27.5	V
23811.2	41.0	Average	54.0	13.0	V
23811.2	50.2	Peak	74.0	23.8	V

1 GHz – 40 GHz, 802.11ax/be20, MCS0, Chain B**Radiated Spurious – CH1**

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dB μ V/m	---	dB μ V/m	dB	---
2661.7	51.2	Peak	74.0	22.8	H
2661.7	38.2	Average	54.0	15.8	H
11911.1	45.2	Peak	74.0	28.8	V
11911.1	34.0	Average	54.0	20.0	V
23819.0	54.0	Peak	74.0	20.1	H
23819.0	48.5	Average	54.0	5.5	H

1 GHz – 40 GHz, 802.11ax/be20, MCS0, Chain A+B**Radiated Spurious – CH1**

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dB μ V/m	---	dB μ V/m	dB	---
2661.7	49.2	Peak	74.0	24.8	H
2661.7	37.6	Average	54.0	16.4	H
10440.0	59.0	Peak	88.2	29.2	H
10440.0	49.8	RMS	68.2	18.4	H
23819.9	49.0	Average	54.0	5.0	H
23819.9	55.6	Peak	74.0	18.4	H

UNII 6**1 GHz – 40 GHz, 802.11ax/be20, MCS0, Chain A****Radiated Spurious – CH113**

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dB μ V/m	---	dB μ V/m	dB	---
10586.0	69.6	Peak	88.2	18.6	H
10586.0	52.6	RMS	68.2	15.6	H
15109.8	46.4	Peak	88.2	41.8	V
15109.8	34.1	RMS	68.2	34.0	V
18873.0	48.8	Peak	74.0	25.2	H
18873.0	36.7	Average	54.0	17.3	H
29350.7	39.6	RMS	68.2	28.6	V
29350.7	51.4	Peak	88.2	36.8	V

1 GHz – 40 GHz, 802.11ax/be20, MCS0, Chain B**Radiated Spurious – CH97**

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dB μ V/m	---	dB μ V/m	dB	---
10440.0	56.6	Peak	88.2	31.6	V
10440.0	47.9	RMS	68.2	20.3	V
20183.3	37.1	Average	54.0	16.9	H
20183.3	48.6	Peak	74.0	25.4	H
25733.5	39.0	RMS	68.2	29.2	V
25733.5	50.7	Peak	88.2	37.5	V
29824.9	40.0	RMS	68.2	28.1	H
29824.9	52.3	Peak	88.2	35.9	V

1 GHz – 40 GHz, 802.11ax/be20, MCS0, Chain A+B**Radiated Spurious – CH113**

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dB μ V/m	---	dB μ V/m	dB	---
10586.0	67.3	Peak	88.2	20.9	V
10586.0	51.7	RMS	68.2	16.5	V
28126.9	39.1	RMS	68.2	29.1	V
28126.9	51.0	Peak	88.2	37.2	V
31632.5	39.3	Average	54.0	14.7	V
31632.5	52.0	Peak	74.0	21.9	V

UNII 7**1 GHz – 40 GHz, 802.11ax/be20, MCS0, Chain A****Radiated Spurious – CH149**

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dB μ V/m	---	dB μ V/m	dB	---
2655.6	47.5	Peak	74.0	26.5	H
2655.6	38.1	Average	54.0	15.9	H
18950.8	36.6	Average	54.0	17.4	H
18950.8	48.2	Peak	74.0	25.8	H

1 GHz – 40 GHz, 802.11ax/be20, MCS0, Chain B**Radiated Spurious – CH117**

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dB μ V/m	---	dB μ V/m	dB	---
21964.5	49.3	Peak	88.2	38.9	H
21964.5	36.9	RMS	68.2	31.3	H
23865.4	38.4	Average	54.0	15.6	V
23865.4	49.8	Peak	74.0	24.2	V

1 GHz – 40 GHz, 802.11ax/be20, MCS0, Chain A+B**Radiated Spurious – CH117**

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dB μ V/m	---	dB μ V/m	dB	---
10586.5	64.4	Peak	88.2	23.8	H
10586.5	50.6	RMS	68.2	17.6	H
11813.5	32.3	Average	54.0	21.7	V
11813.5	44.0	Peak	74.0	29.9	V
29136.1	40.4	RMS	68.2	27.8	H
29136.1	51.2	Peak	88.2	37.0	H

UNII 8**1 GHz – 40 GHz, 802.11ax/be20, MCS0, Chain A****Radiated Spurious – CH185**

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dB μ V/m	---	dB μ V/m	dB	---
2658.9	50.1	Peak	74.0	23.9	H
2658.9	38.1	Average	54.0	15.9	H
25357.9	39.4	RMS	68.2	28.8	V
25357.9	50.0	Peak	88.2	38.2	V

1 GHz – 40 GHz, 802.11ax/be20, MCS0, Chain B**Radiated Spurious – CH209**

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dB μ V/m	---	dB μ V/m	dB	---
3498.8	50.9	Peak	88.2	37.3	V
3498.8	41.7	RMS	68.2	26.5	H
13998.6	34.9	RMS	68.2	33.3	V
13998.6	44.2	Peak	88.2	44.0	V
20993.4	46.2	Peak	74.0	27.8	V
20993.4	40.4	Average	54.0	13.6	H
27980.0	41.4	RMS	68.2	26.8	V
27980.0	51.0	Peak	88.2	37.2	V

1 GHz – 40 GHz, 802.11ax/be20, MCS0, Chain A+B**Radiated Spurious – CH233**

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dB μ V/m	---	dB μ V/m	dB	---
10440.0	59.1	Peak	88.2	29.1	V
10440.0	49.2	RMS	68.2	19.0	H
13896.1	33.4	RMS	68.2	34.8	H
13896.1	45.5	Peak	88.2	42.7	H
31435.3	39.0	Average	54.0	14.9	V
31435.3	52.2	Peak	74.0	21.8	V