

TEST REPORT

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR19-SPF0007
Page (1) of (97)

KCTL

1. Client

- Name : Intel Mobile Communications
- Address : 100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA
- Date of Receipt : 2019-02-25

2. Use of Report : -

3. Product Name : Intel Jefferson Peak AC-9560 (AC 2*2 + BT5.0)

- Model Number : 9560D2W
- Manufacturer and Country of Origin: Intel Mobile Communications / USA

4. Host Product Name : NoteBook PC

- Host Model Number : NP750XBE
- Manufacturer : Samsung Electronics Co., Ltd.

5. FCC ID : PD99560D2

6. Date of Test : 2019-03-26 to 2019-03-27

7. Test Standards : IEEE 1528-2013, ANSI/IEEE C95.1, KDB Publication

8. Test Results : Refer to the test result in the test report

Affirmation	Tested by Name : Kyounghoo Min (Signature)	Technical Manager Name : Gyuhyun Shim (Signature)
-------------	--	---

2019-03-29

KCTL Inc.

As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc.

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR19-SPF0007
Page (2) of (97)

Report revision history

Date	Revision	Page No
2019-03-29	Initial report	-

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document.

This test report is a general report that does not use the KOLAS accreditation mark and is not related to KOLAS accreditation.

CONTENTS

1. General information.....	4
2. Device information	5
3. Summary of tests	8
4. Report Overview.....	9
5. Test Lab Declaration or Comments.....	9
6. Applicant Declaration or Comments	9
7. Measurement Uncertainty.....	10
8. The SAR Measurement System.....	11
9. System Verification	15
10. Operation Configurations	18
11. SAR Measurement Procedures.....	19
12. Test Equipment Information.....	21
13. RF Average Conducted Output Power.....	22
14. SAR Test Results.....	34
15. Test System Verification Results	44
16. Test Results	48
Appendix A. Calibration certificate	57
Appendix B. EUT Photo	91
Appendix C. Test Photo.....	95

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR19-SPF0007
Page (4) of (97)

1. General information

Client : Intel Mobile Communications
Address : 100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA
Manufacturer : Intel Mobile Communications
Address : 100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA
Contact Person : Steven Hackett / steven.c.hackett@intel.com
Laboratory : KCTL Inc.
Address : 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Accreditations : FCC Site Designation No: KR0040, FCC Site Registration No: 687132
VCCI Registration No. : R-3327, G-198, C-3706, T-1849
Industry Canada Registration No. : 8035A
KOLAS No.: KT231

2. Device information

2.1 Basic description

Product Name	Intel Jefferson Peak AC-9560 (AC 2*2 + BT5.0)
Product Model Number	9560D2W
Product Manufacturer	Intel Mobile Communications
Host Product Name	NoteBook PC
Host Model Number	NP750XBE
Host Manufacturer	Samsung Electronics Co., Ltd.
Host Serial Number	0ZCM91ZM200177M
Mode of Operation	WLAN 2.4 GHz / 5 GHz, Bluetooth
Tx Freq. Range	WLAN 2.4 GHz : 2 412 MHz ~ 2 472 MHz WLAN 5.2 GHz : 5 180 MHz ~ 5 240 MHz WLAN 5.3 GHz : 5 260 MHz ~ 5 320 MHz WLAN 5.6 GHz : 5 500 MHz ~ 5 720 MHz WLAN 5.8 GHz : 5 745 MHz ~ 5 825 MHz Bluetooth : 2 402 MHz ~ 2 480 MHz
H/W Version	MP1.0
S/W Version	E00REY.038

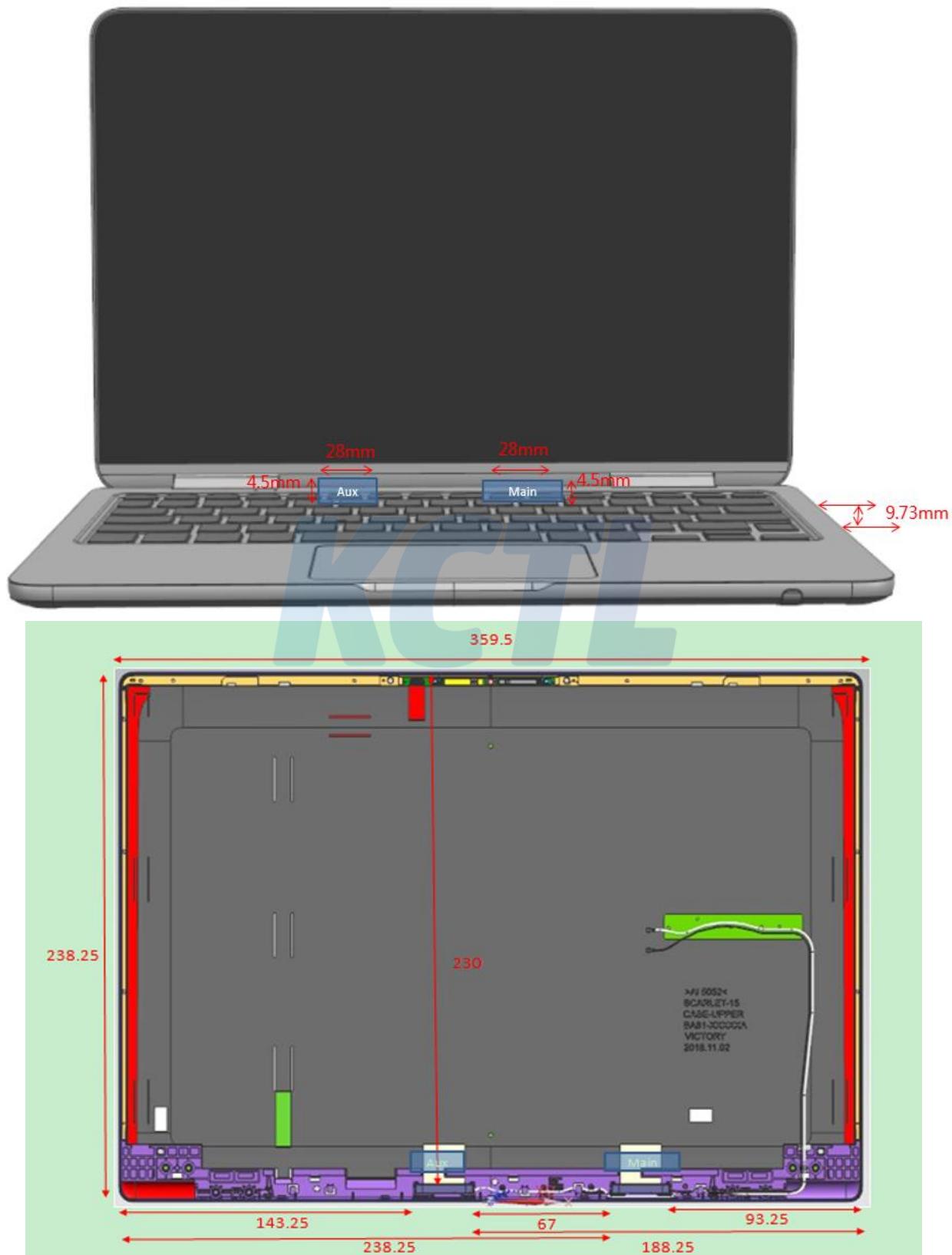
2.2 RF power setting in TEST SW

WLAN 2.4 GHz (2 412 MHz ~ 2 462 MHz)

Mode	Lowest Channel	Middle Channel	Highest Channel
802.11b Ant.0	16.375	16.250	16.250
802.11b Ant.1	16.375	16.000	16.000

WLAN 5.3 GHz (5 260 MHz ~ 5 320 MHz)

Mode	Lowest Channel	Middle Channel	Highest Channel
802.11ac(VHT-160) Ant.0	-	14.875	-
802.11ac(VHT-160) Ant.1	-	14.250	-


WLAN 5.6 GHz (5 500 MHz ~ 5 720 MHz)

Mode	Lowest Channel	Middle Channel	Highest Channel
802.11ac(VHT-80) Ant.0	14.750	14.750	14.500
802.11ac(VHT-80) Ant.1	14.250	14.250	14.000

WLAN 5.8 GHz (5 745 MHz ~ 5 825 MHz)

Mode	Lowest Channel	Middle Channel	Highest Channel
802.11ac(VHT-80) Ant.0	-	14.000	-
802.11ac(VHT-80) Ant.1	-	13.250	-

2.3 Antenna Diagram

3. Summary of tests

3.1 SAR Test Results

Band	Ant.0 (Main Ant) (W/kg)	Ant.1(Aux Ant) (W/kg)
WLAN 2.4G	0.080	0.115
WLAN 5.3G	0.617	0.570
WLAN 5.6G	1.123	0.906
WLAN 5.8G	0.722	0.606
Bluetooth	-	0.031

<Note>

- * SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.
- * When battery operating of this device is worst case mode.
- * 1 g SAR Limit 1.6 W/kg
- * Bluetooth and WLAN Aux(Ant.1) share the same antenna path.
- * Bluetooth can transmit with WLAN Main(Ant.0) simultaneously.

3.2 Simultaneous Transmission

Band	EUT Position	Σ 1 g SAR (W/kg)	1 g SAR Limit (W/kg)	SPLSR
WLAN 5 GHz Main + WLAN 5 GHz Aux + Bluetooth Aux	Notebook Rear	2.06	1.6	Section 14.8

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR19-SPF0007
Page (9) of (97)

4. Report Overview

This report details the results of testing carried out on the samples listed in section 2, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of KCTL Inc. Wireless lab or testing done by KCTL Inc. Wireless lab made in connection with the distribution or use of the tested product must be approved in writing by KCTL Inc. Wireless lab.

5. Test Lab Declaration or Comments

None

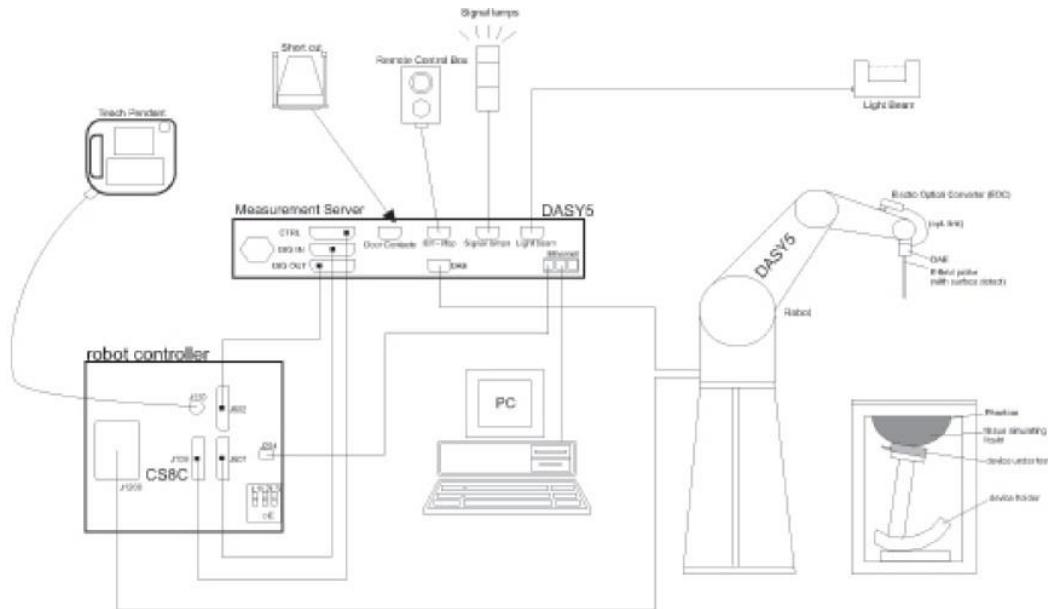
6. Applicant Declaration or Comments

None

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR19-SPF0007
Page (10) of (97)



7. Measurement Uncertainty

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR with in a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/ kg. The expanded SAR measurement uncertainty must be $\leq 30\%$, for a confidence interval of $k = 2$. I f these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 15 28-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report.

8. The SAR Measurement System

<SAR System Configuration>

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

8.1 Isotropic E-field Probe

ES3DV3 Isotropic E-Field Probe for Dosimetric Measurements

	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in TSL (rotation around probe axis) ± 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

EX3DV4 Smallest Isotropic E-Field Probe for Dosimetric Measurements (Preliminary Specifications)

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

8.2 Phantom

Twin SAM

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet
Filling Volume	approx. 25 liters
Wooden Support	SPEAG standard phantom table
Accessories	Mounting Device and Adaptors

ELI

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure. ELI V6.0, released in August 2014, has the same shell geometry as ELI4 but offers increased longterm stability.

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm Minor axis: 400 mm
Filling Volume	approx. 30 liters
Wooden Support	SPEAG standard phantom table
Accessories	Mounting Device and Adaptors

8.3 Device Holder for Transmitters

Mounting Devices and Adaptors

Mounting Device for Hand-Held Transmitters

MD4HHTV5 - Mounting Device for Hand-Held Transmitters

In combination with the Twin SAM V5.0/V5.0c or ELI Phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Material: Polyoxyethylene (POM)

Mounting Device for Laptops

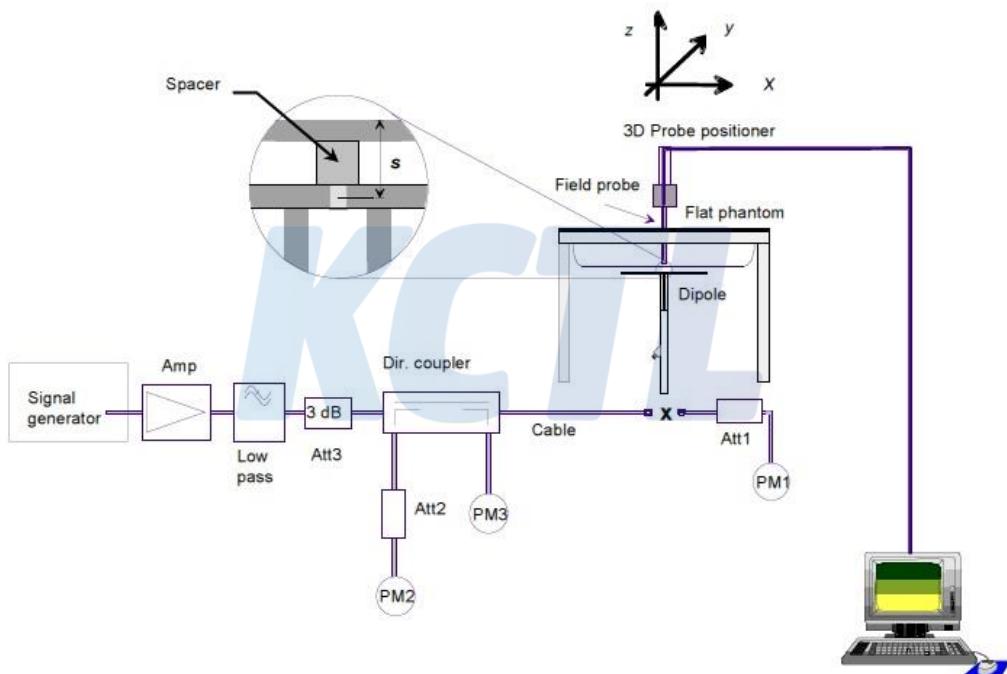
MD4LAPV5 - Mounting Device for Laptops and other Body-Worn Transmitters

In combination with the Twin SAM V5.0/V5.0c or ELI Phantoms, the Mounting Device (Body-Worn) enables testing of transmitter devices according to IEC 62209-2 specifications. The device holder can be locked for positioning at flat phantom section.

Material: Polyoxyethylene (POM), PET-G, Foam

9. System Verification

9.1 Tissue Verification


The dielectric properties for this Tissue Simulant Liquids were measured by using the SPEAG Model DAK3.5 Dielectric Probe in conjunction with Agilent E5071B Network Analyzer (300 kHz – 8 500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1. For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was $(22 \pm 2)^\circ\text{C}$.

Freq. (MHz)	Tissue Type	Limit/Measured	Permittivity (ρ)	Conductivity (σ)	Temp ($^\circ\text{C}$)
2 450	MSL	Recommended Limit	$52.70 \pm 5\%$ (50.07 ~ 55.34)	$1.95 \pm 5\%$ (1.85 ~ 2.05)	22 ± 2
		Measured, 2019-03-26	52.41	1.92	21.19
5 300	MSL	Recommended Limit	$48.88 \pm 5\%$ (46.44 ~ 51.32)	$5.42 \pm 5\%$ (5.15 ~ 5.69)	22 ± 2
		Measured, 2019-03-26	47.56	5.60	21.24
5 600	MSL	Recommended Limit	$48.47 \pm 5\%$ (46.05 ~ 50.89)	$5.77 \pm 5\%$ (5.48 ~ 6.06)	22 ± 2
		Measured, 2019-03-27	48.35	5.84	21.16
5 800	MSL	Recommended Limit	$48.20 \pm 5\%$ (45.79 ~ 50.61)	$6.00 \pm 5\%$ (5.70 ~ 6.30)	22 ± 2
		Measured, 2019-03-27	47.92	6.14	21.16

<Table 1.Measurement result of Tissue electric parameters>

9.2 Test System Verification

The microwave circuit arrangement for system verification is sketched below picture. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within ± 1 0% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the Table 2. During the tests, the ambient temperature of the laboratory was in the range $(22 \pm 2)^\circ\text{C}$, the relative humidity was in the range $(50 \pm 20)\%$ and the liquid depth Above the ear/grid reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Validation Kit	Dipole Ant. S/N	Frequency (MHz)	Tissue Type	Limit/Measurement (Normalized to 1 W)	
					1 g
D2450V2	895	2 450	MSL	Recommended Limit (Normalized)	$50.60 \pm 10\% (45.54 \sim 55.66)$
				Measured, 2019-03-26	51.60
D5GHzV2	1134	5 300	MSL	Recommended Limit (Normalized)	$77.60 \pm 10\% (69.84 \sim 85.36)$
				Measured, 2019-03-26	79.20
D5GHzV2	1134	5 600	MSL	Recommended Limit (Normalized)	$80.10 \pm 10\% (72.09 \sim 88.11)$
				Measured, 2019-03-27	79.60
D5GHzV2	1134	5 800	MSL	Recommended Limit (Normalized)	$77.20 \pm 10\% (69.48 \sim 84.92)$
				Measured, 2019-03-27	76.60

<Table 2. Test System Verification Result>

This test report shall not be reproduced, except in full, without the written approval

KCTL-TIA002-004/1

9.3 Justification for Extended SAR Dipole Calibrations

Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements

KDB 865664 D01v01r04 requirements

- a) return loss : < - 20 dB, within 20 % of previous measurement
- b) impedance : within 5Ω from previous measurement.

5 300 MHz

Dipole Antenna	Head/Body	Date of Measurement	Return Loss (dB)	△ %	Impedance (Ω)	Δ Ω
D5GHzV2 SN 1134	Body	2017.05.26	-26.1	10.6	49.8	2.0
		2018.05.25	-23.3		51.8	

5 600 MHz

Dipole Antenna	Head/Body	Date of Measurement	Return Loss (dB)	△ %	Impedance (Ω)	Δ Ω
D5GHzV2 SN 1134	Body	2017.05.26	-25.7	10.9	55.4	4.3
		2018.05.25	-28.5		51.1	

5 800 MHz

Dipole Antenna	Head/Body	Date of Measurement	Return Loss (dB)	△ %	Impedance (Ω)	Δ Ω
D5GHzV2 SN 1134	Body	2017.05.26	-23.2	11.4	56.5	2.1
		2018.05.25	-20.5		54.4	

c) extrapolated peak SAR : within 15% of that reported in the calibration data

5 300 MHz

Dipole Antenna	Head/Body	Date of Measurement	extrapolated peak SAR (W/kg)	△ %
D5GHzV2 SN 1134	Body	2017.05.26	30.1	1
		2019.03.26	30.3	

5 600 MHz

Dipole Antenna	Head/Body	Date of Measurement	extrapolated peak SAR (W/kg)	△ %
D5GHzV2 SN 1134	Body	2017.05.26	33.3	0
		2019.03.27	33.4	

5 800 MHz

Dipole Antenna	Head/Body	Date of Measurement	extrapolated peak SAR (W/kg)	△ %
D5GHzV2 SN 1134	Body	2017.05.26	34.0	2
		2019.03.27	33.3	

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR19-SPF0007
Page (18) of (97)

10. Operation Configurations

Measurements were performed at the operating band. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

11. SAR Measurement Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
	≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures 5x5x7 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04.

		≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm}$ 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location		$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
		$\leq 2 \text{ GHz: } \leq 15 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 12 \text{ mm}$	$3 - 4 \text{ GHz: } \leq 12 \text{ mm}$ $4 - 6 \text{ GHz: } \leq 10 \text{ mm}$
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}}$		$\leq 2 \text{ GHz: } \leq 8 \text{ mm}$ $2 - 3 \text{ GHz: } \leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz: } \leq 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \leq 4 \text{ mm}^*$
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$	$\leq 5 \text{ mm}$	$3 - 4 \text{ GHz: } \leq 4 \text{ mm}$ $4 - 5 \text{ GHz: } \leq 3 \text{ mm}$ $5 - 6 \text{ GHz: } \leq 2 \text{ mm}$
	graded grid	$\Delta z_{\text{Zoom}}(1): \text{between 1st two points closest to phantom surface}$	$\leq 4 \text{ mm}$
$\Delta z_{\text{Zoom}}(n > 1): \text{between subsequent points}$		$\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1) \text{ mm}$	
Minimum zoom scan volume	x, y, z	$\geq 30 \text{ mm}$	$3 - 4 \text{ GHz: } \geq 28 \text{ mm}$ $4 - 5 \text{ GHz: } \geq 25 \text{ mm}$ $5 - 6 \text{ GHz: } \geq 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one dimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

* Z Scan Report on Liquid Measure the height Appendix C. Liquid Depth photo to replace

12. Test Equipment Information

Test Platform	SPEAG DASY5 System			
Version	DASY5 : Version 52.8.8.1222 SEMCAD : Version 14.6.10 (7331)			
Location	KCTL Inc.			
Manufacture	SPEAG			
Hardware Reference				
Equipment	Model	Serial Number	Date of Calibration	Due date of next Calibration
Shield Room	Shield Room	8F - #2	N/A	N/A
DASY5 Robot	TX90XL Speag	F12/5L7FA1/A/01	N/A	N/A
DASY5 Controller	TX90XL Speag	F12/5L7FA1/C/01	N/A	N/A
Phantom	2mm Oval Phantom ELI5	1178	N/A	N/A
Mounting Device	Laptop Holder	None	N/A	N/A
DAE	DAE4	1342	2018-07-24	2019-07-24
Probe	EX3DV4	3928	2019-01-31	2020-01-31
Signal Generator	E4438C	MY42080486	2019-01-04	2020-01-04
Dual Power Meter	E4419B	GB43312301	2018-05-15	2019-05-15
Power Sensor	8481H	3318A19377	2018-05-15	2019-05-15
Power Sensor	8481H	3318A19379	2018-05-15	2019-05-15
Attenuator	8491B 3dB	17387	2018-05-14	2019-05-14
Attenuator	8491B-6dB	MY39270294	2018-05-14	2019-05-14
Attenuator	8491B 10dB	29425	2018-05-14	2019-05-14
Power Amplifier	2055-BBS3Q7E9I	1005D/C0521	2019-03-08	2020-03-08
Power Amplifier	5190FE	1012	2018-05-15	2019-05-15
Dual Directional Coupler	772D	2839A00719	2018-05-15	2019-05-15
Low Pass Filter	LA-30N	40058	2018-05-14	2019-05-14
Low Pass Filter	LA-60N	40059	2018-05-14	2019-05-14
Dipole Validation Kits	D2450V2	895	2018-07-24	2020-07-24
Dipole Validation Kits	D5GHzV2	1134	2017-05-26	2019-05-26
Network Analyzer	E5071B	MY42403524	2019-01-04	2020-01-04
Dielectric Assessment kit	DAK-3.5	1078	2018-08-22	2019-08-22
Humidity/Temp. Data Recorder	MHB-382SD	73871	2018-07-12	2019-07-12

13. RF Average Conducted Output Power

13.1 Max. tune up power

WLAN 2.4 GHz Ant.0 (2 412 MHz ~ 2 472 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11b	All	16.00	0.50	16.50
	13	14.25	0.50	14.75
802.11g	1, 11	15.50	0.50	16.00
	2 ~ 10	16.00	0.50	16.50
	12	12.50	0.50	13.00
	13	6.75	0.50	7.25
802.11n(HT-20)	1, 11	15.50	0.50	16.00
	2 ~ 10	16.00	0.50	16.50
	12	12.50	0.50	13.00
	13	6.75	0.50	7.25
802.11n(HT-40)	3	13.50	0.50	14.00
	4 ~ 6	15.50	0.50	16.00
	7 ~ 8	13.50	0.50	14.00
	9	13.25	0.50	13.75
	10	9.00	0.50	9.50
	11	2.75	0.50	3.25

WLAN 2.4 GHz Ant.1 (2 412 MHz ~ 2 472 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11b	All	16.00	0.50	16.50
	13	14.50	0.50	15.00
802.11g	1, 11	15.00	0.50	15.50
	2 ~ 10	16.00	0.50	16.50
	12	12.50	0.50	13.00
	13	6.50	0.50	7.00
802.11n(HT-20)	1, 11	15.00	0.50	15.50
	2 ~ 10	16.00	0.50	16.50
	12	12.50	0.50	13.00
	13	6.50	0.50	7.00
802.11n(HT-40)	3	13.50	0.50	14.00
	4 ~ 6	15.50	0.50	16.00
	7 ~ 8	14.50	0.50	15.00
	9	13.25	0.50	13.75
	10	8.50	0.50	9.00
	11	4.00	0.50	4.50

WLAN 2.4 GHz MIMO (2 412 MHz ~ 2 472 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11n(HT-20)	1, 11	14.00	0.50	14.50
	2 ~ 10	13.50	0.50	14.00
	12	10.50	0.50	11.00
	13	9.00	0.50	9.50
802.11n(HT-40)	3, 8, 9	12.50	0.50	13.00
	4 ~ 6	14.00	0.50	14.50
	7	13.00	0.50	13.50
	10	8.00	0.50	8.50
	11	0.75	0.50	1.25

WLAN 5.2 GHz Ant.0 (5 180 MHz ~ 5 240 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11a	All Channel	14.00	0.50	14.50
802.11n(HT-20)	All Channel	14.00	0.50	14.50
802.11ac(VHT-20)	All Channel	14.00	0.50	14.50
802.11n(HT-40)	All Channel	14.00	0.50	14.50
802.11ac(VHT-40)	All Channel	14.00	0.50	14.50
802.11ac(VHT-80)	All Channel	14.00	0.50	14.50
802.11ac(VHT-160)	All Channel	14.00	0.50	14.50

WLAN 5.2 GHz Ant.1 (5 180 MHz ~ 5 240 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11a	All Channel	14.00	0.50	14.50
802.11n(HT-20)	All Channel	14.00	0.50	14.50
802.11ac(VHT-20)	All Channel	14.00	0.50	14.50
802.11n(HT-40)	All Channel	14.00	0.50	14.50
802.11ac(VHT-40)	All Channel	14.00	0.50	14.50
802.11ac(VHT-80)	All Channel	14.00	0.50	14.50
802.11ac(VHT-160)	All Channel	14.00	0.50	14.50

WLAN 5.2 GHz MIMO (5 180 MHz ~ 5 240 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11n(HT-20)	All Channel	11.50	0.50	12.00
802.11ac(VHT-20)	All Channel	11.50	0.50	12.00
802.11n(HT-40)	All Channel	11.50	0.50	12.00
802.11ac(VHT-40)	All Channel	11.50	0.50	12.00
802.11ac(VHT-80)	All Channel	8.50	0.50	9.00
802.11ac(VHT-160)	All Channel	11.50	0.50	12.00

WLAN 5.3 GHz Ant.0 (5 260 MHz ~ 5 320 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11a	All Channel	14.00	0.50	14.50
802.11n(HT-20)	All Channel	14.00	0.50	14.50
802.11ac(VHT-20)	All Channel	14.00	0.50	14.50
802.11n(HT-40)	All Channel	14.00	0.50	14.50
802.11ac(VHT-40)	All Channel	14.00	0.50	14.50
802.11ac(VHT-80)	All Channel	14.00	0.50	14.50
802.11ac(VHT-160)	All Channel	14.00	0.50	14.50

WLAN 5.3 GHz Ant.1 (5 260 MHz ~ 5 320 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11a	All Channel	14.00	0.50	14.50
802.11n(HT-20)	All Channel	14.00	0.50	14.50
802.11ac(VHT-20)	All Channel	14.00	0.50	14.50
802.11n(HT-40)	All Channel	14.00	0.50	14.50
802.11ac(VHT-40)	All Channel	14.00	0.50	14.50
802.11ac(VHT-80)	All Channel	14.00	0.50	14.50
802.11ac(VHT-160)	All Channel	14.00	0.50	14.50

WLAN 5.3 GHz MIMO (5 260 MHz ~ 5 320 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11n(HT-20)	All Channel	11.50	0.50	12.00
802.11ac(VHT-20)	All Channel	11.50	0.50	12.00
802.11n(HT-40)	All Channel	11.50	0.50	12.00
802.11ac(VHT-40)	All Channel	11.50	0.50	12.00
802.11ac(VHT-80)	All Channel	11.00	0.50	11.50
802.11ac(VHT-160)	All Channel	11.50	0.50	12.00

WLAN 5.6 GHz Ant.0 (5 500 MHz ~ 5 720 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11a	All Channel	14.00	0.50	14.50
802.11n(HT-20)	All Channel	14.00	0.50	14.50
802.11ac(VHT-20)	All Channel	14.00	0.50	14.50
802.11n(HT-40)	All Channel	14.00	0.50	14.50
802.11ac(VHT-40)	All Channel	14.00	0.50	14.50
802.11ac(VHT-80)	All Channel	14.00	0.50	14.50
802.11ac(VHT-160)	All Channel	12.00	0.50	12.50

WLAN 5.6 GHz Ant.1 (5 500 MHz ~ 5 720 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11a	All Channel	14.00	0.50	14.50
802.11n(HT-20)	All Channel	14.00	0.50	14.50
802.11ac(VHT-20)	All Channel	14.00	0.50	14.50
802.11n(HT-40)	All Channel	14.00	0.50	14.50
802.11ac(VHT-40)	All Channel	14.00	0.50	14.50
802.11ac(VHT-80)	All Channel	14.00	0.50	14.50
802.11ac(VHT-160)	All Channel	12.00	0.50	12.50

WLAN 5.6 GHz MIMO (5 500 MHz ~ 5 720 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11n(HT-20)	All Channel	11.50	0.50	12.00
802.11ac(VHT-20)	All Channel	11.50	0.50	12.00
802.11n(HT-40)	All Channel	11.50	0.50	12.00
802.11ac(VHT-40)	All Channel	11.50	0.50	12.00
802.11ac(VHT-80)	106	10.50	0.50	11.00
	All Channel	11.50	0.50	12.00
802.11ac(VHT-160)	All Channel	9.50	0.50	10.00

WLAN 5.8 GHz Ant.0 (5 745 MHz ~ 5 825 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11a	All Channel	13.00	0.50	13.50
802.11n(HT-20)	All Channel	13.00	0.50	13.50
802.11ac(VHT-20)	All Channel	13.00	0.50	13.50
802.11n(HT-40)	All Channel	13.00	0.50	13.50
802.11ac(VHT-40)	All Channel	13.00	0.50	13.50
802.11ac(VHT-80)	All Channel	13.00	0.50	13.50

WLAN 5.8 GHz Ant.1 (5 745 MHz ~ 5 825 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11a	All Channel	13.00	0.50	13.50
802.11n(HT-20)	All Channel	13.00	0.50	13.50
802.11ac(VHT-20)	All Channel	13.00	0.50	13.50
802.11n(HT-40)	All Channel	13.00	0.50	13.50
802.11ac(VHT-40)	All Channel	13.00	0.50	13.50
802.11ac(VHT-80)	All Channel	13.00	0.50	13.50

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR19-SPF0007
Page (26) of (97)

WLAN 5.8 GHz MIMO (5 745 MHz ~ 5 825 MHz)

Mode	Channel	Target Power (dBm)	Tolerance (dB)	Max. Allowed Power (dBm)
802.11n(HT-20)	All Channel	10.50	0.50	11.00
802.11ac(VHT-20)	All Channel	10.50	0.50	11.00
802.11n(HT-40)	All Channel	10.50	0.50	11.00
802.11ac(VHT-40)	All Channel	10.50	0.50	11.00
802.11ac(VHT-80)	All Channel	10.50	0.50	11.00

Bluetooth (2 402 MHz ~ 2 480 MHz)

Mode	Max. Allowed Power (including tune-up tolerance)
BDR(GFSK)	10.70 dBm
EDR ($\pi/4$ DQPSK)	6.70 dBm
EDR(8DPSK)	6.70 dBm
LE(GFSK)	6.50 dBm

13.2 Average Conducted Output Power

WLAN 2.4 GHz Ant.0 (2 412 MHz ~ 2 472 MHz)

Mode	Conducted Powers (dBm)				
	2 412 MHz	2 437 MHz	2 462 MHz	2 467 MHz	2 472 MHz
802.11b_1 Mbps	16.24	16.24	16.24	16.04	14.64

WLAN 2.4 GHz Ant.1 (2 412 MHz ~ 2 472 MHz)

Mode	Conducted Powers (dBm)				
	2 412 MHz	2 437 MHz	2 462 MHz	2 467 MHz	2 472 MHz
802.11b_1 Mbps	16.14	16.24	16.14	16.04	14.54

WLAN 5.3 GHz Ant.0 (5 260 MHz ~ 5 320 MHz)

Mode	Conducted Powers (dBm)		
	Low	Mid.	High
802.11ac(VHT-160)_MCS0	-	14.31	-

WLAN 5.3 GHz Ant.1 (5 260 MHz ~ 5 320 MHz)

Mode	Conducted Powers (dBm)		
	Low	Mid.	High
802.11ac(VHT-160)_MCS0	-	14.21	-

WLAN 5.6 GHz Ant.0 (5 500 MHz ~ 5 720 MHz)

Mode	Conducted Powers (dBm)		
	Low	Mid.	High
802.11ac(VHT-80)_MCS0	14.35	14.25	14.25

WLAN 5.6 GHz Ant.1 (5 500 MHz ~ 5 720 MHz)

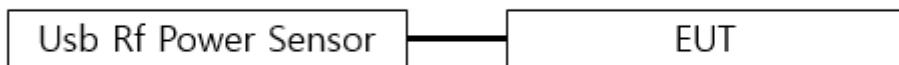
Mode	Conducted Powers (dBm)		
	Low	Mid.	High
802.11ac(VHT-80)_MCS0	14.15	14.05	14.25

WLAN 5.8 GHz Ant.0 (5 745 MHz ~ 5 825 MHz)

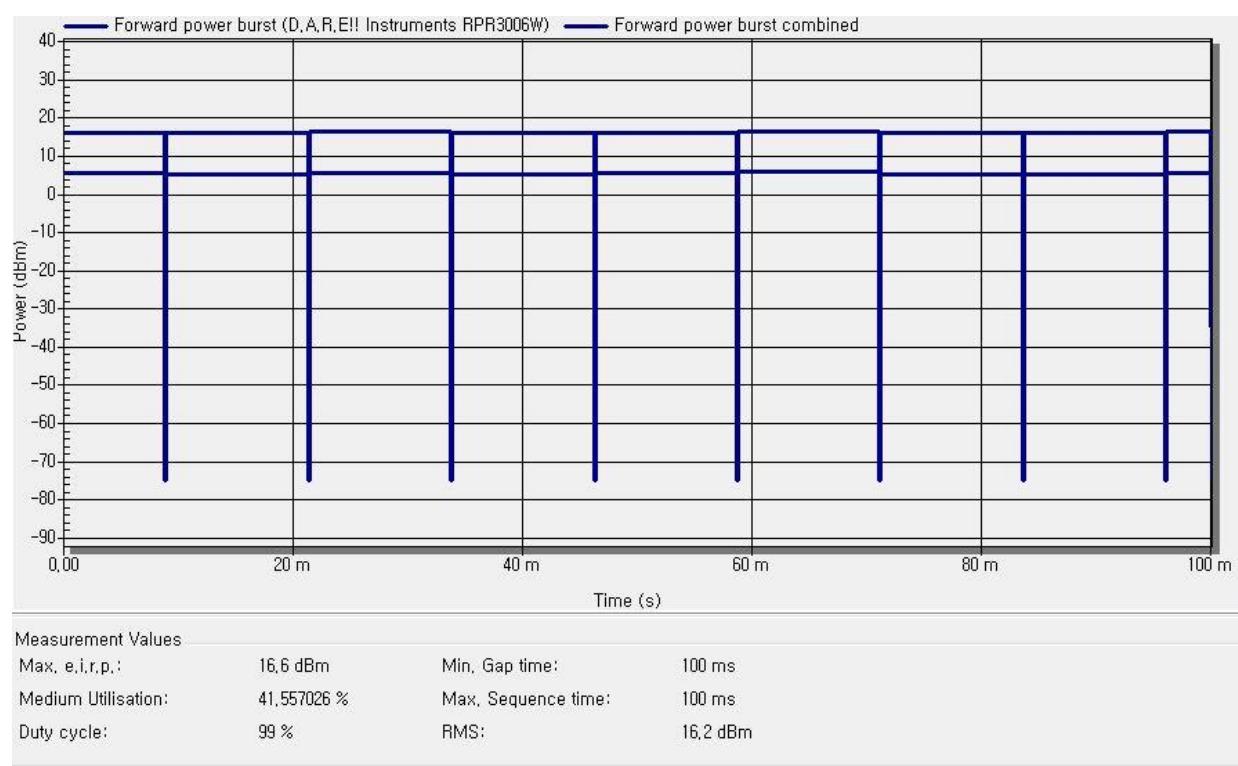
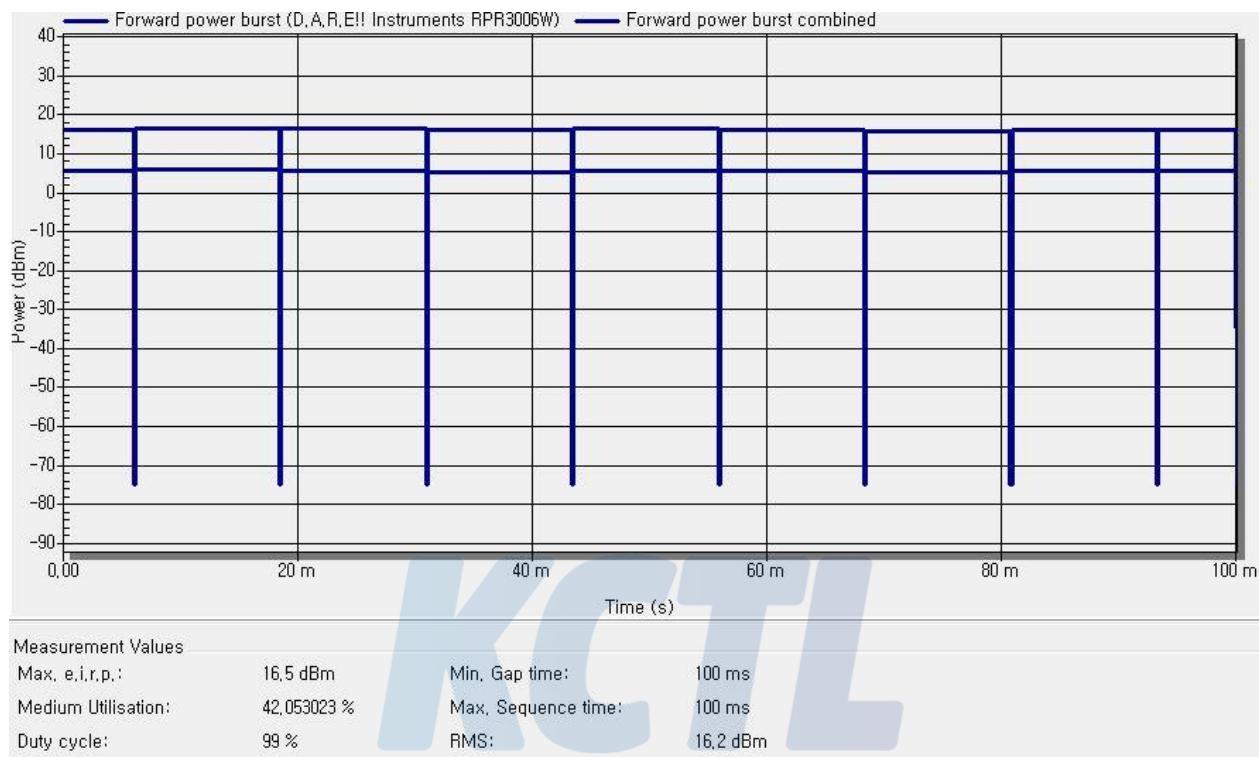
Mode	Conducted Powers (dBm)		
	Low	Mid.	High
802.11ac(VHT-80)_MCS 0	-	13.35	-

WLAN 5.8 GHz Ant.1 (5 745 MHz ~ 5 825 MHz)

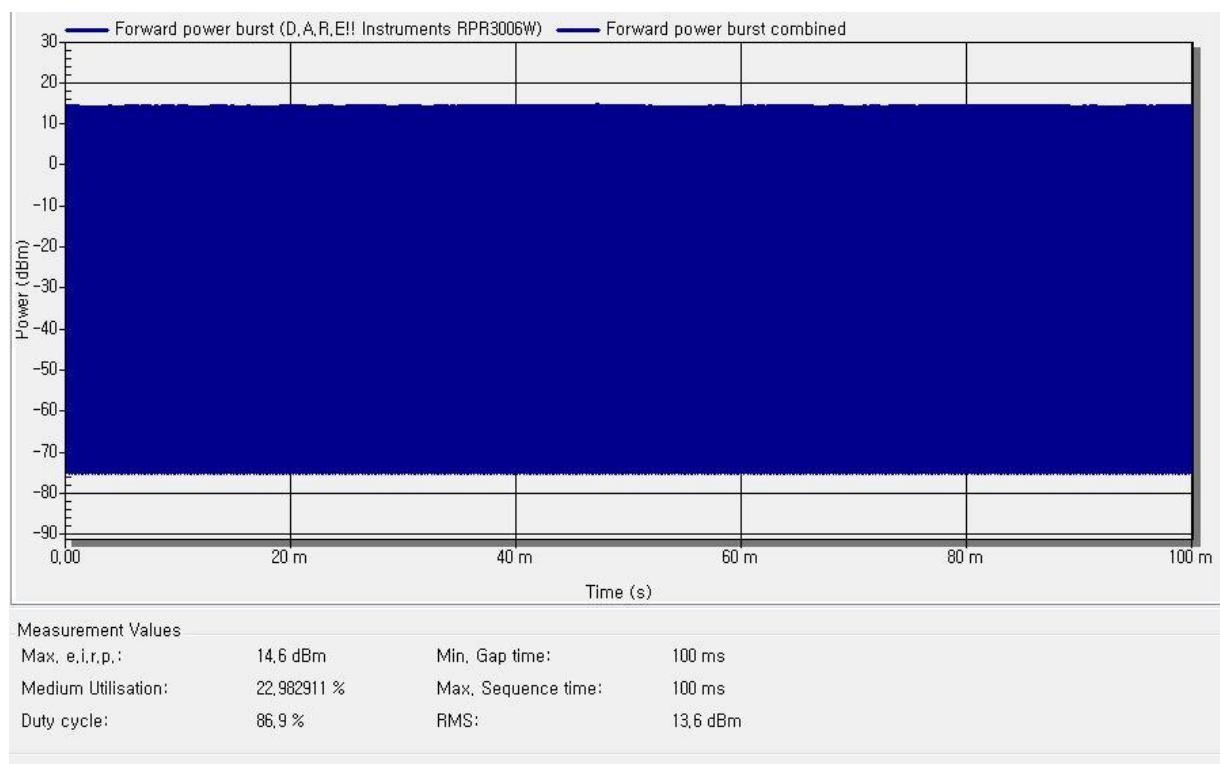
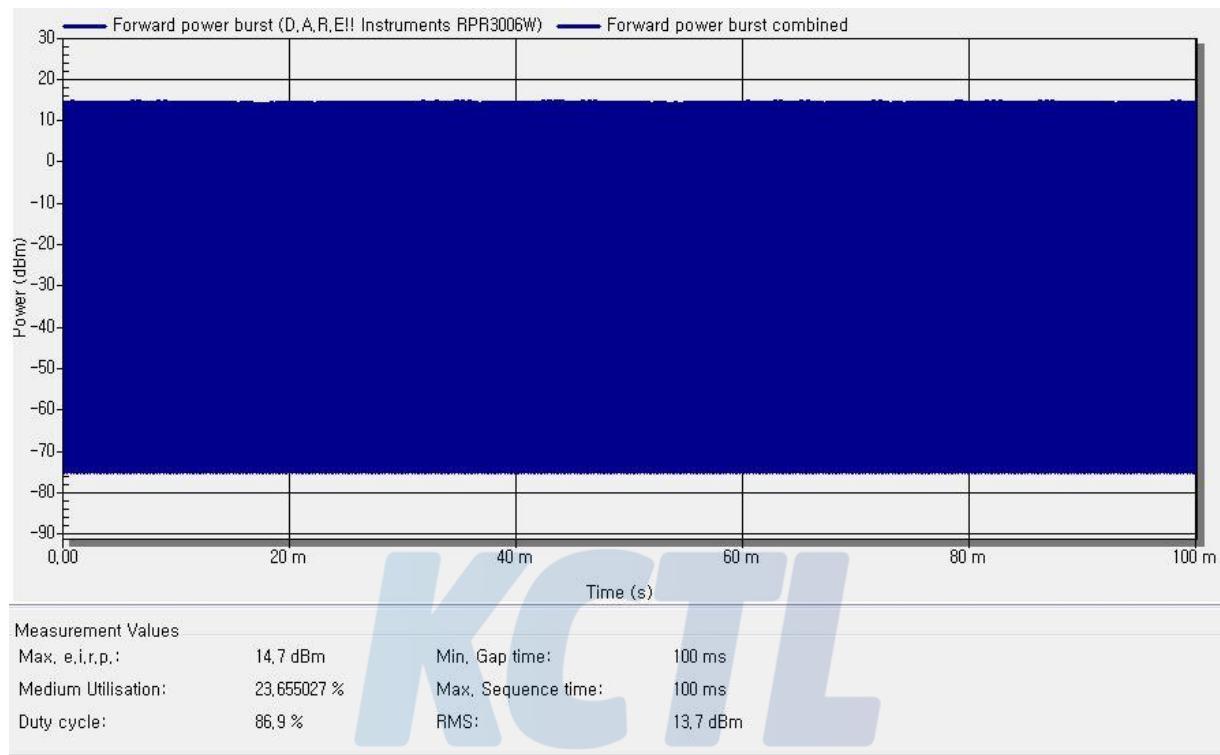
Mode	Conducted Powers (dBm)		
	Low	Mid.	High
802.11ac(VHT-80)_MCS 0	-	13.05	-


KCTL Inc.

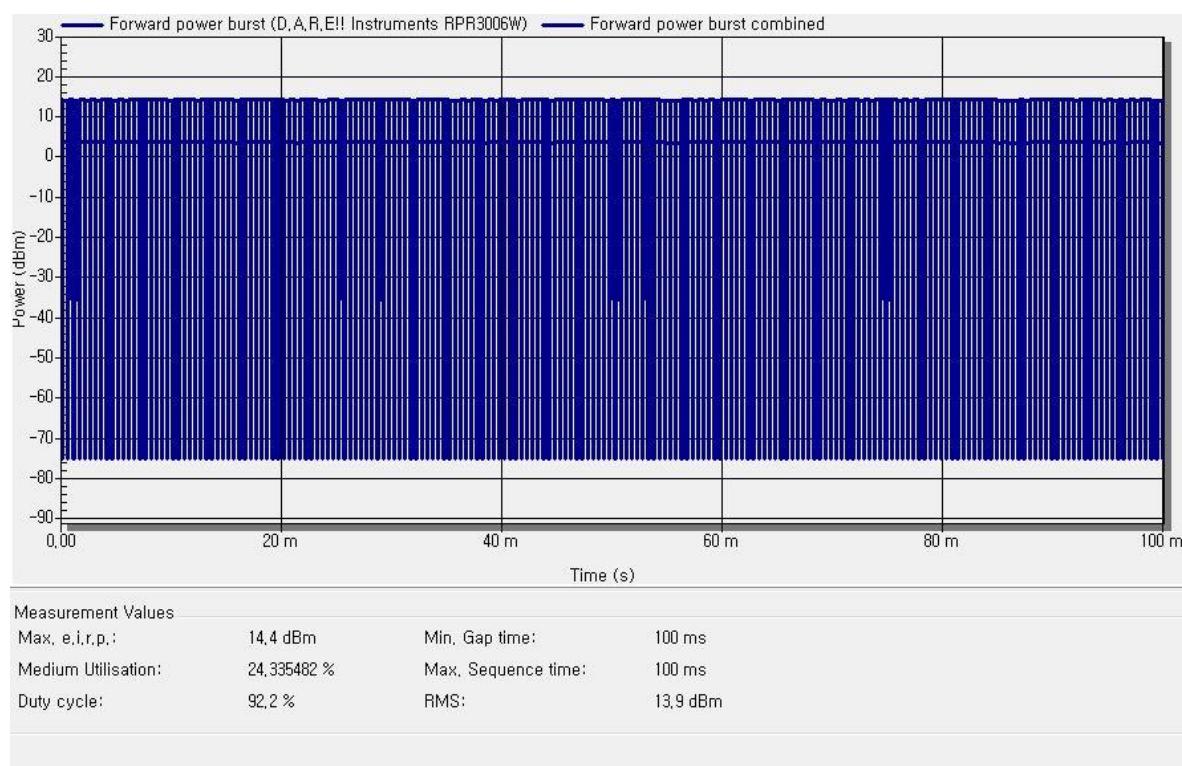
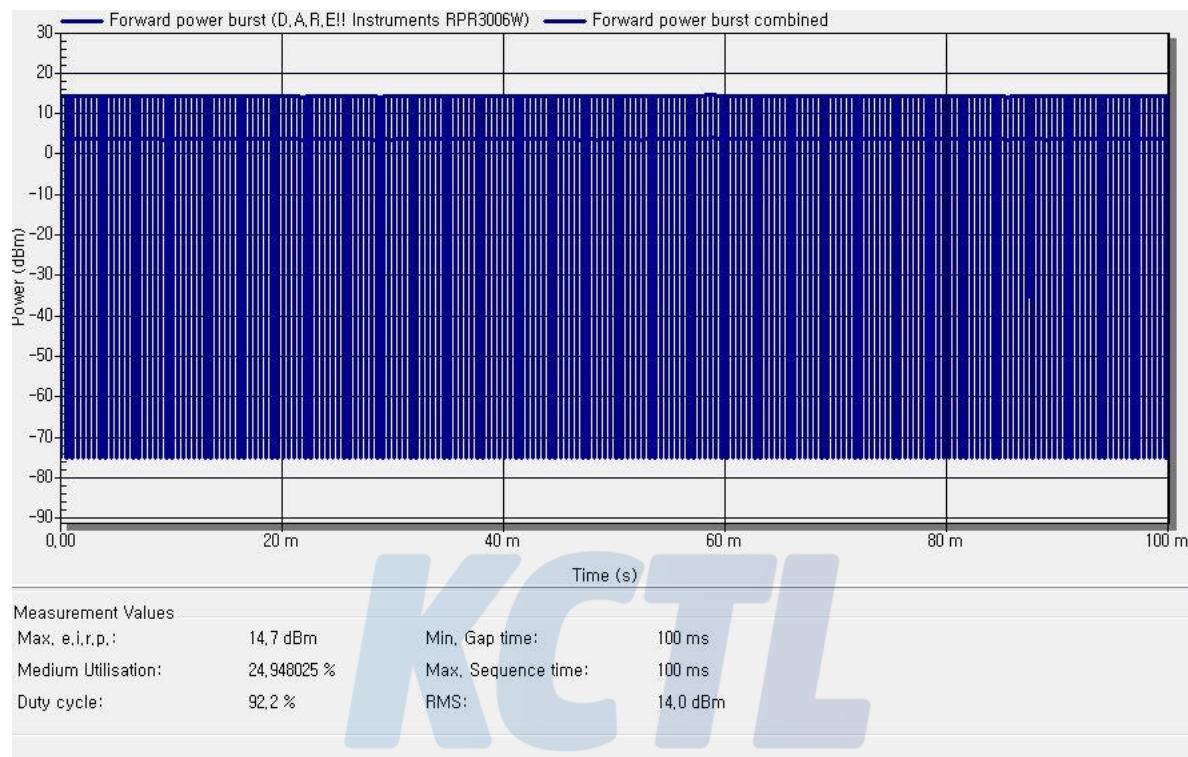
65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

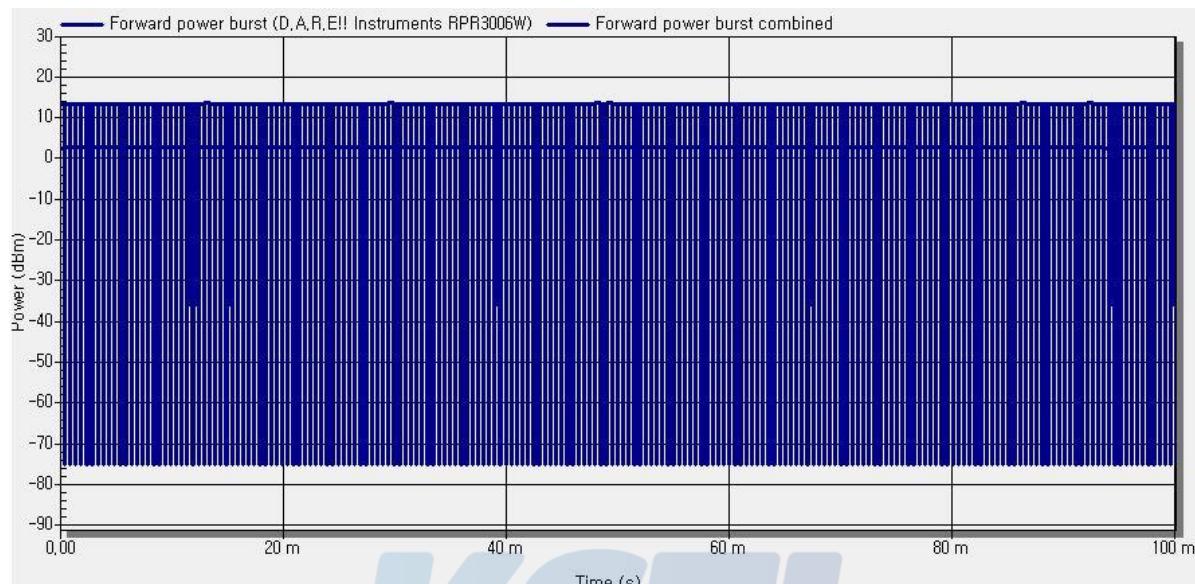


Report No.:
KR19-SPF0007
Page (28) of (97)

KCTL**Bluetooth (2 402 MHz ~ 2 480 MHz)**



Mode	Conducted Powers (dBm)		
	Low	Mid.	High
BDR(GFSK)	8.51	9.31	9.21

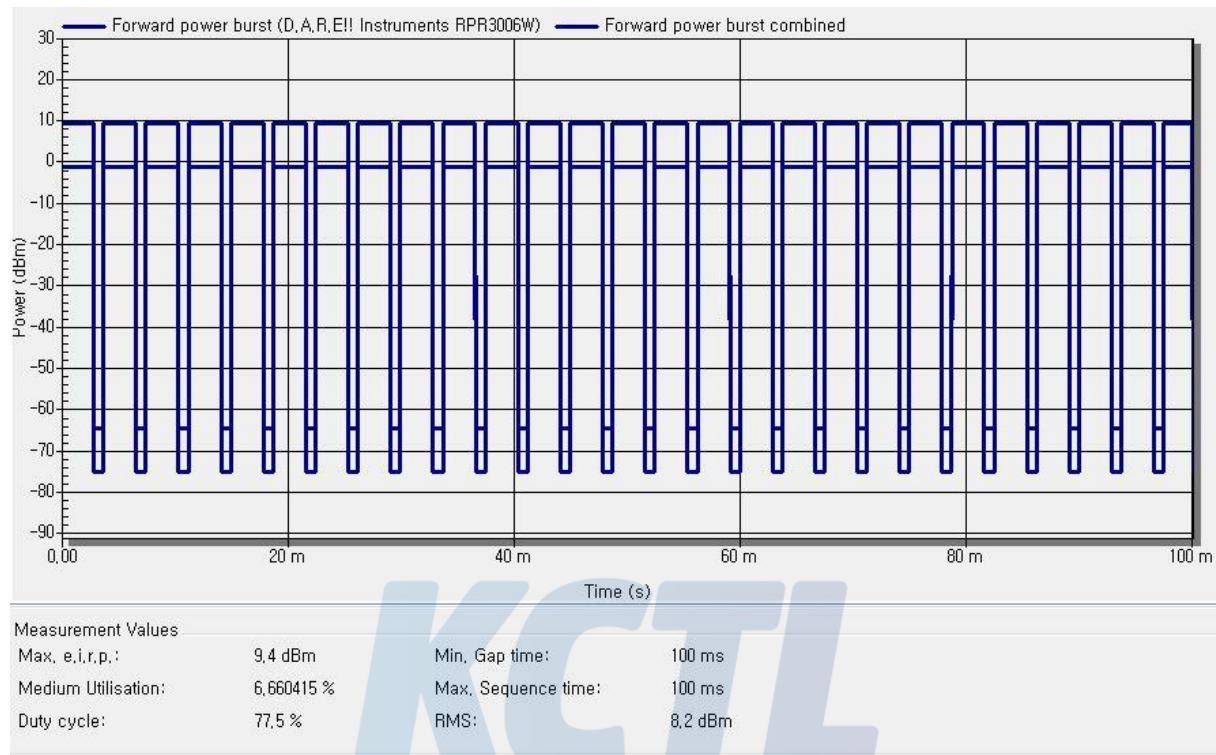
WLAN / Bluetooth Duty Cycle, Power Measurement Setup, Transmission Plot**KCTL**



Mode		Duty Cycle [%]	Duty Cycle Compensate Factor
WLAN 2.4 GHz	Ant.0	802.11b	99.0
	Ant.1	802.11b	99.0


Mode			Duty Cycle [%]	Duty Cycle Compensate Factor
WLAN 5.3 GHz	Ant.0	802.11ac(VHT-160)	86.9	1.15
	Ant.1	802.11ac(VHT-160)	86.9	1.15

Mode		Duty Cycle [%]	Duty Cycle Compensate Factor
WLAN 5.6 GHz	Ant.0	802.11ac(VHT-80)	92.2
	Ant.1	802.11ac(VHT-80)	92.2

Mode		Duty Cycle [%]	Duty Cycle Compensate Factor
WLAN 5.8 GHz	Ant.0	802.11ac(VHT-80)	92.2
	Ant.1	802.11ac(VHT-80)	92.2


KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 16677, Korea
TEL: 82-31-285-0894 FAX: 82-505-299-8311
www.kctl.co.kr

Report No.:
KR19-SPF0007
Page (33) of (97)

KCTL

Mode			Duty Cycle [%]	Duty Cycle Compensate Factor
Bluetooth	BDR	DH5	77.5	1.29

14. SAR Test Results

KDB 447498 D01, General RF Exposure Guidance

Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:

- (1) $\leq 0.8 \text{ W/kg}$ or 2.0 W/kg , for 1-g or 10-g respectively, when the transmission band is $\leq 100 \text{ MHz}$
- (2) $\leq 0.6 \text{ W/kg}$ or 1.5 W/kg , for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3) $\leq 0.4 \text{ W/kg}$ or 1.0 W/kg , for 1-g or 10-g respectively, when the transmission band is $\geq 200 \text{ MHz}$ SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported SAR* for the *initial test position* is:

- $\leq 0.4 \text{ W/kg}$, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- $> 0.4 \text{ W/kg}$, SAR is repeated using the same wireless mode test configuration tested in the *initial test position* to measure the subsequent next closest/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the *reported SAR* is $\leq 0.8 \text{ W/kg}$ or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the *initial test position* and subsequent test positions, when the *reported SAR* is $> 0.8 \text{ W/kg}$, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the *reported SAR* is $\leq 1.2 \text{ W/kg}$ or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is $\leq 1.2 \text{ W/kg}$, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is $\leq 1.2 \text{ W/kg}$, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

14.1 WLAN 2.4 GHz Body SAR Test Results

WLAN 2.4G Ant.0

Mode	EUT Position	Distance (mm)	Frequency (MHz)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1 g SAR (W/kg)	Scaled 1 g SAR (W/kg)	Plot No.
802.11b	Notebook Rear	0	2 437	16.24	16.5	1.06	1.01	0.075	0.080	#1

WLAN 2.4G Ant.1

Mode	EUT Position	Distance (mm)	Frequency (MHz)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1 g SAR (W/kg)	Scaled 1 g SAR (W/kg)	Plot No.
802.11b	Notebook Rear	0	2 437	16.24	16.5	1.06	1.01	0.107	0.115	#2

<Note>

- * KDB Publication 248227 D01v02r02, WLAN 2.4 GHz the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is ≤ 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is ≤ 1.2 W/kg per.
- * When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- * Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg
- * KDB Publication 248227 D01v02r02, The maximum output power permitted for devices authorized under §15.247 is 1 W conducted and 36 dBm EIRP. Within the frequency range of 2400 – 2483.5 MHz, currently a total of 13 channels may be used in the U.S. However, non-overlapping frequency channels are necessary to minimize interference degradation; therefore, channels 1, 6 and 11 are used most often. Channels 12 and 13, in general, require reduced output power to satisfy bandedge radiated field strength requirements at 2483.5 MHz. Provided higher maximum output power is not specified for the other channels, channels 1, 6 and 11 are used to configure 22 MHz DSSS and 20 MHz OFDM channels for SAR measurements; otherwise, the closest adjacent channel with the highest maximum output power specified for production units should be tested instead of channels 1, 6 or 11.
- * 1 g SAR Limit 1.6 W/kg

14.2 WLAN 5.3 GHz Body SAR Test Results

WLAN 5.3G Ant.0

Mode	EUT Position	Distance (mm)	Frequency (MHz)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1 g SAR (W/kg)	Scaled 1 g SAR (W/kg)	Plot No.
802.11ac (VHT-160)	Notebook Rear	0	5 250	14.31	14.5	1.04	1.15	0.513	0.617	#3

WLAN 5.3G Ant.1

Mode	EUT Position	Distance (mm)	Frequency (MHz)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1 g SAR (W/kg)	Scaled 1 g SAR (W/kg)	Plot No.
802.11ac (VHT-160)	Notebook Rear	0	5 250	14.21	14.5	1.07	1.15	0.463	0.570	#4

<Note>

- * SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.
- * KDB Publication 447498 D01v06, Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- * 1 g SAR Limit 1.6 W/kg
- * For WLAN 5 GHz, in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure, when applicable. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration per KDB Publication 248227 D01v02r02.
- * For WLAN 5 GHz, When the same maximum output power is specified for U-NII-1 and U-NII-2A bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements.
 - If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR per KDB Publication 248227 D01v02r02.
- * 1 g SAR Limit 1.6 W/kg

14.3 WLAN 5.6 GHz Body SAR Test Results

WLAN 5.6G Ant.0

Mode	EUT Position	Distance (mm)	Frequency (MHz)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1 g SAR (W/kg)	Scaled 1 g SAR (W/kg)	Plot No.
802.11ac (VHT-80)	Notebook Rear	0	5 530	14.35	14.5	1.04	1.08	1.000	1.123	#5
			5 610	14.25	14.5	1.06	1.08	0.915	1.051	
			5 690	14.25	14.5	1.06	1.08	0.837	0.962	
			5 530	14.35	14.5	1.04	1.08	0.948	1.064	

WLAN 5.6G Ant.1

Mode	EUT Position	Distance (mm)	Frequency (MHz)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1 g SAR (W/kg)	Scaled 1 g SAR (W/kg)	Plot No.
802.11ac (VHT-80)	Notebook Rear	0	5 690	14.25	14.5	1.06	1.08	0.789	0.906	#6
			5 530	14.15	14.5	1.08	1.08	0.555	0.652	
			5 610	14.05	14.5	1.11	1.08	0.651	0.783	

<Note>

* SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

* For WLAN 5 GHz, in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure, when applicable. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration per KDB Publication 248227 D01v02r02.

* 1 g SAR Limit 1.6 W/kg

14.4 WLAN 5.8 GHz Body SAR Test Results

WLAN 5.8G Ant.0

Mode	EUT Position	Distance (mm)	Frequency (MHz)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1 g SAR (W/kg)	Scaled 1 g SAR (W/kg)	Plot No.
802.11ac (VHT-80)	Notebook Rear	0	5 775	13.35	13.5	1.04	1.08	0.643	0.722	#7

WLAN 5.8G Ant.1

Mode	EUT Position	Distance (mm)	Frequency (MHz)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1 g SAR (W/kg)	Scaled 1 g SAR (W/kg)	Plot No.
802.11ac (VHT-80)	Notebook Rear	0	5 775	13.05	13.5	1.11	1.08	0.504	0.606	#8

<Note>

- * SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.
- * KDB Publication 447498 D01v06, Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- * 1 g SAR Limit 1.6 W/kg
- * For WLAN 5 GHz, in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure, when applicable. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration per KDB Publication 248227 D01v02r02.
- * 1 g SAR Limit 1.6 W/kg

14.5 Bluetooth Body SAR Test Results

Bluetooth Ant.1

Mode	EUT Position	Distance (mm)	Frequency (MHz)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1 g SAR (W/kg)	Scaled 1 g SAR (W/kg)	Plot No.
BDR_DH5	Notebook Rear	0	2 441	9.31	10.7	1.38	1.29	0.017	0.031	#9

<Note>

* SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

* KDB Publication 447498 D01v06, Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:

≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

* 1 g SAR Limit 1.6 W/kg

14.6 SAR Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) Repeated measurement is not required when the original highest measured SAR is $< 0.80 \text{ W/kg}$; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is $\geq 0.80 \text{ W/kg}$, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the Original and first repeated measurements is > 1.20 or when the original or repeated measurement is $\geq 1.45 \text{ W/kg}$ ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is $\geq 1.5 \text{ W/kg}$ and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .

Band	Frequency (MHz)	EUT Position	Separation Distance (mm)	Measured 1 g SAR (W/kg)	Repeated 1g SAR (W/kg)	Ratio
WLAN 5.6 GHz	5 530	Notebook Rear	0	1.000	0.948	0.95

14.7 Simultaneous Transmission

Notebook Body SAR Simultaneous Transmission

Band	EUT Position	Scaled 1 g SAR Ant.0 (W/kg)	Scaled 1 g SAR Ant.1 (W/kg)		Σ 1 g SAR (W/kg)	SPLSR
			WLAN	BT		
WLAN 2.4 GHz Main + WLAN 2.4GHz Aux	Notebook Rear	0.080	0.115	-	0.195	Σ SAR<1.6, Not required
WLAN 5 GHz Main + WLAN 5 GHz Aux	Notebook Rear	1.123	0.906	-	2.03	Analyzed as below
WLAN 2.4 GHz Main + Bluetooth Aux	Notebook Rear	0.080	-	0.031	0.111	Σ SAR<1.6, Not required
WLAN 5 GHz Main + Bluetooth Aux	Notebook Rear	1.123	-	0.031	1.15	Σ SAR<1.6, Not required
WLAN 5 GHz Main + WLAN 5 GHz Aux + Bluetooth Aux	Notebook Rear	1.123	0.906	0.031	2.06	Analyzed as below

* Simultaneous transmission SAR test exclusion considerations

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneously transmitting antenna. When the sum of 1-g or 10-g SAR of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration. Per KDB Publication 447498 D01v06.

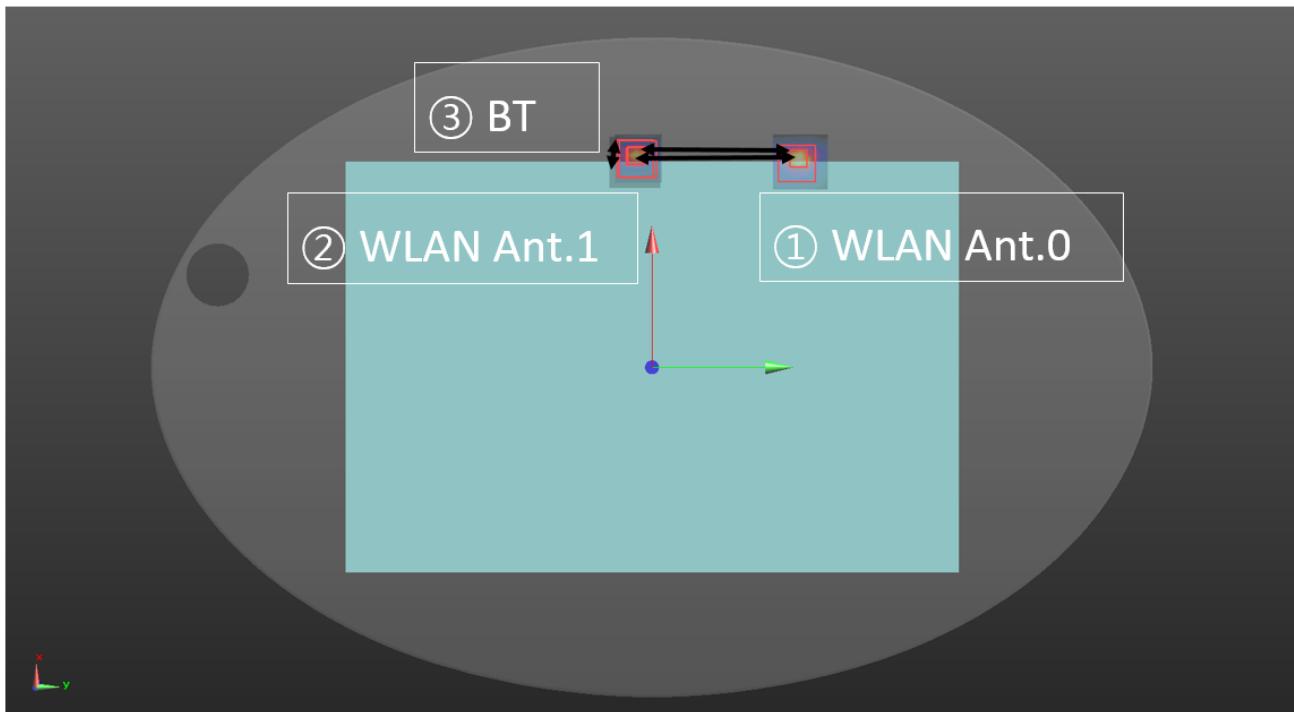
- * When the sum of SAR1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR1g is greater than the SAR limit (SAR1g 1.6 W/kg), SAR test exclusion is determined by the SPLSR.
- * Bluetooth and WLAN Aux(Ant.1) share the same antenna path.
- * Bluetooth can transmit with WLAN Main(Ant.0) simultaneously.

14.8 SAR to Peak Location Separation Ratio Analysis

The simultaneous transmitting antennas in each operating mode and exposure condition combination are considered one pair at a time to determine the SPLSR. When SAR is measured for both antennas in the pair, the peak location separation distance is computed by the following formula.

$$\text{Peak Location Separation Distance} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

Where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR locations in the area or zoom scans.


When standalone test exclusion applies, SAR is estimated; the peak location is assumed to be at the feed-point or geometric center of the antenna. Due to curvatures on the SAM phantom, when SAR is estimated for one of the antennas in an antenna pair, the measured peak SAR location will be translated onto the test device to determine the peak location separation for the antenna pair.

The SPLSR is determined by the following formula.

$$\text{SPLSR} = \frac{(\text{SAR}_1 + \text{SAR}_2)^{1.5}}{R_i}$$

Where SAR_1 and SAR_2 are the highest reported or estimated SAR for each antenna in the pair, and R_i is the separation distance between the peak SAR locations for the antenna pair in mm.

When the SPLSR is ≤ 0.04 , the simultaneous transmission SAR is not required. Otherwise, the enlarged zoom scan and volume scan post-processing procedures will be performed.

Mode	Freq. (MHz)	Test Position	SAR Value (W/kg)	Coordinates			Peak Location Separation Distance (mm)	SPLSR	Simultaneous Transmission SAR Test
				X	Y	Z			
WLAN 5.6G Ant.0	5 530	Notebook Rear	1.123	120	87	-179	246.7	0.012	SPLSR ≤ 0.04, Not required
WLAN 5.6G Ant.1	5 690		0.906	124	-10	-180			
Bluetooth Ant.1	2 441		0.031	125	-10	-180			

15. Test System Verification Results

2 450 MHz (2019-03-26)

Procedure Name: d=10 mm, Pin=250 mW, dist=2.0mm (EX-Probe)

Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.917$ S/m; $\epsilon_r = 52.414$; $\rho = 1000$ kg/m³

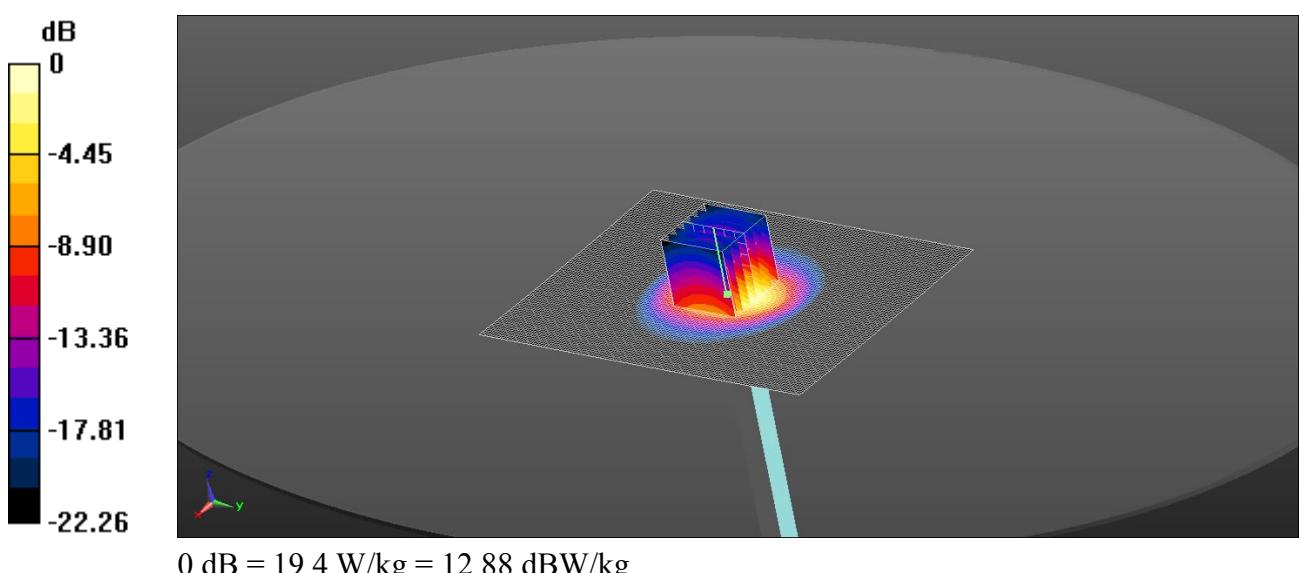
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(7.22, 7.22, 7.22); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

System Performance Check (without Area Scan)/d=10 mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (101x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 20.1 W/kg


System Performance Check (without Area Scan)/d=10 mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.3 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.99 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

5 300 MHz (2019-03-26)

Procedure Name: d=10mm, Pin=100mW, f=5300MHz

Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5300$ MHz; $\sigma = 5.596$ S/m; $\epsilon_r = 47.559$; $\rho = 1000$ kg/m³

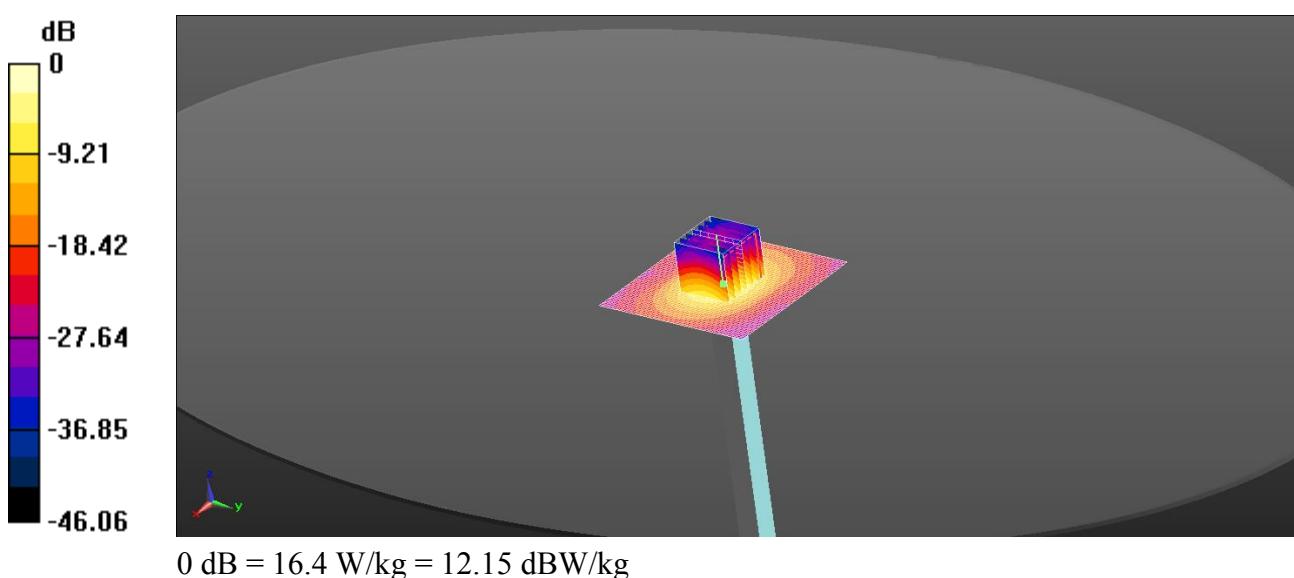
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(4.3, 4.3, 4.3); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/d=10mm, Pin=100mW, f=5300MHz/Area Scan (71x71x1): Interpolated grid:
dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.8 W/kg


Configuration/d=10mm, Pin=100mW, f=5300MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.69 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 16.4 W/kg

5 600 MHz (2019-03-27)

Procedure Name: d=10mm, Pin=100mW, f=5600MHz

Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5600$ MHz; $\sigma = 5.838$ S/m; $\epsilon_r = 48.349$; $\rho = 1000$ kg/m³

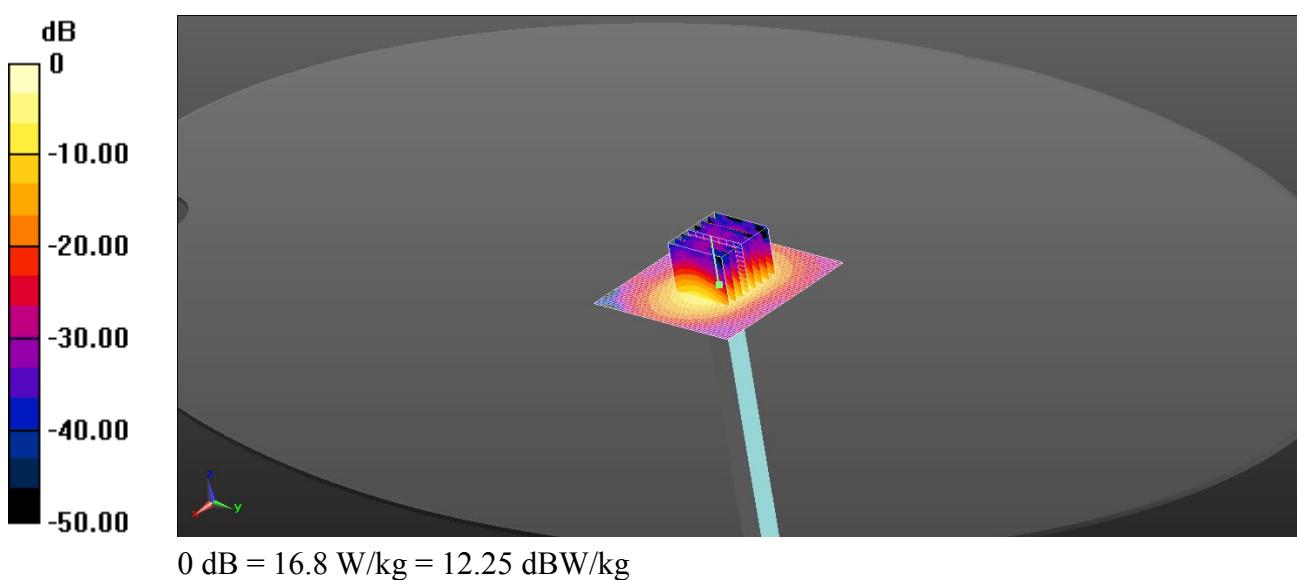
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(3.91, 3.91, 3.91); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/d=10mm, Pin=100mW, f=5600MHz/Area Scan (71x71x1): Interpolated grid:
dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.7 W/kg


Configuration/d=10mm, Pin=100mW, f=5600MHz/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 61.50 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 33.4 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

5 800 MHz (2019-03-27)

Procedure Name: d=10mm, Pin=100mW, f=5800MHz

Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5800$ MHz; $\sigma = 6.139$ S/m; $\epsilon_r = 47.925$; $\rho = 1000$ kg/m³

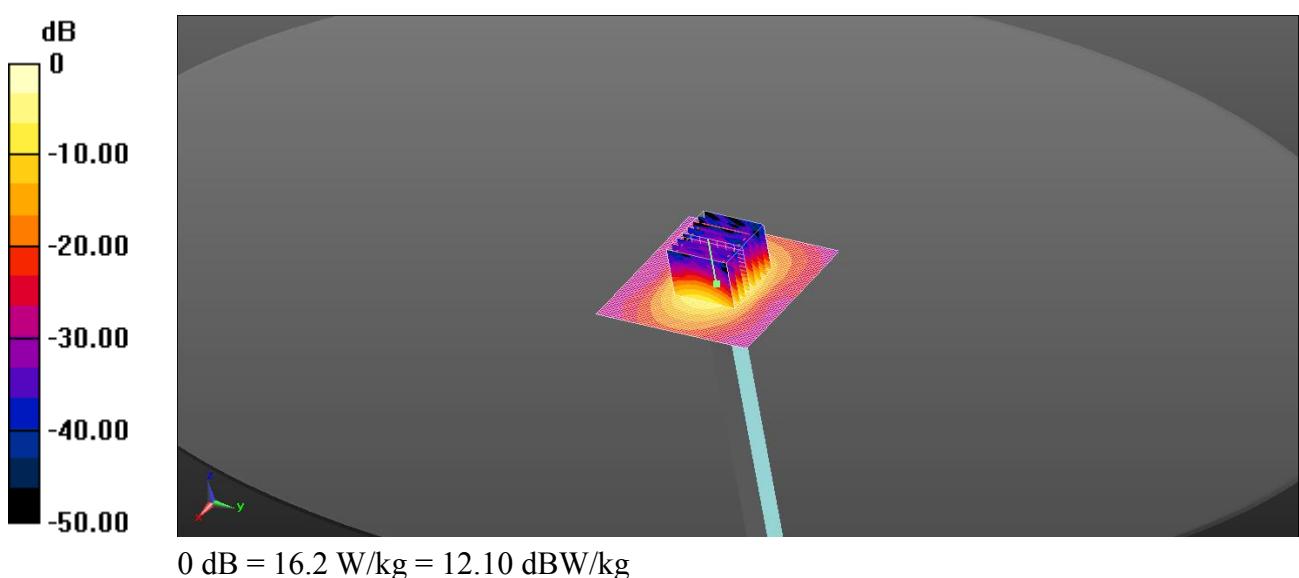
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(4, 4, 4); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/d=10mm, Pin=100mW, f=5800MHz/Area Scan (71x71x1): Interpolated grid:
dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 15.8 W/kg


Configuration/d=10mm, Pin=100mW, f=5800MHz/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 56.92 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.15 W/kg

Maximum value of SAR (measured) = 16.2 W/kg

16. Test Results

#1**Procedure Name: 802.11b_f.2 437_Rear_0 mm_Ant.0**

Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2437$ MHz; $\sigma = 1.901$ S/m; $\epsilon_r = 52.439$; $\rho = 1000$ kg/m³

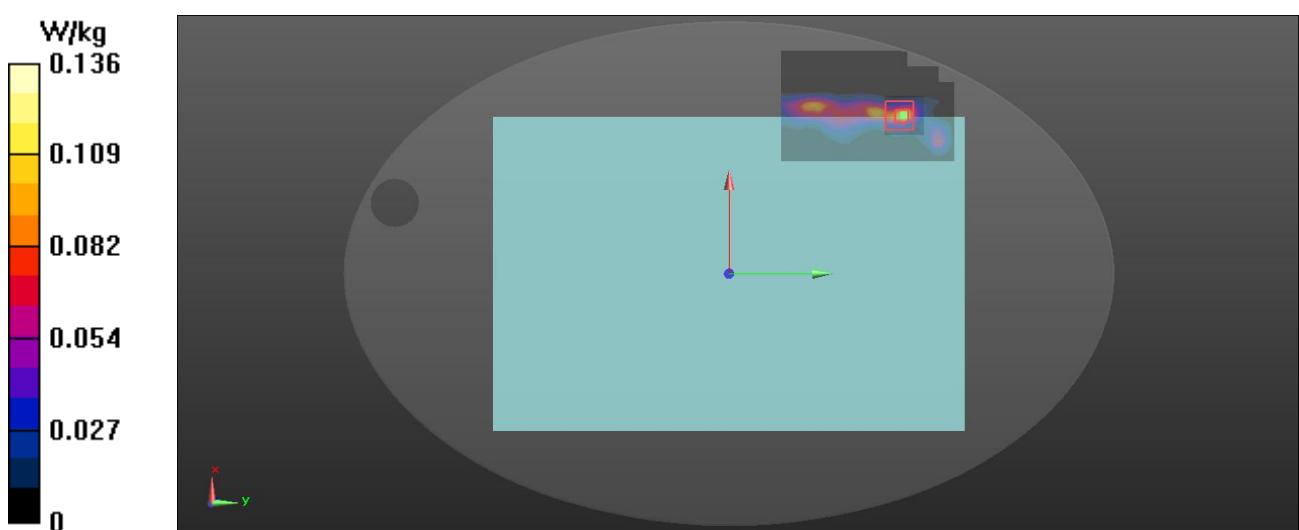
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(7.22, 7.22, 7.22); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b_f.2 437_Rear_0 mm_Ant.0/Area Scan (71x111x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.131 W/kg


Configuration/802.11b_f.2 437_Rear_0 mm_Ant.0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.202 W/kg

SAR(1 g) = 0.075 W/kg; SAR(10 g) = 0.026 W/kg

Maximum value of SAR (measured) = 0.136 W/kg

#2**Procedure Name: 802.11b_f.2 437_Rear_0 mm_Ant.1**

Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2437$ MHz; $\sigma = 1.901$ S/m; $\epsilon_r = 52.439$; $\rho = 1000$ kg/m³

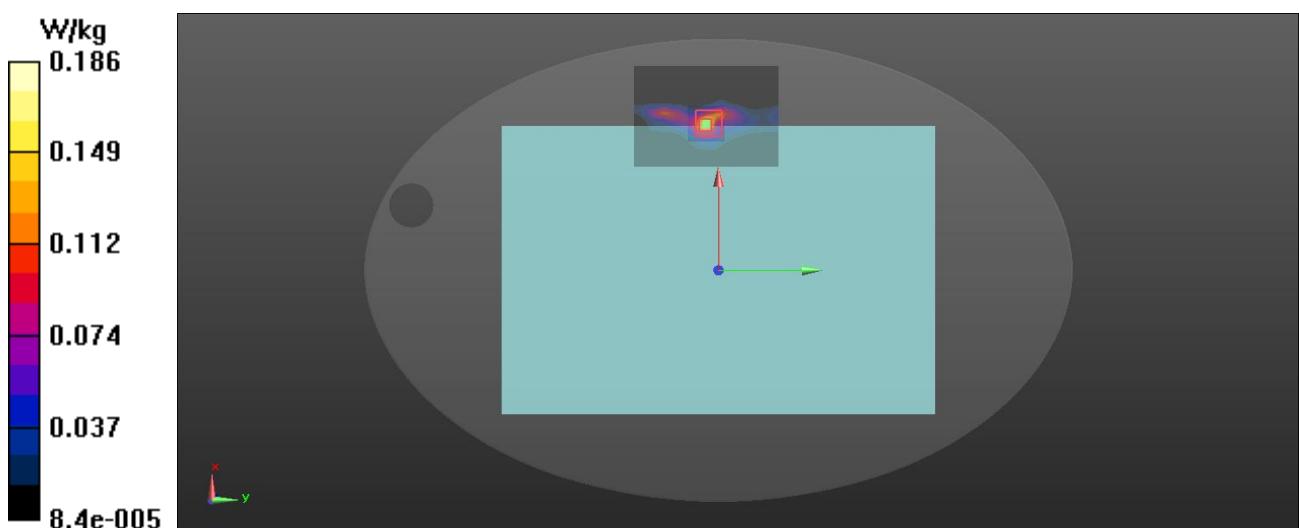
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(7.22, 7.22, 7.22); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b_f.2 437_Rear_0 mm_Ant.1/Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.192 W/kg


Configuration/802.11b_f.2 437_Rear_0 mm_Ant.1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.107 W/kg; SAR(10 g) = 0.043 W/kg

Maximum value of SAR (measured) = 0.186 W/kg

#3**Procedure Name: 802.11ac160_f.5 250_Rear_0 mm_Ant.0**

Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5250$ MHz; $\sigma = 5.549$ S/m; $\epsilon_r = 47.732$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

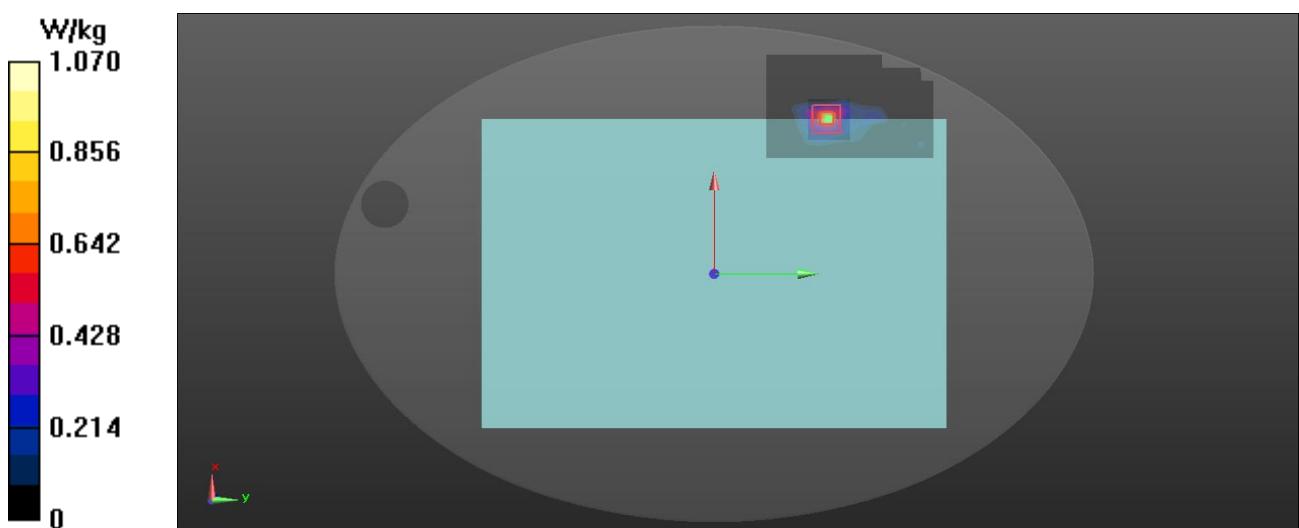
DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(4.43, 4.43, 4.43); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11ac160_f.5 250_Rear_0 mm_Ant.0/Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.03 W/kg

Configuration/802.11ac160_f.5 250_Rear_0 mm_Ant.0/Zoom Scan (9x9x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.77 W/kg

SAR(1 g) = 0.513 W/kg; SAR(10 g) = 0.146 W/kg

Maximum value of SAR (measured) = 1.07 W/kg

#4**Procedure Name: 802.11ac160_f.5 250_Rear_0 mm_Ant.1**

Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5250$ MHz; $\sigma = 5.549$ S/m; $\epsilon_r = 47.732$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

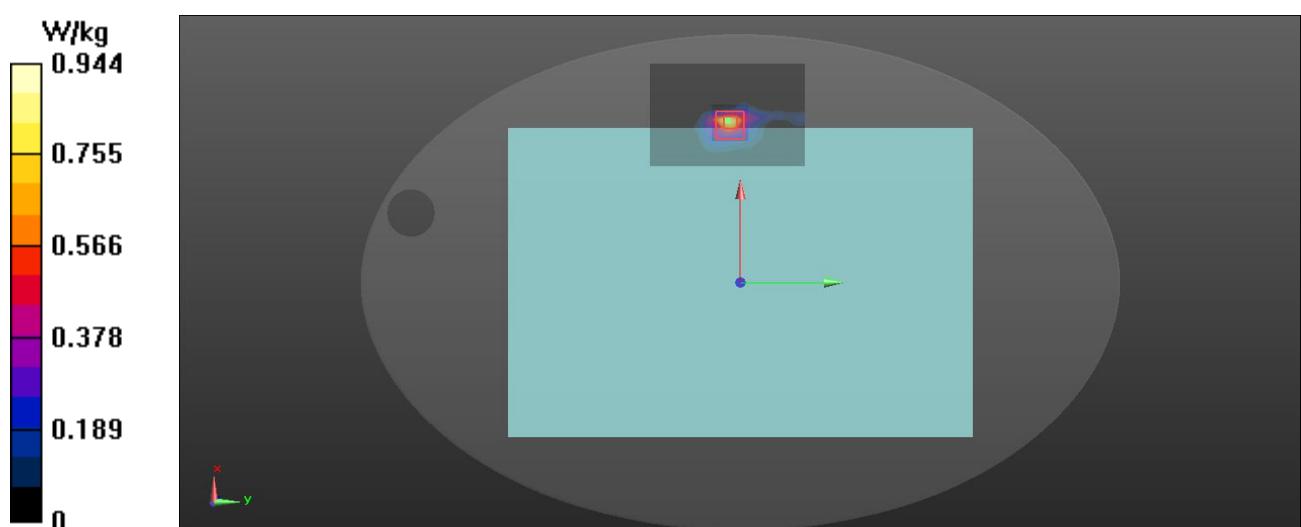
DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(4.43, 4.43, 4.43); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11ac160_f.5 250_Rear_0 mm_Ant.1/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.980 W/kg

Configuration/802.11ac160_f.5 250_Rear_0 mm_Ant.1/Zoom Scan (8x8x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.95 W/kg

SAR(1 g) = 0.463 W/kg; SAR(10 g) = 0.140 W/kg

Maximum value of SAR (measured) = 0.944 W/kg

#5**Procedure Name: 802.11ac80_f.5 530_Rear_0 mm_Ant.0**

Frequency: 5530 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5530$ MHz; $\sigma = 5.726$ S/m; $\epsilon_r = 48.456$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

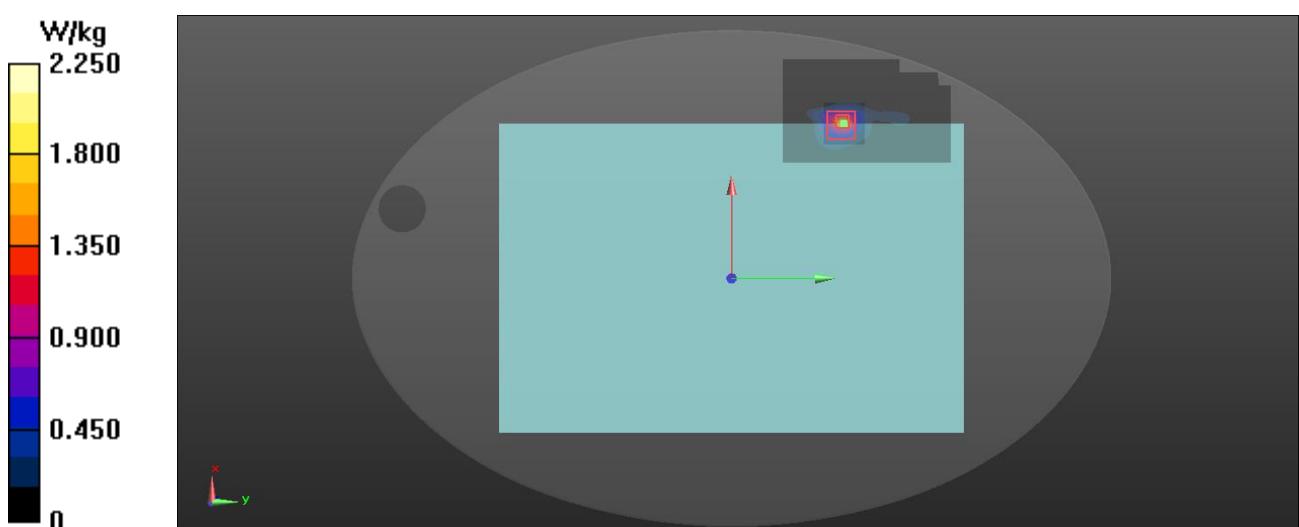
DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(4.03, 4.03, 4.03); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11ac80_f.5 530_Rear_0 mm_Ant.0/Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.68 W/kg

Configuration/802.11ac80_f.5 530_Rear_0 mm_Ant.0/Zoom Scan (9x9x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 4.77 W/kg

SAR(1 g) = 1 W/kg; SAR(10 g) = 0.280 W/kg

Maximum value of SAR (measured) = 2.25 W/kg

#6**Procedure Name: 802.11ac80_f.5 690_Rear_0 mm_Ant.1**

Frequency: 5690 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5690$ MHz; $\sigma = 5.972$ S/m; $\epsilon_r = 48.138$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

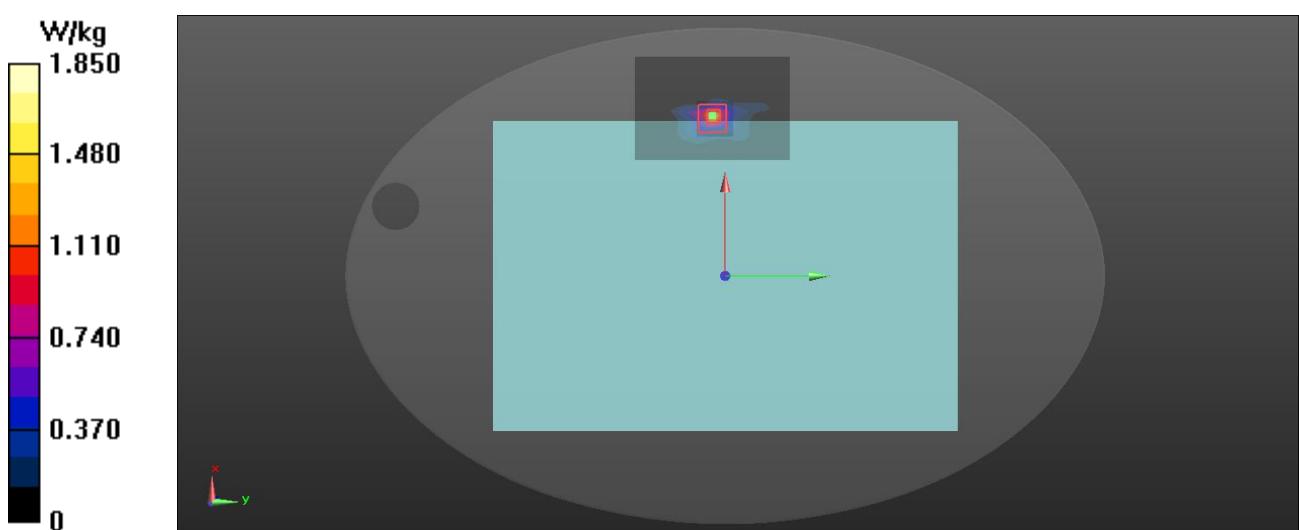
DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(3.91, 3.91, 3.91); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11ac80_f.5 690_Rear_0 mm_Ant.1/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.38 W/kg

Configuration/802.11ac80_f.5 690_Rear_0 mm_Ant.1/Zoom Scan (8x8x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 4.40 W/kg

SAR(1 g) = 0.789 W/kg; SAR(10 g) = 0.209 W/kg

Maximum value of SAR (measured) = 1.85 W/kg

#7**Procedure Name: 802.11ac80_f.5 775_Rear_0 mm_Ant.0**

Frequency: 5775 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5775$ MHz; $\sigma = 6.101$ S/m; $\epsilon_r = 47.977$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

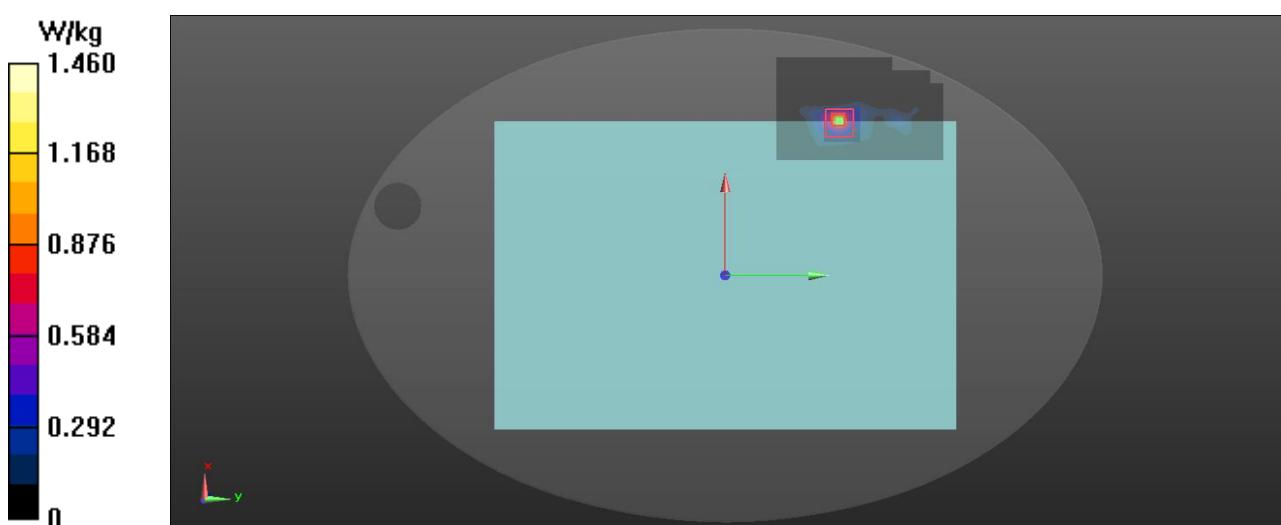
DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(4, 4, 4); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11ac80_f.5 775_Rear_0 mm_Ant.0/Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.40 W/kg

Configuration/802.11ac80_f.5 775_Rear_0 mm_Ant.0/Zoom Scan (8x8x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.51 W/kg

SAR(1 g) = 0.643 W/kg; SAR(10 g) = 0.167 W/kg

Maximum value of SAR (measured) = 1.46 W/kg

#8**Procedure Name: 802.11ac80_f.5 775_Rear_0 mm_Ant.1**

Frequency: 5775 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5775$ MHz; $\sigma = 6.101$ S/m; $\epsilon_r = 47.977$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

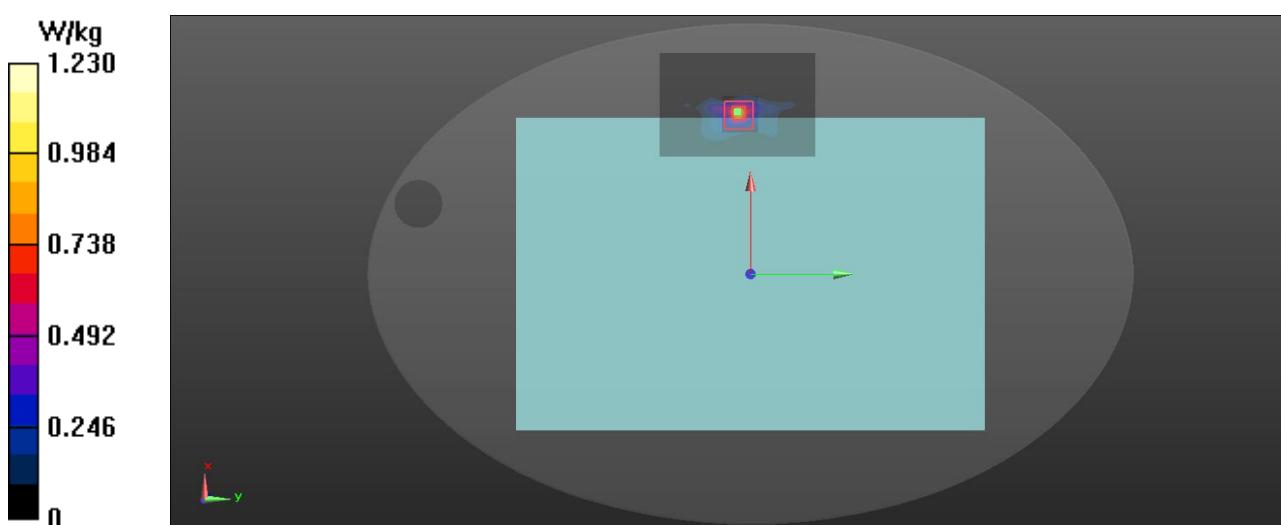
DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(4, 4, 4); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11ac80_f.5 775_Rear_0 mm_Ant.1/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.973 W/kg

Configuration/802.11ac80_f.5 775_Rear_0 mm_Ant.1/Zoom Scan (8x8x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 2.21 W/kg

SAR(1 g) = 0.504 W/kg; SAR(10 g) = 0.125 W/kg

Maximum value of SAR (measured) = 1.23 W/kg

#9**Procedure Name: Bluetooth_DH5_f.2 441_Rear_0 mm_Ant.1**

Frequency: 2441 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2441$ MHz; $\sigma = 1.908$ S/m; $\epsilon_r = 52.431$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

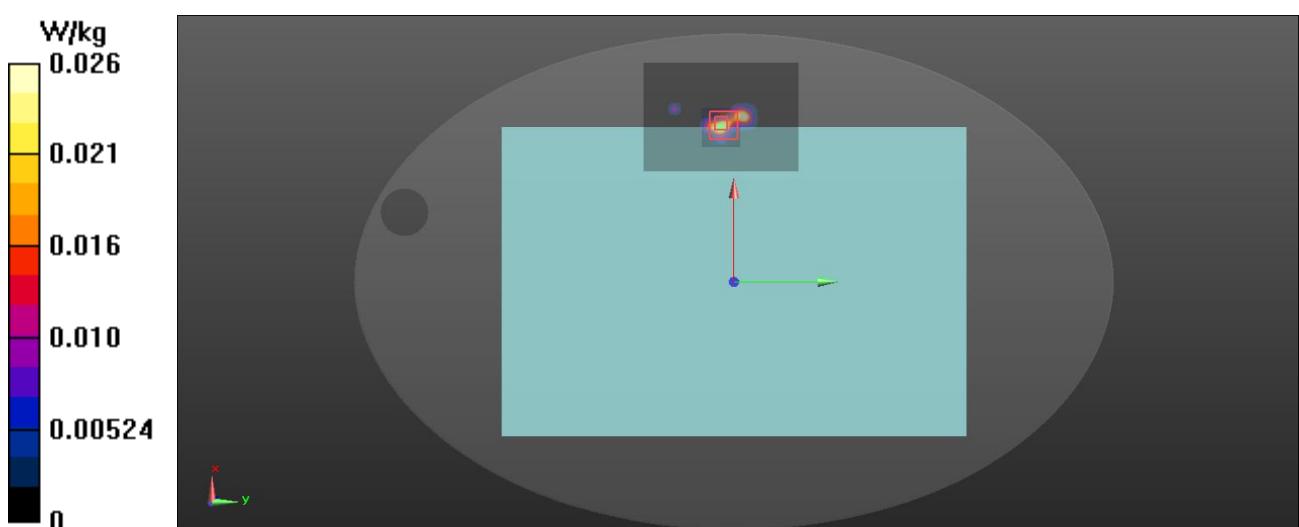
DASY5 Configuration:

- Probe: EX3DV4 - SN3928; ConvF(7.22, 7.22, 7.22); Calibrated: 2019-01-31;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2018-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/Bluetooth_DH5_f.2 441_Rear_0 mm_Ant.1/Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0322 W/kg

Configuration/Bluetooth_DH5_f.2 441_Rear_0 mm_Ant.1/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.0780 W/kg

SAR(1 g) = 0.017 W/kg; SAR(10 g) = 0.00594 W/kg

Maximum value of SAR (measured) = 0.0262 W/kg

