

EVALUATION REPORT

EUT Description	2x2 Wi-Fi and BT, M.2 1216 adapter card
Brand Name	Intel® BE201D2W
Model Name	BE201D2W
FCC ID	PD9BE201D2
Date of Test Start/End	2025-01-27 / 2025-01-27
Features	2x2 Wi-Fi - IEEE 802.11be - Bluetooth® (see section 3)

Applicant	Intel Corporation SAS
Address	425 Rue de Goa – Le Cargo B6 – 06600 Antibes, FRANCE
Contact Person	Benjamin Lavenant
Telephone/Fax/ Email	Benjamin.lavenant@intel.com

Reference Standards	FCC 47 CFR 1.1310 FCC 47 CFR 2.1091 (see section 1)
---------------------	--

Test Report identification	241122-02.TR02
Revision Control	Rev. 00 This test report revision replaces any previous test report revision (see section 5)

Reference to accreditation shall be used only by full reproduction of test report

Reviewed by _____

Zayd OUACHICHA
(Technical Manager)

**Intel Corporation SAS – WRF Lab
425 rue de Goa – Le Cargo B6 - 06600 Antibes, France
Tel. +33493001400 / Fax +33493001401**

Table of Contents

1. Standards, reference documents and applicable test methods	3
2. General conditions, competences and guarantees.....	3
3. EUT Features	4
4. Evaluation Verdicts summary.....	6
5. Document Revision History	6
A.1 RF EXPOSURE LIMIT	7
A.2 EXPOSURE FROM SOURCE WITH MULTIPLE FREQUENCIES.....	7
B.1 DECLARED MAXIMUM OUTPUT POWER.....	8
B.2 RF EXPOSURE EVALUATION RESULTS	8
B.2.1 2.4GHz	8
B.2.2 UNII 6GHz	8

1. Standards, reference documents and applicable test methods

FCC

FCC 47 CFR Part §1.1310 Radiofrequency radiation exposure limits. Edition 2023-10-01
FCC 47 CFR Part §2.1091 Radiofrequency radiation exposure evaluation: mobile devices. Edition 2023-10-01

2. General conditions, competences and guarantees

- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 laboratory accredited by the American Association for Laboratory Accreditation (A2LA) with the certificate number 3478.01.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC, with Designation Number FR0011
- ✓ Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- ✓ This report is only referred to the item that has undergone the test.
- ✓ This report does not imply an approval of the product by the Certification Bodies or competent Authorities.

3. EUT Features

The herein information is provided by the customer

Intel WRF Lab declines any responsibility for the accuracy of the stated customer provided information, especially if it has any impact on the correctness of test results presented in this report.

Brand Name	Intel® BE201D2W	
Model Name	BE201D2W	
Supported Radios	802.11b/g/n/ax/be 802.11a/n/ac/ax/be 802.11ax/be Bluetooth	2.4GHz 5.2GHz 5.4GHz 5.6GHz 5.8GHz 6.0GHz 2.4GHz
Antenna Information	PIFA Antenna:	
	Transmitter	Chain A (1)
	2.4GHz	Chain B (2)
	Manufacturer	Intel WRF Lab
	Antenna type	PIFA
	Part number	WRF-Tri Band-Antenna
	Frequency Band	Peak gain w/cable loss (dBi)
	2.4 GHz (2400.0 – 2500.0 MHz)	2.95
	Monopole Antenna:	
	Transmitter	Chain A (1)
	2.4GHz	Chain B (2)
	Manufacturer	Changshu HongBo Telecommunication Technology Co., Ltd.
	Antenna type	Monopole
	Part number	260-25095
	Frequency Band	Peak gain w/cable loss (dBi)
	2.4 GHz (2400.0 – 2500.0 MHz)	2.83
	Dipole Antenna:	
	Transmitter	Chain A (1)
	2.4GHz	Chain B (2)
	Manufacturer	WIESON
	Antenna type	Dipole
	Part number	ARY121-0009-002-H0
	Frequency Band	Peak gain w/cable loss (dBi)
	2.4 GHz (2400.0 – 2500.0 MHz)	2.95

6GHz Antenna:		
6GHz		
Transmitter	Chain A (1)	Chain B (2)
Manufacturer	NA	NA
Antenna type	NA	NA
Part number	NA	NA
Frequency Band		Peak gain w/cable loss (dBi)
6 GHz (5925MHz-7125MHz)		-2.00
Simultaneous Transmission Configurations	WLAN 6GHz Chain B(2) + BT Chain A (1) WLAN 6GHz Chain B(2) + WLAN 6GHz Chain A(1) WLAN 6GHz Chain B(2) + WLAN 6GHz Chain A(1) + BT Chain A(1)	

4. Evaluation Verdicts summary

Power Density Calculations

Mode	Highest Power Density @ 20cm (mW/cm ²)	Limit (mW/cm ²)	Verdict
UNII 6GHz	0.01	1.00	P
BT	0.01	1.00	P

Collocated Power Density Calculations

Mode	$\sum \frac{Power\ Density}{Limit}$	Ratio Max	Verdict
WLAN + BT	0.03	1.00	P

P: Pass

F: Fail

NM: Not Measured

NA: Not Applicable

5. Document Revision History

Revision #	Modified by	Revision Details
Rev. 00	M.Faria	First Issue

Annex A. Evaluation Description

A.1 RF Exposure Limit

According to the FCC part 1.1310:

- For operations within the frequency range of 300 kHz and 6 GHz (inclusive), the limits for maximum permissible exposure (MPE), derived from whole-body SAR limits and listed in the table below.

Limits for Maximum Permissible Exposure (MPE) (TABLE 1 TO §1.1310(E)(1))

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(ii) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	<30
1.34-30	824/f	2.19/f	*(180/f ²)	<30
30-300	27.5	0.073	0.2	<30
300-1,500	-	-	f/1500	<30
1,500-100,000	-	-	1.0	<30

f = frequency in MHz. * = Plane-wave equivalent power density.

For the purpose of this evaluation, a distance of 20cm was used to calculate the equivalent plane wave power density, to be compared with the limit described in the table above:

$$S_{eq} = \frac{P_{avg} \cdot G}{4 \cdot \pi \cdot R^2}$$

Where:

S_{eq} = Equivalent Plane Wave Power Density

P_{avg} = Average Power at antenna terminals in Watts

G = Gain of the Transmitting Antenna

R = Distance from the Transmitting Antenna in meters

A.2 Exposure from source with Multiple Frequencies

If the device is designed such that more than one antenna can functionally transmit at the same time, the RF exposure evaluation shall be conducted while all antennas are transmitting. The individual exposure level ratios shall be totaled and used for compliance purposes.:

$$\sum \frac{S_{eq_i}}{S_{Limit_i}} < 1$$

Annex B. RF Exposure Evaluation Results

B.1 Declared Maximum Output Power

According to the applicant, the maximum conducted transmit power (including the upper tolerance) for the EUT under evaluation are as follows:

Mode	Max Output Power (incl. Tolerance) (dBm)
UNII 6GHz	19.75
BT	15.50

B.2 RF Exposure Evaluation Results

B.2.1 2.4GHz

Band	Avg Power [dBm]	Peak antenna Gain (dBi)	ERP/EIRP Avg [dBm]	ERP/EIRP Avg [mW]	Power density @ 20cm [mW/cm ²]	Limit [mW/cm ²]	Ratio (Power density/Limit)
BT	15.50	2.95	18.45	69.98	0.01	1.00	0.01

B.2.2 UNII 6GHz

Band	Avg Power [dBm]	Peak antenna Gain (dBi)	ERP/EIRP Avg [dBm]	ERP/EIRP Avg [mW]	Power density @ 20cm [mW/cm ²]	Limit [mW/cm ²]	Ratio (Power density/Limit)
UNII 6GHz	19.75	-2.00	17.75	59.57	0.01	1.00	0.01

The maximum exposure for collocated transmitters is:

Band	Ratio (Power density/Limit)	\sum Ratio _i	Limit
UNII 6GHz	0.01	0.03	1.00
UNII 6GHz	0.01		
BT	0.01		

End of the Report

intentionally blank and marks the last page of the test report.