

MPE Calculations

Systems operating under the provision of 47 CFR 1.1307(b)(1) shall be operated in a manor that ensures that the public is not exposed to radio frequency energy levels in excess of the FCC guidelines.

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the user or nearby persons and can therefore be considered a mobile transmitter per 47 CFR 2.1091(b). The MPE calculation for this exposure is shown below.

<u>Using the Antennas with highest output power:</u> Shanghai Universe Communication Electron Co., Ltd Antennas

The peak radiated output power (EIRP) is calculated as follows:

Antenna	Frequency (GHz)	Power input to the antenna (P) (dBm)	Power gain of the antenna (G) (dBi)	EIRP (P+G) (dBm)	EIRP Log ^{-1(dBm/10)} (mW)
WiFi (Chain A)	2.4	28.00	3.24	31.24	1330.45
WiFi (Chain A)	5	25.58	4.97	30.55	1135.01
WiMax (Chain A)	2.5	23.83	3.47	27.30	537.03

EIRP = P + G

Where

P = Power input to the antenna (mW).

G = Power gain of the antenna (dBi)

The numeric gain (G) of the antenna with a gain specified in dB is determined by:

Antenna	Frequency (GHz)	Antenna Gain (G) (dBi)	Numeric Antenna Gain Log ^{-1(dBm/10)} (dB)
WiFi (Chain A)	2.4	3.24	2.11
WiFi (Chain A)	5	4.97	3.14
WiMax (Chain A)	2.5	3.47	2.22

 $G = Log^{-1}$ (dB antenna gain/10)

Power density at the specific separation:

Antenna	Frequency (GHz)	Power input to the antenna (P) (mW)	Numeric Power Gain of the Antenna (G) (dB)	Maximum Power Spectral Density $S=PG/(4R^2\pi)$ (mW/cm^2)	Maximum Power Spectral Density Limit (mW/cm²)
WiFi (Chain A)	2.4	630.96	2.11	0.265	1.00
WiFi (Chain A)	5	361.41	3.14	0.226	1.00
WiMax (Chain A)	2.5	241.55	2.22	0.107	1.00

 $S = PG/(4R^2\pi)$

Where

S = Maximum power density (mW/cm²)

P = Power input to the antenna (mW).

G = Numeric power gain of the antenna

R = Distance to the center of the radiation of the antenna (20cm = limit for MPE)

The maximum permissible exposure (MPE) for the general population is 1mW/cm².

The power density at 20cm does not exceed the 1mW/cm² limit. Therefore, the exposure condition is compliant with FCC rules.