

TEST REPORT

		_		
EUT Description	Wireless Module installed in Conver	tible PC		
Brand Name	Intel® Dual-Band Wireless-AC 3168			
Model Name	3168NGW			
Serial Number	WF MAC: 34:13:E8:51:DD:12 BT MAC: 34:13:E8:51:DD:16 (see section 4)			
FCC/IC ID	FCC ID: PD93168NG & PD93168NGU IC ID: 1000M-3168NG			
Antenna type	Antenna: PIFA Antenna, Inpaq Main: WA-P-LB-02-410 Aux : WA-P-LB-02-411			
Hardware/Software Version	DRTU version: 1.9.0-04034 Driver version: 19.1.0.1			
Date of Sample Receipt	2017-02-15			
Date of Test Start/End	2017-02-15 / 2017-02-17			
Features	802.11 a/b/g/n/ac Wireless LAN + Bluetooth v4.2 (see section 7)			
Description	Wireless Module: Intel® 3168NGW Platform: TPN-W125 Series			
Applicant	Intel Mobile Communications			
Address	100 Center Point Circle, Suite 200 / Columbia, SC 29210 / United States			
Contact Person	Steven Hackett			
Telephone/Fax/Email	steven.c.hackett@intel.com			
Reference Standards	FCC 47 CFR Part §2.1093 RSS-102, Issue 5 (see section 1)			
RF Exposure Environment	Portable devices - General population	on/uncontrolled exposure		
	SAR Result	SAR Limit		
Maximum SAR Result & Limit	1.20 W/kg (1g)	1.6 W/kg (1g)		
Min. test separation distance	4.3mm			
Test Report number	170207-02.TR01			
Revision Control	Rev. 00 Revision Control This test report revision replaces any previous test report version (see section 6)			
	The test results relate only to the samples tested. The test report shall not be reproduced in full, without written approval of the laboratory.			
Issued by		Reviewed by		
issued by		I TO VIEWEU DY		

Rafael QUIROZ (Test Lead) Olivier FARGANT (Technical Manager)

Table of Contents

1.	Star	Standards, reference documents and applicable test methods 3				
2.	Gen	General conditions, competences and guarantees				
3.		nvironmental Conditions				
4.	Test	t samples	4			
5.		narks and comments				
6.		cument Revision History				
7.		ipment Under Test				
8.	-	t Verdicts summary				
	ex A	•				
		SAR DEFINITION				
A. A.		SPEAG SAR MEASUREMENT SYSTEM				
		SAR MEASUREMENT SETUP				
		E-FIELD MEASUREMENT PROBE				
		SAM PHANTOM				
		FLAT PHANTOM				
A.		DEVICE POSITIONER				
A.	3	DATA EVALUATION	12			
A.	4	SYSTEM AND LIQUID CHECK	14			
A.	4.1	SYSTEM CHECK	14			
A.		LIQUID CHECK	_			
A.		TEST EQUIPMENT LIST				
A.		MEASUREMENT UNCERTAINTY EVALUATION				
A.	7	RF EXPOSURE LIMITS				
Ann	ex B	3. Test Results	20			
В.	1	TEST CONDITIONS	20			
В.	1.1	SAR TEST POSITIONS RELATIVE TO THE PHANTOM	20			
В.		TEST SIGNAL, OUTPUT POWER AND TEST FREQUENCIES				
В.		EVALUATION EXCLUSION AND TEST REDUCTIONS				
В.		CONDUCTED POWER MEASUREMENTS				
		WLAN 2.4GHz (DTS)				
		WLAN 5GHz (U-NII)				
		BLUETOOTH				
В.		TISSUE PARAMETERS MEASUREMENT				
В. В.		SAR TEST RESULTS				
	-	802.11B/G/N – 2.4GHz - DTS				
		802.11a/n/ac – 5.3 GHz – U-NII-2A				
		802.11a/n/ac – 5.6 GHz – U-NII-2C				
		802.11a/n/ac – 5.8 GHz – U-NII-3				
		BLUETOOTH – 2.4GHz - DSSS				
В.		SAR Measurement Variability				
В.		SIMULTANEOUS TRANSMISSION SAR EVALUATION				
Ann	ex C					
	ex D	•				
	ex E					
	_					
AUU	ex F	Photographs	48			

1. Standards, reference documents and applicable test methods

- 1. FCC 47 CFR Part §2.1093 Radiofrequency radiation exposure evaluation: portable devices.
- 2. FCC OET KDB 248227 D01 SAR guidance for IEEE 802.11 (Wi-Fi) transmitters.
- 3. FCC OET KDB 447498 D01 –RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
- 4. FCC OET KDB 616217 D04 SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers.
- 5. FCC OET KDB 865664 D01 SAR Measurement Requirements for 100 MHz to 6 GHz.
- 6. FCC OET KDB 865664 D02 RF Exposure Compliance Reporting and Documentation Considerations.
- 7. IC RSS 102, Issue 5 Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands).
- 8. IC Notice 2012-DRS0529 SAR correction for measured conductivity and relative permittivity based on IEC 62209-2 standard.
- 9. IC Notice 2012-DRS1203 Applicability of latest FCC RF Exposure KDB procedures (publication date October 24, 2012) and other procedures.
- 10. IC Notice 2013-DRS0911 Latest publication of IEEE 1528-2013 and power exemption limits.
- 11. IEEE Std 1528-2013 IEEE Recommended Practice Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques.

2. General conditions, competences and guarantees

- ✓ Intel Mobile Communications Wireless RF Lab (Intel WRF Lab) is a testing laboratory accredited by the American Association for Laboratory Accreditation (A2LA).
- ✓ Intel Mobile Communications Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm listed by the FCC, with Designation Number FR0011.
- Intel Mobile Communications Wireless RF Lab (Intel WRF Lab) is a Registered Test Site listed by IC, with IC Assigned Code 1000Y.
- ✓ Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- This report is only referred to the item that has undergone the test.
- ✓ This report does not imply an approval of the product by the Certification Bodies or competent.
- ✓ Complete or partial reproduction of the report cannot be made without written permission of Intel WRF Lab.

3. Environmental Conditions

✓ All tests were performed in a laboratory with an environment which avoids influence on SAR measurements by ambient EM sources and any reflection from the environment itself, and the following limits were not exceeded during the tests:

Temperature	22°C ± 2°C
Humidity	40% ± 10%
Liquid Temperature	21°C ± 2°C

4. Test samples

Sample	Test Item #	Description	Model	Serial #	Date of reception
#01	170207-02.S05	Wireless Module installed in convertible PC	3168NGW+ TPN-W125 Series	WF MAC: 34:13:E8:51:DD:12 BT MAC: 34:13:E8:51:DD:16	2017-02-15

✓ Sample #01 has undergone all the test(s) requested by the applicant, following the standards specified in section 1.

5. Remarks and comments

1. Only the plots for the test positions with the highest measured SAR per band/mode are included in Annex C as required per FCC OET KDB 865664 D02, paragraph 2.3.8.

6. Document Revision History

Revision #	Date	Modified by	Details
Rev. 00	2017-03-06	V.Kaculini	First Issue

7. Equipment Under Test

Brand Name	Intel® Dual-Band Wireless-AC 3168
Model Name	3168NGW
FCC/IC ID	FCC ID: PD93168NG & PD93168NGU IC ID: 1000M-3168NG
Software Version	1.9.0-04034
Driver Version	19.1.0.1
Prototype / Production	Production
Host Identification	TPN-W125 series
Exposure Conditions	Body worn
Supported Radios	802.11a/b/g/n/ac Bluetooth v4.2
Antenna Information	Main WLAN: PIFA antenna. WiFi 2.4GHz & 5GHz Aux WLAN: PIFA antenna. BT See Annex F for more details on antennas location.
Simultaneous Transmission Configurations	WLAN 5GHz Main + BT Aux WLAN 2.4GHz Main + BT Aux
Additional Information	No WWAN transmitter is considered in this report 5.60-5.65 GHz band (TDWR) is supported by the device
	Band gap is supported by the device

Supported Radios

Mode	Duty Cycle	Modulation	Band	UL Freq Range (MHz)	Measured Max. Conducted Power (dBm)
802.11b/g/n	100%	BPSK QPSK 16QAM 64QAM	2.4GHz	2400-2483.5	17.50
		BPSK	5.2GHz	5150-5250	NM
802.11a/n/ac	100%	QPSK 16QAM	5.3GHz	5250-5350	16.85
002.11a/11/ac	100%	64QAM	5.6GHz	5475-5725	16.73
		256QAM	5.8GHz	5725-5850	17.86
BDR/EDR v4.2	78%	GFSK π/4 DQPSK 8DPSK	2.4GHz	2400-2483.5	8.29
Bluetooth LE v4.2	63%	GFSK	2.4GHz	2400-2483.5	8.00

NM: Not Measured

Test Report N°170207-02.TR01

Maximum Output po	Ante	enna		
Equipment Class	Mode	BW [MHz]	Main [dBm]	Aux [dBm]
	802.11b	20	17.50	
DTS	802.11g	20	17.50	
סוט	802.11n20	20	17.50	
	802.11n40	40	17.50	
	802.11a	20	17.00	
U-NII-1	802.11n20	20	17.00	
U-INII- I	802.11n40	40	17.00	
	802.11ac80	80	11.50	
	802.11a	20	17.00	
U-NII-2A	802.11n20	20	17.00	
U-MII-ZA	802.11n40	40	17.00	
	802.11ac80	80	13.50	
	802.11a	20	17.00	
U-NII-2C	802.11n20	20	17.00	
U-MII-2C	802.11n40	40	17.00	
	802.11ac80	80	15.50	
	802.11a	20	18.00	
U-NII-3	802.11n20	20	18.00	
U-INII-3	802.11n40	40	18.00	
	802.11ac80	80	18.00	
	Bluetooth v4.2 BDR	2		10.00
ВТ	Bluetooth v4.2 EDR2	2		7.00
DI	Bluetooth v4.2 EDR3	2		7.00
	BLE	-		8.00

8. Test Verdicts summary

Mode	Band	Highest Reported SAR (1g) (W/kg)	Verdict
802.11b/g/n	2.4GHz	0.30	Р
-	5.2GHz	NM	NA
802.11a/n/ac	5.3GHz	0.83	Р
802.11a/n/ac	5.6GHz	1.17	Р
	5.8GHz	1.20	Р
Bluetooth	2.4GHz	0.06	Р

P: Pass F: Fail

NM: Not Measured NA: Not Applicable

According to the FCC OET KDB 690783 D01, this is the summary of the values for the Grant Listing:

Highest Reported SAR (1g) (W/kg)				
Evacure Condition		Equipment Class		
Exposure Condition	DTS	DSSS	U-NII	
Body Worn	0.30	0.06	1.20	
Simultaneous Tx	Sum-SAR: 0.36	Sum-SAR: 1.26	Sum-SAR: 1.26	

Considering the results of the performed test according to FCC 47CFR Part 2.1093 and IC RSS 102, Issue 5 the item under test is IN COMPLIANCE with the requested specifications specified in section 1. Standards, reference documents and applicable test methods.

Annex A. Test & System Description

A.1 SAR Definition

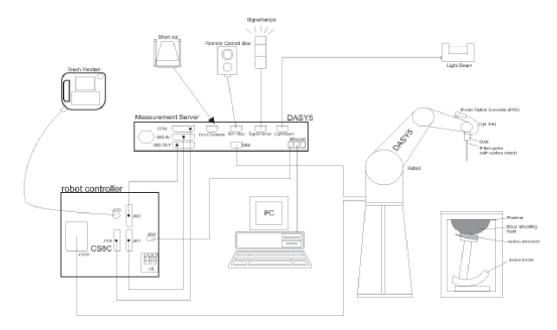
Specific Absorption rate is defined as the time derivative of the incremental energy (dW) absorbed by (dissipated in) and incremental mass (dm) contained in a volume element (dV) of a given density (p).

$$SAR = \frac{d}{dt} \cdot \left(\frac{dW}{dm}\right) = \frac{d}{dt} \cdot \left(\frac{dW}{\rho \cdot dV}\right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ = Conductivity of the tissue (S/m)


ρ = Mass density of the tissue (kg/m3) E = RMS electric field strength (V/m)

A.2 SPEAG SAR Measurement System

A.2.1 SAR Measurement Setup

The DASY5 system for performing compliance tests consists of the following items:

- ✓ A standard high precision 6-axis robot (Staübli TX/RX family) with controller, teach pendant and software. It includes an arm extension for accommodating the data acquisition electronics (DAE)
- ✓ An isotropic field probe optimized and calibrated for the targeted measurements.
- ✓ A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- ✓ The Electro-optical Converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. The EOC signal is transmitted to the measurement server.
- ✓ The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movements interrupts.
- ✓ The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- √ A computer running Win7 professional operating system and the DASY5 software.
- ✓ Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.
- ✓ Tissue simulating liquid.
- ✓ System Validation dipoles.
- ✓ Network emulator or RF test tool

A.2.2 E-Field Measurement Probe

The probe is constructed using three orthogonal dipole sensors arranged on an interlocking, triangular prism core. The probe has built-in shielding against static charges and is contained within a PEEK cylindrical enclosure material at the tip.

The probe's characteristics are:

Frequency Range	30MHz – 6GHz
Length	337 mm
Probe tip external diameter	2.5 mm
Typical distance between dipoles and the probe tip	1 mm
Axial Isotropy (in human-equivalent liquids)	±0.3 dB
Hemispherical Isotropy (in human-equivalent liquids)	±0.5 dB
Linearity	±0.2 dB
Maximum operating SAR	100 W/kg
Lower SAR detection threshold	0.001 W/kg

A.2.3 SAM Phantom

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the

liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

The phantom's characteristics are:

Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell thickness 2 mm ± 0.2 mm		
Shell thickness at ERP	6 ± 0.2 mm	
Filling volume	25 Liters	
Dimensions	Length: 1000mm / Width: 500mm	

A.2.4 Flat Phantom

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and

measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

The phantom's characteristics are:

Material	Vinylester, glass fiber reinforced (VE-GF)			
Shell thickness	2 mm ± 0.2 mm			
Filling volume	30 Liters approx.			
Dimensions	Major axis: 600mm / Minor axis: 400mm			

A.2.5 Device Positioner

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of 0.5 mm

would produce a SAR uncertainty of 20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon{=}3$ and loss tangent $\delta{=}0.02.$ The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

A simple but effective and easy-to-use extension for the Mounting Device; facilitates testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.); lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI and other Flat Phantoms.

A.3 Data Evaluation

Power Reference measurement

The robot measures the E field in a specified reference position that can be either the selected section's grid reference point or a user point in this section at 4mm of the inner surface of the phantom, 2mm for frequencies above 3GHz.

Area Scan

Measurement procedures for evaluating SAR from wireless handsets typically start with a coarse measurement grid to determine the approximate location of the local peak SAR values. This is known as the area-scan procedure. The SAR distribution is scanned along the inside surface of one side of the phantom head, at least for an area larger than the projection of the handset and antenna. The distance between the measured points and phantom surface should be less than 8 mm, and should remain constant (with variation less than ± 1 mm) during the entire scan in order to determine the locations of the local peak SAR with sufficient accuracy. The angle between the probe axis and the surface normal line is recommended but not required to be less than 30°. If this angle is larger than 30° and the closest point on the probe-tip housing to the phantom surface is closer than a probe diameter, the boundary effect may become larger and polarization dependent. This additional uncertainty needs to be analyzed and accounted for. To achieve this, modified test procedures and additional uncertainty analyses not described in this recommended practice may be required. The measurement and interpolation point spacing should be chosen such as to allow identification of the local peak locations to within one-half of the linear dimension of a side of the zoom-scan volume. Because a local peak having specific amplitude and steep gradients may produce a lower peak spatial-average SAR compared to peaks with slightly lower amplitude and less steep gradients, it is necessary to evaluate these other peaks as well. However, since the spatial gradients of local SAR peaks are a function of the wavelength inside the tissue-equivalent liquid and the incident magnetic field strength, it is not necessary to evaluate local peaks that are less than 2 dB or more below the global maximum peak. Two-dimensional spline algorithms (Brishoual et al. 2001; Press et al., 1996) are typically used to determine the peaks and gradients within the scanned area. If a peak is found at a distance from the scan border of less than one-half the edge dimension of the desired 1 g or 10 g cube, the measurement area should be enlarged if possible.

Zoom Scan

To evaluate the peak spatial-average SAR values for 1 g or 10 g cubes, fine resolution volume scans, called zoom scans, are performed at the peak SAR locations identified during the area scan. The minimum zoom scan volume size should extend at least 1.5 times the edge dimension of a 1 g cube in all directions from the center of the scan volume, for both 1 g and 10 g peak spatial-average SAR evaluations. Along the phantom curved surfaces, the front face of the volume facing the tissue/liquid interface conforms to the curved boundary, to ensure that all SAR peaks are captured. The back face should be equally distorted to maintain the correct averaging mass. The flatness and orientation of the four side faces are unchanged from that of a cube whose orientation is within \pm 30° of the line normal to the phantom at the center of the cube face next to the phantom surface. The peak local SAR locations that were determined in the area scan (interpolated values) should be used for the centers of the zoom scans. If a scan volume cannot be centered due to proximity of a phantom shape feature, the probe should be tilted to allow scan volume enlargement. If probe tilt is not feasible, the zoom-scan origin may be shifted, but not by more than half of the 1 g or 10 g cube edge dimension.

After the zoom-scan measurement, extrapolations from the closest measured points to the surface, for example along lines parallel to the zoom-scan centerline, and interpolations to a finer resolution between all measured and extrapolated points are performed. Extrapolation algorithm considerations are described in 6.5.3, and 3-D spline methods (Brishoual et al., 2001; Kreyszig, 1983; Press et al., 1996) can be used for interpolation. The peak spatial-average SAR is finally determined by a numerical averaging of the local SAR values in the interpolation grid, using for example a trapezoidal algorithm for the integration (averaging).

In some areas of the phantom, such as the jaw and upper head regions, the angle of the probe with respect to the line normal to the surface may be relatively large, e.g., greater than \pm 30°, which could increase the boundary effect error to a larger level. In these cases, during the zoom scan a change in the orientation of the probe, the phantom, or both is recommended but not required for the duration of

the zoom scan, so that the angle between the probe axis and the line normal to the surface is within 30° for all measurement points.

Power Drift measurement

The robot re-measures the E-Field in the same reference location measured at the Power Reference. The drift measurement gives the field difference in dB from the first to the last reference reading. This allows a user to monitor the power drift of the device under test that must remain within a maximum variation of ±5%.

Post-processing

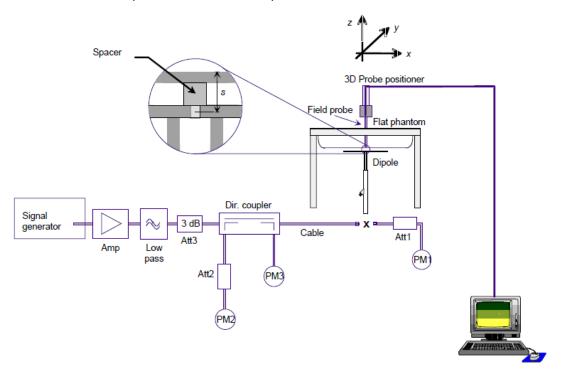
The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528 and IEC 62209-1/2 standards. It can be conducted for 1g and 10g.

The software allows evaluations that combine measured data and robot positions, such as:

- ✓ Maximum search
- ✓ Extrapolation
- ✓ Boundary correction
- ✓ Peak search for averaged SAR

Interpolation between the measured points is performed when the resolution of the grid is not fine enough to compute the average SAR over a given mass.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.


A.4 System and Liquid Check

A.4.1 System Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results.

The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

In the simplified setup for system check, the EUT is replaced by a calibrated dipole and the power source is replaced by a controlled continuous wave generated by a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the phantom at the correct distance.

The equipment setup is shown below:

- ✓ Signal Generator
- ✓ Amplifier
- ✓ Directional coupler
- ✓ Power meter
- ✓ Calibrated dipole

First, the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the connector (x) to the system check source. The signal generator is adjusted for the desired forward power at the connector as read by power meter PM1 after attenuation Att1 and also as coupled through Att2 to PM2. After connecting the cable to the source, the signal generator is readjusted for the same reading at power meter PM2.

SAR results are normalized to a forward power of 1W to compare the values with the calibration reports results as described at IEEE 1528 and IEC 62209 standards.

A.4.2 Liquid Check

The dielectric parameters check is done prior to the use of the tissue simulating liquid. The verification is made by comparing the relative permittivity and conductivity to the values recommended by the applicable standards.

The liquid verification was performed using the following test setup:

- ✓ VNA (Vector Network Analyzer)
- ✓ Open-Short-Load calibration kit
- ✓ RF Cable
- ✓ Open-Ended Coaxial probe
- ✓ DAK software tool
- ✓ SAR Liquid
- ✓ De-ionized water
- ✓ Thermometer

These are the target dielectric properties of the tissue-equivalent liquid material as defined in FCC OET KDB 865664 D01.

Frequency	Body SAR					
(MHz)	Er	σ (S/m)				
150	61.9	0.80				
300	58.2	0.92				
450	56.7	0.94				
835	55.2	0.97				
900	55.0	1.05				
1450	54.0	1.30				
1800-2000	53.3	1.52				
2450	52.7	1.95				
3000	52.0	2.73				
5800	48.2	6.00				

(ϵ_{r} = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)

The measurement system implement a SAR error compensation algorithm as documented in IEEE Std 1528-2013 (equivalent to draft standard IEEE P1528-2011) to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters (applied to only scale up the measured SAR, and not downward) so, according to FCC OET KDB 865664 D01, the tolerance for ϵ_r and σ may be relaxed to \pm 10%.

A.5 Test Equipment List SPEAG SAR System 1

ID	Device	Type/Model	Serial Number	Manufacturer	Calibration Date	Calibration Due Date
0218	Laptop Holder	P/N SN LHA 001 CD	-	SPEAG	NA	NA
0221	SAM Phantom	Twin SAM v5.0	1838	SPEAG	NA	NA
0222	Oval Flat Phantom	ELI v5.0	1260	SPEAG	NA	NA
0223	Measurement SW	DASY52	v52.8.8.1222	SPEAG	NA	NA
0225	Post processing SW	SEMCAD X	v14.6.10	SPEAG	NA	NA
0229	Light Beam Unit	LB5 / 80	-	di-soric	NA	NA
0231	6-axis Robot	TX60 L	F12/5MZ3A1/A/01	STAÜBLI	NA	NA
0233	Robot Controller	CS8C	F12/5MZ3A1/C/01	STAÜBLI	NA	NA
0235	Measurement Server	DASY5 P/N: SE UMS 011 EA	1444	SPEAG	NA	NA
0243	Electro-Optical Converter	EOC60	-	SPEAG	NA	NA
0260	Dosimetric E-field Probe	EX3DV4	7325	SPEAG	2016-12-08	2017-12-08
0418	Data Acquisition Electronics	DAE4	1496	SPEAG	2016-12-06	2017-12-06

Shared Instrumentation

ID	Device	Type/Model	Serial Number	Manufacturer	Calibration Date	Calibration Due
0098	USB Power Sensor	NRP-Z81	102278	R&S	2015-09-10	2017-09-10
0099	USB Power Sensor	NRP-Z81	102279	R&S	2015-09-10	2017-09-10
0114	Vector Signal Generator	ESG E4438C	MY45092885	Agilent	NA	NA
0124	5GHz System Validation Dipole	D5GHzv2	1164	SPEAG	2015-06-18	2017-06-18
0170	Power Amplifier	SAM-01	151922	ETS-Lindgren	NA	NA
0224	Liquid measurement SW	DAKS-3.5	V2.20.533	SPEAG	NA	NA
0230	Vector Reflectometer	PLANAR R140	0131013	Copper Mountain Technologies	2015-08-03	2017-08-03
0237	Dielectric Probe Kit	DAKS-3.5	1037	SPEAG	2016-06-14	2018-06-14
0239	2450MHz System Validation Dipole	D2450V2	937	SPEAG	2016-06-20	2018-06-20
0398	Temperature & Humidity Logger	TR-72NW-H + HHA-3151	Logger: 62180216 / Sensor: 0202622A	TandD	2016-02-01	2018-02-01
0408	Thermometer	TESTO 922	33622932	Testo	2015-09-29	2017-09-29
0412	Coupler	CD0.5-8-20-30	1251-002	Amd-group	NA	NA

Tissue Simulant Liquids

TSL	Manufacturer / Model	Freq Range (MHz)	Main Ingredients
Body WideBand	SPEAG MBBL600-6000V6 Batch 160630-01	600-6000	Ethanediol, Sodium petroleum sulfonate, Hexylene Glycol / 2-Methyl- pentane-2.4-diol, Alkoxylated alcohol

A.6 Measurement Uncertainty Evaluation

DASY5 Uncertainty Budget According to IEEE 1528-2013 and IEC 62209-1/2011 (3 - 6 GHz range)								
	Uncert.	Prob.	Div.	(ci)	(ci)	Std. Unc.	Std. Unc.	(vi)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	veff
Measurement System								
Probe Calibration	±6.55 %	N	1	1	1	±6.55 %	±6.55 %	∞
Axial Isotropy	±4.7 %	R	√3	0.7	0.7	±1.9 %	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	R	√3	0.7	0.7	±3.9 %	±3.9 %	∞
Boundary Effects	±2.0 %	R	√3	1	1	±1.2 %	±1.2 %	∞
Linearity	±4.7 %	R	√3	1	1	±2.7 %	±2.7 %	∞
System Detection Limits	±1.0 %	R	√3	1	1	±0.6 %	±0.6 %	∞
Modulation Responsem	±2.4 %	R	√3	1	1	±1.4 %	±1.4 %	∞
Readout Electronics	±0.3 %	N	1	1	1	±0.3 %	±0.3 %	8
Response Time	±0.8 %	R	√3	1	1	±0.5 %	±0.5 %	∞
Integration Time	±2.6 %	R	√3	1	1	±1.5 %	±1.5 %	8
RF Ambient Noise	±3.0 %	R	√3	1	1	±1.7 %	±1.7 %	∞
RF Ambient Reflections	±3.0 %	R	√3	1	1	±1.7 %	±1.7 %	8
Probe Positioner	±0.8 %	R	√3	1	1	±0.5 %	±0.5 %	8
Probe Positioning	±6.7 %	R	√3	1	1	±3.9 %	±3.9 %	~
Max. SAR Eval.	±4.0 %	R	√3	1	1	±2.3 %	±2.3 %	∞
Test Sample Related								
Device Positioning	±2.9 %	N	1	1	1	±2.9 %	±2.9 %	145
Device Holder	±3.6 %	N	1	1	1	±3.6 %	±3.6 %	5
Power Drift	±5.0 %	R	√3	1	1	±2.9 %	±2.9 %	∞
Power Scalingp	±0.0 %	R	√3	1	1	±0.0 %	±0.0 %	∞
Phantom and Setup								
Phantom Uncertainty	±6.6 %	R	√3	1	1	±3.8 %	±3.8 %	∞
SAR correction	±1.9 %	R	√3	1	0.84	±1.1 %	±0.9 %	8
Liquid Conductivity (mea.)DAK	±2.5 %	R	√3	0.78	0.71	±1.1 %	±1.0 %	∞
Liquid Permittivity (mea.) DAK	±2.5 %	R	√3	0.26	0.26	±0.3 %	±0.4 %	∞
Temp. unc Conductivity BB	±3.4 %	R	√3	0.78	0.71	±1.5 %	±1.4 %	∞
Temp. unc Permittivity BB	±0.4 %	R	√3	0.23	0.26	±0.1 %	±0.1 %	∞
Combined Std. Uncertain						±12.3 %	±12.2 %	748
Expanded STD Uncertain	nty					±24.6 %	±24.5 %	

SPEAG System Uncertainty budget (IEEE 1528-2013 & IEC 62209-1:2011)

DASY5 Uncertainty Budget According to IEC 62209-2/2010 [3] (30 MHz - 6 GHz range)								
	Uncert.	Prob.	Div.	(ci)	(ci)	Std. Unc.	Std. Unc.	(vi)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	veff
Measurement System								
Probe Calibration	±6.55 %	N	1	1	1	±6.55 %	±6.55 %	∞
Axial Isotropy	±4.7 %	R	√3	0.7	0.7	±1.9 %	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	R	√3	0.7	0.7	±3.9 %	±3.9 %	∞
Linearity	±4.7 %	R	√3	1	1	±2.7 %	±2.7 %	8
Modulation Response	±2.4 %	R	√3	1	1	±1.4 %	±1.4 %	∞
System Detection Limits	±1.0 %	R	√3	1	1	±0.6 %	±0.6 %	8
Boundary Effects	±2.0 %	R	√3	1	1	±1.2 %	±1.2 %	8
Readout Electronics	±0.3 %	N	1	1	1	±0.3 %	±0.3 %	8
Response Time	±0.8 %	R	√3	1	1	±0.5 %	±0.5 %	8
Integration Time	±2.6 %	R	√3	1	1	±1.5 %	±1.5 %	8
RF Ambient Noise	±3.0 %	R	√3	1	1	±1.7 %	±1.7 %	∞
RF Ambient Reflections	±3.0 %	R	√3	1	1	±1.7 %	±1.7 %	8
Probe Positioner	±0.8 %	R	√3	1	1	±0.5 %	±0.5 %	8
Probe Positioning	±6.7 %	R	√3	1	1	±3.9 %	±3.9 %	8
Post-processing	±4.0 %	R	√3	1	1	±2.3 %	±2.3 %	∞
Test Sample Related								
Device Holder	±3.6 %	N	1	1	1	±3.6 %	±3.6 %	5
Test sample Positioning	±2.9 %	N	1	1	1	±2.9 %	±2.9 %	145
Power Scaling	±0.0 %	R	√3	1	1	±0.0 %	±0.0 %	∞
Power Drift	±5.0 %	R	√3	1	1	±2.9 %	±2.9 %	8
Phantom and Setup								
Phantom Uncertainty	±7.9 %	R	√3	1	1	±4.4 %	±4.4 %	∞
SAR correction	±1.9 %	R	√3	1	0.84	±1.1 %	±0.9 %	8
Liquid Conductivity (mea.)DAK	±2.5 %	R	√3	0.78	0.71	±1.1 %	±1.0 %	∞
Liquid Permittivity (mea.) DAK	±2.5 %	R	√3	0.26	0.26	±0.3 %	±0.4 %	∞
Temp. unc Conductivity BB	±3.4 %	R	√3	0.78	0.71	±1.5 %	±1.4 %	∞
Temp. unc Permittivity BB	±0.4 %	R	√3	0.23	0.26	±0.1 %	±0.1 %	∞
Combined Std. Uncertain	ty					±12.5 %	±12.4 %	748
Expanded STD Uncertain	nty					±25.1 %	±25.0 %	

SPEAG System Uncertainty budget (IEC 62209-2:2010)

A.7 RF Exposure Limits

SAR assessments have been made in line with the requirements of FCC 47 CFR Part §2.1093 and RSS 102, Issue 5 on the limitation of exposure of the general population / uncontrolled exposure for portable devices.

Exposure Type	General Population / Uncontrolled Environment
Peak spatial-average SAR (averaged over any 1 gram of tissue)	1.6 W/kg
Whole body average SAR	0.08 W/kg
Peak spatial-average SAR (extremities) (averaged over any 10 grams of tissue)	4.0 W/kg

Annex B. Test Results

B.1 Test Conditions

B.1.1 SAR Test positions relative to the phantom

The device under test was an Intel® Dual-Band Wireless-AC 3168 card inside a 2 in 1 host platform convertible PC (TPN-W125 Series) using a set of PIFA antennas. The card was operated utilizing proprietary software (DRTU version 1.9.0-04034) and each channel was measured using a broadband power meter to determine the maximum average power.

According to FCC OET KDB 616217 D04, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom.

The SAR Test Exclusion Threshold in FCC OET KDB 447498 D01 v06 can be applied to determine SAR test exclusion for adjacent edge containing the antenna positioned perpendicular to the phantom. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

Considering the antenna location diagrams in *Annex F* and the test exclusions described before, the surfaces/edges to be measured for each antenna are:

	Distance	Antenna				
	Distance	Main	Aux			
Position	0mm	Back Face Top Edge	Back Face Top Edge			

See B.1.3 Evaluation Exclusion and Test Reductions for a more detailed list of the applied reductions.

B.1.2 Test signal, Output power and Test Frequencies

The device was put into operation by using an own control software (DRTU version 1.9.0-04034) to program the test mode required for select the continuous transmission with 100% duty cycle.

The output power of the device was set to transmit at maximum power for all tests.

B.1.3 Evaluation Exclusion and Test Reductions

SAR evaluation exclusion

The SAR Test Exclusion Threshold in FCC OET KDB 447498 D01 v06 can be applied to determine SAR test exclusion for adjacent edge configurations. For 100MHz to 6GHz and test separation distances ≤50mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following formula:

[(max. power of channel, including tune – up tolerance, mW)/(min. test separation distance, mm)]
$$\cdot \left[\sqrt{f_{(GHz)}} \right]$$

 $\leq 3.0 \ for \ 1g \ SAR, \ and \ \leq 7.5 \ for \ 10g \ extremity \ SAR$ (1)

Where:

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

For test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined using the following formulas:

$$\langle (Power allowed at numeric threshold for 50 mm in (1)) + (test separation distance - 50 mm) \cdot (f_{MHz}/150) \rangle mW,$$
 (2)
$$for 100MHz \text{ to } 1500MHz$$
 (2)
$$\langle (Power allowed at numeric threshold for 50 mm in (1)) + (test separation distance - 50 mm) \cdot 10) \rangle mW,$$
 for $1500MHz$ and $\leq 6GHz$ (3)

LAN			Bac	Тор	Right	Left	Bottom	
Antenna			Edge	ıt Edge	Edge	m Edge		
	DTS	17.5	56.2	≤ 50	≤ 50	>50	>50	>50
14/1 A N I	U-NII-1	17.0	50.1	≤ 50	≤ 50	>50	>50	>50
WLAN Main	U-NII-2A	17.0	50.1	≤ 50	≤ 50	>50	>50	>50
IVIAIII	U-NII-2C	17.0	50.1	≤ 50	≤ 50	>50	>50	>50
	U-NII-3	18.0	63.1	≤ 50	≤ 50	>50	>50	>50
WLAN Aux	ВТ	10	10	≤ 50	≤ 50	>50	>50	>50

Back Face	Top Edge	Right Edge	Left Edge	Bottom Edge
Т	Т	R	R	R
R	R	R	R	R
T T	Т	R	R	R
Т	Т	R	R	R
Т	Т	R	R	R
Т	Т	R	R	R

R: Reduced

See Annex *F* for a more detailed explanation of the separation distance related to the platform.

T: Tested required

SAR test reduction

General SAR test reduction

According to FCC OET KDB 447498 D01, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- \bullet ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

WLAN SAR Test reduction

Transmission Mode	SAR test exclusion/reduction
DSSS	According to FCC OET KDB 248227 D01, SAR is measured for 2.4 GHz 802.11b, SAR test reduction is determined according to the following: ■ When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. ■ When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel.
	According to FCC OET KDB 248227 D01, SAR is not required for 2.4 GHz OFDM conditions when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
	According to FCC OET KDB 248227 D01, 802.11a/g/n/ac modes have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.
	According to FCC OET KDB 248227 D01, an <i>initial test configuration</i> is determined for OFDM and DSSS transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. SAR test reduction for subsequent highest output test channels is determined according to reported SAR of the initial test configuration.
OFDM	The <u>initial test configuration</u> for 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures.
	When the specified maximum output power is the same for both U-NII-1 and U-NII-2A, begin SAR measurement in U-NII-2A and if the highest reported SAR for U-NII-2A is ≤1.2W/kg, SAR is not required for U-NII-1 if reported SAR is ≥1.2W/kg, both U-NII-1 and U-NII-2A shall be tested independently for SAR.
	According to FCC OET KDB 248227 D01, when the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is \leq 1.2 W/kg or all required channels are tested.

FO-011: Test Report 22 of 53

B.2 Conducted Power Measurements

B.2.1 WLAN 2.4GHz (DTS)

					M	lain		
Band	Mode	Data Rate	Ch#	Freq [MHz]	Avg Pwr [dBm]	Max output Pwr [dBm]	SAR Test?	
			1	2412	17.23	17.50	No ³	
	802.11b	1Mbps	6	2437	17.50	17.50	Yes	
			11	2462	17.42	17.50	No ³	
ίδ			1	2412	17.50			
40	802.11g	6Mbps	6	2437		17.50		
2.4GHz (DTS)			11	2462		17.50		
<u> </u>			1	2412		17.50		
),TC	802.11n20		6	2437	$NR^{1,2}$	17.50	No ²	
(6)		HT0	11	2462		17.50		
			3	2422		17.50		
	802.11n40		6	2437		17.50		
			9	2452		17.50		

- 1. NR: Not Required
- As per FCC OET KDB 248227 D01, conducted output power and SAR testing are not required for 802.11g/n20/n40 channels when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2W/kg.
 When the reported SAR of the initial test configuration is > 0.8W/kg, SAR measurement is required for the subsequent
- When the reported SAR of the initial test configuration is > 0.8W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤1.2W/kg or all required channels are tested

B.2.2 WLAN 5GHz (U-NII)

5.2GHz and 5.3GHz (U-NII-1 and U-NII-2A)

					N	1ain	SAR
Band	Mode	Data Rate	Ch#	Freq [MHz]	Avg Pwr [dBm]	Max output Pwr [dBm]	Test?
			36	5180		17.00	
	802.11a	6Mbps	40	5200		17.00	
(T)	002.11a	olvibps	44	5220		17.00	
5.2GHz (U-NII-1)			48	5240		17.00	
된 왕			36	5180		17.00	
(C	802.11n20		40	5200	NR ^{1,2}	17.00	No ^{1, 2}
ż	002.111120	HT0	44	5220		17.00	
<u> </u>		1110	48	5240		17.00	
)	902 11p10		38	5190		13.50	
	802.11n40	11n40	46	5230		17.00	
	802.11ac80	VHT0	42	5210		11.50	

Initial test configuration

- 1. NR: Not Required
- 2. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band (see §B.5.2 in this document).

					N	lain		
Band	Mode	Data Rate	Ch#	Freq [MHz]	Avg Pwr [dBm]	Max output Pwr [dBm]	SAR Test?	
			52	5260		17.00		
	802.11a	6Mbps	56	6 5280		17.00		
٥,	602.11a	olvibbs	60	5300		17.00		
.3G			64	5320	NR ^{1,2}	17.00	No ⁵	
Η̈́Z			52	5260	INIX ''-	17.00	INO	
5.3GHz (U-NII-2A)	902 11n20		56	5280		17.00		
ż	802.11n20	802.11n20	HT0	60	5300		17.00	
1-2		пто	64	5320		17.00		
ع	902 11n/0	000 44 = 40	54	5270	16.85	17.00	Yes	
	802.11n40		62	5310	15.27	15.50	162	
	802.11ac80	VHT0	58	5290	NR ^{1,2}	13.50	No ^{2,5}	

- 1. NR: Not Required
- 2. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, lowest order 802.11 mode is selected (i.e. a, g, n, then ac)
- 3. When the specified maximum output power is the same for both U-NII-1 and U-NII-2A, begin SAR measurement in U-NII-2A and if the highest reported SAR for U-NII-2A is
 - ≤1.2W/kg, SAR is not required for U-NII-1
 - ≥1.2W/kg, both U-NII-1 and U-NII-2A shall be tested independently for SAR
- 4. When the reported SAR of the initial test configuration is > 0.8W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤1.2W/kg or all required channels are tested.
- 5. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure requirements, is adjusted by the ratio of the subsequent test configuration to the initial test configuration specified maximum output power and the adjusted SAR is ≤1.2 W/Kg, SAR is not required for that subsequent test configuration

Rev 00

5.6GHz (U-NII-2C)

					N	lain	
Band	Mode	Data Rate	Ch#	Freq [MHz]	Avg Pwr [dBm]	Max output Pwr [dBm]	SAR Test?
			100	5500		17.00	
			104	5520		17.00	
			108	5540		17.00	
	802.11a	6Mbps	112	5560		17.00	
	002.11a	Olvibps	116	5580		17.00	
			120	5600		17.00	
			124	5620		17.00	
-			128 5640 NR ¹	17.00	No ^{4,6}		
5.60			100	5500	INIX.	17.00	INU ","
5.6GHz (U-NII-2C)			104 5520		17.00		
z (1			108	5540 17.00	17.00		
ż	802.11n20		112	5560		17.00	
	002.111120		116	5580		17.00	
2C)		⊔т∩	120	5600		17.00	
		HT0	124	5620		17.00	
			128	5640		17.00	
			102	5510	14.91	15.00	No ⁵
	802.11n40		110	5550	16.55	17.00	INO
			118	5590	16.73	17.00	Yes
			126	5630	16.56	17.00	Yes
	802.11ac80 VHT0 -	106	5530	NR¹	12.00	No ^{4,6}	
configurati		VIIIU	122	5610	INIX.	15.50	INO ","

- 1. NR: Not Required
- When band gap channels between U-NII-2C and U-NII-3 band are supported channels in U-NII-2C band below 5.65 GHz are considered as one band and channels above 5.65 GHz, together with channels in 5.8 GHz U-NII-3 or §15.247 band, are considered as a separate band
- 3. Additional conducted power measurement is required when reported SAR is > 1.2W/kg. In case the subsequent test configuration and the channel bandwidth is smaller than the initial test configuration, all channels that overlap with the larger channel bandwidth in the initial configuration should be tested
- 4. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, lowest order 802.11 mode is selected (i.e. a, g, n, then ac)
- 5. When the reported SAR of the initial test configuration is > 0.8W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤1.2W/kg or all required channels are tested.
- 6. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure requirements, is adjusted by the ratio of the subsequent test configuration to the initial test configuration specified maximum output power and the adjusted SAR is ≤1.2 W/Kg, SAR is not required for that subsequent test configuration

5.8GHz (U-NII-3)

	•				N	lain	
Band	Mode	Data Rate	Ch#	Freq [MHz]	Avg Pwr [dBm]	Max output Pwr [dBm]	SAR Test?
			132	5660		17.00	
			136	5680		17.00	
			140	5700		15.50	
	802.11a	6Mbps	149	5745		18.00	
	002.11a	Olvibps	153	5765		18.00	
(5			157	5785		18.00	
6			161	5805		18.00	
5.6-5.8GHz (U-NII-3)			165	5825		18.00	No ^{4,6}
<u> </u>			132	5660	NR ¹	17.00	
ᅺ			136	5680		17.00	
Ċ			140	5700		15.50	
Ż	802.11n20		149	5745		18.00	
<u>-3</u>	002.111120		153	5765		18.00	
		HT0	157	5785		18.00	
			161	5805		18.00	
			165	5825		18.00	
			134	5670		17.00	1
	802.11n40		151	5755		18.00	
			159	5795		18.00	
	802.11ac80	VHT0	138	5690	16.76	17.00	Yes
		VIIIU	155	5775	17.86	18.00	163

- NR: Not Required
- When band gap channels between U-NII-2C and U-NII-3 band are supported channels in U-NII-2C band below 5.65 GHz are considered as one band and channels above 5.65 GHz, together with channels in 5.8 GHz U-NII-3 or §15.247 band, are considered as a separate band
- Additional conducted power measurement is required when reported SAR is > 1.2W/kg. In case the subsequent test configuration and the channel bandwidth is smaller than the initial test configuration, all channels that overlap with the larger channel bandwidth in the initial configuration should be tested
- When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, lowest order 802.11 mode is selected (i.e. a, g, n, then ac)
- When the reported SAR of the initial test configuration is > 0.8W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤1.2W/kg or all required channels are tested
- When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure requirements, is adjusted by the ratio of the subsequent test configuration to the initial test configuration specified maximum output power and the adjusted SAR is ≤1.2 W/Kg, SAR is not required for that subsequent test configuration

B.2.3 **Bluetooth**

Band	Mode	Data Rate	Channel	Frequency (MHz)	Antenna	Avg Pwr [dBm])	Max output Pwr [dBm])
	Divista eth	Doois rata	0	2402		8.29	10.00
	Bluetooth v4.2	Basic rate GFSK	39	2441		8.13	10.00
	V4.Z	GFSK	78	2480		8.14	10.00
	Divataath	D	0	2402			7.00
2	Bluetooth v4.2	Basic rate π/4 DQPSK	39	2441	Aux		7.00
2.40	V4.Z	II/4 DQF3K	78	2480			7.00
.4GHz	Divista eth	Doois rata	0	2402		NR¹	7.00
N	Bluetooth v4.2	Basic rate 8-DPSK	39	2441			7.00
	V4.Z	0-DF3K	78	2480			7.00
	Bluetooth	21	0	2412			8.00
				2437			8.00
	v4.2	GFSK	39	2480			8.00

Initial test configuration

1. NR: Not Required

B.3 Tissue Parameters Measurement

Body TSL

Freq.	Target Parameters		Measured TSL Parameters		Devia	ation (%)	Date
(MHz)	٤'	σ	٤'	σ	٤'	σ	
2450	52.70	1.95	50.56	2.08	-4.06	6.96	2017-02-16
5300	48.88	5.41	45.37	5.43	-7.18	0.36	2017-02-16
5600	48.47	5.76	44.83	5.84	-7.50	1.35	2017-02-16
5800	48.20	6.00	44.50	6.11	-7.67	1.96	2017-02-16

See Annex D more details.

B.4 System Check Measurements

Body Measurements

Dody modean						
Frequency (MHz)	Average	Target SAR (W/Kg)	Measured SAR (W/Kg)	Deviation to target (%)	Limit (%)	Date
2450	1g	49.40	52.00	5.26		2017-02-17
2450	10g	23.40	24.10	2.99		2017-02-17
5300	1g	75.60	81.09	7.26		2017-02-16
5500	10g	21.20	22.60	6.59	±10	2017-02-10
5600	1g	78.20	84.67	8.28	±10	2017-02-16
3600	10g	21.70	23.63	8.90		2017-02-10
5800	1g	76.20	77.25	1.38		2017-02-16
5600	10g	21.00	21.44	2.11		2017-02-16

See Annex C for more details.

B.5 SAR Test Results

B.5.1 802.11b/g/n - 2.4GHz - DTS

Ant.	Mode Data rate	BW (MHz)	Ch#	Freq (MHz)	Position	Correct. Factor (dB)	SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Plot #
Main	802.11b	20	6	2437	Top Edge	0.00	0.30	0.30	1
ivialii	1Mbps	20	O	2437	Back Face	0.00	0.26	0.26	

B.5.2 802.11a/n/ac - 5.3 GHz - U-NII-2A

Ant.	Mode Data rate	BW (MHz)	Ch#	Freq (MHz)	Position	Correct. Factor (dB)	SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Plot #
			54	5270	Top Edge	0.15	0.80	0.83	2
Main	HT0	40	54	3270	Back Face	0.15	0.20	0.21	
			62	5310	Top Edge	0.23	0.65	0.68	

B.5.3 802.11a/n/ac - 5.6 GHz - U-NII-2C

Ant.	Mode Data rate	BW (MHz)	Ch#	Freq (MHz)	Position	Correct. Factor (dB)	SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Plot #
			118	5590	Top Edge	0.27	1.07	1.14	
Main	HT0	40	110	5590	Back Face	0.27	0.28	0.30	
			126	5630	Top Edge	0.44	1.06	1.17	3

B.5.4 802.11a/n/ac - 5.8 GHz - U-NII-3

Ant.	Mode Data rate	BW (MHz)	Ch#	Freq (MHz)	Position	Correct. Factor (dB)	SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Plot #
			138	5690	Top Edge	0.24	0.63	0.67	
Main	VHT0	80	155	5775	Top Edge	0.14	1.16	1.20	4
			155	5775	Back Face	0.14	0.38	0.39	

B.5.5 Bluetooth - 2.4GHz - DSSS

Mode Data rate	BW (MHz)	Ch#	Freq (MHz)	Position	Correct.Factor (dB)	SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Plot #
802.15	20	0	2402	Top Edge	1.71	0.04	0.06	5
DH5	20	U	2402	Back Face	1.71	0.03	0.04	

B.6 SAR Measurement Variability

According to FCC OET KDB 865664, SAR Measurement variability is assessed when the maximum initial measured SAR is >0.8 W/kg for a certain band/mode. If the measured SAR value of the initial repeated measurement is <1.45 W/kg with <20% variation, only one repeated measurement is required to confirm that the results are not expected to have substantial variations.

A second repeated measurement is required only if the measured results for the initial repeated measurement are within 10% of the SAR limit or vary by more than 20%.

A third repeated measurement is required only if the original, first or second repeated measurement ≥1.5W/Kg and the ratio of largest to smallest SAR for the original, first and second repeated measurement is > 1.2.

Band / Mode	Position	Ch#	Freq. (MHz)	Measured SAR 1g (W/kg)	1st Repeated SAR 1g (W/Kg)	2 nd Repeated SAR 1g (W/Kg)	Highest Ratio
5.6GHz 802.11n HT0	Top Edge	118	5590	1.07	0.90	-	1.19
5.8GHz 802.11ac VHT0	Top Edge	155	5775	1.16	1.15	-	1.01

B.7 Simultaneous Transmission SAR Evaluation

According to FCC OET KDB 447498 D01, when the sum of 1g SAR for all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration.

All the values stated in the table below are the worst case found for standalone measurement with disregard of the transmission mode or channel where the worst case was found

Antenna	Position	Highest Reported SAR (1g)			
Antenna	Position	WLAN 2.4GHz	WLAN 5GHz	Bluetooth	
Main	Top Edge	0.30	1.20		
	Back Face	0.26	0.39		
Aux	Top Edge			0.06	
Aux	Back Face			0.04	

Position	Simultaneous Tx A	Antenna Combination	Σ SAR 1g (W/Kg)	Limit (W/kg)
	Main Antenna	Aux Antenna		
Top Edge	WLAN 5GHz	BT	1.26	
Top Edge	WLAN 2.4GHz	BT	0.36	1.6
Back Face	WLAN 5GHz	BT	0.43	1.0
Dack Face	WLAN 2.4GHz	BT	0.30	

Considering the results described above and according to the simultaneous transmission evaluation exclusions described in FCC OET KDB 447498 D01, no SAR to peak location measurement is required.

Annex C. Test System Plots

1.	DTS - 802.11b, CH6, Main Antenna – Top Edge	33
2.	U-NII-2A - 802.11n40, CH54, Main Antenna – Top Edge	34
3.	U-NII-2C - 802.11n40, CH126, Main Antenna – Top Edge	35
4.	U-NII-3 - 802.11ac80, CH155, Main Antenna – Top Edge	36
5.	BT - 802.11b, CH0, Aux Antenna – Top Edge	37
6.	System Check Body Liquid 2450MHz	38
7.	System Check Body Liquid 5300MHz	39
8.	System Check Body Liquid 5600MHz	40
9.	System Check Body Liquid 5800MHz	41

1. DTS - 802.11b, CH6, Main Antenna – Top Edge

Test Laboratory: Intel WRF Lab; Date/Time: 2017-02-17 10:52:51

DUT: TPN-W125 + 3168 NGW; Type: CPC; Serial: 34:13:E8:51:DD:12

Communication System: UID 0, 802.11 (0); Communication System Band: 2.4GHz; Frequency: 2437 MHz: Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.074$ S/m; $\varepsilon_r = 50.582$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN7325; ConvF(7.53, 7.53, 7.53); Calibrated: 2016-12-08;
 - Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = -9.0, 25.0
- Electronics: DAE4 Sn1496; Calibrated: 2016-12-06
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002BA;
- DASY52 52.8.8(1222);

Top-Edge_2.4GHz/DTS_802.11b_CH6-2437MHz_Main/Area Scan (51x91x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.304 W/kg

Top-Edge_2.4GHz/DTS_802.11b_CH6-2437MHz_Main/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.989 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.732 W/kg

SAR(1 g) = 0.299 W/kg; SAR(10 g) = 0.133 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 0.360 W/kg

0 dB = 0.360 W/kg = -4.44 dBW/kg

2. U-NII-2A - 802.11n40, CH54, Main Antenna - Top Edge

Test Laboratory: Intel WRF Lab; Date/Time: 2017-02-16 12:53:37

DUT: TPN-W125 + 3168 NGW; Type: CPC; Serial: 34:13:E8:51:DD:12

Communication System: UID 0, 802.11 (0); Communication System Band: 5GHz; Frequency: 5270

MHz; Communication System PAR: 0 dB

Medium parameters used: f = 5270 MHz; σ = 5.395 S/m; ε_r = 45.422; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN7325; ConvF(4.43, 4.43, 4.43); Calibrated: 2016-12-08;
 - Modulation Compensation:
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)),
 Sensor-Surface: 2mm (Mechanical Surface Detection), z = -9.0, 25.0
- Electronics: DAE4 Sn1496; Calibrated: 2016-12-06
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002BA;
- DASY52 52.8.8(1222);

Top-Edge_5GHz/UNII-2A_802.11n40_CH54-5270MHz_Main/Area Scan (41x101x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.16 W/kg

Top-Edge_5GHz/UNII-2A_802.11n40_CH54-5270MHz_Main/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

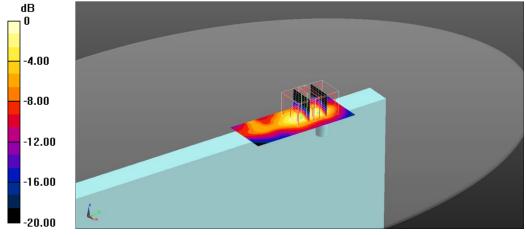
Reference Value = 14.97 V/m; Power Drift = -0.24 dB

Peak SAR (extrapolated) = 2.48 W/kg

SAR(1 g) = 0.611 W/kg; SAR(10 g) = 0.222 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 1.20 W/kg

Top-Edge_5GHz/UNII-2A_802.11n40_CH54-5270MHz_Main/Zoom Scan (7x7x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 14.97 V/m; Power Drift = -0.24 dB

Peak SAR (extrapolated) = 3.39 W/kg

SAR(1 g) = 0.800 W/kg; SAR(10 g) = 0.269 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 1.55 W/kg

0 dB = 1.55 W/kg = 1.90 dBW/kg

3. U-NII-2C - 802.11n40, CH126, Main Antenna - Top Edge

Test Laboratory: Intel WRF Lab; Date/Time: 2017-02-16 13:15:34

DUT: TPN-W125 + 3168 NGW; Type: CPC; Serial: 34:13:E8:51:DD:12

Communication System: UID 0, 802.11 (0); Communication System Band: 5GHz; Frequency: 5630

MHz; Communication System PAR: 0 dB

Medium parameters used: f = 5630 MHz; σ = 5.882 S/m; ϵ_r = 44.791; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

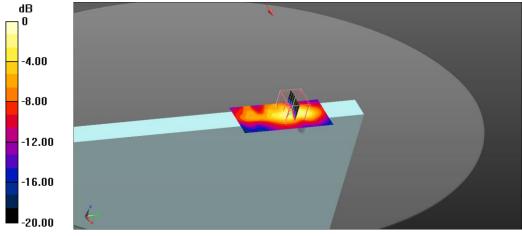
DASY Configuration:

- Probe: EX3DV4 SN7325; ConvF(3.91, 3.91, 3.91); Calibrated: 2016-12-08;
 - Modulation Compensation:
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)),
 Sensor-Surface: 2mm (Mechanical Surface Detection), z = -9.0, 25.0
- Electronics: DAE4 Sn1496; Calibrated: 2016-12-06
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002BA;
- DASY52 52.8.8(1222);

Top-Edge_5GHz/UNII-2C_802.11n40_CH126-5630MHz_Main/Area Scan (41x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.89 W/kg

Top-Edge_5GHz/UNII-2C_802.11n40_CH126-5630MHz_Main/Zoom Scan (7x7x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 20.80 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 4.62 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.359 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 2.28 W/kg

0 dB = 2.28 W/kg = 3.58 dBW/kg

4. U-NII-3 - 802.11ac80, CH155, Main Antenna - Top Edge

Test Laboratory: Intel WRF Lab; Date/Time: 2017-02-16 18:45:34

DUT: TPN-W125 + 3168 NGW; Type: CPC; Serial: 34:13:E8:51:DD:12

Communication System: UID 0, 802.11 (0); Communication System Band: 5GHz; Frequency: 5775

MHz; Communication System PAR: 0 dB

Medium parameters used (interpolated): f = 5775 MHz; $\sigma = 6.079$ S/m; $\epsilon_r = 44.545$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

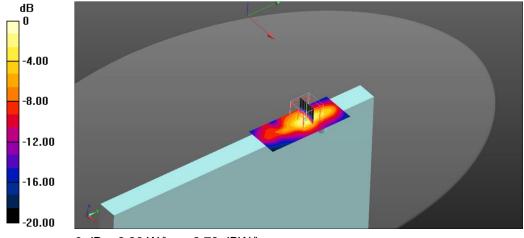
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN7325; ConvF(4.03, 4.03, 4.03); Calibrated: 2016-12-08;
 - Modulation Compensation:
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)),
 Sensor-Surface: 2mm (Mechanical Surface Detection), z = -9.0, 25.0
- Electronics: DAE4 Sn1496; Calibrated: 2016-12-06
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002BA;
- DASY52 52.8.8(1222);

Top-Edge_5GHz/UNII-3_802.11ac80_CH155-5775MHz_Main/Area Scan (41x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.90 W/kg


Top-Edge_5GHz/UNII-3_802.11ac80_CH155-5775MHz_Main/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 22.05 V/m; Power Drift = -0.26 dB

Peak SAR (extrapolated) = 5.24 W/kg

SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.384 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 2.39 W/kg

0 dB = 2.39 W/kg = 3.78 dBW/kg

5. BT - 802.11b, CH0, Aux Antenna - Top Edge

Test Laboratory: Intel WRF Lab; Date/Time: 2017-02-17 11:28:49

DUT: TPN-W125 + 3168 NGW; Type: CPC; Serial: 34:13:E8:51:DD:16

Communication System: UID 0, 802.15 (0); Communication System Band: 2.4GHZ; Frequency: 2402

MHz; Communication System PAR: 1.133 dB

Medium parameters used (interpolated): f = 2402 MHz; $\sigma = 2.043$ S/m; $\epsilon_r = 50.638$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

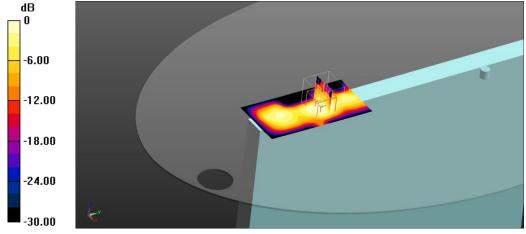
- Probe: EX3DV4 SN7325; ConvF(7.53, 7.53, 7.53); Calibrated: 2016-12-08;
 - Modulation Compensation
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = -9.0, 25.0
- Electronics: DAE4 Sn1496; Calibrated: 2016-12-06
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002BA;
- DASY52 52.8.8(1222);

Top-Edge_2.4GHz/BT_802.11b_CH0-2402MHz_Main/Area Scan (51x101x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0496 W/kg

Top-Edge_2.4GHz/BT_802.11b_CH0-2402MHz_Main/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.123 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.0860 W/kg

SAR(1 g) = 0.040 W/kg; SAR(10 g) = 0.018 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 0.0450 W/kg

0 dB = 0.0450 W/kg = -13.47 dBW/kg

6. System Check Body Liquid 2450MHz

Test Laboratory: Intel WRF Lab; Date/Time: 2017-02-17 15:43:24

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:937

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz);

Frequency: 2450 MHz; Communication System PAR: 0 dB

Medium parameters used: f = 2450 MHz; σ = 2.086 S/m; ε_r = 50.561; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

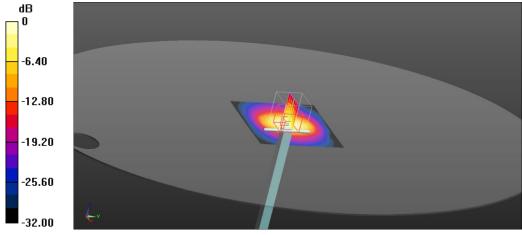
- Probe: EX3DV4 SN7325; ConvF(7.53, 7.53, 7.53); Calibrated: 2016-12-08;
 - Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = -14.0, 31.0
- Electronics: DAE4 Sn1496; Calibrated: 2016-12-06
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002BA;
- DASY52 52.8.8(1222);

WLAN-2.4GHz/System check 2450MHz/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm,

dy=1.200 mm

Maximum value of SAR (interpolated) = 5.98 W/kg

WLAN-2.4GHz/System check 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 53.86 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 10.6 W/kg

SAR(1 g) = 5.2 W/kg; SAR(10 g) = 2.41 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 5.99 W/kg

0 dB = 5.99 W/kg = 7.77 dBW/kg

7. System Check Body Liquid 5300MHz

Test Laboratory: Intel WRF Lab; Date/Time: 2017-02-16 16:45:48

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1164

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0

MHz); Frequency: 5300 MHz; Communication System PAR: 0 dB

Medium parameters used: f = 5300 MHz; σ = 5.436 S/m; ε_r = 45.369; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

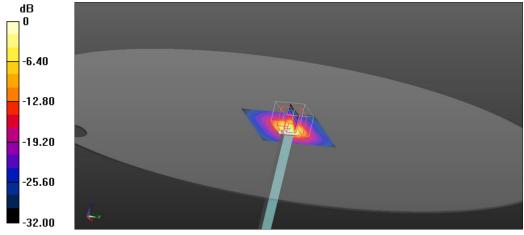
- Probe: EX3DV4 SN7325; ConvF(4.43, 4.43, 4.43); Calibrated: 2016-12-08;
 - Modulation Compensation:
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE4 Sn1496; Calibrated: 2016-12-06
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002BA;
- DASY52 52.8.8(1222);

WLAN-5GHz/System check 5300MHz/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Maximum value of SAR (interpolated) = 16.5 W/kg

WLAN-5GHz/System check 5300MHz/Zoom Scan (9x9x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 60.67 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 8.11 W/kg; SAR(10 g) = 2.26 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

8. System Check Body Liquid 5600MHz

Test Laboratory: Intel WRF Lab; Date/Time: 2017-02-16 17:26:40

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1164

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0

MHz); Frequency: 5600 MHz Communication System PAR: 0 dB

Medium parameters used: f = 5600 MHz; σ = 5.844 S/m; ε_r = 44.834; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

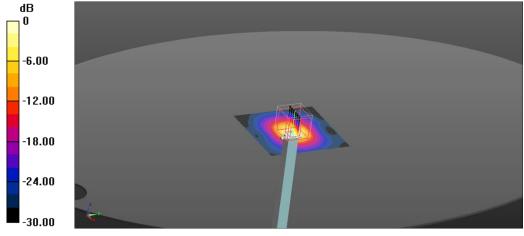
DASY Configuration:

- Probe: EX3DV4 SN7325; ConvF(3.91, 3.91, 3.91); Calibrated: 2016-12-08;
 - Modulation Compensation:
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)),
 Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE4 Sn1496: Calibrated: 2016-12-06
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002BA;
- DASY52 52.8.8(1222);

WLAN-5GHz/System check 5600MHz/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Maximum value of SAR (interpolated) = 18.5 W/kg


WLAN-5GHz/System check 5600MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 59.95 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 36.9 W/kg

SAR(1 g) = 8.42 W/kg; SAR(10 g) = 2.35 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 18.0 W/kg

0 dB = 18.0 W/kg = 12.55 dBW/kg

9. System Check Body Liquid 5800MHz

Test Laboratory: Intel WRF Lab; Date/Time: 2017-02-16 18:18:42

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1164

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0

MHz); Frequency: 5800 MHz; Communication System PAR: 0 dB

Medium parameters used: f = 5800 MHz; σ = 6.118 S/m; ϵ_r = 44.503; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

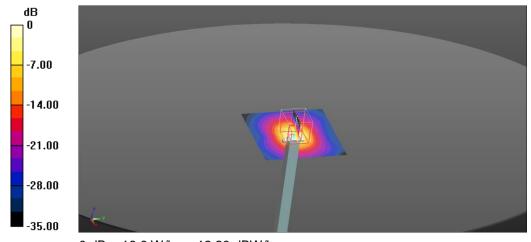
- Probe: EX3DV4 SN7325; ConvF(4.03, 4.03, 4.03); Calibrated: 2016-12-08;
 - Modulation Compensation:
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)),
 Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE4 Sn1496; Calibrated: 2016-12-06
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002BA;
- DASY52 52.8.8(1222);

WLAN-5GHz/System check 5800MHz/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Maximum value of SAR (interpolated) = 16.4 W/kg

WLAN-5GHz/System check 5800MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,

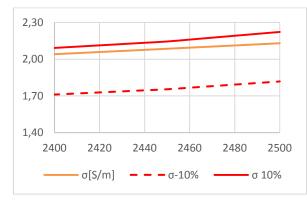

dy=4mm, dz=2mm

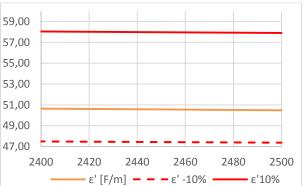
Reference Value = 56.41 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 35.5 W/kg

SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.14 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 16.6 W/kg

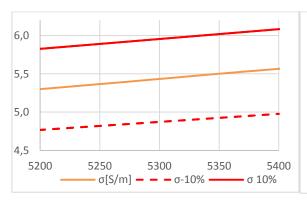

0 dB = 16.6 W/kg = 12.20 dBW/kg

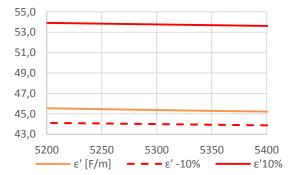


Annex D. TSL Dielectric Parameters

Body DTS 2450MHz

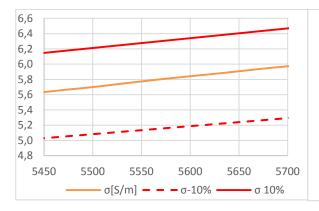
		2017-	02-16	
Freq.	Tar	get	Measured	
(MHz)	٤'	σ	٤'	σ
2400	52.77	1.90	50.64	2.04
2410	52.75	1.91	50.63	2.05
2420	52.74	1.92	50.61	2.06
2430	52.73	1.93	50.59	2.07
2440	52.71	1.94	50.58	2.08
2450	52.70	1.95	50.56	2.08
2460	52.69	1.96	50.55	2.09
2470	52.67	1.98	50.53	2.10
2480	52.66	1.99	50.51	2.11
2490	52.65	2.01	50.50	2.12
2500	52.64	2.02	50.48	2.13

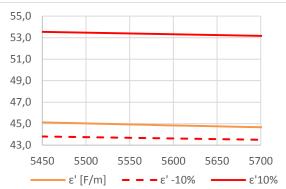




Body U-NII-2A 5300MHz

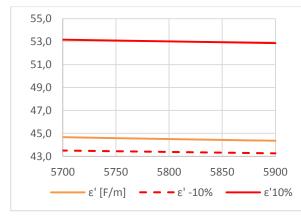
		2017-	02-16	
Freq.	Tar	get	Meas	sured
(MHz)	٤'	σ	ε'	σ
5200	49.01	5.30	45.54	5.30
5210	49.00	5.31	45.53	5.31
5220	48.99	5.32	45.51	5.33
5230	48.97	5.33	45.49	5.34
5240	48.96	5.34	45.47	5.35
5250	48.95	5.36	45.46	5.37
5260	48.93	5.37	45.44	5.38
5270	48.92	5.38	45.42	5.39
5280	48.91	5.39	45.40	5.41
5290	48.89	5.40	45.39	5.42
5300	48.88	5.41	45.37	5.43
5310	48.87	5.43	45.35	5.45
5320	48.85	5.44	45.34	5.46
5330	48.84	5.45	45.32	5.47
5340	48.82	5.46	45.30	5.49
5350	48.81	5.47	45.29	5.50
5360	48.80	5.48	45.27	5.51
5370	48.78	5.50	45.26	5.53
5380	48.77	5.51	45.25	5.54
5390	48.76	5.52	45.24	5.55
5400	48.74	5.53	45.22	5.57

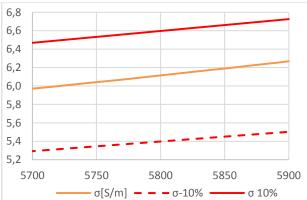




Body U-NII-2C 5600MHz

			2017-	02-16
Freq.	Target		Meas	sured
(MHz)	٤'	σ	ε'	σ
5450	48.68	5.59	45.12	5.63
5460	48.66	5.60	45.10	5.65
5470	48.65	5.61	45.08	5.66
5480	48.63	5.62	45.06	5.67
5490	48.62	5.64	45.05	5.69
5500	48.61	5.65	45.03	5.70
5510	48.59	5.66	45.00	5.71
5520	48.58	5.67	44.99	5.73
5530	48.57	5.68	44.97	5.74
5540	48.55	5.69	44.95	5.76
5550	48.54	5.71	44.93	5.77
5560	48.53	5.72	44.91	5.79
5570	48.51	5.73	44.90	5.80
5580	48.50	5.74	44.87	5.82
5590	48.49	5.75	44.85	5.83
5600	48.47	5.76	44.83	5.84
5610	48.46	5.78	44.82	5.85
5620	48.44	5.79	44.81	5.87
5630	48.43	5.80	44.79	5.88
5640	48.42	5.81	44.77	5.89
5650	48.40	5.82	44.75	5.91
5660	48.39	5.83	44.74	5.92
5670	48.38	5.85	44.72	5.93
5680	48.36	5.86	44.70	5.95
5690	48.35	5.87	44.68	5.96
5700	48.34	5.88	44.67	5.97





Body U-NII-3 5800MHz

		2017-	02-16	
Freq.	Tai	rget	Meas	sured
(MHz)	٤'	σ	٤'	σ
5700	48.34	5.88	44.67	5.97
5710	48.32	5.89	44.65	5.98
5720	48.31	5.90	44.63	6.00
5730	48.30	5.92	44.62	6.01
5740	48.28	5.93	44.60	6.03
5750	48.27	5.94	44.58	6.04
5760	48.25	5.95	44.57	6.06
5770	48.24	5.96	44.55	6.07
5780	48.23	5.97	44.54	6.08
5790	48.21	5.99	44.52	6.10
5800	48.20	6.00	44.50	6.11
5810	48.19	6.01	44.49	6.13
5820	48.17	6.02	44.47	6.15
5830	48.16	6.03	44.46	6.16
5840	48.15	6.04	44.44	6.18
5850	48.13	6.06	44.43	6.19
5860	48.12	6.07	44.41	6.21
5870	48.10	6.08	44.39	6.22
5880	48.09	6.09	44.38	6.24
5890	48.08	6.10	44.37	6.25
5900	48.06	6.11	44.36	6.27

Annex E. Calibration Certificates

ID	Device	Type/Model	Serial Number	Manufacturer	Calibration Certificate
0260	Dosimetric E-field Probe	EX3DV4	7325	SPEAG	
0239	2450MHz System Validation Dipole	D2450V2	937	SPEAG	(
0124	5GHz System Validation Dipole	D5GHzv2	1164	SPEAG	

Dipole calibration

According to the KDB 865664 D01, a dipole must be calibrated using a fully validated SAR system according to the tissue dielectric parameters and SAR probe calibration frequency required for device testing. However, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements.

- 1. When the most recent return-loss result, measured at least annually, deviates by more than 20% from the previous measurement (i.e. value in dB x 0.2) or not meeting the required 20 dB minimum return-loss requirement.
- 2. When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 Ω from the previous measurement

The below results show the latest return loss and impedance measurements for each dipole performed by the lab:

Dipole 2450MHz Body TSL						
	Return Loss [dB]	Impedance [Ω]	Date			
Last	-26.30	51.1 + 4.8 j	2016-06-22			
Dipole 5200MHz Body TSL						
	Return Loss [dB]	Impedance [Ω]	Date			
Previous	-21.57	48.59 – 8.14 j	2015-06-18			
Last	-21.05	47.30 – 6.14 j	2016-06-16			
Difference	-12.72%	1.29 + 2 j				
	Dipole 5300	MHz Body TSL				
	Return Loss [dB]	Impedance [Ω]	Date			
Previous	-24.37	48.26 – 5.69 j	2015-06-18			
Last	-25.01	51.32 – 5.38 j	2016-06-16			
Difference	13.70%	3.06 + 0.31 j				
	Dipole 5500	MHz Body TSL				
	Return Loss [dB]	Impedance [Ω]	Date			
Previous	-30.27	51.60 – 2.67 j	2015-06-18			
Last	-30.29	48.37 – 3.07 j	2016-06-16			
Difference	0.45%	-3.23 – 0.4 j				
		MHz Body TSL				
	Return Loss [dB]	Impedance [Ω]	Date			
Previous	-26.79	53.32 – 3.37 j	2015-06-18			
Last	-26.35	49.61 – 2.33 j	2016-06-16			
Difference	-10.66%	3.71 + 1.04 j				
Dipole 5800MHz Body TSL						
	Return Loss [dB]	Impedance [Ω]	Date			
Previous	-23.97	55.20 – 4.16 j	2015-06-18			
Last	-23.45	52.30 – 2.62 j	2016-06-16			
Difference	-12.71%	- 2.9 + 1.54 j				