

N° 1-6736
Scope available
on www.cofrac.fr

CERTIFICATE #3478.01

TEST REPORT

EUT Description	WLAN and BT, 2x2 PCIe M.2 2230 adapter card
Brand Name	Intel® Wi-Fi 6E AX210
Model Name	AX210NGW
FCC/IC ID	PD9AX210NG/ 1000M-AX210NG
Date of Test Start/End	2021-03-16 / 2021-04-29
Features	802.11ax, Dual Band, 2x2 Wi-Fi 6 + Bluetooth® 5.2 (see section 5)

Applicant	Intel Mobile Communications
Address	100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA
Contact Person	Steven Hackett
Telephone/Fax/ Email	steven.c.hackett@intel.com

Reference Standards	FCC CFR Title 47 Part 15 C FCC CFR Title 47 Part 15 E RSS-247 issue 2, RSS-Gen A1 (see section 1)
---------------------	---

Test Report identification	210222-01.TR01
Revision Control	Rev. 00 This test report revision replaces any previous test report revision (see section 8)

The test results relate only to the samples tested.
Reference to accreditation shall be used only by full reproduction of test report.

Issued by

Reviewed by

Khodor RIDA
(Test Engineer Lead)

Ines KHARRAT
(Technical Manager)

Intel Corporation S.A.S – WRF Lab
425 rue de Goa – Le Cargo B6 - 06600, Antibes, France
Tel. +33493001400 / Fax +33493001401

Table of Contents

1. Table of Contents

1. Standards, reference documents and applicable test methods	3
2. General conditions, competences and guarantees	3
3. Environmental Conditions	4
4. Test samples	4
5. EUT Features	5
6. Remarks and comments	5
7. Test Verdicts summary	5
8. Document Revision History	5
A.1 MEASUREMENT SYSTEM.....	6
A.2 TEST EQUIPMENT LIST	8
A.3 MEASUREMENT UNCERTAINTY EVALUATION	9
B.1 TEST CONDITIONS.....	10
B.2 RADIATED SPURIOUS EMISSION	11
B.2.1 802.11 B/G/N/AX 2.4GHz	11
B.2.2 BLE	13
B.2.3 BT	15
B.2.4 802.11 A/G/N/AX U-NII-1	17
B.2.5 802.11 A/G/N/AX U-NII-2A	19
B.2.6 802.11 A/G/N/AX U-NII-2C	21
B.2.7 802.11 A/G/N/AX U-NII-3.....	23
C.1 RADIATED TEST SETUP	25
C.2 TEST SAMPLE	26

1. Standards, reference documents and applicable test methods

FCC	<ol style="list-style-type: none"> FCC Title 47 CFR part 15 - Subpart C – §15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <small>2019-10-01 Edition</small> FCC Title 47 CFR part 15 – Subpart E – Unlicensed National Information Infrastructure Devices. <small>2019-10-01 Edition</small> FCC Title 47 eCFR part 15 – Subpart E - Unlicensed National Information Infrastructure Devices. <small>2020-07-30 Online edition</small> FCC Title 47 CFR part 15 – Subpart C – §15.209 Radiated emission limits; general requirements. <small>2019-10-01 Edition</small> FCC OET KDB 558074 D01 v05r02 - Guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules. FCC OET KDB 789033 D02 v02r01 General U-NII Test Procedures New Rules – Guidelines for compliance testing of Unlicensed National Information Infrastructure (U-NII) Devices (Part 15, Subpart E). FCC OET KDB 662911 D01 v02r01 - Emissions Testing of Transmitters with Multiple Outputs in the Same Band. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
	<ol style="list-style-type: none"> RSS-Gen Issue 5 Amendment 1 - General Requirements for Compliance of Radio Apparatus. RSS-247 Issue 2 - Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices. FCC OET KDB 789033 D02 v02r01 - General U-NII Test Procedures New Rules – Guidelines for compliance testing of Unlicensed National Information Infrastructure (U-NII) Devices (Part 15, Subpart E) FCC OET KDB 558074 D01 v05r02 - Guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules. FCC OET KDB 662911 D01 v02r01 - Emissions Testing of Transmitters with Multiple Outputs in the Same Band. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

2. General conditions, competences and guarantees

- ✓ Tests performed under FCC standards identified in section 1 are covered by A2LA accreditation.
- ✓ Tests performed under ISED standards identified in section 1 are covered by Cofrac accreditation.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 laboratory accredited by the American Association for Laboratory Accreditation (A2LA) with the certificate number 3478.01.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC, with Designation Number FR0011.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 testing laboratory accredited by the French Committee for Accreditation (Cofrac) with the certificate number 1-6736.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is a Registered Test Site listed by ISED, with ISED #1000Y.
- ✓ Intel WRF Lab declines any responsibility with respect to the identified information provided by the customer and that may affect the validity of results.
- ✓ Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- ✓ This report is only referred to the item that has undergone the test.
- ✓ This report does not imply an approval of the product by the Certification Bodies or competent Authorities.

3. Environmental Conditions

- ✓ At the site where the measurements were performed the following limits were not exceeded during the tests:

Temperature	23.6°C ± 1.1°C
Humidity	41.8% ± 6.5%

4. Test samples

Sample	Control #	Description	Model	Serial #	Date of receipt	Note
#01	200611-03.S08	WiFi 6E Module	AX210NGW	WFM:9C297662B5B5	2020-07-15	Used for 30MHz – 18GHz Spurious Emissions tests
	200504-04.S07	Laptop	Latitude 5401	BVHLK13	2020-06-02	
	200504-04.S07	Extender	ADEXELEC	-	2020-06-02	
	210222-01.S09	Main Antenna	260-25083	PSR1973351	2021-03-10	
	210222-01.S10	Aux Antenna	260-25083	PSR1973352	2021-03-10	
#02	200611-03.S09	WiFi 6E Module	AX210NGW	WFM:9C297662CA0F	2020-07-15	Used for 18GHz – 40GHz Spurious Emissions tests
	200504-04.S07	Laptop	Latitude 5401	BVHLK13	2020-06-02	
	200504-04.S07	Extender	ADEXELEC	-	2020-06-02	
	210222-01.S09	Main Antenna	260-25083	PSR1973351	2021-03-10	
	210222-01.S10	Aux Antenna	260-25083	PSR1973352	2021-03-10	

5. EUT Features

The herein information is provided by the customer.

Brand Name	Intel® Wi-Fi 6E AX210		
Model Name	AX210NGW		
Software Version	DRTU 00940_21_350120_0W		
Driver Version	99.0.55.2 V0.13.2.15		
Prototype / Production	Production		
Supported Radios	802.11b/g/n/ax 802.11a/n/ac/ax Bluetooth 5.2	2.4GHz (2400.0 – 2483.5 MHz) 5.2GHz (5150.0 – 5350.0 MHz) 5.6GHz (5470.0 – 5725.0 MHz) 5.8GHz (5725.0 – 5895.0 MHz) 2.4GHz (2400.0 – 2483.5 MHz)	
Antenna Information	Transmitter Manufacturer Antenna type Part number Declared Antenna gain (dBi) - 2.4GHz Declared Antenna gain (dBi) – 5.2 & 5.3GHz Declared Antenna gain (dBi) – 5.5GHz Declared Antenna gain (dBi) – 5.8 GHz	Chain A (Main) Hongbo Telecommunication Monopole 260-25083 3.22 3.42 4.77 4.72	Chain B (Aux) Hongbo Telecommunication Monopole 260-25083 3.22 3.42 4.77 4.72

6. Remarks and comments

For each tested band, the worst case identified from modular test report among low, mid and high channel and the different modes has been tested in this report.

7. Test Verdicts summary

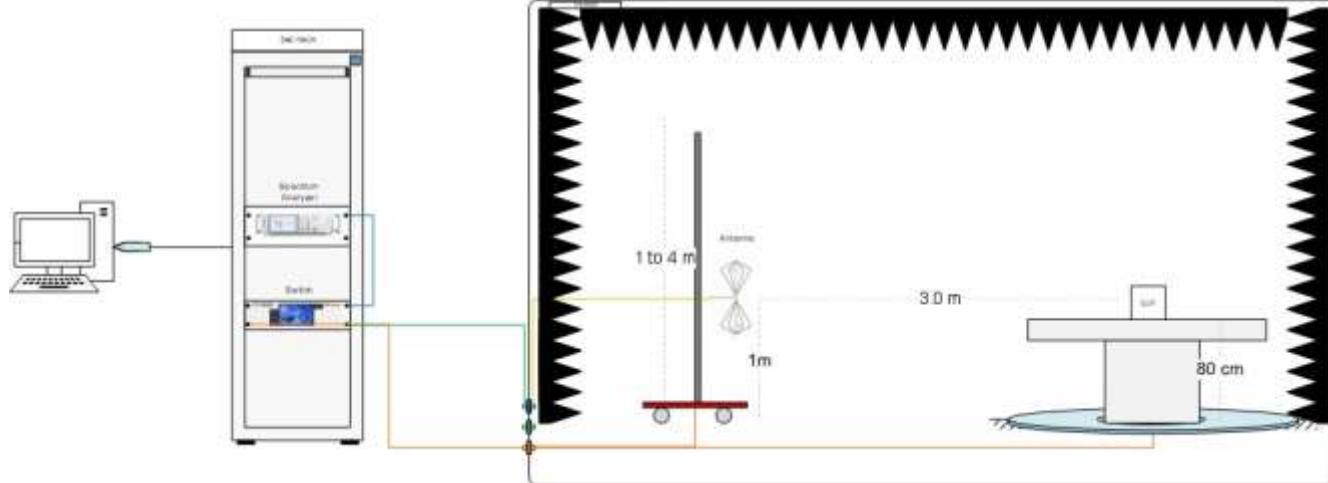
The statement of conformity to applicable standards in the table below are based on the measured values, without taking into account the measurement uncertainty

	FCC part	RSS part	Test name	Verdict
802.11 b/g/n/ax 2.4GHz	15.247 (d) 15.209	RSS-247 Clause 5.5 RSS-GEN A1 Clause 8.9	Spurious Emission (radiated)	P
BLE	15.247 (d) 15.209	RSS-247 Clause 5.5 RSS-GEN A1 Clause 8.9	Spurious Emission (radiated)	P
BT	15.247 (d) 15.209	RSS-247 Clause 5.5 RSS-GEN A1 Clause 8.9	Spurious Emission (radiated)	P
802.11 a/n/ac/ax – U-NII-1	15.407 (b) (1) 15.209	RSS-247 Clause 6.2.1.2 RSS-GEN A1, Clause 8.9	Spurious Emission (radiated)	P
802.11 a/n/ac/ax – U-NII-2A	15.407 (b) (2) 15.209	RSS-247 Clause 6.2.2.2 RSS-GEN A1, Clause 8.9	Spurious Emission (radiated)	P
802.11 a/n/ac/ax – U-NII-2C	15.407 (b) (3) 15.209	RSS-247 Clause 6.2.3.2 RSS-GEN A1 Clause 8.9	Spurious Emission (radiated)	P
802.11 a/n/ac/ax – U-NII- 3	15.407 (b) (4) 15.209	RSS-247 Clause 6.2.4.2 RSS-GEN A1 Clause 8.9	Spurious Emission (radiated)	P

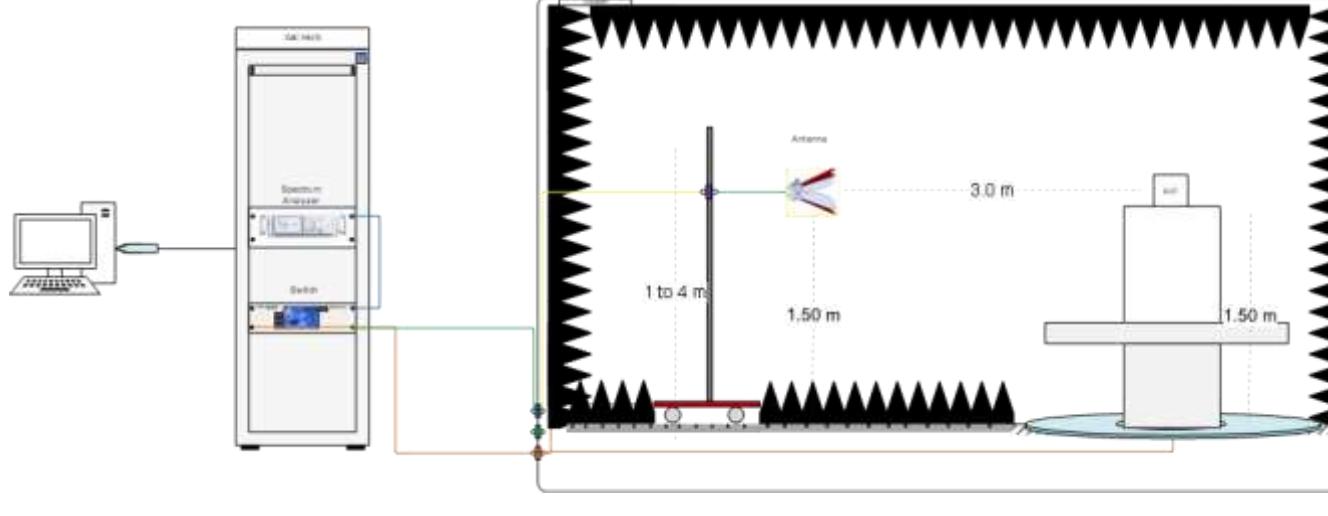
8. Document Revision History

Revision #	Modified by	Revision Details
Rev. 00	N.Bui	First Issue

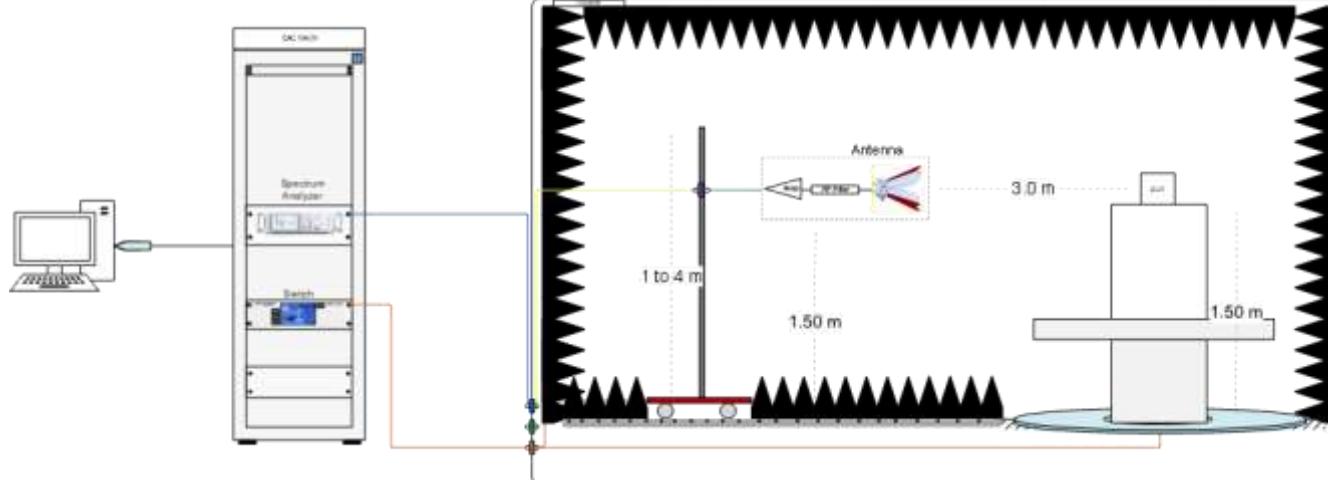
Annex A. Test & System Description

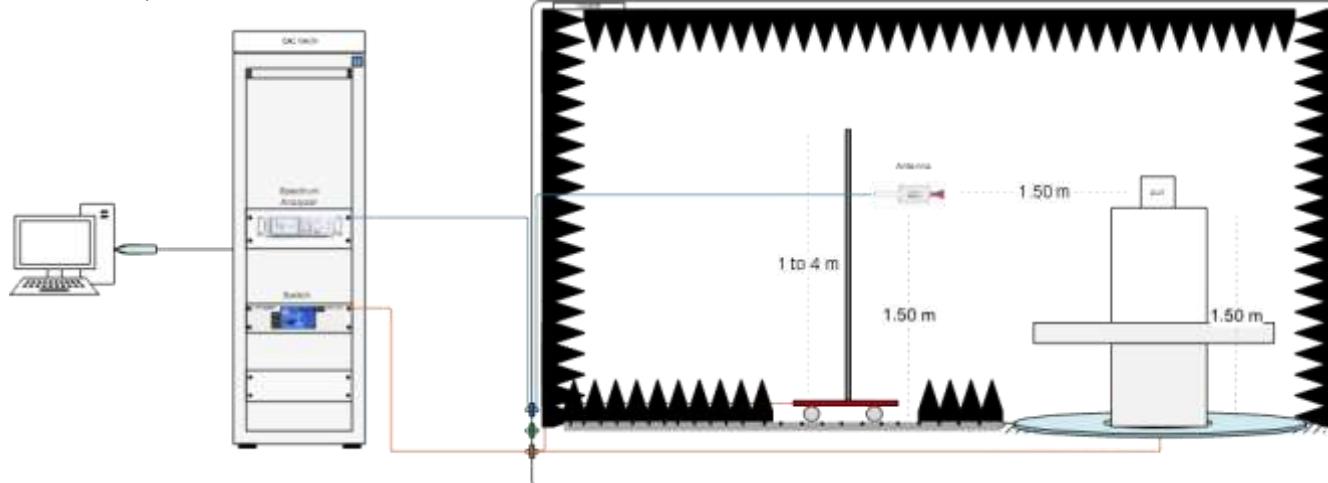

A.1 Measurement System

Measurements were performed using the following setups, made in accordance to the general provisions of ANSI 63.10-2013 Test Procedures.


The DUT is installed in a test fixture and this test fixture is connected to a laptop computer and AC/DC power adapter. The laptop computer was used to configure the EUT to continuously transmit at a specified output power using all different modes and modulation schemes, using the Intel proprietary tool DRTU.

Radiated test setup


Radiated Setup 30 MHz - 1 GHz


Radiated Setup 1 GHz – 9.5 GHz

Radiated Setup 9.5 GHz - 18 GHz

Radiated Setup 18 GHz – 40 GHz

Sample Calculation

The spurious received voltage $V(\text{dB}\mu\text{V})$ in the spectrum Analyzer is converted to Electric field strength using the transducer factor F corresponding to the Rx path Loss:

$$\begin{aligned} F (\text{dB}/\text{m}) &= \text{Rx Antenna Factor (dB}/\text{m}) + \text{Cable losses (dB)} - \text{Amplifiers Gain (dB)} \\ E (\text{dB}\mu\text{V}/\text{m}) &= V(\text{dB}\mu\text{V}) + F (\text{dB}/\text{m}) \end{aligned}$$

For field strength measurements made at other than the distance at which the applicable limit is specified, the field strength of the emission at the distance specified by the limit is deduced as follows:

$$E_{\text{SpecLimit}} = E_{\text{Meas}} + 20 \cdot \log(D_{\text{Meas}}/D_{\text{SpecLimit}})$$

where

$E_{\text{SpecLimit}}$ is the field strength of the emission at the distance specified by the limit, in $\text{dB}\mu\text{V}/\text{m}$

E_{Meas} is the field strength of the emission at the measurement distance, in $\text{dB}\mu\text{V}/\text{m}$

D_{Meas} is the measurement distance, in m

$D_{\text{SpecLimit}}$ is the distance specified by the limit, in m

A.2 Test Equipment List

Radiated Setup #1

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
1076	Spectrum analyzer	FSW43	101847	Rohde & Schwarz	2020-11-02	2022-11-02
0993	BiConical antenna 25 MHz – 1 GHz	UBAA9115+BBVU9135 +DGA9552N	0286+CH 9044	Schwarzbeck	2019-11-22	2021-11-22
0141	Double Ridged Horn Antenna 1 GHz – 18 GHz	3117	00157736	ETS Lindgren	2020-04-01	2022-04-01
0325	Double Ridged Horn Antenna 1 GHz – 18 GHz	3117	00157734	ETS Lindgren	2019-08-12	2021-08-12
0334	Double Horn Ridged antenna	3116C-PA	00169308bis 00196308	ETS-Lindgren	2019-07-24	2021-07-24
0135	Anechoic chamber	FACT 3	5720	ETS Lindgren	2020-07-06	2022-01-07
0530	Measurement Software	EMC32 V10.40.10	100401	Rohde & Schwarz	N/A	N/A
0797	Temperature & Humidity logger	RA12E-TH1-RAS	RA12-D0EB1A	AVTECH	2019-07-04	2021-07-04
0147	Switch & Positioning	EMC center	00159757	ETS Lindgren	N/A	N/A
1033	Antenna tower	BAM 4.0-P	P/278/2890.01	Maturo	N/A	N/A
0136	Turntable	-		ETS Lindgren	N/A	N/A
0859	RF Cable 2.5m	0500990992500KE	19.23.395	Radiall	2021-02-25	2021-08-25
0809	RF Cable 7.0m	R286304009	-	Radiall	2021-02-15	2021-08-15
1098	RF Cable 1.5m	CBL-1.5M-SMSM+	202879	Mini-Circuit	2021-02-24	2021-08-24
1099	RF Cable 7.0m	0501051057000GX	19.35.850	Radiall	2021-02-24	2021-08-24
0371	RF Cable 1.0m	UFB311A-0-0590- 50U50U	MFR 64639 223230-001	MICRO-COAX	2021-02-24	2021-08-24
0263	RF Cable 1.0m	UFA147A	-	Utilflex	2020-02-19	2021-08-19
0206	RF Cable 1.0m	UFA147A-0-0480- 200200	MFR 64639223720-003	Micro-Coax	2021-02-15	2021-08-15

N/A: Not Applicable

Radiated Setup #2

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0337	Anechoic chamber	RFD-FA-100	5996	ETS Lindgren	2020-07-06	2022-07-06
0238	Switch	EMCenter	00151232	ETS Lindgren	N/A	N/A
0301	Positioner	EMCenter	00162359	ETS Lindgren	N/A	N/A
0382	Antenna Tower	2171B-3.0M	00150123	ETS Lindgren	N/A	N/A
0383	Turntable	-	-	ETS Lindgren	N/A	N/A
0329	Measurement SW	EMC32, v11.10.10	100401	Rohde & Schwarz	N/A	N/A
0133	Spectrum Analyzer	FSV40	101358	Rohde & Schwarz	2021-01-15	2023-01-15
0138	Double Ridge Horn (1- 18GHz)	3117	00152266	ETS Lindgren	2020-03-08	2022-03-08
0141	Horn Antenna + Amplifier + HPF6.4	3117	00157736	ETS-Lindgren	2020-04-02	2022-04-02
0334	Double Horn Ridged antenna	3116C-PA	00169308bis 00196308	ETS-Lindgren	2019-07-24	2021-07-24
1122	RF Cable 1-18GHz, 1.5 m	0501050991500GX	19.23.493	Radiall	2021-02-15	2021-08-15
0860	RF Cable 1-18GHz, 1.2 m	2301761761200PJ	12.22.1104	Radiall	2021-02-15	2021-08-15
0275	RF Cable 1-18GHz - 6.5m	140-8500-11-51	001	Spectrum	2021-02-15	2021-08-15
0684	RF Cable 1GHz-18GHz 1.5m	-	-	Spirent	2021-02-16	2021-08-16
0679	RF Cable 18-40 GHz 6m	R286304009	1747364	Radiall	2021-02-15	2021-08-15
1123	RF Cable DC-40GHz 1m	PE360-100cm	-	Pasternack	2021-02-17	2021-08-17
0725	RF Cable 1-9.5GHz 1.2m	0500990991200KE	-	Radiall	2021-02-16	2021-08-16
0796	Temp & Humidity Logger	RA12E-TH1-RAS	RA12-D4F316	Avtech	2019-07-05	2021-07-05

Shared Radiated Equipment

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0616	Power Sensor	NRP-Z81	104385	Rohde & Schwarz	2020-04-08	2022-04-08
0617	Power Sensor	NRP-Z81	104386	Rohde & Schwarz	2020-04-08	2022-04-08
0618	Power Sensor	NRP-Z81	104382	Rohde & Schwarz	2020-04-08	2022-04-08

A.3 Measurement Uncertainty Evaluation

The system uncertainty evaluation is shown in the table below with a coverage factor of $k = 2$ to indicate a 95% level of confidence:

Measurement type	Uncertainty	Unit
Radiated tests <1GHz	±5.26	dB
Radiated tests 1GHz – 40 GHz	±4.85	dB

Annex B. Test Results

The herein test results were performed by:

Test case measurement	Test Engineer
Radiated spurious emissions	A. Lounes, N.Bui

B.1 Test Conditions

For 802.11b,g and a modes the EUT can transmit at both CHAIN A and CHAIN B RF outputs individually, but not simultaneously.

For 802.11n20 & 802.11ax20 (20 MHz channel bandwidth), 802.11n40 & 802.11ax40 (40MHz channel bandwidth), 802.11ac80 & 802.11ax80 (80MHz channel bandwidth) and 802.11ac160 & 802.11ax160 (160MHz channel bandwidth) modes the EUT can transmit at both CHAIN A and CHAIN B RF outputs individually, and also simultaneously.

The following data rates were selected based on preliminary testing that identified those rates as the worst cases for output power and spurious levels at the band edges:

Transmission	Mode	Bandwidth (MHz)	Worst Case Data Rate
SISO	802.11b	20	1Mbps
	802.11g, a	20	6Mbps
	802.11n	20	HT0
		40	HT0
	802.11ac	80	VHT0
		160	VHT0
	802.11ax	20	HE0
		40	HE0
		80	HE0
		160	HE0
MIMO	802.11n	20/40	HT8
	802.11ac	80/160	VHT0
	802.11ax	20/40/80/160	HE0

B.2 Radiated spurious emission

B.2.1 802.11 b/g/n/ax 2.4GHz

Standard references

FCC part	RSS part	Limits																							
15.247 (d) 15.209	RSS-247 Clause 5.5 RSS-Gen A1 Clause 8.9	<p>Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a):</p> <table border="1"> <thead> <tr> <th>Freq Range (MHz)</th><th>Field Strength (µV/m)</th><th>Field Strength (dBµV/m)</th><th>Meas. Distance (m)</th></tr> </thead> <tbody> <tr> <td>30-88</td><td>100</td><td>40</td><td>3</td></tr> <tr> <td>88-216</td><td>150</td><td>43.5</td><td>3</td></tr> <tr> <td>216-960</td><td>200</td><td>46</td><td>3</td></tr> <tr> <td>Above 960</td><td>500</td><td>54</td><td>3</td></tr> </tbody> </table> <p>The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit specified when measuring with peak detector function corresponding to 20 dB above the indicated values in the table.</p>				Freq Range (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Meas. Distance (m)	30-88	100	40	3	88-216	150	43.5	3	216-960	200	46	3	Above 960	500	54	3
Freq Range (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Meas. Distance (m)																						
30-88	100	40	3																						
88-216	150	43.5	3																						
216-960	200	46	3																						
Above 960	500	54	3																						

Test procedure

The radiated setups shown in section A.1 were used to measure the radiated spurious emissions. Depending of the frequency range and bands being tested, different antennas and filters were used. The final measurement is done by varying the antenna height from 1 to 4 meters, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

Test Results**30 MHz – 1 GHz, 802.11ax20, HE0, Chain A****Radiated Spurious – CH7**

Frequency	QuasiPeak	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB μ V/m	---
37.2	28.5	40.0	11.5	V
375.9	24.9	46.0	21.1	V
536.6	39.6	46.0	6.4	H

1 GHz – 26.5 GHz, 802.11ax20, HE0, Chain A**Radiated Spurious – CH7**

Frequency	MaxPeak	Average	Limit	Margin	Polar
2193.5	---	52.9	54.0	1.1	H
2193.5	60.9	---	74.0	13.2	H
2674.0	61.7	---	74.0	12.3	H
2674.0	---	53.3	54.0	0.7	H
4866.9	54.3	---	74.0	19.7	H
4866.9	---	45.6	54.0	8.4	H
17983.5	53.3	---	74.0	20.7	V
17983.5	---	43.1	54.0	10.9	V
25958.8	---	37.7	54.0	16.3	H
25977.7	49.3	---	74.0	24.7	H

B.2.2 BLE

Standards references

FCC part	RSS part	Limits																							
15.247 (d) 15.209	RSS-247 Clause 5.5 RSS-Gen A1 Clause 8.9	<p>Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a):</p> <table border="1"> <thead> <tr> <th>Freq Range (MHz)</th><th>Field Strength (μV/m)</th><th>Field Strength (dBμV/m)</th><th>Meas. Distance (m)</th></tr> </thead> <tbody> <tr> <td>30-88</td><td>100</td><td>40</td><td>3</td></tr> <tr> <td>88-216</td><td>150</td><td>43.5</td><td>3</td></tr> <tr> <td>216-960</td><td>200</td><td>46</td><td>3</td></tr> <tr> <td>Above 960</td><td>500</td><td>54</td><td>3</td></tr> </tbody> </table> <p>The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit specified when measuring with peak detector function, corresponding to 20 dB above the indicated values in the table.</p>				Freq Range (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Meas. Distance (m)	30-88	100	40	3	88-216	150	43.5	3	216-960	200	46	3	Above 960	500	54	3
Freq Range (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Meas. Distance (m)																						
30-88	100	40	3																						
88-216	150	43.5	3																						
216-960	200	46	3																						
Above 960	500	54	3																						

Test procedure

The radiated setups shown in section A.1 were used to measure the radiated spurious emissions. Depending of the frequency range and bands being tested, different antennas and filters were used. The final measurement is done by varying the antenna height from 1 to 4 meters, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

Test Results**30 MHz – 1 GHz, BLE****Radiated Spurious – CH0**

Frequency	QuasiPeak	Limit	Margin	Polar
30.7	27.9	40.0	12.1	V
287.0	43.5	46.0	2.5	H
321.8	18.4	46.0	27.6	V
343.4	18.8	46.0	27.2	V
897.7	29.3	46.0	16.7	H

1 GHz – 26.5 GHz, BLE**Radiated Spurious – CH0**

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB μ V/m	dB	---
4804.0	52.5	---	74.0	21.4	V
4804.0	---	42.6	54.0	11.4	V
17810.0	---	42.2	54.0	11.8	V
17810.0	53.6	---	74.0	20.4	V
25938.0	---	36.9	54.0	17.1	H
25938.5	49.2	---	74.0	24.8	H

B.2.3 BTStandard references

FCC part	RSS part	Limits																							
15.247 (d) 15.209 (a)	RSS-247 Clause 5.5 RSS GEN A1 Clause 8.9	<p>Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a):</p> <table border="1"> <thead> <tr> <th>Freq Range (MHz)</th><th>Field Strength (μV/m)</th><th>Field Strength (dBμV/m)</th><th>Meas. Distance (m)</th></tr> </thead> <tbody> <tr> <td>30-88</td><td>100</td><td>40</td><td>3</td></tr> <tr> <td>88-216</td><td>150</td><td>43.5</td><td>3</td></tr> <tr> <td>216-960</td><td>200</td><td>46</td><td>3</td></tr> <tr> <td>Above 960</td><td>500</td><td>54</td><td>3</td></tr> </tbody> </table> <p>The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit specified when measuring with peak detector function, corresponding to 20 dB above the indicated values in the table.</p>				Freq Range (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Meas. Distance (m)	30-88	100	40	3	88-216	150	43.5	3	216-960	200	46	3	Above 960	500	54	3
Freq Range (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Meas. Distance (m)																						
30-88	100	40	3																						
88-216	150	43.5	3																						
216-960	200	46	3																						
Above 960	500	54	3																						

Test procedure

The radiated setups shown in section A.1 were used to measure the radiated spurious emissions. Depending of the frequency range and bands being tested, different antennas and filters were used. The final measurement is done by varying the antenna height from 1 m to 4 m, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

Test Results**30 MHz – 1 GHz, BR – GFSK****Radiated Spurious – CH0 DH5**

Frequency	QuasiPeak	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB μ V/m	---
31.7	27.5	40.0	12.5	V
278.7	43.0	46.0	3.0	H

1 GHz – 26.5 GHz, BR – GFSK**Radiated Spurious – CH0 DH5**

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB μ V/m	dB	---
4804.0	53.3	---	74.0	20.7	V
4804.0	---	45.3	54.0	8.7	V
17814.5	54.4	---	74.0	19.6	V
17814.5	---	42.4	54.0	11.6	V
25849.5	49.4	---	74.0	24.6	H
25889.0	---	36.9	54.0	17.1	V

B.2.4 802.11 a/g/n/ax U-NII-1

Standard references

FCC part	Limits																																			
15.407 (b) (1)	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.																																			
15.209	<p>Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a):</p> <table border="1"> <thead> <tr> <th>Freq Range (MHz)</th> <th>Field Strength (μV/m)</th> <th>Field Strength ($\text{dB}\mu$V/m)</th> <th>Meas. Distance (m)</th> </tr> </thead> <tbody> <tr> <td>0.009-0.490</td> <td>2400/f(kHz)</td> <td>-</td> <td>300</td> </tr> <tr> <td>0.490-1.705</td> <td>24000/f(kHz)</td> <td>-</td> <td>300</td> </tr> <tr> <td>1.705-30.0</td> <td>30</td> <td>-</td> <td>30</td> </tr> <tr> <td>30-88</td> <td>100</td> <td>40</td> <td>3</td> </tr> <tr> <td>88-216</td> <td>150</td> <td>43.5</td> <td>3</td> </tr> <tr> <td>216-960</td> <td>200</td> <td>46</td> <td>3</td> </tr> <tr> <td>Above 960</td> <td>500</td> <td>54</td> <td>3</td> </tr> </tbody> </table> <p>The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</p> <p>For average radiated emission measurements above 1000 MHz, there is also a limit specified when measuring with peak detector function, corresponding to 20 dB above the indicated values in the table.</p>				Freq Range (MHz)	Field Strength (μ V/m)	Field Strength ($\text{dB}\mu$ V/m)	Meas. Distance (m)	0.009-0.490	2400/f(kHz)	-	300	0.490-1.705	24000/f(kHz)	-	300	1.705-30.0	30	-	30	30-88	100	40	3	88-216	150	43.5	3	216-960	200	46	3	Above 960	500	54	3
Freq Range (MHz)	Field Strength (μ V/m)	Field Strength ($\text{dB}\mu$ V/m)	Meas. Distance (m)																																	
0.009-0.490	2400/f(kHz)	-	300																																	
0.490-1.705	24000/f(kHz)	-	300																																	
1.705-30.0	30	-	30																																	
30-88	100	40	3																																	
88-216	150	43.5	3																																	
216-960	200	46	3																																	
Above 960	500	54	3																																	

Test procedure

The radiated setup shown in section A.1 was used to measure the radiated spurious emissions. Depending of the frequency range and bands being tested, different antennas and filters were used. The final measurement is done by varying the antenna height, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

Test Results**30 MHz – 1 GHz, 802.11ax160, HE0, Chain A****Radiated Spurious – CH50**

Frequency	QuasiPeak	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB μ V/m	---
30.0	30.8	40.0	9.2	V
287.1	43.3	46.0	2.7	H

1 GHz – 40 GHz, 802.11ax160, HE0, Chain A**Radiated Spurious – CH50**

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB μ V/m	dB	---
3869.1	---	45.6	54.0	8.4	V
3869.1	53.5	---	74.0	20.5	V
3907.2	51.7	---	74.0	22.3	V
3907.2	---	42.1	54.0	11.9	V
4846.0	---	44.4	54.0	9.6	V
4846.0	54.2	---	74.0	19.8	V
4931.9	---	44.3	54.0	9.7	V
4931.9	54.2	---	74.0	19.8	V
6474.7	58.2	---	68.2	10.0	H
10343.9	50.2	---	68.2	18.0	V
15516.6	50.7	---	74.0	23.3	V
15516.6	---	42.1	54.0	11.9	V
39627.8	---	46.1	54.0	7.9	V
39694.3	57.2	---	74.0	16.8	V

B.2.5 802.11 a/g/n/ax U-NII-2A

Standard references

FCC part	Limits																				
15.407 (a) (2)	For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.																				
15.209	<p>Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a):</p> <table border="1"> <thead> <tr> <th>Freq Range (MHz)</th><th>Field Strength (μV/m)</th><th>Field Strength (dBμV/m)</th><th>Meas. Distance (m)</th></tr> </thead> <tbody> <tr> <td>30-88</td><td>100</td><td>40</td><td>3</td></tr> <tr> <td>88-216</td><td>150</td><td>43.5</td><td>3</td></tr> <tr> <td>216-960</td><td>200</td><td>46</td><td>3</td></tr> <tr> <td>Above 960</td><td>500</td><td>54</td><td>3</td></tr> </tbody> </table> <p>The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit specified when measuring with peak detector function, corresponding to 20 dB above the indicated values in the table.</p>	Freq Range (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Meas. Distance (m)	30-88	100	40	3	88-216	150	43.5	3	216-960	200	46	3	Above 960	500	54	3
Freq Range (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Meas. Distance (m)																		
30-88	100	40	3																		
88-216	150	43.5	3																		
216-960	200	46	3																		
Above 960	500	54	3																		

Test procedure

The radiated setups shown in section A.1 were used to measure the radiated spurious emissions. Depending of the frequency range and bands being tested, different antennas and filters were used. The final measurement is done by varying the antenna height, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

Test Results**30 MHz – 1 GHz, 802.11ax80, HE0, Chain A+B****Radiated Spurious – CH58**

Frequency	QuasiPeak	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB μ V/m	---
36.6	31.3	40.0	8.7	V
278.7	43.0	46.0	3.0	H

1 GHz – 40 GHz, 802.11ax80, HE0, Chain A+B**Radiated Spurious – CH58**

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB μ V/m	dB	---
5013.0	56.8	---	74.0	17.2	H
5012.1	---	44.2	54.0	9.8	H
10503.5	50.8	---	68.2	17.4	V
15756.5	52.1	---	74.0	21.9	V
15756.5	---	42.7	54.0	11.3	V
39659.1	---	46.3	54.0	7.7	V
39676.5	56.5	---	74.0	17.5	H

B.2.6 802.11 a/g/n/ax U-NII-2C

Standard references

FCC part	RSS clause	Limits																				
15.407 (b) (3)	RSS-247 Clause 6.2.3 (2)	For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.																				
15.209	RSS-GEN A1, Clause 8.9	<p>Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a):</p> <table border="1"> <thead> <tr> <th>Freq Range (MHz)</th> <th>Field Strength (μV/m)</th> <th>Field Strength (dBμV/m)</th> <th>Meas. Distance (m)</th> </tr> </thead> <tbody> <tr> <td>30-88</td> <td>100</td> <td>40</td> <td>3</td> </tr> <tr> <td>88-216</td> <td>150</td> <td>43.5</td> <td>3</td> </tr> <tr> <td>216-960</td> <td>200</td> <td>46</td> <td>3</td> </tr> <tr> <td>Above 960</td> <td>500</td> <td>54</td> <td>3</td> </tr> </tbody> </table> <p>The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</p> <p>For average radiated emission measurements above 1000 MHz, there is also a limit specified when measuring with peak detector function, corresponding to 20 dB above the indicated values in the table.</p>	Freq Range (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Meas. Distance (m)	30-88	100	40	3	88-216	150	43.5	3	216-960	200	46	3	Above 960	500	54	3
Freq Range (MHz)	Field Strength (μ V/m)	Field Strength (dB μ V/m)	Meas. Distance (m)																			
30-88	100	40	3																			
88-216	150	43.5	3																			
216-960	200	46	3																			
Above 960	500	54	3																			

Test procedure

The radiated setups shown in section A.1 were used to measure the radiated spurious emissions. Depending of the frequency range and bands being tested, different antennas and filters were used. The final measurement is done by varying the antenna height from 1 m to 4 m, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

Test Results**30 MHz – 1 GHz, 802.11n20, HT8, Chain A+B****Radiated Spurious – CH120**

Frequency	QuasiPeak	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB μ V/m	---
34.9	28.8	40.0	11.2	V
287.0	41.2	46.0	4.8	H

1 GHz – 40 GHz, 802.11n20, HT8, Chain A+B**Radiated Spurious – CH120**

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB μ V/m	dB	---
3375.5	59.0	---	68.2	9.2	H
11199.5	49.1	---	74.0	24.9	V
11199.5	---	40.0	54.0	14.0	V
39605.6	57.1	---	74.0	16.9	V
39651.9	---	46.5	54.0	7.5	V

B.2.7 802.11 a/g/n/ax U-NII-3

Standard references

FCC part	RSS clause	Limits																				
15.407 (b) (4)	RSS-247 Clause 6.2.4.2	For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.																				
15.209	RSS-GEN A1, Clause 8.9	<p>Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a):</p> <table border="1"> <thead> <tr> <th>Freq Range (MHz)</th> <th>Field Strength ($\mu\text{V/m}$)</th> <th>Field Strength ($\text{dB}\mu\text{V/m}$)</th> <th>Meas. Distance (m)</th> </tr> </thead> <tbody> <tr> <td>30-88</td> <td>100</td> <td>40</td> <td>3</td> </tr> <tr> <td>88-216</td> <td>150</td> <td>43.5</td> <td>3</td> </tr> <tr> <td>216-960</td> <td>200</td> <td>46</td> <td>3</td> </tr> <tr> <td>Above 960</td> <td>500</td> <td>54</td> <td>3</td> </tr> </tbody> </table> <p>The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</p> <p>For average radiated emission measurements above 1000 MHz, there is also a limit specified when measuring with peak detector function, corresponding to 20 dB above the indicated values in the table.</p>	Freq Range (MHz)	Field Strength ($\mu\text{V/m}$)	Field Strength ($\text{dB}\mu\text{V/m}$)	Meas. Distance (m)	30-88	100	40	3	88-216	150	43.5	3	216-960	200	46	3	Above 960	500	54	3
Freq Range (MHz)	Field Strength ($\mu\text{V/m}$)	Field Strength ($\text{dB}\mu\text{V/m}$)	Meas. Distance (m)																			
30-88	100	40	3																			
88-216	150	43.5	3																			
216-960	200	46	3																			
Above 960	500	54	3																			

Test procedure

The radiated setups shown in section *Test & System Description* were used to measure the radiated spurious emissions.

Depending of the frequency range and bands being tested, different antennas and filters were used.

The final measurement is done by varying the antenna height from 1 m to 4 m, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

Test Results**30 MHz – 1 GHz, 802.11n20, HT8, Chain A+B****Radiated Spurious – CH157**

Frequency	QuasiPeak	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB μ V/m	---
34.7	31.9	40.0	8.1	V
287.0	40.9	46.0	5.1	H

1 GHz – 40 GHz, 802.11n20, HT8, Chain A+B**Radiated Spurious – CH157**

Frequency	MaxPeak	Average	Limit	Margin	Polar
MHz	dB μ V/m	dB μ V/m	dB μ V/m	dB	---
3350.5	---	46.2	54.0	7.8	V
3351.0	57.9	---	74.0	16.1	H
11567.4	50.9	---	74.0	23.1	V
11567.4	---	41.9	54.0	12.1	V
27740.1	49.2	---	68.2	19.0	V