

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

FCC SAR TEST REPORT

<u>Test File No : F690501/RF-SAR002315</u>

Equipment Under Test	Module	
Model Name	8260D2W	
Host Device	Notebook PC	
Host Device Name	NP900X3L	
Applicant	Intel Mobile Communications	
Address of Applicant	Intel Mobile Communications 100 Center Point Circle Suite 200 Columbia, SC 29210 USA	
FCC ID	PD98260D2	
Exposure Category	General Population/Uncontrolled Exposure	
Standards	FCC 47 CFR Part 2 (2.1093) IEEE 1528, 2013 ANSI/IEEE C95.1, C95.3	
Date of Test(s)	2015-11-20 ~ 2015-11-22	
Date of Issue	2015-12-04	

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Korea Co., Ltd. or testing done by SGS Korea Co., Ltd. in connection with distribution or use of the product described in this report must be approved by SGS Korea Co., Ltd. in writing.

Report prepared by / Changhyun Song

Test Engineer

Approved by / Jongwon Ma Technical Manager

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Revision history

Revision	Date of issue	Revisions	Revised By
-	December 04, 2015	Initial issue	-

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

SGS Korea Co., Ltd.4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Contents

1	Testing Laboratory	5
2	Details of Manufacturer_	5
3	Description of EUT(s)	5
4	The Highest Reported SAR Values	5
5	Test Methodology	6
6	Test Environment	6
7	Specific Absorption Rate (SAR)	7
7.1	Introduction	7
7.2	IntroductionSAR Definition	7
7.3	SAR Definition Test Standards and Limits	7
8	The SAR Measurement System	9
9	The SAR Measurement System	10
9.1	System Components Probe	10
9.1		10
9.3	ELI Phantom	11
10	Device HolderSAR Measurement Procedures	12
10.1	Normal SAR Measurement Procedure	12
10.1	SAR System Varification	14
12	SAR System Verification Tissue Simulant Fluid for the Frequency Band	15
13	Test System Validation	
		17
14 15	Instruments List	18 19
16	FCC Power Measurement Procedures	19
17	Measured and Reported SAR	20
17.1	Maximum Output Power SpecificationsSISO Maximum Output Power Specifications	
17.1	MIMO Maximum Output Power Specifications	20
17.2	Plustoath Maximum Output Power Specifications	21
	Bluetooth Maximum Output Power Specifications	23
18 18.1	WLAN	24 24
	General Device Setup	
18.2	U-NII-1 and U-NII-2A	24
18.3	U-NII-2C and U-NII-3	24
18.4	2.4 GHz SAR Test Requirements	24
18.5	OFDM Transmission Mode and SAR Test Channel Selection	25
18.6	Initial Test Configuration Procedure	25
18.7	Subsequent Test Configuration Procedures	25
19	RF Conducted Power Measurement	26
20	SAR Test Exclusions Applied	30
21	SAR Data Summary	31
22	SAR Measurement Variability	34
22.1	Measurement Variability	34
22.2	Measurement Uncertainty	34
23	Simultaneous Multi-band Transmission Evaluation	35
23.1	Introduction	35
23.2	Simultaneous Transmission possibilities are listed as below	35
23.3	Simultaneous Transmission Procedures	35 36
Appendiz Appendiz		36 37
Appendix		38
	No: F690501/RF-SAR002315 Date of Issue: 2015-1	
	ervices are rendered in accordance with the applicable SGS conditions of service available on request	
accessible a	at http://www.sgs.com/en/Terms-and-Conditions.aspx.)	

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendixes A.3	39
Appendixes A.4	40
Appendixes A.5	41
Appendixes A.6_	42
Appendixes A.7	43
Appendixes A.8	44
Appendixes B.1	45
Appendixes C.1	47
Appendixes C.2	58
Appendixes C.3	63
END	85

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

1 Testing Laboratory

Company Name	SGS Korea Co., Ltd. (Gunpo Laboratory)		
Address	Wireless Div. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Republic o Korea		
Telephone	+82 +31 428 5700		
FAX	+82 +31 427 2371		

2 Details of Manufacturer

Applicant	Intel Mobile Communications
Address	Intel Mobile Communications 100 Center Point Circle Suite 200 Columbia, SC 29210 USA
Email	steven.c.hackett@intel.com
Phone No.	803-216-2344

3 Description of EUT(s)

EUT Type	Module					
Model Name	8260D2W	8260D2W				
Host Device	Notebook PC					
Host Device Name	NP900X5L					
Serial Number	0JA991ZGA000	30K				
Mode of Operation	WLAN, Bluetoo	th				
Duty Cycle	1 (WLAN, Blue	tooth)				
Body worn Accessory	None					
Tx Frequency Range	$2412 \text{ MHz} \sim 2462$	2 MHz (WL	AN_802.11b/	g/n)		
	$5180 \text{ MHz} \sim 5240$) MHz, 5260	MHz ~ 5320 I	MHz (WL	AN_802.11a/n/ac)	
	5500 MHz ~ 5700 MHz (WLAN 802.11a/n)					
	5500 MHz ~ 5720 MHz (WLAN_802.11ac)					
	5745 MHz ~ 5825 MHz (WLAN_802.11a/n/ac)					
	2402 MHz ~ 2480 MHz (Bluetooth)					
Antenna Information	Port Main Aux					
	Manufacturer		Galtronics		Galtronic	es
	Type PIFA PIFA					
	Main Antenna Gain (dBi) Aux Antenna Gain (dBi)			dBi)		
	2.40 GHz ~ 2.50 GHz 3.52 2.40 GHz ~ 2.50 GHz 2.64			2.64		
	5.150 GHz ~ 5.350 GHz 2.19 5.150 GHz ~ 5.350 GHz 1.11			1.11		
	5.470 GHz ~ 5.725 GHz 2.06 5.470 GHz ~ 5.725 GHz 0.56			0.56		
	5.725 GHz ~ 5.8	50 GHz	1.33	5.725 (GHz ~ 5.850 GHz	1.59

4 The Highest Reported SAR Values

Equipment Class	Band	Highest Reported SAR 1g (W/kg)	
DTS	2.4 GHz WLAN	0.38	
UNII	5.8 GHz WLAN	0.63	
NII	5.3 GHz WLAN	0.59	
	5.6 GHz WLAN	0.58	
DSS	Bluetooth	N/A	
Simultaneous SAR per KDB 690783 D01v01r03		0.74	

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

5 Test Methodology

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

Test tests documented in this report were performed in accordance with IEEE Standard 1528-2013 and the following published KDB procedures.

In additions;

	KDB 865664 D01v01r04	SAR Measurement Requirements for 100 MHz to 6 GHz		
	KDB 447498 D01v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies		
	KDB 447498 D02v02r01	SAR Measurement Procedures for USB Dongle Transmitters		
\boxtimes	KDB 248227 D01v02r02	SAR Guidance For IEEE 802.11 (Wi-Fi) Transmitters		
	KDB 615223 D01v01r01	802.16e/WiMax SAR Measurement Guidance		
	KDB 616217 D04v01r02	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers		
	KDB 643646 D01v01r03	SAR Test Reduction Considerations for Occupational PTT Radios		
	KDB 648474 D03v01r03	Evaluation and Approval Considerations for Handsets with Specific Wireless Charging Battery Covers		
	KDB 648474 D04v01r03	SAR Evaluation Considerations for Wireless Handsets		
	KDB 680106 D01v02	RF Exposure Considerations for Low Power Consumer Wireless Power Transfer Applications		
	KDB 941225 D01v03	3G SAR Measurement Procedures		
	KDB 941225 D05v02r04	SAR Evaluation Considerations for LTE Devices		
	KDB 941225 D06v02r01	SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities		
	KDB 941225 D07v01r02	SAR Evaluation Procedures for UMPC Mini-Tablet Devices		

6 Testing Environment

Ambient temperature	: 18°C ~ 25°C
Relative humidity	: 30% ~ 70%
Liquid temperature of during the test	:<± 2°C
Ambient noise & Reflection	: < 0.012 W/kg

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

6/85

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

7/85 Page:

Specific Absorption Rate (SAR)

7.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled

7.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7.3 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.3–2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting

F690501/RF-SAR002315

Date of Issue: (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 8 / 85

source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

- (1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- (2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational	
Partial Peak SAR (Partial)	1.60 m W/g	8.00 m W/g	
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g	
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g	

- 1. The spatial Peak value of the SAR averaged over any 1g gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

8 The SAR Measurement System

A block diagram of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY 4 professional system). The model EX3DV4 field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ ($|Ei|^2$)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY 4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

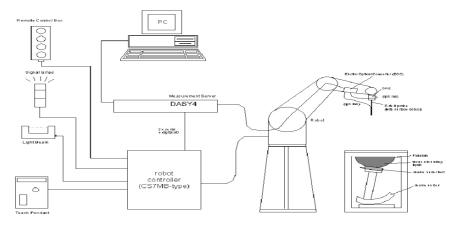


Fig a. The microwave circuit arrangement used for SAR system verification

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows XP.
- DASY 4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The ELI phantom enabling testing flat usage.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

RTT5041-76(2015.10.01) (2)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

9 System Components

9.1 Probe

Construction : Symmetrical design with triangular core.

Built-in shielding against static charges.

PEEK enclosure material (resistant to organic solvents,

e.g., DGBE)

Calibration: Basic Broad Band Calibration in air Conversion Factors

(CF) for HSL 835 and HSL1900.

Additional CF-Calibration for other liquids and

frequencies upon request.

Frequency: 10 MHz to 6 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity : ± 0.3 dB in HSL (rotation around probe axis)

 ± 0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range : $10\mu \text{W/g to} > 100 \text{ m W/g}$;

Linearity: ± 0.2 dB(noise: typically $\leq 1 \mu W/g$)

Dimensions: Overall length: 337 mm (Tip length: 20 mm)

Tip diameter: 2.5 mm (Body diameter: 12 mm)
Distance from probe tip to dipole centers: 1 mm

Application: High precision dosimetric measurements in any exposure

scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6

GHz with precision of better 30%

Page:

10 / 85

EX3DV4 E-Field Probe

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX C" for the Calibration Certification Report.

9.2 ELI Phantom

Construction

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top

structure

Shell Thickness : $2.0 \text{ mm} \pm 0.2 \text{ mm}$

Dimensions : Major axis: 600 mm

Minor axis: 400 mm

ELI Phantom

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

9.3 Device Holder

Construction:

: In combination with the Twin SAM PhantomV4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Construction:

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (a.q. laptops, Cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioned.

Page:

11 / 85

Device Holder

Device Holder

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 12 / 85

10 SAR Measurement Procedures

10.1 Normal SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 1.4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2 and 3: Area Scan & Zoom Scan Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1 g and 10 g.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

< Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04 >

Page:

13 / 85

			≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30° ± 1° 20° ± 1°	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: Δx _{Zcom} , Δy _{Zcom}			≤2 GHz: ≤8 mm 2 – 3 GHz: ≤5 mm*	3 – 4 GHz; ≤ 5 mm* 4 – 6 GHz; ≤ 4 mm*
	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤4 mm 4 – 5 GHz; ≤3 mm 5 – 6 GHz: ≤2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤3 mm 4 – 5 GHz: ≤2.5 mm 5 – 6 GHz: ≤2 mm
	grid \[\Delta z_{Zoom}(n>1): \] between subsequent points		$\leq 1.5 \cdot \Delta z_{Z_{DOM}}(n-1)$	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

11 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. 1. The daily system accuracy verification occurs within the flat section of the ELI phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 2450 MHz, 5300 MHz,

5600 MHz, and 5800 MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1. (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was in the range $(22 \pm 2)^\circ$ C, the relative humidity was in the range (55 ± 5) % R.H and the liquid depth above the ear reference points was ≥ 15 cm ± 5 mm (frequency ≤ 3 GHz) or ≥ 10 cm ± 5 mm (frequency ≥ 3 G Hz)in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

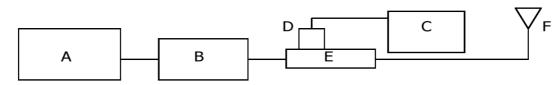


Fig 1. The microwave circuit arrangement used for SAR system verification

- A. Agilent Model E8247C Signal Generator
- B. EMPOWER Model 2001-BBS3Q7ECK Amplifier EMPOWER Model 2092-BBS5K8CAJ Amplifier
- C. Agilent Model E4419B Power Meter
- D. Agilent Model 9300H Power Sensor Agilent Model E9327A Power Sensor
- E. KEYSIGHT Model 772D Dual Directional Coupler
- F. Reference dipole Antenna

Page:

14 / 85

Photo of the dipole Antenna

Verification Kit	Probe S/N	Tissue	Target SAR 1 g from Calibration Certificate (1 W)	Measured SAR 1 g (0.1 W)	Normalized SAR 1 g (1 W)	Deviation (%)	Date	Liquid Temp. (°C)
D2450V2 SN:892	3791	2450 Body	51.4	5.16	51.6	0.39	2015-11-22	22.6
D5 GHz V2 SN:1106	3791	5300 Body	76.1	7.46	74.6	-1.97	2015-11-20	22.4
D5 GHz V2 SN:1106	3791	5600 Body	80.2	7.99	79.9	-0.37	2015-11-20	22.5
D5 GHz V2 SN:1106	3791	5800 Body	77.3	8.06	80.6	4.27	2015-11-20	22.5

Table 1. Results system verification

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

12 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the Speag Model DAK-3.5 Dielectric Probe in conjunction with Agilent E5071C Network Analyzer(300 kHz - 6 GHz) by using a procedure detailed in Section V.

				Dielectric Param	eters		
f (MHz)	Tissue type	Limits / Measured	Permittivity	Conductivity	Simulated Tissue Temp()		
		Measured, 2015-11-22	51.4	1.86	• 1		
2450		Target Tissue Body	52.7	1.95			
		Deviation (%)	<u>-2.47</u>	<u>-4.62</u>			
2412	Body	Measured, 2015-11-22	51.3	1.88	22.6		
2412		Deviation (%)	<u>-2.66</u>	<u>-3.59</u>			
2462		Measured, 2015-11-22	51.3	1.86			
2402		Deviation (%)	<u>-2.66</u>	<u>-4.62</u>			
		Measured, 2015-11-20	49.2	5.32			
5300		Target Tissue Body	48.9	5.42			
		Deviation (%)	<u>0.61</u>	<u>-1.85</u>			
5270	Body	Measured, 2015-11-20	49.2	5.26	22.4		
3270		Deviation (%)	<u>0.61</u>	<u>-2.95</u>			
5310		Measured, 2015-11-20	49.2	5.33			
3310		Deviation (%)	<u>0.61</u>	<u>-1.66</u>			
		Measured, 2015-11-20	46.9	5.75			
5600		Target Tissue Body	48.5	5.77			
		Deviation (%)	-3.30	<u>-0.35</u>			
5530	Body	Measured, 2015-11-20	47.1	5.61	22.5		
3330		Deviation (%)	<u>-2.89</u>	<u>-2.77</u>			
5690		Measured, 2015-11-20	46.7	5.88			
3090		Deviation (%)	<u>-3.71</u>	<u>1.91</u>			
		Measured, 2015-11-20	46.6	6.03			
5800		Target Tissue Body	48.2	6.00			
		Deviation (%)		<u>0.50</u>			
5775	Body	Measured, 2015-11-20	46.7	6.02	22.5		
3113		Deviation (%)	<u>-3.11</u>	<u>0.33</u>			
5795		Measured, 2015-11-20	46.6	6.03			
3173		Deviation (%)	<u>-3.32</u>	<u>0.50</u>			

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

The composition of the brain & muscle tissue simulating liquid

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	4:	50	83	35	90	00	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.91	46.21	40.29	50.75	40.29	50.75	55.24	70.17	55.00	68.64
Salt (NaCl)	3.79	2.34	1.38	0.94	1.38	0.94	0.31	0.39	-	-
Sugar	56.93	51.17	57.90	-	57.90	-	-	•	-	-
HEC	0.25	0.15	0.24	0.10	0.24	0.10	-	•	-	-
Bactericide	0.12	0.08	0.18	-	0.18	-	-	•	-	-
Triton X-100	-	-	-	-	-	-	-	•	-	-
DGBE	-	-	-	-	-	-	44.45	70.17	45.00	31.37
Dielectric Constant	43.5	56.7	41.5	55.2	41.5	55.0	40.0	53.3	39.2	52.7
Conductivity (S/m)	0.87	0.94	0.90	0.97	0.97	1.05	1.40	1.52	1.80	1.95

Salt: 99 ⁺% Pure Sodium Chloride Sugar: 98 ⁺% Pure Sucrose

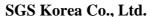
Water: De-ionized, $16 \text{ M}\Omega^+$ resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 ⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral Oil	11
Emulsifiers	9
Additives and Salt	2


Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

RTT5041-76(2015.10.01) (2)

A4 (210mm x 297mm)

16 / 85

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

13 Test System Validation

Per FCC KDB 865664 D01v01r04, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the require tissue-equivalent media for system validation, according to the procedures outlined in IEEE 1528-2013 and FCC KDB 865664 D01v01r04. Since frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probe and tissue dielectric parameters has been included.

f	Dete	Probe	Probe	LISSUE Parameters		CW Validation			Modulated Validation			
(MHz)	Date	S/N	Cal point	Type	Permitt ivity	Condu ctivity	Sensitivity	Probe Linearity	Probe Isotropy	Mod. Type	Duty Factor	PAR
2450	2015-07-07	3791	2450	Body	53.67	1.99	PASS	PASS	PASS	OFDM	N/A	PASS
5300	2015-07-16	3791	5300	Body	51.00	5.45	PASS	PASS	PASS	OFDM	N/A	PASS
5600	2015-07-17	3791	5600	Body	49.08	5.54	PASS	PASS	PASS	OFDM	N/A	PASS
5800	2015-07-17	3791	5800	Body	48.32	6.15	PASS	PASS	PASS	OFDM	N/A	PASS

< SAR System Validation Summary>

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

RTT5041-76(2015.10.01) (2)

A4 (210mm x 297mm)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

14 Instruments List

Test Platform	SPEAG DASY4 Professional			
Location SGS Korea Co., Ltd. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, E&E Lab				
Manufacture	SPEAG			
Description	SAR Test System (Frequency range 300 MHz - 6 GHz)			
Software Reference	DASY4: V4.7 Build 80 SEMCAD X: V1.8 Build 186			

	SEMCAD A. VI.8 BU	Hardware Reference			
Equipment	Туре	Serial Number	Cal Date	Cal Interval	Cal Due
Robot	RX90B L	F03/5W05A1/A/01	N/A	N/A	N/A
Phantom	ELI Phantom	TP-1169	N/A	N/A	N/A
Dielectric Assessment Kit	DAK-3.5	1107	2015-01-27	Annual	2016-01-27
Verification Dipole	D2450V2	892	2015-04-22	Biennial	2017-04-22
Verification Dipole	D5 GHz V2	1106	2015-05-22	Biennial	2017-05-22
DAE	DAE4	567	2015-01-22	Annual	2016-01-22
E-Field Probe	EX3DV4	3791	2015-05-26	Annual	2016-05-26
Network Analyzer	E5071C	MY46111535	2015-06-22	Annual	2016-06-22
Power Meter	E4419B	GB43311125	2015-06-23	Annual	2016-06-23
Power Meter	E4419B	GB43311715	2015-06-23	Annual	2016-06-23
Power Sensor	Е9300Н	MY41495307	2015-06-25	Annual	2016-06-25
Power Sensor	Е9300Н	MY41495314	2015-06-25	Annual	2016-06-25
Power Sensor	E9327A	US40441371	2014-12-26	Annual	2015-12-26
Signal Generator	E8247C	MY43321024	2015-06-23	Annual	2016-06-23
Power Amplifier	2001-BBS3Q7ECK	1032 D/C 0336	2014-12-24	Annual	2015-12-24
Power Amplifier	2092-BBS5K8CAJ	1010	2015-06-26	Annual	2016-06-26
Dual Directional Coupler	772D	MY52180226	2015-08-25	Annual	2016-08-25
LP Filter	LA-30N	N/A	2015-07-01	Annual	2016-07-01
LP Filter	LA-60N	N/A	2015-07-01	Annual	2016-07-01
Attenuator	8491B	50566	2015-06-26	Annual	2016-06-26
Attenuator	05AS102-K20	A3	2015-02-25	Annual	2016-02-25
Attenuator	05AS102-K03	A1	2015-02-25	Annual	2016-02-25
Hygro-Thermometer	HTC-1	14032782-1	2015-03-24	Annual	2016-03-24
Digital Thermometer	DTM3000	3027	2015-06-26	Annual	2016-06-26
Spectrum Analyzer	E4445A	MY44020523	2015-06-23	Annual	2016-06-23

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

15 FCC Power Measurement Procedures

The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5 % occurred, the tests were repeated.

16 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. Test highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

17 Maximum Output Power Specifications

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06

17.1 SISO Maximum Output Power Specifications

Average power for Production (dB m)							
Mode	Data Rate	Channel	Normal/Maximum	Main	Aux		
802 Hb - L	All Data	All Channels	Maximum	16.5	16.5		
	Rates		Normal	15.0	15.0		
902 11~	All Data	All Channels	Maximum	16.5	16.5		
802.11g Rate	Rates	All Channels	Normal	15.0	15.0		
802.11n	All Data	All Channels	Maximum	16.5	16.5		
HT20	Rates		Normal	15.0	15.0		
		2.61 1	Maximum	14.5	16.0		
		3 Channel	Normal	13.0	14.5		
802.11n	All Data	4~8	Maximum	16.5	16.5		
HT40	Rates	Channels	Normal	15.0	15.0		
		O Chammal	Maximum	15.0	14.5		
		9 Channel	Normal	13.5	13.0		
ıne-up Toler	ance: -1.5 dB / +	1.5 dB					

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

RTT5041-76(2015.10.01) (2)

A4 (210mm x 297mm)

19 / 85

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Mode	Data Rate	Channel	Normal/Maximum	Main	Aux
		36 ~ 64	Maximum	15.0	15.0
		Channels	Normal	13.5	13.5
002 11-	All Data	100 ~ 140	Maximum	16.0	16.0
802.11a	Rates	Channels	Normal	14.5	14.5
		149 ~ 165	Maximum	15.0	15.0
		Channels	Normal	13.5	13.5
		36 ~ 64	Maximum	15.0	15.0
		Channels	Normal	13.5	13.5
802.11n	All Data	100 ~ 140	Maximum	16.0	16.0
HT20	Rates	Channels	Normal	14.5	14.5
		149 ~ 165	Maximum	15.0	15.0
802 11n All		Channels	Normal	13.5	13.5
		38 ~ 54	Maximum	15.0	15.0
802.11n HT40		Channels	Normal	13.5	13.5
		(2 Cl 1	Maximum	13.5	14.0
		62 Channels	Normal	12.0	12.5
	All Data	100 01 1	Maximum	14.5	15.0
	Rates	102 Channels	Norma	13.0	13.5
		110 ~ 134	Maximum	16.0	16.0
		Channels	Normal	14.5	14.5
		151 ~ 159	Maximum	15.0	15.0
		Channels	Normal	13.5	13.5
		36 ∼ 64	Maximum	15.0	15.0
		Channels	Normal	13.5	13.5
802.11ac	All Data	100 ~ 144	Maximum	16.0	16.0
VHT20	Rates	Channels	Normal	14.5	14.5
		149 ~ 165	Maximum	15.0	15.0
		Channels	Normal	13.5	13.5
		38 ~ 54	Maximum	15.0	15.0
		Channels	Normal	13.5	13.5
			Maximum	13.5	14.0
		62 Channels	Normal	12.0	12.5
802.11ac	All Data	102 01 1	Maximum	14.5	15.0
VHT40	Rates	102 Channels	Norma	13.0	13.5
		110 ~ 142	Maximum	16.0	16.0
		Channels	Normal	14.5	14.5
		151 ~ 159	Maximum	15.0	15.0
		Channels	Normal	13.5	13.5

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

RTT5041-76(2015.10.01) (2)

A4 (210mm x 297mm)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

		Average p	oower for Production (dB m)	
Mode	Data Rate	Channel	Normal/Maximum	Main	Aux
		42 Channel	Maximum	14.5	14.5
			Normal	13.0	13.0
		58 Channel	Maximum	12.5	10.5
			Normal	11.0	9.0
802.11ac	All Data	106 Channel	Maximum	13.5	13.5
VHT80	Rates		Normal	12.0	12.0
		122, 138	Maximum	16.0	16.0
		Channels	Normal	14.5	14.5
		155 Channala	Maximum	15.0	15.0
		155 Channels	Normal	13.5	13.5

17.2 MIMO Maximum Output Power Specifications

		Average p	ower for Production (dB m)	
Mode	Data Rate	Channel	Normal/Maximum	Main	Aux
	MCS0 ~ 7		Maximum	16.5	16.5
802.11n	WICS0 ~ /	All Channels	Normal	15.0	15.0
HT20	MCC0 15	All Chamileis	Maximum	13.5	13.5
	MCS8 ~ 15		Normal	12.0	12.0
		3 Channel	Maximum	14.5	16.0
	MCS0 ~ 7		Normal	13.0	14.5
		4 ~ 8 Channels	Maximum	16.5	16.5
			Normal	15.0	15.0
802.11n			Maximum	15.0	14.5
HT40		9 Channel	Normal	13.5	13.0
		3 ~ 8	Maximum	13.5	13.5
	MCC0 15	Channels	Normal	12.0	12.0
	MCS8 ~ 15	9 Channel	Maximum	12.5	12.5
		9 Channel	Normal	11.0	11.0
Tune-up Tolera	ance: -1.5 dB / +	1.5 dB			

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

21 / 85

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

		Average p	ower for Production (dB m	<u>)</u>	
Mode	Data Rate	Channel	Normal/Maximum	Main	Aux
		36 ~ 64	Normal	15.0	15.0
		Channels	Maximum	13.5	13.5
	MCCO 7	100 ~ 140	Normal	16.0	16.0
	MCS0 ~ 7	Channels	Maximum	14.5	14.5
		149 ~ 165	Normal	15.0	15.0
802.11n		Channels	Maximum	13.5	13.5
HT20		36 ~ 64	Maximum	12.0	12.0
		Channels	Normal	10.5	10.5
	MCGO 15	100 ~ 140	Maximum	13.0	13.0
	MCS8 ~ 15	Channels	Normal	11.5	11.5
		149 ~ 165	Maximum	12.0	12.0
		Channels	Normal	10.5	10.5
	MCS0 ~ 7	38 ~ 54	Maximum	15.0	15.0
		Channels	Normal	13.5	13.5
		62 Channels	Maximum	13.5	14.0
			Normal	12.0	12.5
		102 Channels	Maximum	14.5	15.0
			Norma	13.0	13.5
		110 ~ 134	Maximum	16.0	16.0
		Channels	Normal	14.5	14.5
		151 ~ 159	Maximum	15.0	15.0
802.11n		Channels	Normal	13.5	13.5
HT40		38 ~ 54	Maximum	12.0	12.0
		Channels	Normal	10.5	10.5
		(2.01 1	Maximum	12.5	12.5
		62 Channels	Normal	11.0	11.0
	MCGO 15	102 (1 1	Maximum	13.5	13.5
	MCS8 ~ 15	102 Channels	Norma	12.0	12.0
		110 ~ 134	Maximum	13.0	13.0
		Channels	Normal	11.5	11.5
		151 ~ 159	Maximum	12.0	12.0
		Channels	Normal	10.5	10.5
Tune-up Tolei	rance: -1.5 dB / +	1.5 dB			

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

		Average p	oower for Production (dB m)	
Mode	Data Rate	Channel	Normal/Maximum	Main	Aux
		36 ~ 64	Maximum	12.0	12.0
		Channels	Normal	10.5	10.5
802.11ac	All Data	100 ~ 144	Maximum	13.0	13.0
VHT20	Rates	Channels	Normal	11.5	11.5
		149 ~ 165	Maximum	12.0	12.0
		Channels	Normal	10.5	10.5
		38 ~ 54	Maximum	12.0	12.0
		Channels	Normal	10.5	10.5
		62 Channels	Maximum	12.5	12.5
		62 Channels	Normal	11.0	11.0
802.11ac	All Data	102 Channels	Maximum	13.5	13.5
VHT40	Rates	102 Channels	Normal	12.0	12.0
		110 ~ 142	Maximum	13.0	13.0
		Channels	Normal	11.5	11.5
		151 ~ 159	Maximum	12.0	12.0
		Channels	Normal	10.5	10.5
		42 Channels	Maximum	12.5	12.5
		42 Channels	Normal	11.0	11.0
		50 Channala	Maximum	10.5	10.5
		58 Channels	Normal	9.0	9.0
802.11ac	All Data	106 Channels	Maximum	12.0	12.0
VHT80	Rates	100 Channels	Normal	10.5	10.5
		122, 138	Maximum	16.0	16.0
		Channels	Normal	14.5	14.5
		155 Channels	Maximum	14.0	14.0
		155 Channels	Normal	12.5	12.5

17.3 Bluetooth Maximum Output Power Specifications

Average power for Production (dBm)												
Mode	Normal/Maximum	GFSK	PI/4DQPSK	8DPSK	LE							
Bluetooth	Maximum	7.0	7.0	7.0	6.0							
Diuetootii	Normal	5.5	5.5	5.5	4.5							
Tune-up Tole	erance: -1.5 dB / +1.5 d	В										

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

RTT5041-76(2015.10.01) (2)

A4 (210mm x 297mm)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371

http://www.sgsgroup.kr

18 WLAN

18.1 General Device Setup

The normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 – 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

18.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

18.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements.

When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification.

Unless band gap channels are permanently disabled, SAR must be considered for these channels.

When band gap channels are disabled, each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency point requirements.

18.4 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following.

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel; i.e., all channels require testing.

Report File No: F690501/RF-SAR002315

Date of Issue: 2015-12-04

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

24 / 85

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 25 / 85

2.4 GHz 802.11g/n OFDM are additionally evaluated for SAR if highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

18.5 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 GHz and 5 GHz band, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM congigurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwith, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When thereare multiple channels with the same maximum output power, SAR is measured using the higher number channel.

18.6 Initial Test Configuration Procedure

For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. If the average RF output powers of the highest identical transmission modes are within 0.25 dB of each other, mid channel of the transmission mode with highest average RF output power is the initial test channel. Otherwise, the channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements

18.7 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

Report File No: F690501/RF-SAR002315

Date of Issue: 2015-12-04

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

19 RF Conducted Power Measurement

WLAN 2.4 GHz

Mode	Freq.	Ch. #	Rate	Average [dB		Average Power [dB m]
	(MLL)			Main	AUX	Main + Aux
	2412	1	1	16.44	16.47	-
802.11b	2437	6	1	16.45	16.50	-
	2462	11	1	16.50	16.45	-
	2412	1	6	-	-	-
802.11g	2437	6	6	-	-	-
	2462	11	6	-	-	-
002.11	2412	1	MCS0	-	-	-
802.11n HT20	2437	6	MCS0	-	-	-
11120	2462	11	MCS0	-	-	-
MIMO	2422	3	MCS0	14.61	14.99	17.81
802.11n	2437	6	MCS0	16.31	16.49	19.41
HT40	2452	9	MCS0	14.52	14.63	17.59

WLAN 5.2 GHz

Mode	Freq.	Ch. #	Rate	Measured [dB		Measured Power [dB m]
	(MIL)			Main	AUX	Main + Aux
	5180	36	6	-	-	-
002.11a	5200	40	6	-	-	-
802.11a	5220	44	6	-	-	-
	5240	48	6	-	-	-
	5180	36	MCS0	-	-	-
802.11n	5200	40	MCS0	-	-	-
HT20	5220	44	MCS0	-	-	-
	5240	48	MCS0	-	-	-
802.11n	5190	38	MCS0	-	-	-
HT40	5230	46	MCS0	-	-	-
	5180	36	MCS0	-	-	-
802.11n	5200	40	MCS0	-	-	-
VHT20	5220	44	MCS0	-	-	-
	5240	48	MCS0	-	-	-
802.11n	5190	38	MCS0	-	-	-
VHT40	5230	46	MCS0	-	-	-
802.11n VHT80	5210	42	MCS0	-	-	-

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

WLAN 5.3 GHz

Mode	Freq.	Ch. #	Rate		ed Power m]	Measured Power [dB m]
	(111 12)			Main	AUX	Main + Aux
	5260	52	6	-	-	-
802.11a	5280	56	6	-	-	-
002.11a	5300	60	6	-	-	-
	5320	64	6	-	-	-
	5260	52	MCS0	-	-	-
802.11n	5280	56	MCS0	-	-	-
HT20	5300	60	MCS0	-	-	-
	5320	64	MCS0	-	-	-
802.11n	5270	54	MCS0	14.90	14.88	-
HT40	5310	62	MCS0	13.50	13.87	-
MIMO 802.11n	5270	54	MCS0	14.69	14.88	17.80
HT40	5310	62	MCS0	13.48	13.63	16.57
	5260	52	MCS0	-	-	-
802.11ac	5280	56	MCS0	-	-	-
VHT20	5300	60	MCS0	-	-	-
	5320	64	MCS0	-	-	-
802.11ac	5270	54	MCS0	-	-	-
VHT40	5310	62	MCS0	-	-	-
802.11ac VHT80	5290	58	MCS0	-	-	-

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

WLAN 5.6 GHz

	Emag			Measure	d Power	Measured Power
Mode	Freq.	Ch. #	Rate	[dB	m]	[dB m]
	(MHz)			Main	AUX	Main + Aux
	5500	100	6	-	-	-
802.11a	5580	116	6	-	-	-
002.11a	5660	132	6	-	-	-
	5700	140	6	-	-	-
	5500	100	MCS0	-	-	-
802.11n	5580	116	MCS0	-	-	-
HT20	5660	132	MCS0	-	-	-
	5700	140	MCS0	-	-	-
002 11	5510	102	MCS0	-	-	-
802.11n HT40	5550	110	MCS0	-	-	-
11140	5670	134	MCS0	-	-	-
	5500	100	MCS0	-	-	-
802.11ac	5580	116	MCS0	-	-	-
VHT20	5660	132	MCS0	-	-	-
	5720	144	MCS0	-	-	-
	5510	102	MCS0	-	-	-
802.11ac	5550	110	MCS0	-	-	-
VHT40	5670	134	MCS0	-	-	-
	5710	142	MCS0	-	-	-
802.11ac	5530	106	MCS0	13.48	13.47	-
VHT80	5690	138	MCS0	15.96	15.92	-
MIMO	5530	106	MCS0	11.89	11.99	14.95
802.11ac VHT80	5690	138	MCS0	15.94	15.97	18.96

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

WLAN 5.8 GHz

Mode	Freq.	Ch. #	Rate	Measure [dB		Measured Power [dB m]
	(MLL)			Main	AUX	Main + Aux
	5745	149	6	-	-	-
802.11a	5785	157	6	-	-	-
	5825	165	6	-	-	-
902 11.	5745	149	MCS0	-	-	-
802.11n HT20	5785	157	MCS0	-	-	-
11120	5825	165	MCS0	-	-	-
802.11n	5755	151	MCS0			-
HT40	5795	159	MCS0			-
MIMO 802.11n	5755	151	MCS0	14.51	14.89	17.71
HT40	5795	159	MCS0	14.41	15.00	17.73
002.11	5745	149	MCS0	-	-	-
802.11ac VHT20	5785	157	MCS0	-	-	-
V11120	5825	165	MCS0	-	-	-
802.11ac	5755	151	MCS0	-	-	-
VHT40	5795	159	MCS0	-	-	-
802.11ac VHT80	5775	155	MCS0	15.00	14.91	-

Bluetooth

Channel	Frequency (Mb)	GFSK (dB m)	4DPSK (dB m)	8DPSK (dB m)	LE (dB m)
Low	2402	5.40	5.50	5.78	5.43
Middle	2441	5.41	5.59	5.76	5.32
High	2480	5.63	5.77	5.92	5.61

Note. Justification for test configurations for WLAN per KDB Publication 248227 D01 Wi-Fi SAR v02r02:

- 1. Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- 2. For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- 3. For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- 4. For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For channels were measured.

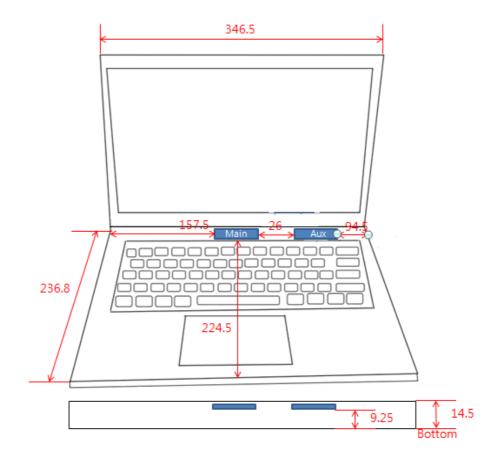
Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr


20. SAR Test Exclusions Applied

Per FCC KDB 447498 D01v06, the SAR exclusion threshold for distances < 50 mm is defined by the following equation:

$$\frac{\text{Max Power of Channel (mW)}}{\text{Test Separation Distance (mm)}} * \sqrt{\text{Frequency(GHz)}} \le 3.0$$

Based on the maximum tune-up tolerance limit of Bluetooth the antenna to use separation distance,

Notebook Type Bluetooth SAR was not required: $[5.01/9.0*\sqrt{2.480}] = 0.9 < 3.0$

<The Distance information of Antenna to Edges of Notebook>

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

21. SAR Data Summary

SISO Antenna SAR

WLAN 2.45 GHz Body SAR

	EUT		hannel	Po	ower(dBr	n)	Peak SAR	1-g (SAR	Scaling	Factor	Scaling	1-g Scaled		
EUT Position Mode		Frequency	Channel		Conducted Tun Power Un		of Area Scan(W/kg)	(W/kg))		(Power)		Factor (Duty	SAR (W/kg)		Plot No
		(MHz)		Main	Aux	Limit	, , , , , , , , , , , , , , , , , , ,	Main	Aux	Main	Aux	cycle)	Main	Aux	
Base	802.11b	2462.0	11	16.50	-	16.50	0.508	0.266	-	1.000	-	1.013	0.269	1	-
Base	802.11b	2437.0	6	-	16.50	16.50	0.600	-	0.373	-	1.000	1.017	-	0.379	A5

WLAN 5.3 GHz Body SAR

	EUT		hannel	P	ower(dBn	n)	Peak SAR	1-g S	SAR	Scaling	Factor	Scaling	1-g Scaled		DI 4
	Frequency			Conducted Power		Tune- Up Scan(W/kg)		(W/kg))		ver)	Factor (Duty	SAR (W/kg)		Plot No	
	(MPZ)		Main	Aux	Limit	~ · · · · · · · · · · · · · · · · · · ·	Main	Aux	Main Aux		cycle)	Main	Aux		
Base	802.11n HT40	5270	54	14.90	-	15.00	1.15	0.513	-	1.023	-	1.040	0.546	-	-
Base	802.11n HT40	5270	54	ı	14.88	15.00	1.27	-	0.549	-	1.028	1.040	-	0.587	A6

WLAN 5.6 GHz Body SAR

		Traffic C	hannel	Po	ower(dBi	n)	Peak SAR		1-g SAR		Scaling Factor		Scaling		caled	Dlot
EUT Position	Mode	Frequency	Channel		ucted wer	Tune- Up	of Area Scan(W/kg)	Cube	(W/	kg))	(Pov		Factor (Duty	SA (W/		Plot No
		(MHz)		Main	Aux	Limit	~ · · · · · · · · · · · · · · · · · · ·		Main	Aux	Main	Aux	cycle)	Main	Aux	
Base	802.11ac	5530	106	13.48		13.50	0.931	0	0.391	-	1.005		1.072	0.421	1	
Dase	VHT80	3330	100	13.46	-	13.30	0.931	1	0.378	-	1.003	-	1.072	0.407	-	-
Base	802.11ac	5690	138	15.96		16.00	1.18	0	0.487	-	1.009		1.072	0.527	-	A7
Dase	VHT80	3090	138	13.90	-	10.00	1.16	1	0.539	-	1.009	ı	1.072	0.583	1	A/
Base	802.11ac VHT80	5530	106	1	13.47	13.50	0.848	1	-	0.336	-	1.007	1.066	1	0.361	-
Base	802.11ac VHT80	5690	138	1	15.92	16.00	1.26	-	-	0.465	-	1.019	1.066	-	0.505	-

WLAN 5.8 GHz Body SAR

		Traffic C	hannel	Po	ower(dBi	n)	Peak SAR		1-g (SAR	Scal	_	Scaling	1-g Scaled SAR		
EUT Position	Mode	Frequency	Channel		ucted wer	Tune- Up	of Area Scan(W/kg)	Cube	(W/	kg))	Fac (Pov		Factor (Duty	(W/		Plot No
		(MHz)		Main	Aux	Limit	(8)		Main	Aux	Main	Aux	cycle)	Main	Aux	
Base	802.11ac	5755	155	15.00		15.00	1.05	0	0.394		1.000		1.072	0.422		
Base	VHT80	3733	133	13.00	-	13.00	1.03	1	0.409	-	1.000	1	1.072	0.438		-
Base	802.11ac VHT80	5755	155	ı	14.91	15.00	0.934	ı	-	0.357	ı	1.021	1.066	1	0.389	-

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

RTT5041-76(2015.10.01) (2)

A4 (210mm x 297mm)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

MIMO Antenna SAR WLAN 2.45 GHz Body SAR

	· ·	CILL	ouj pr													
		Traffic Channel		Power(dBm)		Peak SAR	1-g SAR		Scaling Factor		Scaling	1-g Scaled				
EUT Position	Mode	Frequency	Channel	Cond Pov	ucted wer	Tune- Up	of Area Scan(W/kg)	(W /	(W/kg))	(W/kg))		wer)	Factor (Duty	SAR (W/kg)		Plot No
		(MHz)		Main	Aux	Limit	~ · · · · · · · · · · · · · · · · · · ·	Main	Aux	Main	Aux	cycle)	Main	Aux		
Base	802.11n HT40	2437.0	6	16.31	16.49	16.50	0.509	0.336	0.336	1.045	1.002	1.039	0.365	0.350	-	

WLAN 5.3 GHz Body SAR

Ī			Traffic C	hannel	P	ower(dBm	1)	Peak SAR	1-g (SAR	Sca		Scaling	1-g So		
	EUT Position	Mode	Frequency (Mhz)	Channel	Conducted Tune- Power Up		of Area Scan(W/kg)	(W/kg))		Factor (Power)		Factor (Duty	SAR (W/kg)		Plot No	
					Main	Aux	Limit	, , , , , , , , , , , , , , , , , , ,	Main	Aux	Main	Aux	cycle)	Main	Aux	
	Base	802.11n HT40	5270	54	14.69	14.88	15.00	1.17	0.473	0.545	1.074	1.028	1.041	0.529	0.583	-

WLAN 5.6 GHz Body SAR

		Traffic Cha		nel Power(dBm)		n)	Peak SAR	(W/kg))		Scaling Factor (Power)		Scaling	1-g Scaled SAR (W/kg)		Plot No
EUT Position	Mode	Frequency	Channel	Conducted Tune- Power Up		of Area Scan(W/kg)	Factor (Duty								
		(MHz)		Main	Aux	Limit		Main	Aux	Main	Aux	cycle)	Main	Aux	
Base	802.11ac VHT80	5530	106	11.89	11.99	12.00	0.718	0.315	0.293	1.026	1.002	1.126	0.364	0.331	-
Base	802.11ac VHT80	5690	138	15.94	15.97	16.00	1.14	0.472	0.383	1.014	1.007	1.126	0.539	0.434	-

WLAN 5.8 GHz Body SAR

		Traffic Channel		Power(dBm)		Peak SAR	1-g SAR		Scaling Factor		Scaling	~			
EUT Position	Mode	Frequency	Channel	Cond Pov	ucted ver	Tune- Up	of Area Scan(W/kg)	(W/	(W/kg)) (Power) (Duty (V		(Power)	(W/		Plot No	
		(MHz)		Main	Aux	Limit	` 8	Main	Aux	Main	Aux	cycle)	Main	Aux	
Base	802.11n HT40	5795	159	14.41	15.00	15.00	1.43	0.526	0.454	1.146	1.000	1.041	0.627	0.473	A8

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

33 / 85 Page:

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 616217 D04v01r02 and FCC KDB Publication 447498 D01v06.
- 2. Liquid tissue depth was at least 15 cm for all frequencies.
- 3. All modes of operation were investigated, and worst-case results are reported.
- 4. The EUT is tested 2nd hot-spot peak, if it is less than 2 dB below the highest peak.
- 5. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 6. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 7. Per FCC KDB 616217 D04v01r02 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D01v06 was applied to determined SAR test exclusion for adjacent edge configurations.

WLAN Notes:

- 1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2W/kg.
- 3. When the maximum reported 1g averaged SAR is ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance.
- 5. WLAN transmission was verified using a spectrum analyzer.
- 6. When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel in the lower order/sequence 802.11 mode (i.e. a,g, n then ac) is selected.
- 7. When the specified maximum output power is the same for both UNII Band1 and UNII Band 2A, begin SAR measurement in UNII band 2A; and if the highest reported SAR for UNII band 2A is ≤ 1.2 W/kg, SAR is not required for UNII band1 > 1.2W/kg, both bands should be tested independently for SAR.

Report File No: F690501/RF-SAR002315

Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

22. SAR Measurement Variability

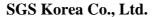
22.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1. When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2. A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was ≥ 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3. A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

22.2 Measurement Uncertainty


The measured SAR was < 1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

34 / 85

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

23. Simultaneous Multi-band Transmission Evaluation

23.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to handsets with builtin unlicensed transmitters such as Bluetooth devices which may simultaneously transmit with the licensed transmitter.

23.2 The Simultaneous Transmission possibilities are listed as below

No	Capable TX Configuration	Body SAR
1	2.45 GHz Main Ant + Bluetooth Aux Ant	Yes
2	5 GHz Main Ant + Bluetooth Aux Ant	Yes

Note:

- The simultaneous transmission possibilities are listed as below.
- WLAN Aux Ant and Bluetooth Aux Ant share the same antenna and cannot transmit simultaneously.

23.3 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 4.3.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is 1.6 W/kg. When standalone SAR is not required to be measured per FCC KDB 447498 D01v06 4.3.2.b), the following equation must be used to estimate the standalone 1g and 10g SAR for simultaneous transmission involving that transmitter.

Estimated SAR =
$$\frac{\sqrt{\text{Frequency (GHz)}}}{7.5} * \frac{\text{Max Power of Channel (mW)}}{\text{Test Separation Distance (mm)}}$$

Mode	Frequency [MHz]	Maximum Allowed Power [mW]	Separation Distance [mm]	Estimated SAR [W/kg]
Bluetootl	n 2480	5.01	9.0	0.117

Body SAR Simultaneous Transmission Analysis

Simultaneous TX	configuration	2.4 GHz Main Ant SAR(W/kg)	Bluetooth SAR (W/kg)	∑SAR (W/kg)
Body	Base	0.379	0.117	0.496
Simultaneous TX	configuration	5 GHz Main Ant SAR(W/kg)	Bluetooth SAR (W/kg)	∑SAR (W/kg)
Body	Base	0.627	0.117	0.744

Note:

The above numerical summed SAR was below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. Therefore, no volumetric SAR summation is required since the numerical sums are below the limit.

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

35 / 85

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendixes List

Appendix A	A.1 Verification Test Plots for 2450MHz
	A.2 Verification Test Plots for 5300 MHz
	A.3 Verification Test Plots for 5600 MHz
	A.4 Verification Test Plots for 5800 MHz
	A.5 SAR Test Plots for WLAN 2450 MHz
	A.6 SAR Test Plots for WLAN 5300 MHz
	A.7 SAR Test Plots for WLAN 5600 MHz
	A.8 SAR Test Plots for WLAN 5800 MHz
Appendix B	B.1 Uncertainty Analysis
Appendix C	C.1 Calibration certificate for Probe
	C.2 Calibration certificate for DAE
	C.3 Calibration certificate for Dipole

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendix A.1 Verification Test Plots for 2450 MHz

Date: 2015-11-22

Page:

37 / 85

Test Laboratory: SGS Korea (Gunpo Laboratory)

File Name: 2450MHz Verification.da4

Input Power: 100 mW

Ambient Temp: 23.2 ℃ Tissue Temp: 22.6 ℃

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:892 **Program Name: Verification**

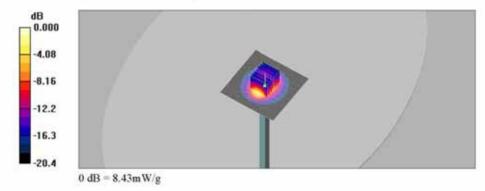
Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ mho/m}$; $\epsilon_r = 51.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3791; ConvF(6.6, 6.6, 6.6); Calibrated: 2015-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2015-01-22
- Phantom: ELI v4.0 Phamtom TP:1169; Type: ELI v4.0 Phamtom; Serial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


2450MHz Verification/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 8.61 mW/g

2450MHz Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 69.8 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 10.3 W/kg

SAR(1 g) = 5.16 mW/g; SAR(10 g) = 2.46 mW/g Maximum value of SAR (measured) = 8.43 mW/g

Report File No: F690501/RF-SAR002315

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

2015-12-04

Date of Issue:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendix A.2 Verification Test Plots for 5300 MHz

Date: 2015-11-20

Page:

38 / 85

Test Laboratory: SGS Korea (Gunpo Laboratory)

File Name: 5300MHz Verification.da4

Input Power: 100 mW

Ambient Temp: 23.5 ℃ Tissue Temp: 22.4 ℃

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1106 **Program Name: Verification**

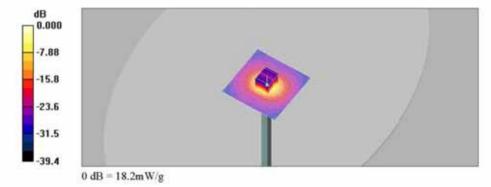
Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 5.32$ mho/m; $\varepsilon_r = 49.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3791; ConvF(4.1, 4.1, 4.1); Calibrated: 2015-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2015-01-22
- Phantom: ELI v4.0 Phamtom TP:1169; Type: ELI v4.0 Phamtom; Serial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


5.3GHz Verification/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 18.4 mW/g

5.3GHz Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.5 V/m; Power Drift = -0.136 dB

Peak SAR (extrapolated) = 28.0 W/kg

SAR(1 g) = 7.46 mW/g; SAR(10 g) = 2.14 mW/g Maximum value of SAR (measured) = 18.2 mW/g

Report File No: F690501/RF-SAR002315 Date of Issue:

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

2015-12-04

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendix A.3 Verification Test Plots for 5600 MHz

Date: 2015-11-20

Page:

39 / 85

Test Laboratory: SGS Korea (Gunpo Laboratory)

File Name: 5600MHz Verification.da4

Input Power: 100 mW

Ambient Temp: 23.5 ℃ Tissue Temp: 22.5 ℃

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1106 **Program Name: Verification**

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

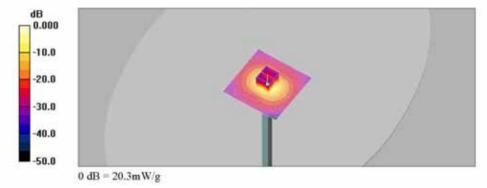
Medium parameters used: f = 5600 MHz; $\sigma = 5.75 \text{ mho/m}$; $\varepsilon_r = 46.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3791; ConvF(3.72, 3.72, 3.72); Calibrated: 2015-05-26

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2015-01-22
- Phantom: ELI v4.0 Phamtom TP:1169; Type: ELI v4.0 Phamtom; Serial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


5.6GHz Verification/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 20.5 mW/g

5.6GHz Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.5 V/m; Power Drift = -0.073 dB

Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 7.99 mW/g; SAR(10 g) = 2.24 mW/g Maximum value of SAR (measured) = 20.3 mW/g

Report File No: F690501/RF-SAR002315

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

2015-12-04

Date of Issue:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendix A.4 Verification Test Plots for 5800 MHz

Date: 2015-11-20

Page:

40 / 85

Test Laboratory: SGS Korea (Gunpo Laboratory)

File Name: 5800MHz Verification.da4

Input Power: 100 mW

Ambient Temp: 23.5 ℃ Tissue Temp: 22.5 ℃

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1106 Program Name: Verification

Communication System: CW; Frequency: 5800 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; $\sigma = 6.03 \text{ mho/m}$; $\epsilon_r = 46.6$; $\rho = 1000 \text{ kg/m}^3$

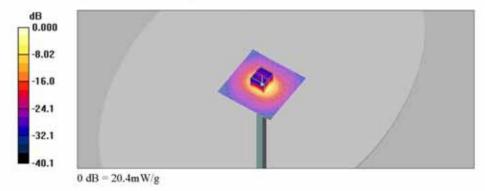
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3791; ConvF(3.98, 3.98, 3.98); Calibrated: 2015-05-26

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2015-01-22
- Phantom: ELI v4.0 Phamtom TP:1169; Type: ELI v4.0 Phamtom; Serial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.8GHz Verification/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 20.3 mW/g


5.8GHz Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.7 V/m; Power Drift = 0.058 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 8.06 mW/g; SAR(10 g) = 2.27 mW/g

Maximum value of SAR (measured) = 20.4 mW/g

Report File No: F690501/RF-SAR002315

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

2015-12-04

Date of Issue:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendix A.5 SAR Test Plots for WLAN 2.45GHz

Date: 2015-11-22

Page:

41 / 85

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: <u>WLAN 802.11b Base CH6 Aux.da4</u> Ambient Temp: 23.2 °C Tissue Temp: 22.6 °C

DUT: NP900X5L; Type: Samsung Notebook; Serial: 0JA991ZGA00030K Program Name: Body

Communication System: 2.45GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

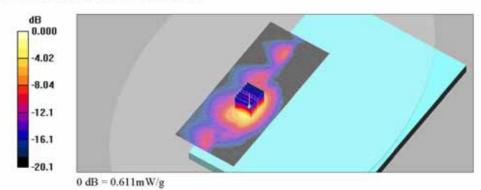
Medium parameters used: f = 2437 MHz; $\sigma = 1.86$ mho/m; $\varepsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3791; ConvF(6.6, 6.6, 6.6); Calibrated: 2015-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2015-01-22
- Phantom: ELI v4.0 Phantom TP:1169; Type: ELI v4.0 Phantom; Scrial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_802.11b_Base_CH6_Aux/Area Scan (101x241x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.600 mW/g


WLAN_802.11b_Base_CH6_Aux/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.16 V/m; Power Drift = 0.072 dB

Peak SAR (extrapolated) = 0.768 W/kg

SAR(1 g) = 0.373 mW/g; SAR(10 g) = 0.181 mW/g

Maximum value of SAR (measured) = 0.611 mW/g

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendix A.6 SAR Test Plots for WLAN 5.3GHz

Date: 2015-11-20

Page:

42 / 85

Test Laboratory: SGS Korea (Gunpo Laboratory)

File Name: WLAN 802.11n HT40 MCS0 Base CH54 Aux.da4

Ambient Temp: 23.5 ℃ Tissue Temp: 22.4 ℃

DUT: NP900X5L; Type: Samsung Notebook; Serial: 0JA991ZGA00030K Program Name: Body

Communication System: 5GHz; Frequency: 5270 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5270 MHz; $\sigma = 5.26 \text{ mho/m}$; $\varepsilon_r = 49.2$; $\rho = 1000 \text{ kg/m}^3$

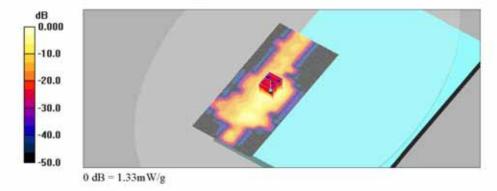
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3791; ConvF(4.1, 4.1, 4.1); Calibrated: 2015-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2015-01-22
- Phantom: ELI v4.0 Phamtom TP:1169; Type: ELI v4.0 Phamtom; Serial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_802.11n_HT40_MCS0_Base_CH54_Aux/Area Scan (101x221x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.27 mW/g


WLAN_802.11n_HT40_MCS0_Base_CH54_Aux/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm

Reference Value = 2.06 V/m; Power Drift = 0.102 dB

Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 0.549 mW/g; SAR(10 g) = 0.174 mW/gMaximum value of SAR (measured) = 1.33 mW/g

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendix A.7 SAR Test Plots for WLAN 5.6GHz

Date: 2015-11-20

Page:

43 / 85

Test Laboratory: SGS Korea (Gunpo Laboratory)

File Name: WLAN 802.11ac VHT80 MCS0 Base CH138 Main.da4

Ambient Temp: 23.5 °C Tissue Temp: 22.5 °C

DUT: NP900X5L; Type: Samsung Notebook; Serial: 0JA991ZGA00030K Program Name: Body

Communication System: 5GHz; Frequency: 5690 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5690 MHz; $\sigma = 5.88 \text{ mho/m}$; $\varepsilon_r = 46.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3791; ConvF(3.72, 3.72, 3.72); Calibrated: 2015-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2015-01-22
- Phantom: ELI v4.0 Phamtom TP:1169; Type: ELI v4.0 Phamtom; Serial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_802.11ac_VHT80_MCS0_Base_CH138_Main/Area Scan (101x221x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.18 mW/g

WLAN_802.11ac_VHT80_MCS0_Base_CH138_Main/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=1.4mm

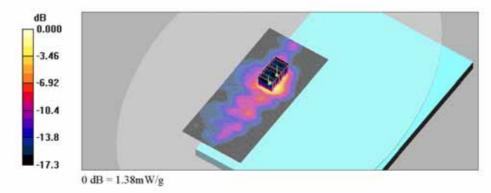
Reference Value = 11.2 V/m; Power Drift = 0.154 dB

Peak SAR (extrapolated) = 1.90 W/kg

SAR(1 g) = 0.487 mW/g; SAR(10 g) = 0.206 mW/g

Maximum value of SAR (measured) = 1.11 mW/g

WLAN 802.11ac VHT80 MCS0 Base CH138 Main/Zoom Scan (7x7x7)/Cube 1: Measurement grid:


dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 11.2 V/m; Power Drift = 0.154 dB

Peak SAR (extrapolated) = 2.54 W/kg

SAR(1 g) = 0.539 mW/g; SAR(10 g) = 0.201 mW/g

Maximum value of SAR (measured) = 1.38 mW/g

Report File No: F690501/RF-SAR002315

Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendix A.8 SAR Test Plots for WLAN 5.8GHz

Date: 2015-11-20

Page:

44 / 85

Test Laboratory: SGS Korea (Gunpo Laboratory)

File Name: WLAN 802.11n HT40 MCS0 Base CH159 MIMO.da4

Ambient Temp: 23.5 ℃ Tissue Temp: 22.5 ℃

DUT; NP900X5L; Type: Samsung Notebook; Serial: 0JA991ZGA00030K Program Name: Body

Communication System: 5GHz; Frequency: 5795 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5795 MHz; $\sigma = 6.03$ mho/m; $\varepsilon_c = 46.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3791; ConvF(3.98, 3.98, 3.98); Calibrated: 2015-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronies: DAE3 Sn567; Calibrated: 2015-01-22
- Phantom: ELI v4.0 Phamtom TP:1169; Type: ELI v4.0 Phamtom; Serial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_802.11n_HT40_MCS0_Base_CH159_MIMO/Area Scan (101x241x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.43 mW/g

WLAN 802.11n HT40 MCS0 Base CH159 MIMO/Zoom Scan (7x7x7)/Cube 1: Measurement grid:

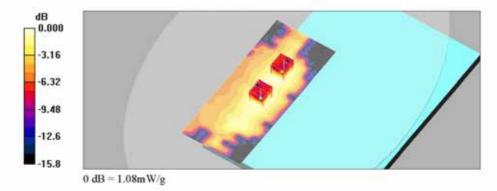
dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 9.76 V/m; Power Drift = 0.200 dB

Peak SAR (extrapolated) = 2.35 W/kg

SAR(1 g) = 0.526 mW/g; SAR(10 g) = 0.210 mW/g

Maximum value of SAR (measured) = 1.24 mW/g


WLAN 802.11n HT40 MCS0 Base CH159 MIMO/Zoom Scan (7x7x7)/Cube 2: Measurement grid:

dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 9.76 V/m; Power Drift = 0.200 dB

Peak SAR (extrapolated) = 2.15 W/kg

SAR(1 g) = 0.454 mW/g; SAR(10 g) = 0.174 mW/gMaximum value of SAR (measured) = 1.08 mW/g

Report File No: F690501/RF-SAR002315

Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371

http://www.sgsgroup.kr

Appendix B.1 Uncertainty Analysis DASY5 #1

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

a	b	c	d	e = f(d,k)	g	i = cxg/e	k
Uncertainty Component	Section in	Tol	Prob .	Div.	Ci	1g	Vi
Oncertainty Component	IEEE 1528	(%)	Dist.	Div.	(1g)	ui (%)	(Veff)
Probe calibration	E.2.1	6.0	N	1	1	6.00	
Axial isotropy	E.2.2	4.7	R	1.73	0.71	1.92	
Hemispherical isotropy	E.2.2	9.6	R	1.73	0.71	3.92	
Boundary effect	E.2.3	1.0	R	1.73	1	0.58	
Linearity	E.2.4	4.7	R	1.73	1	2.71	
System detection limit	E.2.5	0.3	R	1.73	1	0.14	
Readout electronics	E.2.6	0.3	N	1	1	0.30	
Response time	E.2.7	0.5	R	1.73	1	0.29	
Integration time	E.2.8	2.6	R	1.73	1	1.50	
RF ambient Condition - Noise	E.6.1	3.0	R	1.73	1	1.73	
RF ambient Condition - reflections	E.6.1	3.0	R	1.73	1	1.73	
Probe Positiones	E.6.2	1.5	R	1.73	1	0.87	
Probe Positioning	E.6.3	2.9	R	1.73	1	1.67	
Max. SAR evaluation	E.5.2	1.0	R	1.73	1	0.58	
Test sample positioning	E.4.2	2.8	N	1	1	2.78	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.60	4
Output power variation -SAR drift measurement	6.6.3	5.0	R	1.73	1	2.89	
Phantom uncertainty	E.3.1	4.0	R	1.73	1	2.31	
Liquid conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	1.85	
Liquid conductivity - measurement uncertainty	E.3.2	1.6	N	1	0.64	1.00	5
Liquid permittivity - deviation from target values	E.3.3	5.0	R	1.73	0.6	1.73	
Liquid permittivity - measurement uncertainty	E.3.3	1.2	N	1	0.6	0.75	4
Combined standard uncertainty				RSS		10.83	283
Expanded uncertainty				K=2		21.66	

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

RTT5041-76(2015.10.01) (2)

A4 (210mm x 297mm)

Page:

45 / 85

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Measurement uncertainty for 3 GHz to 6 GHz averaged over 1 gram

a	b	c	d	e = f(d,k)	g	i = cxg/e	k
	Section in	Tol	Prob .		Ci	1g	Vi
Uncertainty Component	IEEE 1528	(%)	Dist.	Div.	(1g)	ui (%)	(Veff)
Probe calibration	E.2.1	6.55	N	1	1	6.55	
Axial isotropy	E.2.2	4.7	R	1.73	0.71	1.92	
Hemispherical isotropy	E.2.2	9.6	R	1.73	0.71	3.92	
Boundary effect	E.2.3	1.0	R	1.73	1	0.58	
Linearity	E.2.4	4.7	R	1.73	1	2.71	
System detection limit	E.2.5	0.3	R	1.73	1	0.14	
Readout electronics	E.2.6	0.3	N	1	1	0.30	
Response time	E.2.7	0.5	R	1.73	1	0.29	
Integration time	E.2.8	2.6	R	1.73	1	1.50	
RF ambient Condition - Noise	E.6.1	3.0	R	1.73	1	1.73	
RF ambient Condition - reflections	E.6.1	3.0	R	1.73	1	1.73	
Probe Positiones	E.6.2	1.5	R	1.73	1	0.87	
Probe Positioning	E.6.3	2.9	R	1.73	1	1.67	
Max. SAR evaluation	E.5.2	1.0	R	1.73	1	0.58	
Test sample positioning	E.4.2	2.8	N	1	1	2.78	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.60	4
Output power variation -SAR drift measurement	6.6.3	5.0	R	1.73	1	2.89	
Phantom uncertainty	E.3.1	6.1	R	1.73	1	3.52	
Liquid conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	1.85	
Liquid conductivity - measurement uncertainty	E.3.2	1.6	N	1	0.64	1.00	5
Liquid permittivity - deviation from target values	E.3.3	5.0	R	1.73	0.6	1.73	
Liquid permittivity - measurement uncertainty	E.3.3	1.2	N	1	0.6	0.75	4
Combined standard uncertainty				RSS		11.46	355
Expanded uncertainty				K=2		22.92	

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

46 / 85

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendix C.1 Calibration certificate for Probe(S/N 3791)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

47 / 85

Page:

Multilateral Agreement for the recognition of calibration certificates

Client SGS (Dymstec)

Certificate No: EX3-3791_May15

CALIBRATION CERTIFICATE

Cobject EX3DV4 - SN.3791

Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6
Calibration procedure for dosimetric E-field probes

Calibration date: May 26, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013, Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-860_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name	Function	Signature
Jeton Kastrati	Laboratory Technician	10-
Katja Pokovic	Technical Manager	elly-
		Issued: May 28, 2015
	Jeton Kastrati	Jeton Kastrati Laboratory Technician

Certificate No: EX3-3791_May15

Page 1 of 11

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371

http://www.sgsgroup.kr

Page: 48 / 85

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3791_May15 Page 2 of 11

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

49 / 85

EX3DV4 - SN:3791

May 26, 2015

Page:

Probe EX3DV4

SN:3791

Manufactured: February 18, 2011 Calibrated: May 26, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3791_May15

Page 3 of 11

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 50 / 85

EX3DV4-SN:3791

May 26, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3791

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.55	0.54	0.53	± 10.1 %
DCP (mV) ^B	104.7	101.1	99.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	140.9	±3.3 %
		Y	0.0	0.0	1.0		145.5	
		Z	0.0	0.0	1.0		145.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3791_May15

Page 4 of 11

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 51 / 85

EX3DV4-SN:3791

May 26, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3791

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
835	41.5	0.90	8.57	8.57	8.57	0.17	1.90	± 12.0 %
900	41.5	0.97	8.45	8.45	8.45	0.19	1.84	± 12.0 %
1750	40.1	1.37	7.45	7.45	7.45	0.40	0.80	± 12.0 %
1900	40.0	1.40	7.16	7.16	7.16	0.46	0.80	± 12.0 %
2300	39.5	1.67	6.65	6.65	6.65	0.43	0.82	± 12.0 %
2450	39.2	1.80	6.42	6.42	6.42	0.45	0.80	± 12.0 %
2600	39.0	1.96	6.17	6.17	6.17	0.38	0.96	± 12.0 %
5200	36.0	4.66	4.91	4.91	4.91	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.64	4.64	4.64	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.56	4.56	4.56	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.36	4.36	4.36	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.45	4.45	4.45	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency

Certificate No: EX3-3791_May15

Page 5 of 11

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (a and a) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and a) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 52 / 85

EX3DV4-SN:3791

May 26, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3791

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
835	55.2	0.97	8.76	8.76	8.76	0.28	1.16	± 12.0 %
900	55.0	1.05	8.51	8.51	8.51	0.31	1.10	± 12.0 %
1750	53.4	1.49	7.18	7.18	7.18	0.48	0.80	± 12.0 %
1900	53.3	1.52	6.84	6.84	6.84	0.44	0.80	± 12.0 %
2450	52.7	1.95	6.60	6.60	6.60	0.39	0.80	± 12.0 %
2600	52.5	2.16	6.28	6.28	6.28	0.38	0.80	± 12.0 %
5200	49.0	5.30	4.30	4.30	4.30	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.10	4.10	4.10	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.82	3.82	3.82	0.50	1.90	± 13.1 %
5800	48.2	6.00	3.72	3.72	3.72	0.50	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**A threquencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**A Indianal Parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**A Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3791_May15

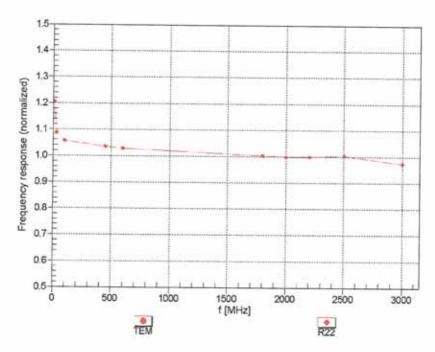
Page 6 of 11

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

diameter from the boundary.

SGS

SGS Korea Co., Ltd.


4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 53 / 85

EX3DV4- SN:3791

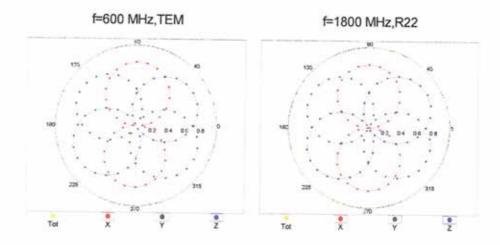
May 26, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3791_May15

Page 7 of 11



4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 54 / 85

EX3DV4- SN:3791 May 26, 2015

Receiving Pattern (\$\phi\$), \$\theta = 0^\circ\$

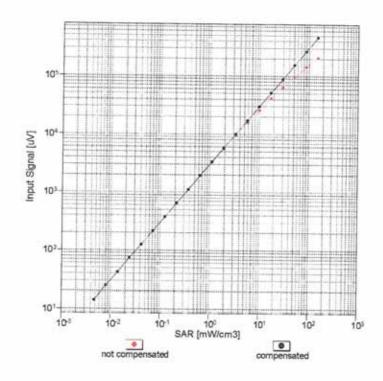
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

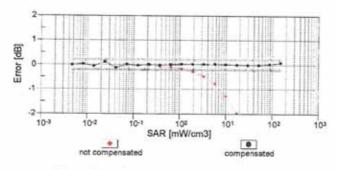
Certificate No: EX3-3791_May15 Page 8 of 11

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04

(All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

SGS


SGS Korea Co., Ltd.


4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

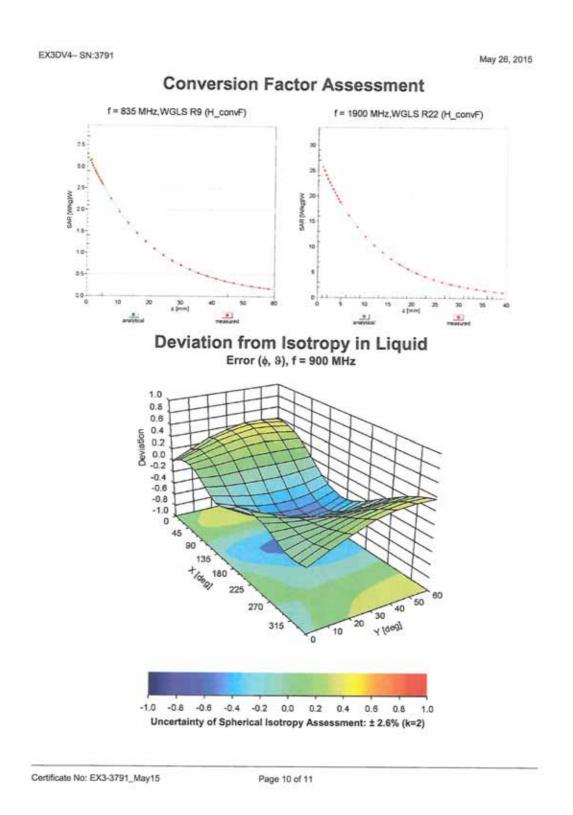
Page: 55 / 85

EX3DV4- SN:3791 May 26, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3791_May15


Page 9 of 11

SGS

SGS Korea Co., Ltd.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 56 / 85

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

57 / 85

EX3DV4- SN:3791

May 26, 2015

Page:

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3791

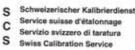
Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	69.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3791_May15 Page 11 of 11

Report File No: F690501/RF-SAR002315

Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and



4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendix C.2 Calibration certificate for DAE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

58 / 85

Page:

Client SGS (Dymstec)

Object	DAE3 - SD 000 D	003 AA - SN: 567	
Calibration procedure(s)	QA CAL-06.v29 Calibration proces	dure for the data acquisition elect	ronics (DAE)
Calibration date:	January 22, 2015		
	cted in the closed laboratory	obability are given on the following pages and facility: environment temperature (22 ± 3)°C. Cal Date (Certificate No.)	
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-14 (No:15573)	Oct-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit Calibrator Box V2.1		06-Jan-15 (in house check) 06-Jan-15 (in house check)	In house check: Jan-16 In house check: Jan-16
	Name Dominique Steffen	Function Technician	Signature
Calibrated by:			16111111
Calibrated by: Approved by:	Fin Bornholt	Deputy Technical Manager	1. Be Juli

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371

http://www.sgsgroup.kr

59 / 85 Page:

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- · Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-567_Jan15

Page 2 of 5

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 60 / 85

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	х	Υ	Z
High Range	404.725 ± 0.02% (k=2)	404.466 ± 0.02% (k=2)	404.570 ± 0.02% (k=2)
Low Range	3.95751 ± 1.50% (k=2)	3.97188 ± 1.50% (k=2)	3.96085 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	5.0 ° ± 1 °
---	-------------

Certificate No: DAE3-567_Jan15

Page 3 of 5

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	200036.68	1.35	0.00
Channel X + Input	20006.89	3.53	0.02
Channel X - Input	-20002.06	4.52	-0.02
Channel Y + Input	200035.89	0.85	0.00
Channel Y + Input	20003.43	0.09	0.00
Channel Y - Input	-20005.71	1.01	-0.01
Channel Z + Input	200040.18	5.12	0.00
Channel Z + Input	20002.47	-0.89	-0.00
Channel Z - Input	-20004.30	2.36	-0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	1999.70	-0.12	-0.01
Channel X + Input	199.72	-0.18	-0.09
Channel X - Input	-199.94	0.16	-0.08
Channel Y + Input	1999.76	0.03	0.00
Channel Y + Input	199.48	-0.10	-0.05
Channel Y - Input	-201.06	-0.82	0.41
Channel Z + Input	1999.91	0.25	0.01
Channel Z + Input	198.43	-1.22	-0.61
Channel Z - Input	-201.33	-1.08	0.54

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	2.38	1.03
	- 200	0.01	-1.81
Channel Y	200	-1.57	-1.77
	- 200	0.56	0.40
Channel Z	200	4.02	3.58
	- 200	-6.01	-6.06

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200		-1.38	-3.91
Channel Y	200	8.57		-0.48
Channel Z	200	5.30	6.61	:(+:)

Certificate No: DAE3-567_Jan15

Page 4 of 5

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

61 / 85

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16275	16253
Channel Y	16156	14849
Channel Z	15960	14831

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.76	-0.43	2.68	0.50
Channel Y	0.04	-1.11	1.19	0.40
Channel Z	-0.43	-1.53	0.53	0.38

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Switched off (mA) Stand by (mA) +0.01 +6	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

Certificate No: DAE3-567_Jan15

Page 5 of 5

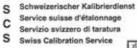
Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

RTT5041-76(2015.10.01) (2)

A4 (210mm x 297mm)

Page:

62 / 85



4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Appendix C.3 Calibration certificate for Dipole

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

63 / 85

Page:

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CALIBRATION C	ERTIFICATE		
Object	D2450V2 - SN: 8	92	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	April 22, 2015		
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical ur robability are given on the following pages a ny facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US372927B3	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
		±200±0.	Water-Andrews
e 02	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M.Moses
Approved by:	Katja Pokovic	Technical Manager	All.
			7

Certificate No: D2450V2-892_Apr15

Page 1 of 8

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371

http://www.sgsgroup.kr

64 / 85Page:

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- . Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-892_Apr15

Page 2 of 8

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 65 / 85

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.6 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		1111

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	10-
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-892_Apr15

Page 3 of 8

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 66 / 85

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.4 \Omega + 2.3 jΩ$	
Return Loss	- 26.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.9 \Omega + 3.7 j\Omega$	
Return Loss	- 28.5 dB	

General Antenna Parameters and Design

1.162 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 06, 2011	

Certificate No: D2450V2-892_Apr15

Page 4 of 8

SGS

SGS Korea Co., Ltd.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

DASY5 Validation Report for Head TSL

Date: 22.04.2015

Page:

67 / 85

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 892

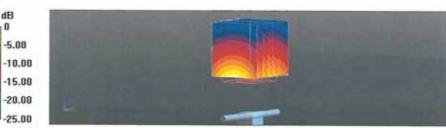
Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ S/m; $\epsilon_r = 37.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

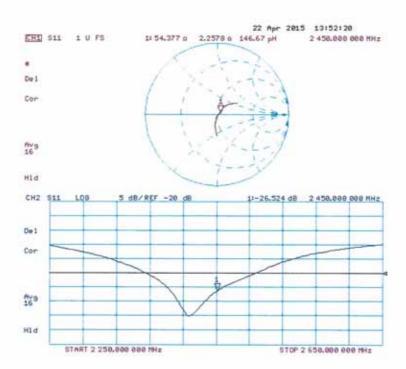

- Probe: ES3DV3 SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.4 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.09 W/kg

Maximum value of SAR (measured) = 17.5 W/kg


0 dB = 17.5 W/kg = 12.43 dBW/kg

Certificate No: D2450V2-892_Apr15

Page 5 of 8

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-892_Apr15

Page 6 of 8

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

68 / 85

Page:

SGS

SGS Korea Co., Ltd.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

1 4.50 .

Page: 69 / 85

DASY5 Validation Report for Body TSL

Date: 22.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

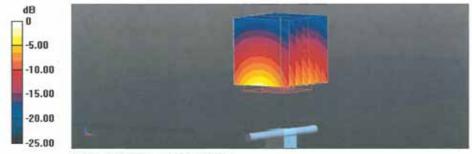
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 892

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\varepsilon_f = 50.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

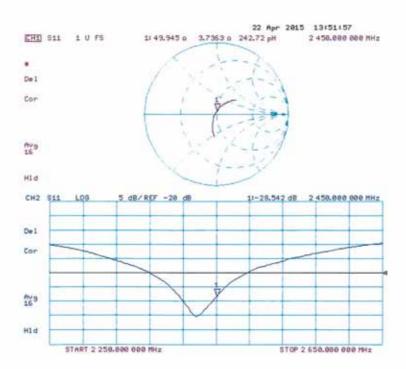

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.49 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.1 W/kgMaximum value of SAR (measured) = 17.3 W/kg


0 dB = 17.3 W/kg = 12.38 dBW/kg

Certificate No: D2450V2-892_Apr15

Page 7 of 8

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-892_Apr15

Page 8 of 8

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

70 / 85

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371

http://www.sgsgroup.kr

71 / 85Page:

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S

Swiss Calibration Service

T술택임과 Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

SGS (Dymstec)

Issued: May 22, 2015

Certificate No: D5GHzV2-1106_May15 CALIBRATION CERTIFICATE Object D5GHzV2 - SN: 1106 Calibration procedure(s) QA CAL-22.v2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: May 22, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 SN: 5058 (20k) Reference 20 dB Attenuator 01-Apr-15 (No. 217-02131) Mar-16 Type-N mismatch combination SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) Mar-16 Reference Probe EX3DV4 SN: 3503 30-Dec-14 (No. EX3-3503_Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Name Function Calibrated by: Michael Weber Laboratory Technician

Certificate No: D5GHzV2-1106_May15

Katia Pokovic

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Approved by:

Page 1 of 15

Technical Manager

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371

http://www.sgsgroup.kr

72 / 85 Page:

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSI tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters",
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1106_May15

Page 2 of 15

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	¥32.0.0
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.45 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1106_May15

Page 3 of 15

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

73 / 85

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

www.sgsgroup.kr Page :

74 / 85

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.1 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.73 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1106_May15

Page 4 of 15

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 75 / 85

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	4.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR measured	100 mW input power	2.37 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.5 % (k=2)	

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.6 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1106_May15

Page 5 of 15

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371

http://www.sgsgroup.kr

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.43 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.51 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.56 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.66 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1106_May15

Page 6 of 15

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

76 / 85

Page:

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 77 / 85

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	6.23 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.78 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1106_May15

Page 7 of 15

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 78 / 85

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.7 Ω - 10.0 ίΩ	
Return Loss	- 20.0 dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	50.9 Ω - 3.9 jΩ	
Return Loss	- 27.9 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	48.5 Ω - 4.3 jΩ	
Return Loss	- 26.7 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.1 Ω - 5.9 jΩ	
Return Loss	- 22.7 dB	\dashv

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	54.1 Ω - 0.4 iΩ	
Return Loss	- 28.1 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.0 Ω - 8.5 jΩ	
Return Loss	- 21.4 dB	

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	50.9 Ω - 3.1 jΩ	
Return Loss	- 30.0 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	55.5 Ω - 4.3 jΩ
Return Loss	- 23.6 dB

Certificate No: D5GHzV2-1106_May15

Page 8 of 15

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	54.5 Ω + 1.0 jΩ	
Return Loss	- 27.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,198 ns
	100000000000000000000000000000000000000

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

Certificate No: D5GHzV2-1106_May15

Page 9 of 15

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

Page:

79 / 85

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

80 / 85 Page:

DASY5 Validation Report for Head TSL

Date: 22.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1106

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.45$ S/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³ , Medium parameters used: f = 5300 MHz; σ = 4.54 S/m; ϵ_r = 34.3; ρ = 1000 kg/m³ , Medium parameters used: f = 5500 MHz; σ = 4.73 S/m; ϵ_r = 34; ρ = 1000 kg/m³ , Medium parameters used: f = 5600 MHz; σ = 4.83 S/m; ϵ_r = 33.9; ρ = 1000 kg/m³ , Medium parameters used: f = 5800 MHz; σ = 5.03 S/m; ϵ_r = 33.6; ρ = 1000 kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2014, ConvF(5.21, 5.21, 5.21); Calibrated: 30.12.2014, ConvF(5.12, 5.12, 5.12); Calibrated: 30.12.2014, ConvF(4.92, 4.92, 4.92); Calibrated: 30.12.2014, ConvF(4.9, 4.9, 4.9); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.79 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 29.3 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.31 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.17 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 8.4 W/kg; SAR(10 g) = 2.42 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.76 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.4 W/kg

Maximum value of SAR (measured) = 20.0 W/kg

Certificate No: D5GHzV2-1106_May15

Page 10 of 15

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 81 / 85

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

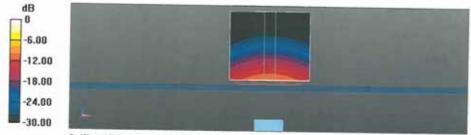
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.47 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 8.3 W/kg; SAR(10 g) = 2.37 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.69 V/m; Power Drift = -0.01 dB

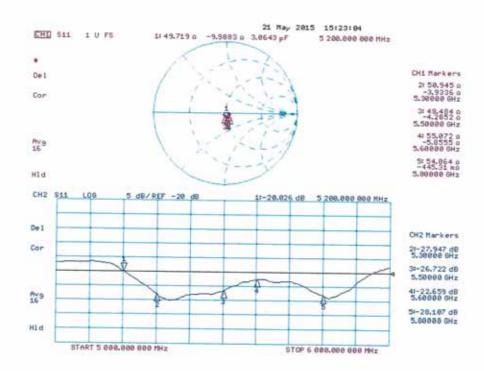
Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.3 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

Certificate No: D5GHzV2-1106_May15


Page 11 of 15

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 82 / 85

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1106_May15

Page 12 of 15

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

DASY5 Validation Report for Body TSL

Date: 21.05.2015

Page:

83 / 85

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1106

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; σ = 5.43 S/m; ϵ_r = 47.3; ρ = 1000 kg/m³ , Medium parameters used: f = 5300 MHz; $\sigma = 5.56$ S/m; $\epsilon_r = 47.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5600$ MHz; $\sigma = 5600$ MHz; $\sigma = 5600$ MHz; $\sigma = 6600$ MHz; $\sigma = 66000$ MHz; $\sigma = 6600$ MHz; $\sigma = 66000$ MH 5.96 S/m; ϵ_r = 46.6; ρ = 1000 kg/m³ , Medium parameters used: f = 5800 MHz; σ = 6.23 S/m; ϵ_r = 46.3; ρ = 1000 kg/m3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.95, 4.95, 4.95); Calibrated: 30.12.2014, ConvF(4.78, 4.78, 4.78); Calibrated: 30.12.2014, ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2014, ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.44 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.1 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.13 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.00 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 35.2 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

Certificate No: D5GHzV2-1106_May15

Page 13 of 15

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)

RTT5041-76(2015.10.01) (2)

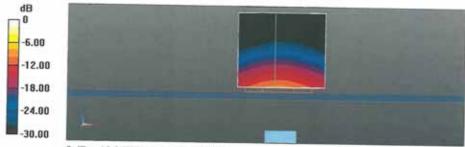
A4 (210mm x 297mm)

SGS

SGS Korea Co., Ltd.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 84 / 85


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid distance of the first distance

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.85 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 36.1 W/kg

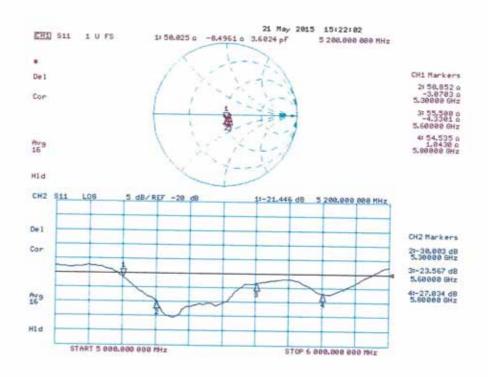
SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.15 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

0 dB = 18.0 W/kg = 12.55 dBW/kg

Certificate No: D5GHzV2-1106_May15

Page 14 of 15


SGS

SGS Korea Co., Ltd.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 15807 Tel. 031-428-5700 / Fax. 031-427-2371 http://www.sgsgroup.kr

Page: 85 / 85

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1106_May15

Page 15 of 15

-THE END-

Report File No: F690501/RF-SAR002315 Date of Issue: 2015-12-04 (All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and

accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.)