

FCC OET BULLETIN 65 SUPPLEMENT C

**SAR EVALUATION REPORT
(WiFi Portion)**

For

**Intel WiFi Link 5100 Series
(Tested inside of Lenovo U150)**

**FCC ID: PD9512ANXHU
Model: 512ANXHMW**

REPORT NUMBER: 09U12725-2, Revision A

ISSUE DATE: MARCH 09, 2010

Prepared for

**INTEL CORPORATION
2111 N.E. 25TH AVENUE
HILLSBORO, OR 97124, USA**

Prepared by

**COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, USA**

NVLAP®

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
--	August 3, 2009	Initial Issue	--
A	March 9, 2010	Fixed typo error on FCC ID and Model number	A. Zaffar

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS.....	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION.....	5
4. CALIBRATION AND UNCERTAINTY.....	6
4.1. <i>MEASURING INSTRUMENT CALIBRATION.....</i>	6
4.2. <i>MEASUREMENT UNCERTAINTY.....</i>	7
5. EQUIPMENT UNDER TEST	9
6. SYSTEM SPECIFICATIONS.....	10
7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	11
8. LIQUID PARAMETERS CHECK.....	12
8.1. <i>LIQUID CHECK RESULTS FOR 2450 MHZ.....</i>	13
8.2. <i>LIQUID CHECK RESULTS FOR 5 GHZ</i>	14
9. SYSTEM CHECK	15
9.1. <i>SYSTEM CHECK RESULTS FOR D2450V2.....</i>	16
9.2. <i>SYSTEM CHECK RESULTS FOR D5GHzV2.....</i>	16
10. OUTPUT POWER VERIFICATION.....	17
11. SUMMARY OF TEST RESULTS.....	18
11.1. <i>SAR TEST RESULT FOR THE 2.4 GHZ BAND</i>	18
11.2. <i>11.2. SAR TEST RESULT FOR THE 5 GHZ BANDS</i>	18
12. WORST-CASE SAR TEST PLOTS	19
13. ATTACHMENTS.....	24
14. TEST SETUP PHOTO	25
15. HOST DEVICE PHOTO	26

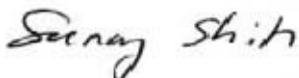
1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	INTEL CORPORATION 2111 N.E. 25TH AVENUE HILLSBORO, OR 97124, USA
FCC ID:	PD9512ANXHU
MODEL:	512ANXHMW
DEVICE CATEGORY:	Portable
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure
DATE TESTED:	July 22 - 29, 2009

THE HIGHEST SAR VALUES:

FCC / IC Rule Parts	Frequency Range [MHz]	The Highest SAR Values (1g_mW/g)	Limit (mW/g)
15.247 / RSS-102	2400 – 2483.5	0.039	1.6
	5725 – 5850	0.129	
15.407 / RSS-102	5150 – 5250	0.105	1.6
	5250 – 5350	0.117	
	5470 – 5725	0.125	

APPLICABLE STANDARDS AND TEST PROCEDURES:


STANDARD	TEST RESULTS
FCC OET BULLETIN 65 SUPPLEMENT C	Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

Tested By:

SUNNY SHIH
ENGINEERING SUPERVISOR
COMPLIANCE CERTIFICATION SERVICES

CHAO YEN LIN
EMC ENGINEER
COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 820.11abg Transmitters.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccsemc.com>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due date		
				MM	DD	Year
Robot - Six Axes	Stäubli	RX90BL	N/A	N/A		
Robot Remote Control	Stäubli	CS7MB	3403-91535	N/A		
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041	N/A		
Probe Alignment Unit	SPEAG	LB (V2)	261	N/A		
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185	N/A		
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050	N/A		
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003	N/A		
Electronic Probe kit	HP	85070C	N/A	N/A		
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	14	2009
Signal Generator	Agilent	8753ES-6	MY40001647	11	14	2009
E-Field Probe	SPEAG	EX3DV4	3686	3	23	2010
Thermometer	ERTCO	639-1S	1718	5	1	2010
Data Acquisition Electronics	SPEAG	DAE3 V1	427	10	20	2009
System Validation Dipole	SPEAG	D835V2	4d002	4	23	2011
System Validation Dipole	SPEAG	D900V2	108	1	21	2010
System Validation Dipole	SPEAG	D1800V2	294	1	29	2010
System Validation Dipole	SPEAG	D1900V2	5d043	1	29	2010
System Validation Dipole	SPEAG	D2450V2	748	4	14	2010
System Validation Dipole	SPEAG	D5GHzV2	1003	11	21	2009
MXA Signal Analyzer	Agilent	N9020A	US48350984	10	23	2009
ESG Vector Signal Generator	Agilent	E4438C	US44271090	9	17	2010
Power Meter	Giga-tronics	8651A	8651404	1	11	2010
Power Sensor	Giga-tronics	80701A	1834588	1	11	2010
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		
Simulating Liquid	SPAEG	H2450	N/A	Within 24 hrs of first test		
Simulating Liquid	SPAEG	M2450	N/A	Within 24 hrs of first test		
Simulating Liquid	SPAEG	M5800	N/A	Within 24 hrs of first test		

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz – 3000 MHz

Uncertainty component	Tol. (±%)	Probe Dist.	Div.	Ci (1g)	Ci (10g)	Std. Unc.(±%)	
						Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	N	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechanical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
algorithms for max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty							
RSS							
11.44							
Expanded Uncertainty (95% Confidence Interval)							
K=2							
22.87							
20.98							

Notes for table

1. Tol. - tolerance in influence quality
2. N - Nominal
3. R - Rectangular
4. Div. - Divisor used to obtain standard uncertainty
5. Ci - is the sensitivity coefficient

Measurement uncertainty for 3 GHz – 6 GHz

Uncertainty component	Tol. (±%)	Probe Dist.	Div.	Ci (1g)	Ci (10g)	Std. Unc.(±%)	
						Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	N	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73
Probe Positioner Mechanical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty				RSS		11.66	10.73
Expanded Uncertainty (95% Confidence Interval)				K=2		23.32	21.46

Notes for table

1. Tol. - tolerance in influence quality
2. N - Nominal
3. R - Rectangular
4. Div. - Divisor used to obtain standard uncertainty
5. Ci - is the sensitivity coefficient

5. EQUIPMENT UNDER TEST

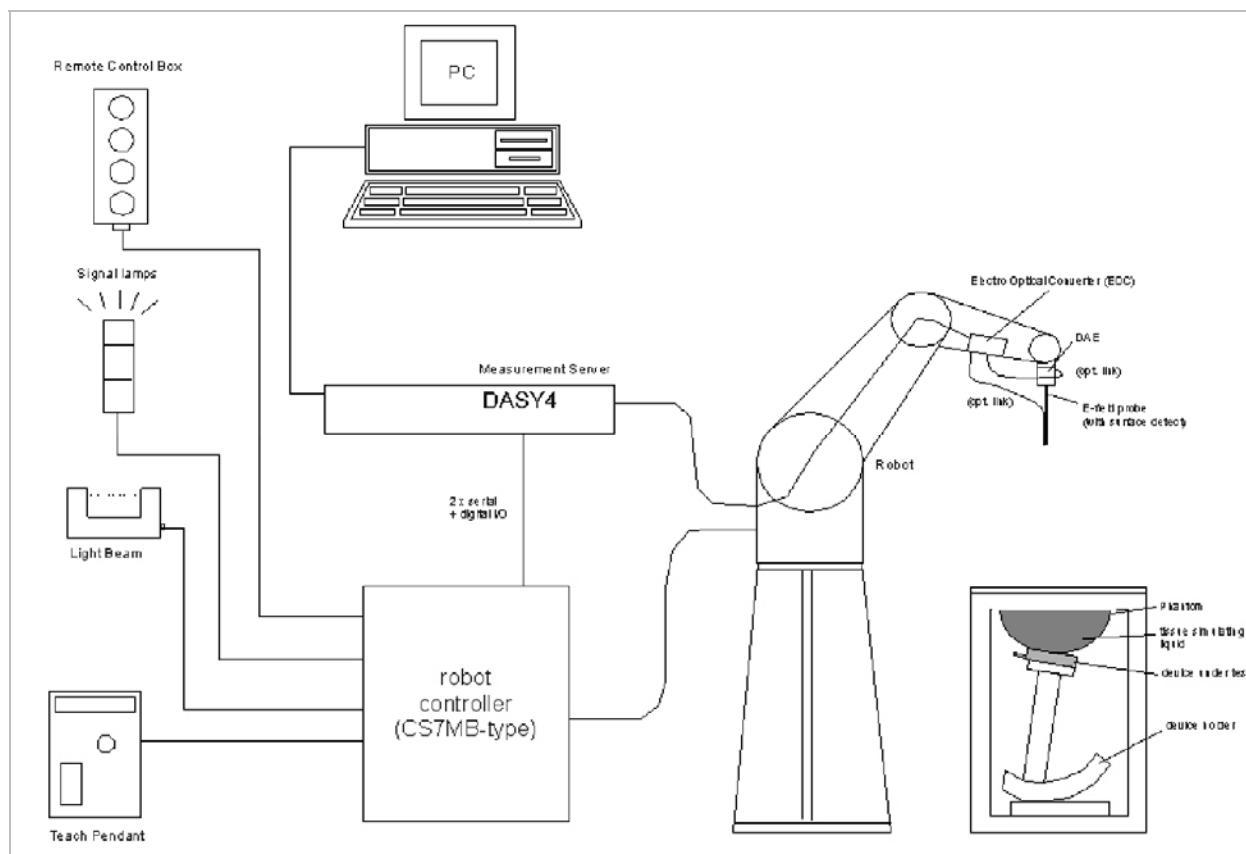
Intel Wi-Fi Link 5100 Series (Tested inside of LENOVO U150)

820.11abgn MISO with HT20 and HT40

**Normal
operation:**

Lap-held only

Note: SAR test with display open at 90° to the keyboard


Antenna tested:

Quanta, TX 1 Antenna, Part Number: LL2ANT00100

Power supply:

Power supplied through laptop computer (host device)

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients (% by weight)	Frequency (MHz)									
	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 MΩ+ resistivity

HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

8. LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine if the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within $\pm 5\%$ of the values given in the table below.

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.8
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.9	55.2	0.97
900	41.5	0.97	55	1.05
915	41.5	0.98	55	1.06
1450	40.5	1.2	54	1.3
1610	40.3	1.29	53.8	1.4
1800 – 2000	40	1.4	53.3	1.52
2450	39.2	1.8	52.7	1.95
3000	38.5	2.4	52	2.73
5800	35.3	5.27	48.2	6

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000$ kg/m³)

8.1. LIQUID CHECK RESULTS FOR 2450 MHZ

Simulating Liquid Dielectric Parameters for Muscle 2450 MHz

Room Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Chaoyen Lin

f (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
2450	e'	52.13	Relative Permittivity (ϵ_r):	52.134	52.7	-1.07	± 5
	e''	13.74	Conductivity (σ):	1.873	1.95	-3.96	± 5

Liquid Temperature: 23 deg. C

July 22, 2009 1:10 PM

Frequency	e'	e''
2400000000	52.2304	13.496
2405000000	52.2183	13.5694
2410000000	52.2037	13.6346
2415000000	52.2001	13.6781
2420000000	52.1862	13.7043
2425000000	52.1816	13.7225
2430000000	52.1873	13.7158
2435000000	52.1715	13.7219
2440000000	52.1671	13.7364
2445000000	52.1381	13.7641
2450000000	52.1342	13.7432
2455000000	52.0652	13.7198
2460000000	52.0291	13.6917
2465000000	51.9653	13.6545
2470000000	51.9499	13.6069
2475000000	51.9348	13.5827
2480000000	51.9426	13.5898
2485000000	51.9358	13.6089
2490000000	51.9382	13.6662
2495000000	51.9401	13.74
2500000000	51.9352	13.8429

The conductivity (σ) can be given as:

$$\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$$

where $f = \text{target } f * 10^6$

$$\epsilon_0 = 8.854 * 10^{-12}$$

8.2. LIQUID CHECK RESULTS FOR 5 GHZ

Simulating Liquid Dielectric Parameters for Muscle 5800 MHz

Room Ambient Temperature = 25°C; Relative humidity = 38%

Measured by: Chaoyen Lin

f (MHz)	Muscle Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
5200	e'	48.1393	Relative Permittivity (ϵ_r):	48.1393	49.0	-1.76	± 10
	e''	18.1252	Conductivity (σ):	5.24331	5.30	-1.07	± 5
5500	e'	48.0626	Relative Permittivity (ϵ_r):	48.0626	48.6	-1.11	± 10
	e''	18.8388	Conductivity (σ):	5.76415	5.65	2.02	± 5
5800	e'	46.9628	Relative Permittivity (ϵ_r):	46.9628	48.2	-2.57	± 10
	e''	19.2494	Conductivity (σ):	6.21104	6.00	3.52	± 5

Liquid temperature: 24 deg. C

July 28, 2009 5:23 PM

Frequency	e'	e''
4600000000	49.481	17.2787
4650000000	49.5197	17.4968
4700000000	49.3662	17.3764
4750000000	49.1463	17.6333
4800000000	49.3311	17.6049
4850000000	48.9159	17.6127
4900000000	49.0474	17.956
4950000000	48.6771	17.7104
5000000000	48.5583	18.0773
5050000000	48.5467	17.9949
5100000000	48.1269	18.0807
5150000000	48.3212	18.1266
5200000000	48.1393	18.1252
5250000000	48.4233	18.6686
5300000000	48.2773	18.6593
5350000000	48.1769	18.8827
5400000000	48.2424	18.7764
5450000000	47.9183	18.9208
5500000000	48.0626	18.8388
5550000000	47.7134	18.8989
5600000000	47.7249	19.0028
5650000000	47.4924	18.9806
5700000000	47.4495	19.179
5750000000	47.4574	19.145
5800000000	46.9628	19.2494
5850000000	47.2167	19.4254
5900000000	46.9823	19.2149
5950000000	46.6667	19.4436
6000000000	47.0708	19.6876

The conductivity (σ) can be given as:

$$\sigma = \omega \epsilon_0 e'' = 2 \pi f \epsilon_0 e''$$

where $f = \text{target } f * 10^6$

$$\epsilon_0 = 8.854 * 10^{-12}$$

9. SYSTEM CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 250 mW $\pm 3\%$.
- The results are normalized to 1 W input power

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG. Certificate no: D5GHzV2-1003_Nov07 and D2450V2-748_Apr08

f (MHz)	Head Tissue		Body Tissue	
	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}
2450			49.5	23.3
5200	78.6	22.1	74.7	21.1
5500	80.4	22.7	80.1	22.5
5800	79.9	22.4	70.8	19.8

9.1. SYSTEM CHECK RESULTS FOR D2450V2

System Validation Dipole: D2450V2 SN: 748

Date: July 22, 2009

Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Chaoyen Lin

Medium	CW Signal (MHz)	Forward power (mW)	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)
Body	2450	250	1g SAR:	52.9	49.5	6.87	±10
			10g SAR:	24.8	23.3	6.44	

9.2. SYSTEM CHECK RESULTS FOR D5GHzV2

System Validation Dipole: D5GHzV2 SN 1003

Date: July 28, 2009

Ambient Temperature = 25°C; Relative humidity = 40%

Measured by: Chaoyen Lin

Medium	CW Signal (MHz)	Forward power (mW)	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)
Muscle	5200	250	1g SAR:	78.8	74.7	5.49	±10
			10g SAR:	22.8	21.1	8.06	
Muscle	5500	250	1g SAR:	79.3	80.1	-1.00	±10
			10g SAR:	22.3	22.5	-0.89	
Muscle	5800	250	1g SAR:	72.2	70.8	1.98	±10
			10g SAR:	20.3	19.8	2.53	

10. OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, CRTU v5.10.25.0, which enable a user to control the frequency and output power of the module.

The modes with highest output power channel were chosen for the conducted output power measurement.

Results:

802.11bgn mode (2.4 GHz band)

Mode	Channel	f (MHz)	Average Output Power	Duty Cycle (%)
802.11b	6	2437 (M)	17.0	100
802.11n 40 MHz	6	2437 (M)	16.8	98

802.11an mode (5.8 GHz band)

Mode	Channel	f (MHz)	Average Output Power	Duty Cycle (%)
802.11n 40 MHz	159	5795	16.8	98

802.11an mode (5.2 GHz band)

Mode	Channel	f (MHz)	Average Output Power	Duty Cycle (%)
802.11a	40	5200	16.8	99

802.11an mode (5.3 GHz band)

Mode	Channel	f (MHz)	Average Output Power	Duty Cycle (%)
802.11a	56	5280	16.8	99

802.11an mode (5.5 GHz band)

Mode	Channel	f (MHz)	Average Output Power	Duty Cycle (%)
802.11n 20 MHz	140	5700	17.1	9

11. SUMMARY OF TEST RESULTS

If the SAR measured at the middle channel for each test configuration is at least 3.0 dB (0.8 mW/g) lower than the SAR limit (1.6 mW/g), testing at the high and low channels is optional for such test configuration(s).

11.1. SAR TEST RESULT FOR THE 2.4 GHZ BAND

Mode	Channel	f (MHz)	Antenna	Measured SAR 1g (mW/g)	Limit
802.11b	6	2437 (M)	TX 1	0.039	1.6
802.11n 40 MHz	6	2437 (M)	TX 1	0.036	

11.2. SAR TEST RESULT FOR THE 5 GHZ BANDS

Mode	Channel	f (MHz)	Antenna	Measured SAR 1g (mW/g)	Limit
802.11a	40	5200 (M)	TX 1	0.105	1.6
	56	5280 (M)	TX 1	0.117	
802.11n 20MHz	140	5700 (H)	TX 1	0.125	
802.11n 40MHz	159	5795 (H)	TX 1	0.129	

12. WORST-CASE SAR TEST PLOTS

WORST-CASE SAR PLOT for 2.4 GHz Band

Date/Time: 7/22/2009 4:42:01 PM

Test Laboratory: Compliance Certification Services

802.11bg for Lapheld

DUT: Lenovo; Type: U150; Serial: NA

Communication System: 802.11bg; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.86$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

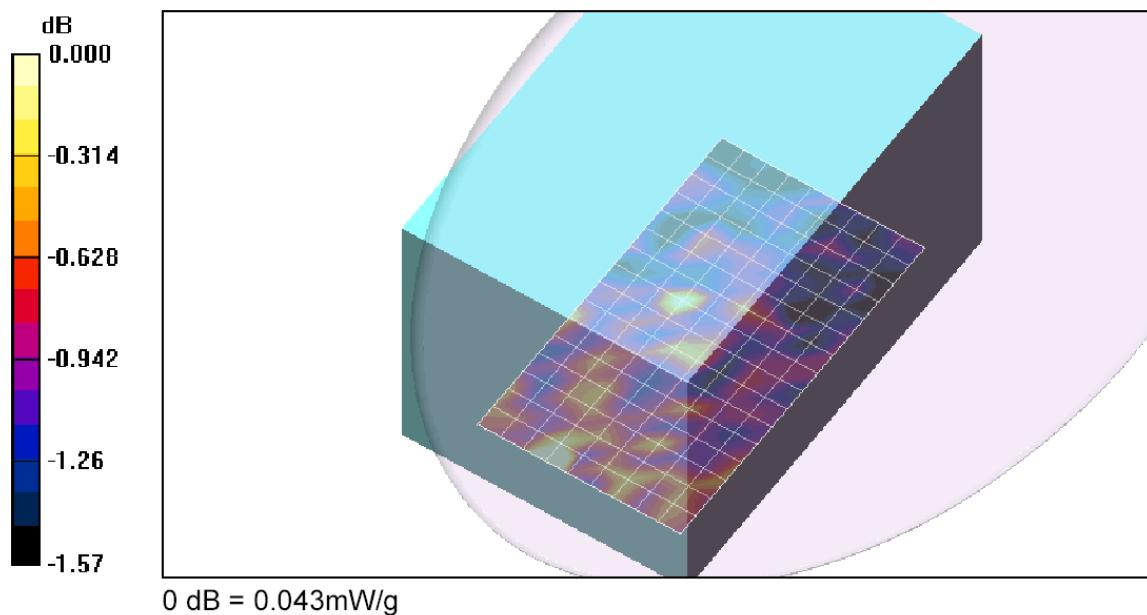
Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 - SN3686; ConvF(6.48, 6.48, 6.48); Calibrated: 3/23/2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Lapheld, 802.11b M-ch/Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.066 mW/g


Lapheld, 802.11b M-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 4.06 V/m; Power Drift = 0.628 dB

Peak SAR (extrapolated) = 0.097 W/kg

SAR(1 g) = 0.039 mW/g; SAR(10 g) = 0.037 mW/g

Maximum value of SAR (measured) = 0.043 mW/g

WORST-CASE SAR PLOT for 5.2 GHz Band

Date/Time: 7/29/2009 10:44:44 AM

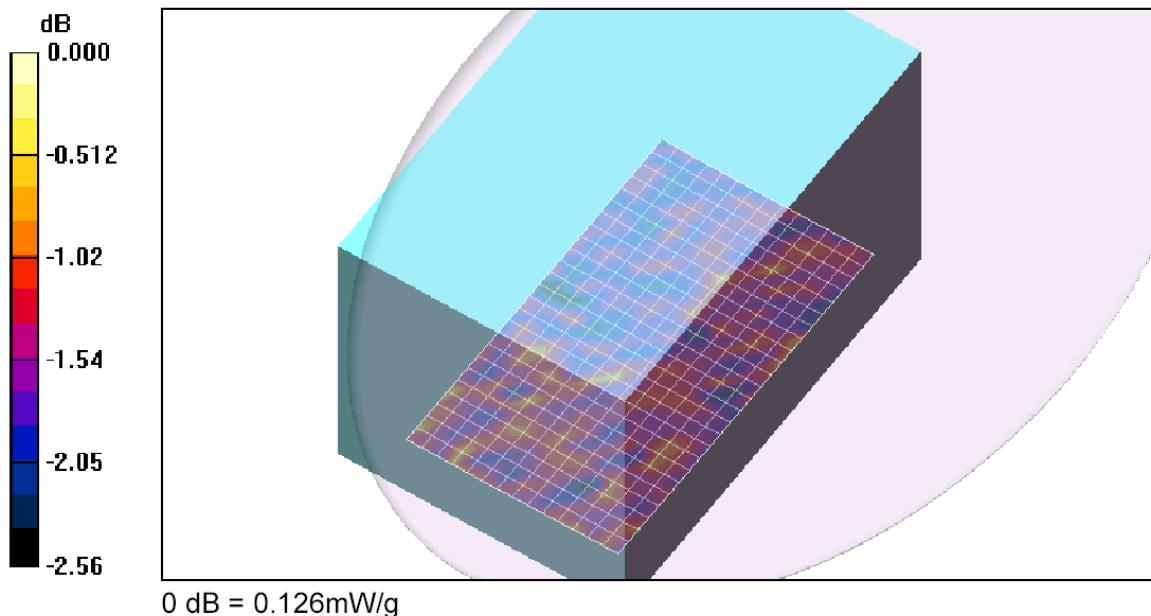
Test Laboratory: Compliance Certification Services

802.11a 5.2GHz

DUT: Lenovo; Type: U150; Serial: N/A

Communication System: 802.11abgn; Frequency: 5200 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 5200$ MHz; $\sigma = 5.24$ mho/m; $\epsilon_r = 48.1$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C


DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 - SN3686; ConvF(4.08, 4.08, 4.08); Calibrated: 3/23/2009
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Lapheld - 5.2G/Area Scan (15x26x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (measured) = 0.112 mW/g

Lapheld - 5.2G/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm
Reference Value = 4.30 V/m; Power Drift = -0.254 dB
Peak SAR (extrapolated) = 0.126 W/kg
SAR(1 g) = 0.105 mW/g; SAR(10 g) = 0.099 mW/g

Maximum value of SAR (measured) = 0.126 mW/g

WORST-CASE SAR PLOT for 5.3 GHz Band

Date/Time: 7/29/2009 11:39:51 AM

Test Laboratory: Compliance Certification Services

802.11a 5.3GHz

DUT: Lenovo; Type: U150; Serial: N/A

Communication System: 802.11abgn; Frequency: 5280 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 5280$ MHz; $\sigma = 5.48$ mho/m; $\epsilon_r = 48.3$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

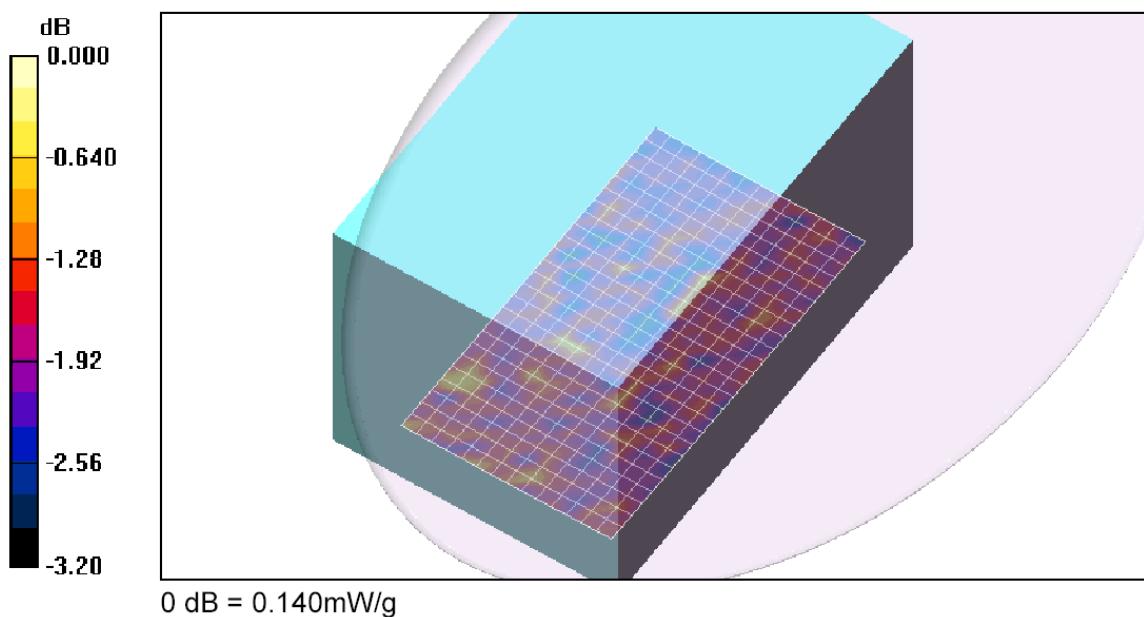
Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 - SN3686; ConvF(3.81, 3.81, 3.81); Calibrated: 3/23/2009
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Lapheld - 5.3G/Area Scan (15x26x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.122 mW/g


Lapheld - 5.3G/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 4.38 V/m; Power Drift = 0.548 dB

Peak SAR (extrapolated) = 0.143 W/kg

SAR(1 g) = 0.117 mW/g; SAR(10 g) = 0.109 mW/g

Maximum value of SAR (measured) = 0.140 mW/g

WORST-CASE SAR PLOT for 5.5 GHz Band

Date/Time: 7/29/2009 1:21:05 PM

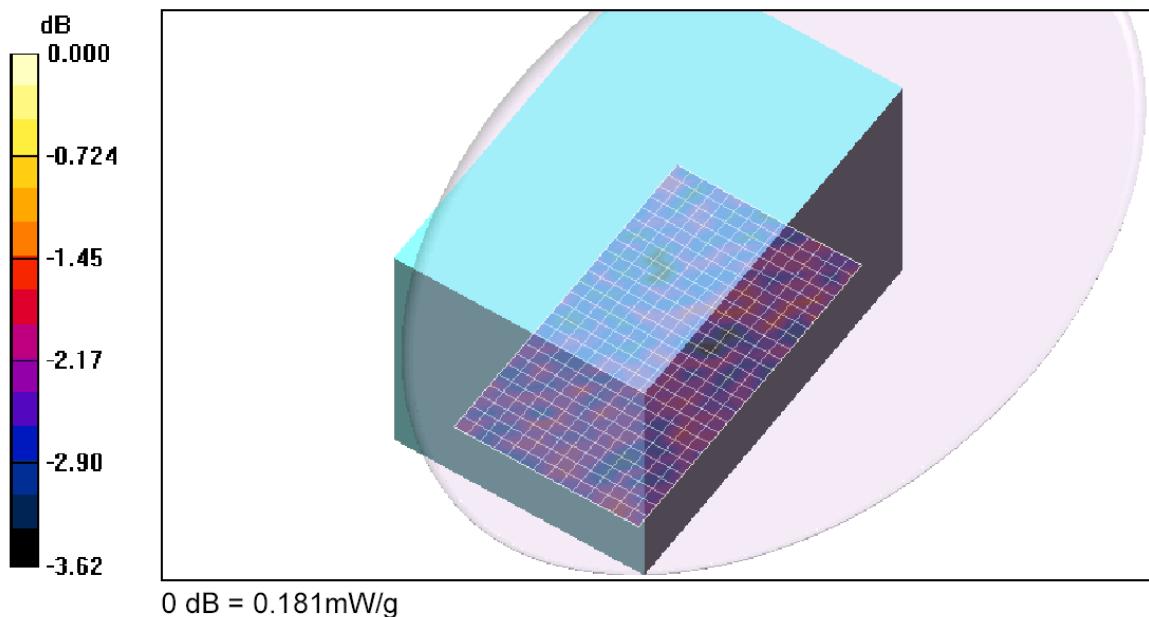
Test Laboratory: Compliance Certification Services

802.11a 5.5 GHz

DUT: Lenovo; Type: U150; Serial: N/A

Communication System: 802.11abgn; Frequency: 5700 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 5700$ MHz; $\sigma = 6.08$ mho/m; $\epsilon_r = 47.4$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C


DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 - SN3686; ConvF(3.84, 3.84, 3.84); Calibrated: 3/23/2009
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Lapheld - 5.5 G/Area Scan (15x26x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (measured) = 0.127 mW/g

Lapheld - 5.5 G/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm
Reference Value = 4.18 V/m; Power Drift = -0.261 dB
Peak SAR (extrapolated) = 0.182 W/kg
SAR(1 g) = 0.125 mW/g; SAR(10 g) = 0.117 mW/g

Maximum value of SAR (measured) = 0.181 mW/g

WORST-CASE SAR PLOT for 5.8 GHz Band

Date/Time: 7/29/2009 2:13:25 PM

Test Laboratory: Compliance Certification Services

802.11a 5.8 GHz

DUT: Lenovo; Type: U150; Serial: N/A

Communication System: 802.11abgn; Frequency: 5795 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 5795$ MHz; $\sigma = 6.2$ mho/m; $\epsilon_r = 47$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

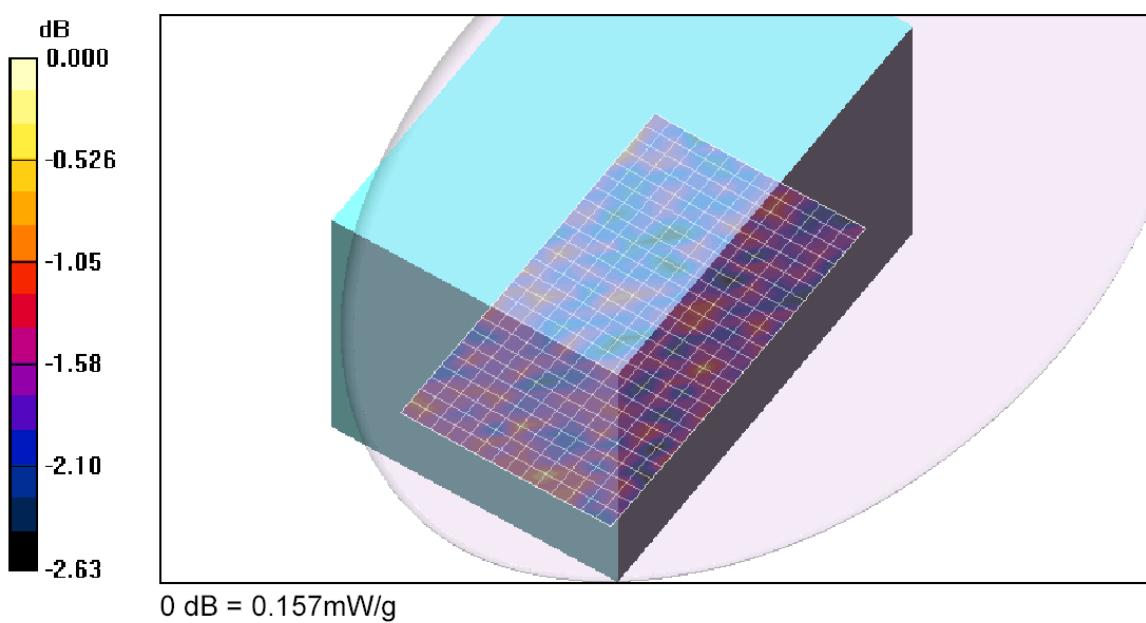
Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 - SN3686; ConvF(3.84, 3.84, 3.84); Calibrated: 3/23/2009
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Lapheld - 5.8 G/Area Scan (15x26x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.131 mW/g


Lapheld - 5.8 G/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 4.62 V/m; Power Drift = -0.455 dB

Peak SAR (extrapolated) = 0.157 W/kg

SAR(1 g) = 0.129 mW/g; SAR(10 g) = 0.121 mW/g

Maximum value of SAR (measured) = 0.157 mW/g

13. ATTACHMENTS

No.	Contents	No. of page (s)
1	System Performance Check Plots	8
2	SAR Test Plots	6
3	Certificate of E-Field Probe – EX3DV4 SN 3686	10
4	Certificate of System Validation Dipole - D2450V2 SN:748	6
5	Certificate of System Validation Dipole – D5GHzV2 SN 1003	15