

Test Report

Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

Intel Corporation Model: 112BNMMW

UPN: 1000M-112BNM (Model # 112BNMMW)

1000M-112BNMU (Model # 112BNMU)

FCC ID: PD9112BNM

PD9112BNMU

GRANTEE: Intel Corporation

2111 N.E. 25th Avenue

Hillsborough, OR 97124-5961

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

IC Site Registration #: 2845B-3, 2845B-4

REPORT DATE: May 22, 2009

-

FINAL TEST DATE: May 8, May 11, May 12, May 13, May 14, May

15 and May 19, 2009

AUTHORIZED SIGNATORY:

Mark Briggs

Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

Test Report Report Date: May 22, 2009

REVISION HISTORY

	Rev#	Date	Comments	Modified By
ĺ	-	May 28, 2009	Initial Release	-

File: R75549 Page 2 of 21

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	
SCOPE	
OBJECTIVE	
ODJEC 11 VE	,
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	9
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	12
MEASUREMENT INSTRUMENTATION	13
RECEIVER SYSTEM	13
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLEINSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTSSPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	21

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 2: Test Measurement Data3	;

File: R75549 Page 4 of 21

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model 112BNMMW pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Intel Corporation model 112BNMMW and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

File: R75549 Page 5 of 21

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model 112BNMMW complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R75549 Page 6 of 21

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM and DSSS	Device mist use digital modulation	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	802.11b: 9.9 MHz 802.11g: 16.5 MHz n20: 17.8 MHz n40: 35.7 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	802.11b: 13.2 MHz 802.11g: 17.6 MHz n20: 18.6 MHz n40: 36.6 MHz	Information only	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11b: 16.7 dBm 802.11g: 17.2 dBm (0.052 W) n20: 17.0 dBm n40: 12.9 dBm (0.0195 W) EIRP = 0.109 W ^{Note 1}	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	802.11b: -6.2 dBm / 3kHz 802.11g: -8.0 dBm /3 kHz 802.11n 20MHz -9.2 dBm /3 kHz 802.11n 40MHz -14.7 dBm /3 kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All emissions less than -30dBc limit	$<$ -30dBc $^{Note 2}$	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	802.11n 20MHz 51.4dBμV/m @ 2390.0MHz (margin: 2.6dB) 802.11g 51.0dBμV/m @ 2483.5MHz (margin: 3.0dB)	15.207 in restricted bands, all others <-30dBc Note 2	Complies

Note 1: EIRP calculated using antenna gain of 3.2 dBi.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4(4).

File: R75549 Page 7 of 21

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	uFL non-standard connector	Non-standard connector	Complies
-	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	38.6dBµV/m @ 59.052MHz	RSS GEN 7.2.3 Table 1	Complies (-1.4dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	43.6dBμV @ 1.931MHz	Refer to standard	Complies (-12.4dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements (pages .	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual	Page 218 of Condor Peak User Guide pdf document.	Statement required regarding non- interference	Complies
	RSP 100 RSS GEN 7.1.5	User Manual	Not applicable, device is installed by OEM or integrator and end user does not have access to the antennas.	Statement regarding detachable antenna	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of k=2, which gives a level of confidence of approximately 95%. The levels were found to be below levels of *U*cispr and therefore no adjustment of the data for measurement uncertainty is required.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	0.015 to 30	± 3.0
Radiated Emissions	30 to 1000	± 3.6
Radiated Emissions	1000 to 40000	± 6.0

File: R75549 Page 8 of 21

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model 112BNMMW is a is a 1x2 802.11bgn Mini PCIe card designed for use in laptop or other similar host systems.

Testing for the AC conducted emissions was performed with the card installed inside a host laptop with antenna connections to the integrated antennas in the host system. All other tests detailed in this test report were performed with the module installed into a test fixture such that it was fully exposed as required for the evaluation of a device against FCC and Industry Canada requirements for modular approvals. The test fixture was powered from 3.3Vdc provided by a bench-top power supply.

The sample was received on May 8, 2009 and tested on May 8, May 11, May 12, May 13, May 14, May 15 and May 19, 2009. The EUT consisted of the following component(s):

Manufacturer	Model	Description	MAC Address	FCC ID		
Intel	112BNMMW	1x2 bgn Mini	001E6400493E	PD9112BNM		
		PCIe	001E64004794	PD9112BNMU		
001E6400493E was used for AC conducted emissions testing. 001E64004794 was used						
for all others.						

ANTENNA SYSTEM

The antenna system used with the Intel Corporation model 112BNMMW would typically be integrated into the display section of the host laptop. For the purposes of testing the device was tested with the Intel Universe Antenna (gain 3.2dBi in the 2.4GHz band) and the antennas were mounted to a glass fixture to simulate the laptop installation.

ENCLOSURE

The EUT does not have an enclosure. The device does have a shield in order to meet the requirements for certification under the FCC and Industry Canada requirements for modular approval.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

File: R75549 Page 9 of 21

SUPPORT EQUIPMENT

The following equipment was used as support equipment for conducted emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID	
Toshiba	PSAG8U-	Laptop PC(Host)	49290792Q	N/A	
	04001W				
Toshiba	Toshiba ADP-75SB AB Laptop AC		N/A	N/A	
	Transformer				
HP	ThinkJet 5650	Printer	MY3883K42P	N/A	
Notgoor	FS108	HUB(Fast	FS18H2BCB092	N/A	
Netgear	L2109	Ethernet Switch)	554	IV/A	
The Ethernet Hub was located remotely, all other equipment was located locally.					

EUT INTERFACE PORTS

The I/O cabling configuration during AC conducted emissions testing was as follows:

Port	Connected To	Cable(s)			
Polt	Connected 10	Description	Shielded or Unshielded	Length(m)	
Laptop Ethernet	HUB(Remote)	Multiwire	Unshielded	10.0	
Laptop DC	AC-DC adapter	integral to adapter	Unshielded	1.0	
AC-DC adapter AC	AC power	3-wire	Unshielded	1.0	
Laptop USB	Printer	USB	Shielded (With integrated Ferrite)	2.0	
Printer	AC power Adapter	3-wire	Unshielded (With integrated Ferrite)	1.0	

For all other tests the I/O cabling configuration was as follows:

Port	Connected To	Cable(s)			
Polt	Connected 10	Description	Shielded or Unshielded	Length(m)	
Test fixture PCI	Laptop PCI	Ribbon Cable	Unshielded	0.8	
Test fixture 3.3Vdc	Bench supply	2-wire	Unshielded	0.8	

EUT OPERATION

During AC conducted emissions testing the EUT was being controlled by the CRTU tool to operate in a continuous transmit mode on the center channel. In addition the laptop was displaying a scrolling 'H' pattern on the screen and had link enabled to both the ethernet and USB peripherals.

During receiver tests the EUT was being controlled by the Intel CRTU tool to operate in a continuous receive mode on the center channel.

File: R75549 Page 10 of 21

During transmitter tests the EUT was being controlled by the Intel CRTU tool to operate in a continuous transmit mode on the top, bottom or center channel as required and in each of the different modulation modes. The data rates of 1Mb/s for 802.11b, 6Mb/s for 802.11g, 6.5Mb/s / 13.0Mb/s for 802.11n modes were selected based on preliminary testing that identified those data rates having the highest output power in each mode (see table below) when the device is operated under EEPROM control, which reduces power as the data rate is increased to ensure signal integrity.

Mode	Data Rate	Output Power
802.11b	1	14.8
	2	14.7
	5.5	14.6
	11	14.6
802.11g	6	12.5
	9	12.4
	12	12.3
	18	12.3
	24	12.2
	36	12.1
	48	12.1
	54	10.6
802.11n (20MHz)	6.5	12.3
	13	12.1
	19.5	12.2
	26	12.2
	39	12.1
	52	12.0
	58.5	10.9
	65	8.9
802.11n (40MHz)	13.5	9.2
	27	9.1
	40.5	9.0
	54	8.9
	81	8.8
	108	8.6
	121.5	8.6
	135	8.5

File: R75549 Page 11 of 21

¹ These power measurements were made on the Half-size version of the card, which uses the same EEPROM control for output power versus data rate.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on May 8, May 11, May 12, May 13, May 14, May 15 and May 19, 2009 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	
Chamber 3	769238	IC 4549-3	41039 Boyce Road
Chamber 4	211948	IC 4549-4	Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R75549 Page 12 of 21

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R75549 Page 13 of 21

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

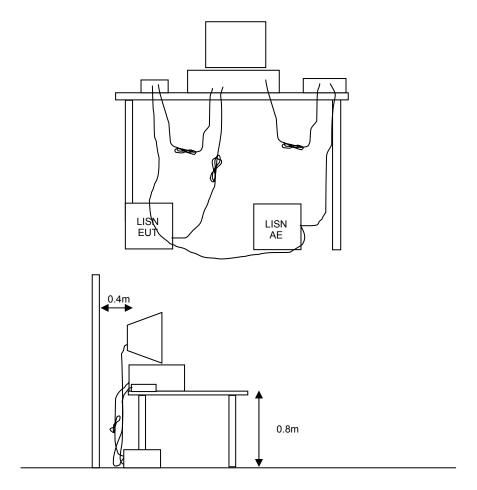
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R75549 Page 14 of 21


TEST PROCEDURES

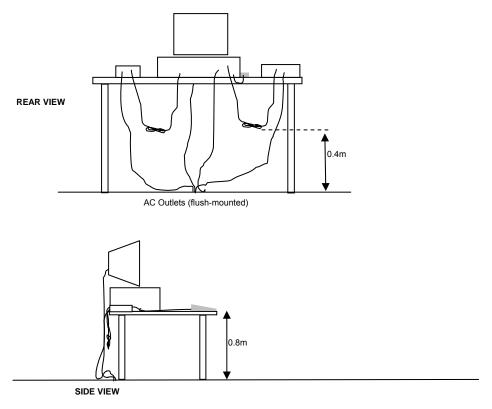
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

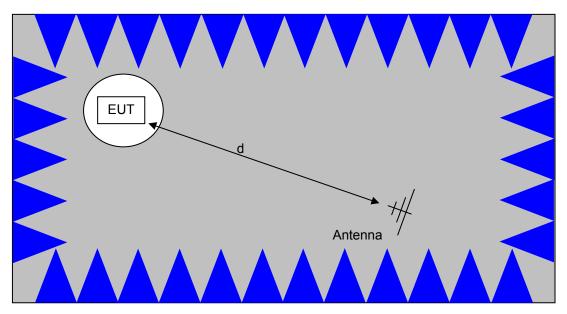
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

File: R75549 Page 15 of 21

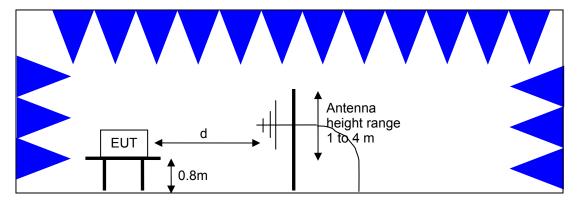

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.


Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


Typical Test Configuration for Radiated Field Strength Measurements

File: R75549 Page 16 of 21

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R75549 Page 17 of 21

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

File: R75549 Page 18 of 21

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz - 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

File: R75549 Page 19 of 21

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 – 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

File: R75549 Page 20 of 21

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 $D_m = Measurement Distance in meters$

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R75549 Page 21 of 21

Asset #

Cal Due

EXHIBIT 1: Test Equipment Calibration Data

Radio Antenna Port (Power and Spurious Emissions), 09-May-09	Radio	Antenna	Port	(Power	and	Spurious	Emissions)	, 09-May	-09
--	-------	----------------	-------------	--------	-----	-----------------	--------------------	----------	------------

Engineer: FTEMC

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	06-Dec-09
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	10-Apr-10

Radio Spurious E	Radio Spurious Emissions, 12-May-09				
Engineer: Suhaila	Engineer: Suhaila Khushzad				
Manufacturer	<u>Description</u>	Model #			
	Microwave Preamplifier, 1-	0.4.400			

Hewlett Packard	26.5GHz	8449B	785	06-Jun-09
EMCO	Antenna, Horn, 1-18GHz	3115	868	10-Jun-10
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	10-Apr-10
Micro-Tronics	Band Reject Filter, 2400-2500	BRM50702-02	1731	02-Dec-09

Radiated Emissions, 1000 - 18,000 MHz, 13-May-09

Engineer: Rafael Varelas

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	09-Oct-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	02-Sep-10
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1422	06-Nov-09
Hewlett Packard	Head (Inc W1-W4, 1742 , 1743) Blue	84125C	1620	22-May-09
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1731	02-Dec-09
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	20-Oct-09
Rohde & Schwarz	Attenuator, 20 dB , 50 □, 10W, DC-18 GHz	20dB, 10W, Type N	1795	16-Jun-09
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1796	16-Jun-09
A.H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	17-Mar-10

Conducted Emissions - AC Power Ports, 19-May-09

Engineer: Jack Plotner

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Fischer Custom Comm.	LISN, 50uH, 25 Amps, Dual Line	FCC-LISN-50/250- 25-2-01	1575	30-Apr-10
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	26-Feb-10
Fischer Custom Comm	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50-25-2- 09	2001	15-Oct-09

File: R75549 Exhibit Page 1 of 3

Test Report Report Date: May 22, 2009

	s, 30 - 26,500 MHz, 14-May-09			
Engineer: Rafael Va				
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	06-Jun-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	02-Sep-10
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	10-Apr-10
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1422	06-Nov-09
Hewlett Packard	Head (Inc W1-W4, 1742 , 1743) Blue	84125C	1620	22-May-09
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1731	02-Dec-09
Rohde & Schwarz	Attenuator, 20 dB , 50 □, 10W, DC-18 GHz	20dB, 10W, Type N	1795	16-Jun-09
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1796	16-Jun-09
A.H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	17-Mar-10
Radio Spurious Em	nissions, 14-May-09			
Engineer: Suhaila K				
Manufacturer	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	09-Oct-09
EMCO	Antenna, Horn, 1-18 GHz	3115	786	06-Dec-09
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1731	02-Dec-09
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	20-Oct-09
Radiated Emissions	s, 30 - 26,500 MHz, 15-May-09			
Engineer: Rafael Va				
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	06-Jun-09
EMCO	Antenna, Horn, 1-18GHz	3115	868	10-Jun-10
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	10-Apr-10
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1422	06-Nov-09
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1549	23-May-09
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	10-Feb-10
Rohde & Schwarz	Attenuator, 20 dB , 50 □, 10W, DC-18 GHz	20dB, 10W, Type N	1795	16-Jun-09
Rohde & Schwarz	Power Sensor 100 uW - 10	NRV-Z53	1796	16-Jun-09
Nonac a ochwarz	Watts	200		10 0411 00

File: R75549 Exhibit Page 2 of 3

EXHIBIT 2: Test Measurement Data

76 Pages

File: R75549 Exhibit Page 3 of 3

Ellio AN ANDE	tt Company	El	MC Test Data
Client:	Intel Corporation	Job Number:	J75341
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
		Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		Mark Briggs
Emissions Standard(s):	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	В
Immunity Standard(s):	-	Environment:	-

For The

Intel Corporation

Model

112BNMMW (1x2 bgn Mini Card)

Date of Last Test: 5/20/2009

An DIZES company		
Client: Intel Corporation	Job Number:	J75341
Model: 112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
Model. 1126Nivilviv (1x2 bgri Milli Card)	Account Manager:	Christine Vu Krebill
Contact: Steve Hackett		
Standard: FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	В

Conducted Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/19/2009 Config. Used: #2 - (Module inside of host Laptop Computer

device, transmit mode)

Test Engineer: Jack Plotner Config Change: EUT installed inside host system, minimum

system per ANSI for PC peripheral

Test Location: FT Chamber #3 Host Unit Voltage 120V/60Hz

General Test Configuration

For tabletop equipment, the EUT and host laptop computer system was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

Ambient Conditions: Temperature: 23.4 °C

Rel. Humidity: 38.5 %

Summary of Results

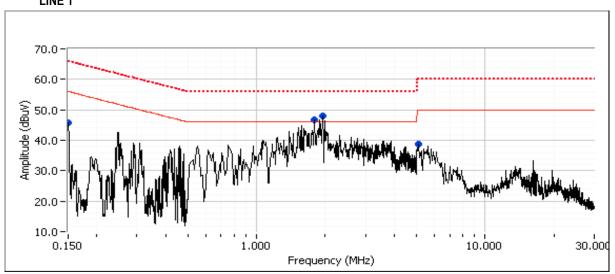
MAC Address: 001E6400493E CRTU Tool Version 5.10.24.0000 Driver version 12.5.0.41

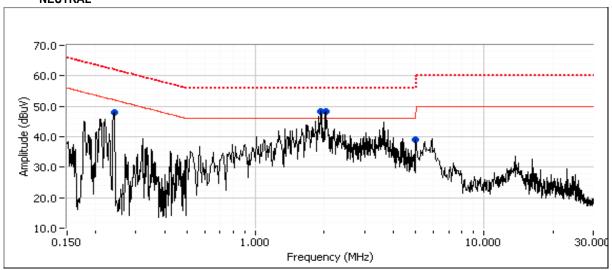
Run#	Test Performed	Limit	Result	Margin
1	CE, AC Power,120V/60Hz	FCC/EN55022 Class B	PASS	43.6dBµV @ 1.931MHz (-12.4dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.


	All 2022 Company		
Client:	Intel Corporation	Job Number:	J75341
Model	112PNIMMW /1x2 han Mini Cord)	T-Log Number:	T75388
Model.	112BNMMW (1x2 bgn Mini Card)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	В

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

LINE 1

NEUTRAL

	Ellic						EM (C Test Dat
Client:	Intel Corpor	ation					Job Number:	J75341
							T-Log Number:	T75388
Model:	112BNMMV	V (1x2 bgn M	ini Card)					Christine Vu Krebill
Contact:	Steve Hack	ett						
		', RSS 210, F	CC 15B (PC	Peripheral			Class:	В
o tarraara.		,,		- /	'			
Preliminary	peak readi	ngs capture	d durina pre	-scan (pea	k readings v	vs. average limi	t)	
Frequency	Level	AC	Clas		Detector	Comments	-1	
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
1.931	48.3	Neutral	46.0	2.3	Peak			
2.017	48.3	Neutral	46.0	2.3	Peak			
1.949	47.9	Line 1	46.0	1.9	Peak			
1.786	46.6	Line 1	46.0	0.6	Peak			
0.241	47.9	Neutral	52.1	-4.2	Peak			
4.992	39.2	Neutral	46.0	-6.8	Peak			
0.151	45.8	Line 1	56.0	-10.2	Peak			
			F0 0	44.0	D	İ		
5.030	38.8	Line 1	50.0	-11.2	Peak			
	38.8	Line 1	50.0	-11.2	Реак			
5.030		Line 1 verage readi		-11.2	Реак	<u> </u>		
5.030 Final quasi		•			Detector	Comments		
5.030 Final quasi	peak and a	verage readi	ngs	ss B		Comments		
5.030 Final quasi Frequency	-peak and a Level	verage readi	i ngs Clas		Detector	Comments QP (1.00s)		
5.030 Final quasi Frequency MHz	- peak and a Level dBμV	verage readi AC Line	ngs Clas Limit	ss B Margin	Detector QP/Ave			
5.030 Final quasi- Frequency MHz 1.931	-peak and a Level dBμV 43.6	verage readi AC Line Neutral	ngs Clas Limit 56.0	ss B Margin -12.4	Detector QP/Ave QP	QP (1.00s)		
5.030 Final quasi- Frequency MHz 1.931 1.949	-peak and a Level dBμV 43.6 43.1	verage readi AC Line Neutral Line 1	ngs Clas Limit 56.0 56.0	ss B Margin -12.4 -12.9	Detector QP/Ave QP QP	QP (1.00s) QP (1.00s)		
5.030 Final quasi Frequency MHz 1.931 1.949 1.786	-peak and a Level dBμV 43.6 43.1 41.3	verage readi AC Line Neutral Line 1 Line 1	Clas Limit 56.0 56.0 56.0	ss B Margin -12.4 -12.9 -14.7	Detector QP/Ave QP QP QP	QP (1.00s) QP (1.00s) QP (1.00s)		
5.030 Final quasi Frequency MHz 1.931 1.949 1.786 1.931	-peak and a Level dBμV 43.6 43.1 41.3 30.5	verage readi AC Line Neutral Line 1 Line 1 Neutral	Class Limit 56.0 56.0 56.0 46.0	ss B Margin -12.4 -12.9 -14.7 -15.5	Detector QP/Ave QP QP QP AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
5.030 Final quasi Frequency MHz 1.931 1.949 1.786 1.931 1.949	-peak and a Level dBμV 43.6 43.1 41.3 30.5 30.3	verage readi AC Line Neutral Line 1 Line 1 Neutral Line 1	Class Limit 56.0 56.0 56.0 46.0 46.0	ss B Margin -12.4 -12.9 -14.7 -15.5 -15.7	Detector QP/Ave QP QP QP AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
5.030 Final quasi Frequency MHz 1.931 1.949 1.786 1.931 1.949 2.017	-peak and a Level dBμV 43.6 43.1 41.3 30.5 30.3 40.3	verage readi AC Line Neutral Line 1 Line 1 Neutral Line 1 Neutral Line 1 Neutral	Clas Limit 56.0 56.0 56.0 46.0 46.0	ss B Margin -12.4 -12.9 -14.7 -15.5 -15.7 -15.7	Detector QP/Ave QP QP QP AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
5.030 Final quasi Frequency MHz 1.931 1.949 1.786 1.931 1.949 2.017 1.786	-peak and a Level dBμV 43.6 43.1 41.3 30.5 30.3 40.3 29.7	verage reading AC Line Neutral Line 1 Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral	Clas Limit 56.0 56.0 56.0 46.0 46.0 46.0	ss B Margin -12.4 -12.9 -14.7 -15.5 -15.7 -15.7 -16.3	Detector QP/Ave QP QP QP AVG AVG QP	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
5.030 Final quasi Frequency MHz 1.931 1.949 1.786 1.931 1.949 2.017 1.786 2.017	-peak and a Level dBμV 43.6 43.1 41.3 30.5 30.3 40.3 29.7 27.8	verage readi AC Line Neutral Line 1 Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral	Class Limit 56.0 56.0 56.0 46.0 46.0 46.0 46.0 46.0	ss B Margin -12.4 -12.9 -14.7 -15.5 -15.7 -15.7 -16.3 -18.2	Detector QP/Ave QP QP QP AVG AVG QP AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
5.030 Final quasi Frequency MHz 1.931 1.949 1.786 1.931 1.949 2.017 1.786 2.017 0.241	-peak and a Level dBμV 43.6 43.1 41.3 30.5 30.3 40.3 29.7 27.8 43.0	verage readi AC Line Neutral Line 1 Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral Neutral	Class Limit 56.0 56.0 56.0 46.0 46.0 46.0 46.0 46.0 62.1	ss B Margin -12.4 -12.9 -14.7 -15.5 -15.7 -16.3 -18.2 -19.1	Detector QP/Ave QP QP QP AVG AVG AVG QP AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
5.030 Final quasi Frequency MHz 1.931 1.949 1.786 1.931 1.949 2.017 1.786 2.017 0.241 5.030	-peak and a Level dBμV 43.6 43.1 41.3 30.5 30.3 40.3 29.7 27.8 43.0 27.1	verage readi AC Line Neutral Line 1 Line 1 Neutral Line 1	Class Limit 56.0 56.0 56.0 46.0 46.0 46.0 46.0 46.0 46.0 50.0	ss B Margin -12.4 -12.9 -14.7 -15.5 -15.7 -16.3 -18.2 -19.1 -22.9	Detector QP/Ave QP QP QP AVG AVG AVG QP AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
5.030 Final quasi Frequency MHz 1.931 1.949 1.786 1.931 1.949 2.017 1.786 2.017 0.241 5.030 4.992	-peak and a Level dBμV 43.6 43.1 41.3 30.5 30.3 40.3 29.7 27.8 43.0 27.1 21.2	verage readi AC Line Neutral Line 1 Neutral Neutral Neutral Neutral Neutral	Class Limit 56.0 56.0 56.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 4	ss B Margin -12.4 -12.9 -14.7 -15.5 -15.7 -16.3 -18.2 -19.1 -22.9 -24.8	Detector QP/Ave QP QP QP AVG AVG QP AVG QP AVG AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
5.030 Final quasi Frequency MHz 1.931 1.949 1.786 1.931 1.949 2.017 1.786 2.017 0.241 5.030 4.992 0.151	-peak and a Level dBμV 43.6 43.1 41.3 30.5 30.3 40.3 29.7 27.8 43.0 27.1 21.2 40.4	verage readi AC Line Neutral Line 1 Neutral	Class Limit 56.0 56.0 56.0 46.0 46.0 46.0 46.0 46.0 46.0 62.1 50.0 46.0 65.9	ss B Margin -12.4 -12.9 -14.7 -15.5 -15.7 -15.7 -16.3 -18.2 -19.1 -22.9 -24.8 -25.5	Detector QP/Ave QP QP QP AVG AVG AVG AVG AVG QP AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
5.030 Final quasi Frequency MHz 1.931 1.949 1.786 1.931 1.949 2.017 1.786 2.017 0.241 5.030 4.992 0.151 4.992	-peak and a Level dBμV 43.6 43.1 41.3 30.5 30.3 40.3 29.7 27.8 43.0 27.1 21.2 40.4 30.5	verage readi AC Line Neutral Line 1 Neutral	Class Limit 56.0 56.0 56.0 46.0 46.0 46.0 46.0 46.0 46.0 62.1 50.0 46.0 65.9 56.0	ss B Margin -12.4 -12.9 -14.7 -15.5 -15.7 -16.3 -18.2 -19.1 -22.9 -24.8 -25.5 -25.5	Detector QP/Ave QP QP QP AVG AVG QP AVG AVG QP AVG QP	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		

	An ZZE company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
Model:	112BNMMW (1x2 bgil Milli Cald)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions - 802.11b Mode

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/14/2009 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 21.5 °C

Rel. Humidity: 40 %

Summary of Results

MAC Address: 001E64004794 CRTU Tool Version 5.10.24.0 Driver version 12.5.0.41

Run#	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	18.5	-	Output Power	15.247(b)	Pass	16.7 dBm
2	18.5	-	Power spectral Density (PSD)	15.247(d)	Pass	-6.2 dBm/3kHz
3	18.5	-	Minimum 6dB Bandwidth	15.247(a)	Pass	9.9 MHz
3	18.5	-	Maximum 99% Bandwidth	RSS GEN	-	13.23 MHz
1	18.5		Spurious emissions	15.247(b)	Pass	All emissions less than
4	10.5	-	Spurious emissions	13.247(b)	Fa55	-30dBc limit

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

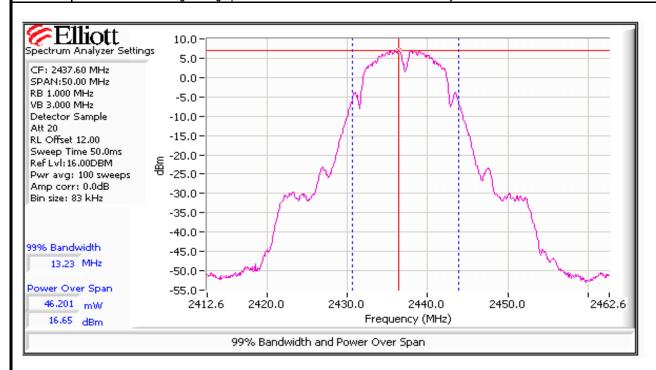
No deviations were made from the requirements of the standard.

All Date: Company					
Client:	Intel Corporation	Job Number:	J75341		
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388		
woder.	112BNIMINIW (1X2 byli Milli Cald)	Account Manager:	Christine Vu Krebill		
Contact:	Steve Hackett				
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A		

Run #1: Output Power

Power	Frequency (MHz)	Output	Power	Antenna	Result	EIRP	Note 2	Output Po	wer Note 3
Setting ²	Frequency (Miriz)	(dBm) ¹	mW	Gain (dBi)	Nesuit	dBm	W	Target	Actual
17.5	2412	16.1	40.7	3.2	Pass	19.3	0.085	16.5	16.6
18.5	2437	16.7	46.2	3.2	Pass	19.9	0.097	16.5	16.7
19.0	2462	16.6	45.5	3.2	Pass	19.8	0.095	16.5	16.7

Note 1:

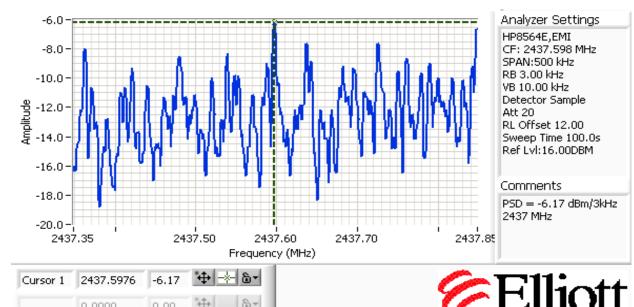

Output power measured using a spectrum analyzer (see plots below):

RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz. Spurious limit is -30dBc because this method was used.

The output power limit is 30dBm

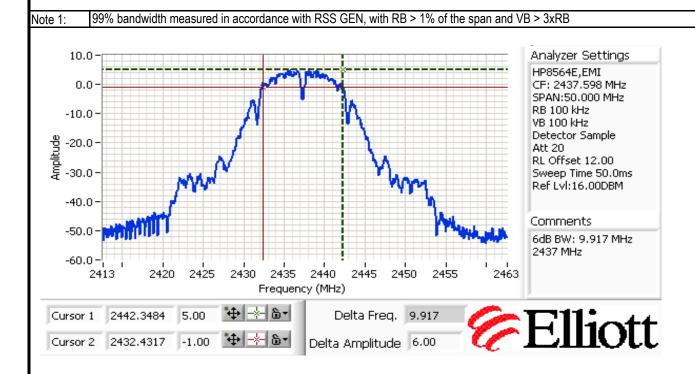
Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Power measured using average power meter and is included for reference only.



	An Z(ZE) company		
Client:	Intel Corporation	Job Number:	J75341
Model: 112BNMMW (1x2 bgn Mini Card)		T-Log Number:	T75388
Model:	112BNWWW (1x2 byll Willi Card)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

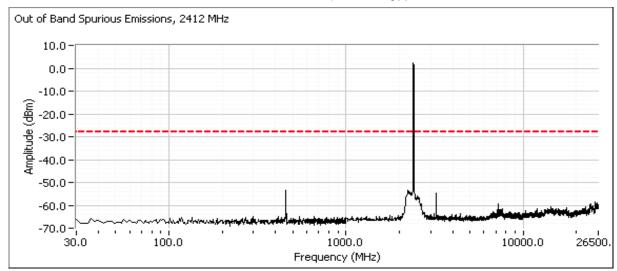
Run #2: Power spectral Density


Power	Frequency (MHz)	PSD	Limit	Result
Setting	1 requeries (Wir 12)	(dBm/3kHz) Note 1	dBm/3kHz	
17.5	2412	-7.0	8.0	Pass
18.5	2437	-6.2	8.0	Pass
19.0	2462	-7.5	8.0	Pass

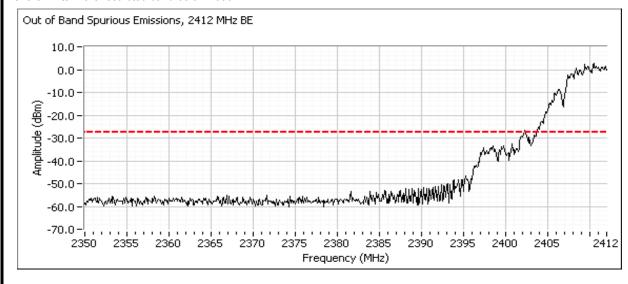
Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from Note 1: preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

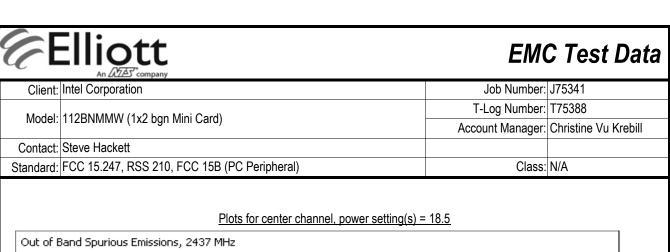
EMC Test Data Client: Intel Corporation Job Number: J75341 T-Log Number: T75388 Model: 112BNMMW (1x2 bgn Mini Card) Account Manager: Christine Vu Krebill Contact: Steve Hackett Standard: FCC 15.247, RSS 210, FCC 15B (PC Peripheral) Class: N/A Run #3: Signal Bandwidth Power Resolution Bandwidth (MHz) Frequency (MHz) Setting Bandwidth 99% 6dB 2412 17.5 100kHz 10.08 13.23 18.5 2437 100kHz 9.9 13.23 19.0 2462 100kHz 10.0

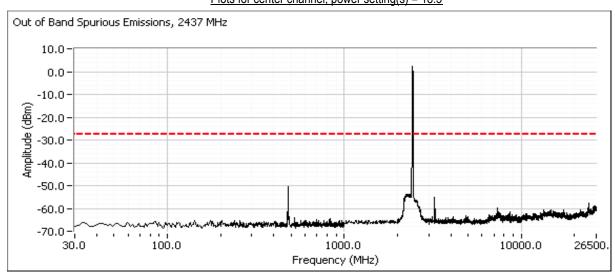
13.14

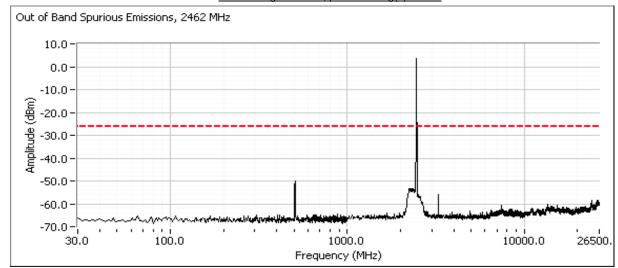


	An ZAZES company		
Client:	Intel Corporation	Job Number:	J75341
Model	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
Model:	112BNMMWV (1X2 bgil Milli Cald)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A


Run #4: Out of Band Spurious Emissions


Frequency (MHz)	Limit	Result
2412	-30dBc	Pass
2437	-30dBc	Pass
2462	-30dBc	Pass


Plots for low channel, power setting(s) = 17.5


Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

Plots for high channel, power setting(s) = 19.0

	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
	112BNIMINIV (1X2 byll Milli Cald)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions - 802.11g Mode

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/15/2009 Config. Used: 1

Test Engineer: Rafael Varelas Config Change: None

Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 22.3 °C

Rel. Humidity: 42 %

Summary of Results

MAC Address: 001E64004794 CRTU Tool Version 5.10.24.0 Driver version 12.5.0.41

Run#	Pwr setting	Avg Pwr	Test Performed Limit Pass / Fail		Result / Margin		
1	24	-	Output Power	15.247(b)	Pass	17.2 dBm	
2	24	-	Power spectral Density (PSD)	15.247(d)	Pass	-8.0 dBm/3kHz	
3	18.5	-	Minimum 6dB Bandwidth 15.247(a) Pass		16.5 MHz		
3	24	-	Maximum 99% Bandwidth	RSS GEN	-	17.6 MHz	
4	24	-	Spurious emissions	15.247(b)	Pass	All emissions less than	
	24					-30dBc limit	

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

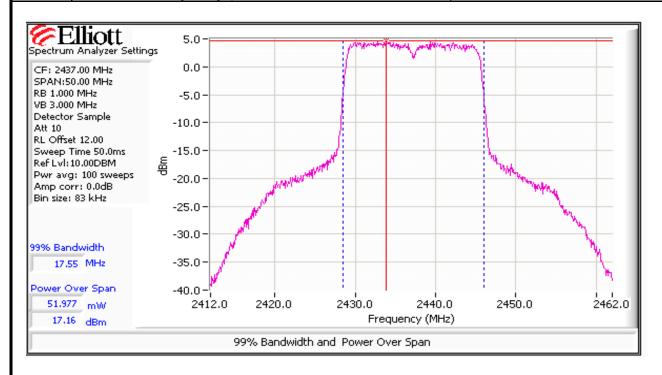
	An 2023 Company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
	112BNIMINIW (1X2 byli Milli Cald)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

Run #1: Output Power

Power	Frequency (MHz)	Output Power		Antenna	Result	EIRP. Note 2		Output Power Note 3	
Setting ²		(dBm) ¹	mW	Gain (dBi)	Nesuit	dBm	W	Target	Actual
19	2412	13.3	21.5	3.2	Pass	16.5	0.045	13.4	13.5
24	2437	17.2	52.0	3.2	Pass	20.4	0.109	16.5	16.7
18.5	2462	12.1	16.2	3.2	Pass	15.3	0.034	11.8	11.9

Note 1:

Output power measured using a spectrum analyzer (see plots below):

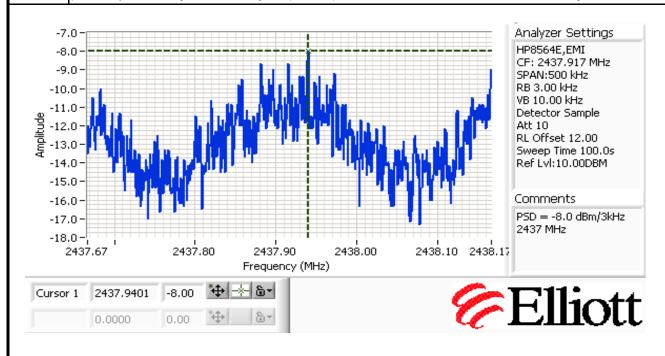

RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz. Spurious limit is -30dBc because this method was used.

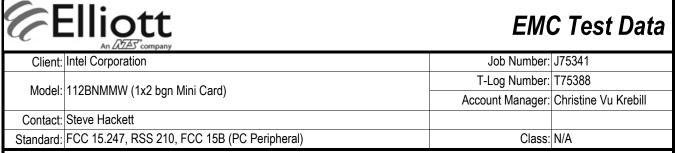
The output power limit is 30dBm

Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Power measured using average power meter and is included for reference only.

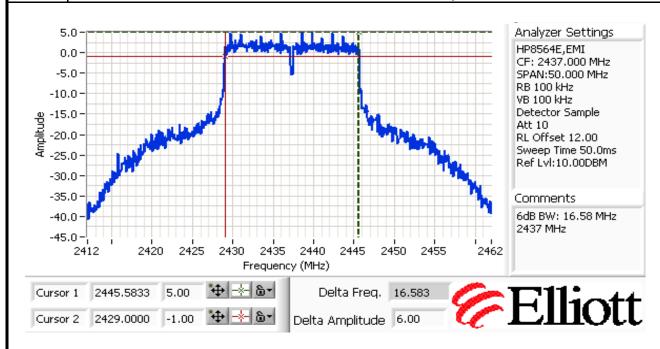

	An Z(ZE) company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
	112BNIMINIW (1X2 byll Millil Card)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A


Run #2: Power spectral Density

Power	Frequency (MHz)	PSD	Limit	Result
Setting	1 Toquotioy (IVII 12)	(dBm/3kHz) Note 1	dBm/3kHz	
19	2412	-12.0	8.0	Pass
24	2437	-8.0	8.0	Pass
18.5	2462	-12.3	8.0	Pass

Note 1:

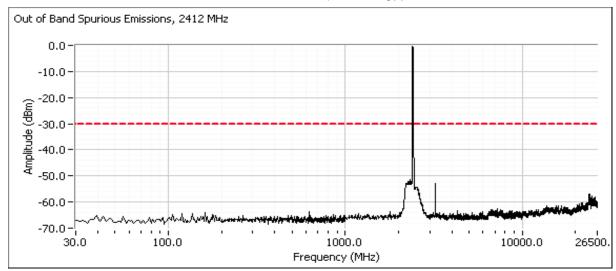
Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.



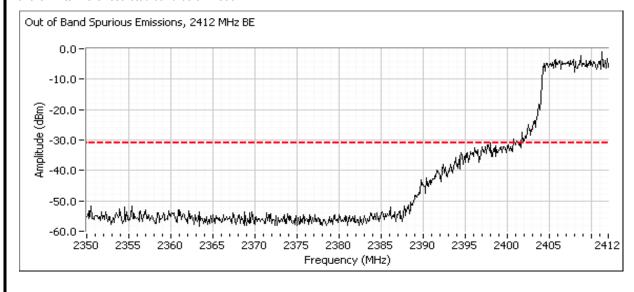
Run #3: Signal Bandwidth

Ī	Power	Frequency (MHz)	Resolution	Bandwid	th (MHz)
	Setting		Bandwidth	6dB	99%
	19	2412	100kHz	16.5	17.22
	24	2437	100kHz	16.6	17.55
ĺ	18.5	2462	100kHz	16.5	17.14

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

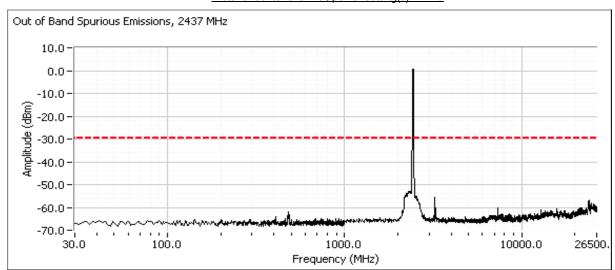


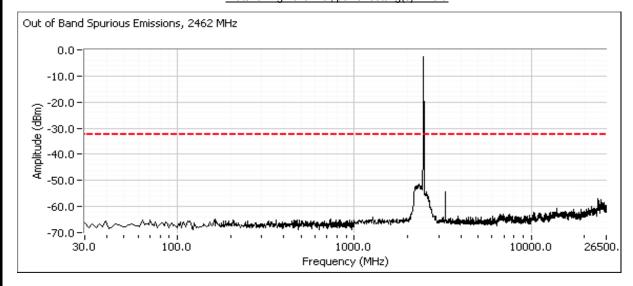
	An 2022 Company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
	112BNMMW (1X2 bgil Milli Cald)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A


Run #4: Out of Band Spurious Emissions

Frequency (MHz)	Limit	Result
2412	-30dBc	Pass
2437	-30dBc	Pass
2462	-30dBc	Pass

Plots for low channel, power setting(s) = 19.0


Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.



	All Dive Company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112PNMMM/ (1v2 han Mini Card)	T-Log Number:	T75388
	112BNMMW (1x2 bgn Mini Card)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

Plots for center channel, power setting(s) = 24.0

Plots for high channel, power setting(s) = 18.5

	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
	112BNIMINIV (1X2 byll Milli Cald)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions - 802.11n (20MHz) Mode

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/15/2009 Config. Used: 1

Test Engineer: Rafael Varelas Config Change: None

Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 22.3 °C

Rel. Humidity: 42 %

Summary of Results

MAC Address: 001E64004794 CRTU Tool Version 5.10.24.0 Driver version 12.5.0.41

	Run#	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
	1	23.5	-	Output Power	15.247(b)	Pass	17.0 dBm
	2	23.5	-	Power spectral Density (PSD)	15.247(d)	Pass	-9.2 dBm/3kHz
	3	23.5	-	Minimum 6dB Bandwidth	15.247(a)	Pass	17.8 MHz
	3	23.5	-	Maximum 99% Bandwidth	RSS GEN	-	18.6 MHz
I	1	23.5		Spurious emissions	15.247(b)	Pass	All emissions less than
	4	25.5 - Spurious emissions	13.247(b)	F855	-30dBc limit		

Modifications Made During Testing

No modifications were made to the EUT during testing

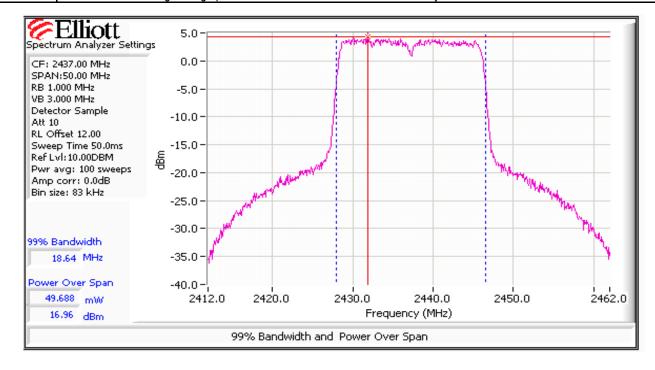
Deviations From The Standard

No deviations were made from the requirements of the standard.

	An 2023 Company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
	112BNIMINIW (1X2 byli Milli Cald)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

Run #1: Output Power

Power	Frequency (MHz)	Output	Power	Antenna	Result	EIRP	Note 2	Output Pov	wer Note 3
Setting ²	Frequency (MHZ)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	Target	Actual
17	2412	12.2	16.6	3.2	Pass	15.4	0.035	11.6	11.8
23.5	2437	17.0	49.7	3.2	Pass	20.2	0.104	16.5	16.6
16	2462	10.0	10.0	3.2	Pass	13.2	0.021	10.2	10.3

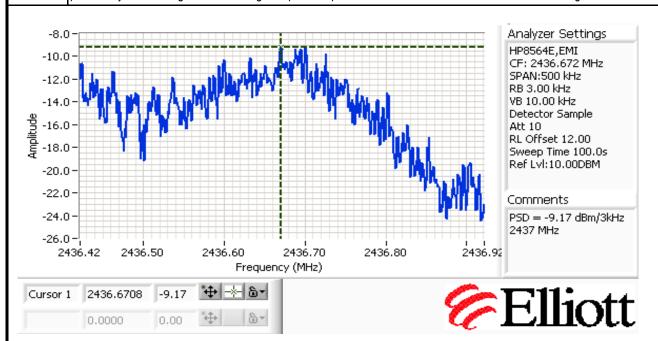

Output power measured using a spectrum analyzer (see plots below):

RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz. Spurious limit is -30dBc because this method was used.

The output power limit is 30dBm

Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Power measured using average power meter and is included for reference only.

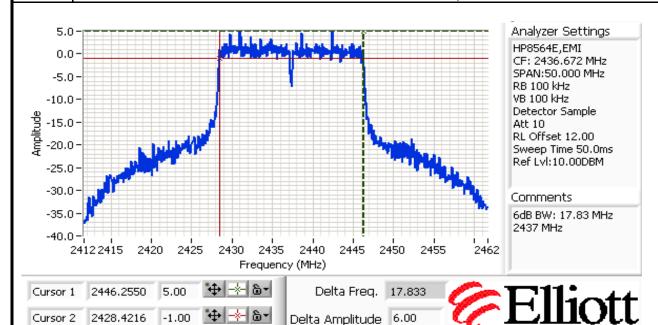

	An Z(ZE) company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
	112BNWWW (1x2 byll Willi Card)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

Run #2: Power spectral Density

Power	Frequency (MHz)	PSD	Limit	Result
Setting	riequelicy (Miliz)	(dBm/3kHz) Note 1	dBm/3kHz	
17	2412	-12.7	8.0	Pass
23.5	2437	-9.2	8.0	Pass
16	2462	-13.8	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

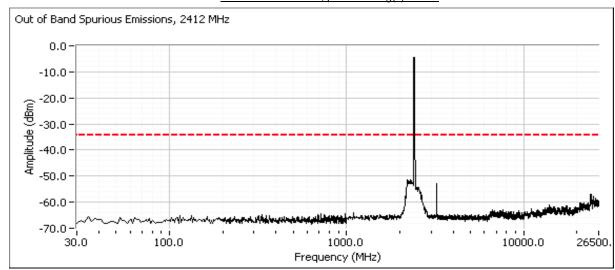


	An ACE company					
Client:	Intel Corporation	Job Number:	J75341			
Model:	112PNMMM /1v2 han Mini Card\	T-Log Number: T75388				
	112BNMMW (1x2 bgn Mini Card)	Account Manager:	Christine Vu Krebill			
Contact:	Steve Hackett					
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A			

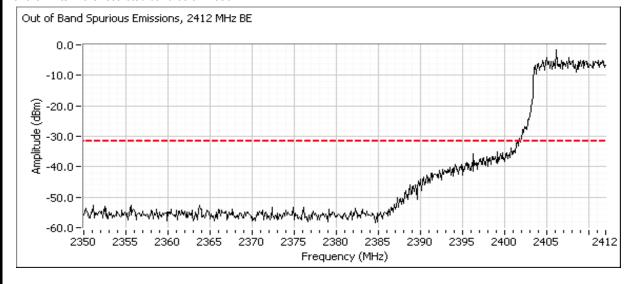
Run #3: Signal Bandwidth

Power	Eroguanov (MUz)	Resolution	Bandwid	lth (MHz)
Setting	Frequency (MHz)	Bandwidth	6dB	99%
17	2412	100kHz	17.8	18.4
23.5	2437	100kHz	17.8	18.6
16	2462	100kHz	17.8	18.3

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

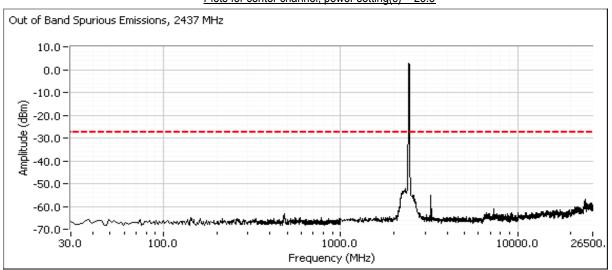


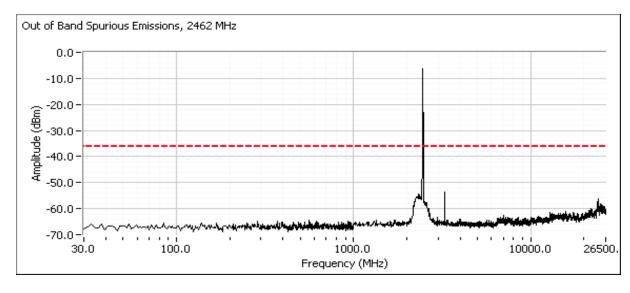
	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112PNMMM /1v2 han Mini Card\	T-Log Number: T75388	
	112BNMMW (1x2 bgn Mini Card)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A


Run #4: Out of Band Spurious Emissions

Frequency (MHz)	Limit	Result
2412	-30dBc	Pass
2437	-30dBc	Pass
2462	-30dBc	Pass

Plots for low channel, power setting(s) = 17.0


Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.



	All Dive Company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112PNMMM/ (1v2 han Mini Card)	T-Log Number: T75388	
	112BNMMW (1x2 bgn Mini Card)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

Plots for center channel, power setting(s) = 23.5

Plots for high channel, power setting(s) = 16.0

	An ACE company					
Client:	Intel Corporation	Job Number:	J75341			
Model:	112PNMMM /1v2 han Mini Card\	T-Log Number: T75388				
	112BNMMW (1x2 bgn Mini Card)	Account Manager:	Christine Vu Krebill			
Contact:	Steve Hackett					
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A			

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions - 802.11n (40MHz) Mode

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/15/2009 Config. Used: 1

Test Engineer: Rafael Varelas Config Change: None

Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 22.3 °C

Rel. Humidity: 42 %

Summary of Results

MAC Address: 001E64004794 CRTU Tool Version 5.10.24.0 Driver version 12.5.0.41

Run#	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	17.5	-	Output Power	15.247(b)	Pass	12.9 dBm
2	17.5	-	Power spectral Density (PSD)	15.247(d)	Pass	-14.7 dBm/3kHz
3	13.5	-	Minimum 6dB Bandwidth	15.247(a)	Pass	35.7 MHz
3	13.5	-	Maximum 99% Bandwidth	RSS GEN	-	36.6 MHz
1	17.5		Spurious emissions	15.247(b)	Pass	All emissions less than
4 17.5	17.5	17.5	Spurious erriissions	13.247(0)	Fa55	-30dBc limit

Modifications Made During Testing

No modifications were made to the EUT during testing

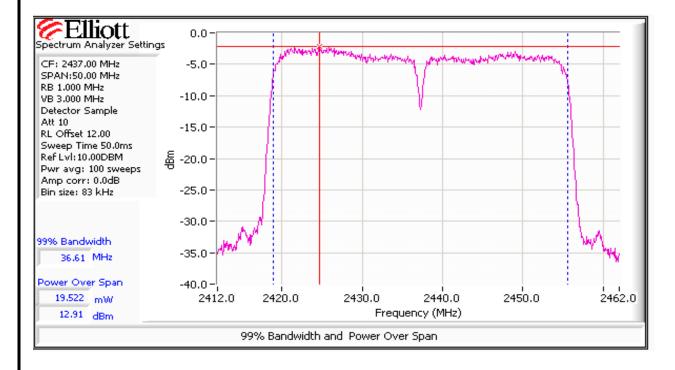
Deviations From The Standard

No deviations were made from the requirements of the standard.

	An ZAZES company					
Client:	Intel Corporation	Job Number:	J75341			
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number: T75388				
	112BNMMW (1X2 bgil Milli Cald)	Account Manager:	Christine Vu Krebill			
Contact:	Steve Hackett					
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A			

Run #1: Output Power

Power	Frequency (MHz)	Output	Power	Antenna	Result	EIRF	Note 2	Output Po	wer Note 3
Setting ²	Frequency (Miriz)	(dBm) ¹	mW	Gain (dBi)	Nesuit	dBm	W	Target	Actual
13.5	2422	9.4	8.8	3.2	Pass	12.6	0.018	9.1	9.2
17.5	2437	12.9	19.5	3.2	Pass	16.1	0.041	12.1	12.2
15.5	2452	10.2	10.5	3.2	Pass	13.4	0.022	10.0	10.2

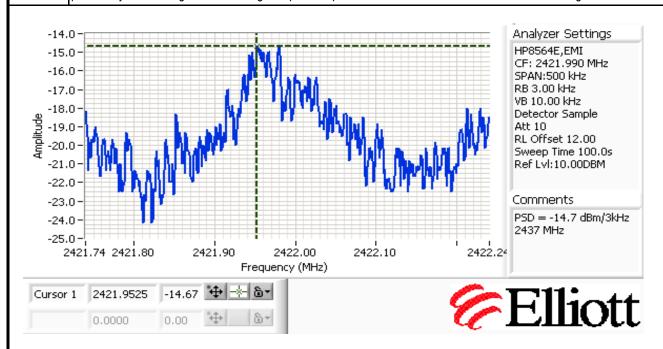

Output power measured using a spectrum analyzer (see plots below):

RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz. Spurious limit is -30dBc because this method was used.

The output power limit is 30dBm

Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Power measured using average power meter and is included for reference only.

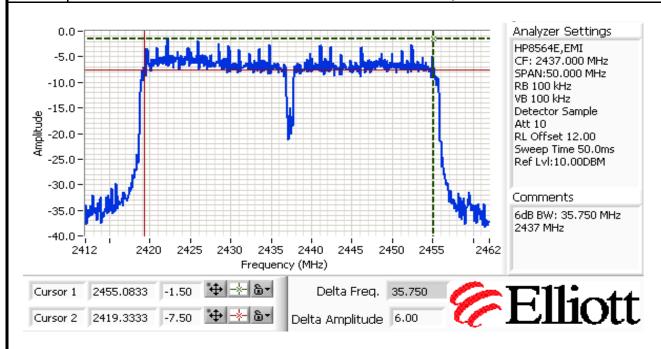

	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112PNMMM /1v2 han Mini Card\	T-Log Number: T75388	
	112BNMMW (1x2 bgn Mini Card)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

Run #2: Power spectral Density

Power	Frequency (MHz)	PSD	Limit	Result
Setting	riequelicy (Miliz)	(dBm/3kHz) Note 1	dBm/3kHz	
13.5	2422	-19.2	8.0	Pass
17.5	2437	-14.7	8.0	Pass
15.5	2452	-19.8	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

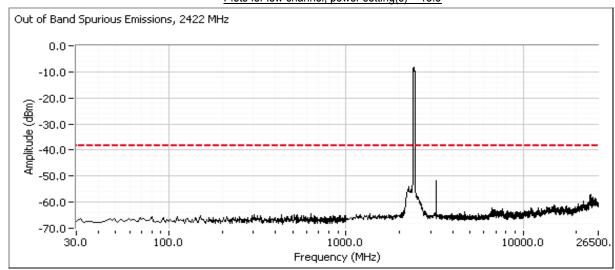


	An ZAZES company					
Client:	Intel Corporation	Job Number:	J75341			
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number: T75388				
	112BNMMW (1X2 bgil Milli Cald)	Account Manager:	Christine Vu Krebill			
Contact:	Steve Hackett					
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A			

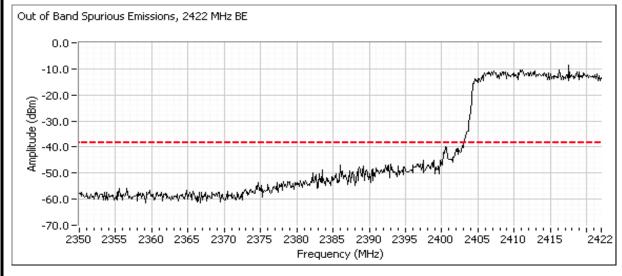
Run #3: Signal Bandwidth

Power	Fraguency (MUz)	Resolution	Bandwidth (MHz)		
Setting	Frequency (MHz)	Bandwidth	6dB	99%	
13.5	2422	100kHz	35.7	36.61	
17.5	2437	100kHz	35.8	36.61	
15.5	2452	100kHz	35.7	36.52	

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

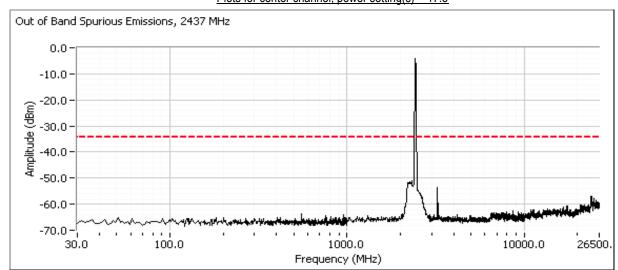


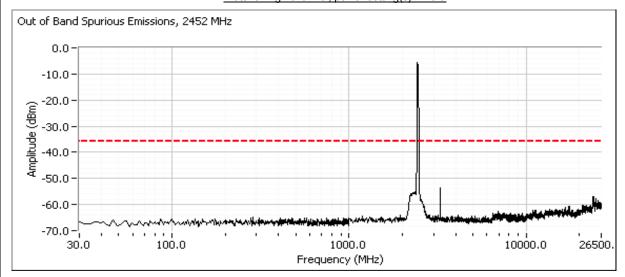
	An 2022 Company		
Client:	Intel Corporation	Job Number:	J75341
Madalı	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
Model.	112BNWWW (1x2 byll Willi Card)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A


Run #4: Out of Band Spurious Emissions

Frequency (MHz)	Limit	Result
13.5	-30dBc	Pass
17.5	-30dBc	Pass
15.5	-30dBc	Pass

Plots for low channel, power setting(s) = 13.5


Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.



	All Dive Company		
Client:	Intel Corporation	Job Number:	J75341
Madal	112PNMMM/ (1v2 han Mini Card)	T-Log Number:	T75388
Model.	112BNMMW (1x2 bgn Mini Card)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

Plots for center channel, power setting(s) = 17.5

Plots for high channel, power setting(s) = 15.5

		Elliott An AZES company	EM	C Test Data
I		Intel Corporation	Job Number:	J75341
ı	Madalı	442DNIMMIN (4v2 ban Mini Cord)	T-Log Number:	T75388
ı	woder:	112BNMMW (1x2 bgn Mini Card)	Account Manager:	Christine Vu Krebill
I	Contact:	Steve Hackett		

RSS 210, FCC 15.247 (DTS) Band Edge Field Strength

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

Class: N/A

General Test Configuration

Standard: FCC 15.247, RSS 210, FCC 15B (PC Peripheral)

The EUT was installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results

MAC Address: 001E64004794 CRTU Tool Version 5.10.24.0 Driver version 12.5.0.41

Run#	Mode	Channel	Target Power	Measured Power	Test Performed	t Performed Limit	
Run # 1	802.11n 40MHz	#3 2422MHz	-	9.1	Restricted Band Edge at 2400 MHz	15.209	49.8dBµV/m @ 2390.0MHz (-4.2dB)
Rull# I	Chain A	#9 2452MHz	-	10.0	Restricted Band Edge at 2483.5 MHz	15.209	50.1dBµV/m @ 2483.5MHz (-3.9dB)
Run # 2	802.11n 20MHz	#1 2412MHz	ı	11.6	Restricted Band Edge at 2400 MHz	15.209	51.4dBµV/m @ 2390.0MHz (-2.6dB)
Null π Z	Chain A	#11 2462MHz	ı	10.2	Restricted Band Edge at 2483.5 MHz	15.209	49.6dBµV/m @ 2484.3MHz (-4.4dB)
Run # 3	802.11g	#1 2412MHz	ı	13.4	Restricted Band Edge at 2400 MHz	15.209	49.9dBµV/m @ 2389.7MHz (-4.1dB)
IXuII#3	Chain A	#11 2462MHz	ı	11.8	Restricted Band Edge at 2483.5 MHz	15.209	50.7dBµV/m @ 2464.6MHz (-3.3dB)
Run # 4	802.11b Chain A	#1 2412MHz	-	16.7	Restricted Band Edge at 2400 MHz	15.209	44.3dBµV/m @ 2387.3MHz (-9.7dB)
Null#4		#11 2462MHz	-	16.8	Restricted Band Edge at 2483.5 MHz	15.209	47.4dBµV/m @ 2486.7MHz (-6.6dB)
Run # 5	802.11n 40MHz	#4 2427MHz	-	10.4	Restricted Band Edge at 2400 MHz	15.209	50.6dBµV/m @ 2389.7MHz (-3.4dB)
Rull#3	Chain A	#8 2447MHz	-	10.4	Restricted Band Edge at 2483.5 MHz	15.209	50.3dBµV/m @ 2483.5MHz (-3.7dB)
Run # 6	802.11n 20MHz	#2 2417MHz	-	16.1	Restricted Band Edge at 2400 MHz	15.209	50.6dBµV/m @ 2390.0MHz (-3.4dB)
	Chain A	#10 2457MHz	-	15.1	Restricted Band Edge at 2483.5 MHz	15.209	50.5dBµV/m @ 2483.7MHz (-3.5dB)

Client:	Intel Corporation	Job Number:	J75341
Model	112PNMMM /1v2 han Mini Cord\	T-Log Number:	T75388
Model.	112BNMMW (1x2 bgn Mini Card)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

Run#	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
Run # 7	802.11g Chain A	#2 2417MHz	-	16.0	Restricted Band Edge at 2400 MHz	15.209	50.6dBµV/m @ 2390.0MHz (-3.4dB)
Rull#1		#10 2457MHz	-	15.5	Restricted Band Edge at 2483.5 MHz	15.209	51.0dBµV/m @ 2483.5MHz (-3.0dB)
		#5 2432MHz	-	11.7	Restricted Band Edge at 2400 MHz	15.209	51.0dBµV/m @ 2389.8MHz (-3.0dB)
Run #8	802.11n 40MHz Chain A	#7 2442MHz	-	10.8	Restricted Band Edge at 2483.5 MHz	15.209	50.6dBµV/m @ 2483.5MHz (-3.4dB)
Null #0		#6		12.1	Restricted Band Edge at 2400 MHz	15.209	51.0dBµV/m @ 2389.66MHz (-3.8dB)
		2437MHz	-	12.1	Restricted Band Edge at 2483.5 MHz	15.209	50.8dBµV/m @ 2484.17MHz (-3.2dB)

Note - the measured power is the average power (measured with average power sensor) and is used for reference purposes only. The power measurements in accordance with FCC requirements and industry Canada requirements are on a separate data sheet.

Ambient Conditions:

Rel. Humidity: 39 % Temperature: 18.6 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Marker Delta Measurements

Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz.

Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation.

The fundamental field strength is always measured at a 3m test distance.

E E		ott Er company						EMO	C Test	Data
Client:	Intel Corpora	ation					,	Job Number:	J75341	
Model:	112BNMMW	/ (1v2 han M	ini Card)				T-l	_og Number:	T75388	
Model.	I IZDINIVIIVIV	(IXZ DGII IVI	iiii Gaiu)				Accou	ınt Manager:	Christine Vu	ı Krebill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247,	RSS 210, F	CC 15B (PC	Peripheral)				Class:	N/A	
Te: Run # 1a, E l			•			fig Change:	none]		
	Chain	Target	(dBm)	_	ed (dBm)	<u> </u>				
	Chain A	15	5.0	9	1.1	1;	3.5			
Fundamenta	al Signal Fie	ld Strength								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	$dB\mu V/m$	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2433.670	89.5	Н	-	-	AVG	198	1.0		/B: 10 Hz @	
2405.470	97.9	Н	-	-	PK	198	1.0	RB 1 MHz; \		
2433.130	88.6	V	-	-	AVG	159	1.0	RB 1 MHz; \		
2432.530	97.0	V	-	-	PK	159	1.0	RB 1 MHz; \	/B: 1 MHz @) 13.5
2390 MHz B	and Edge S	ignal Radia	ted Field Str	ength - Mar			1			
Г	Jundamantal	omission la	vel @ 3m in	1MU= DDW.	H	V 07.0	Dook Mooo	romant (DD-	-\/D-1\/LL-\	
			vel @ 3m in '		97.7 89.5	97.0 88.6		urement (RB= asurement (F	,	'R-10H-\
- 1	unuamentai	CITIIOOIUIT IC		er - 100kHz	39.7					
	Calculat	ed Band-Ed	ge Measurer			dBuV/m	<- this can only be used if band edge signal is highest within 2MHz of band edge.			signal is
			dge Measure			dBuV/m	Margin	Level	Limit	Detector
	Jaiouit	a Dana L	-30oaoaic		70.0	aba v/III	ivialyiii	FOAGI	LIIIII	שטוסטוטו

Delta Marker - 1MHz/1MHz:

Delta Marker - 1MHz/10Hz:

FCC 15.209

Margin

-4.2

Calculated Band-Edge Measurement (Peak):

Calculated Band-Edge Measurement (Avg):

Limit

54.0

Pol

v/h

Level

dBμV/m

49.8

Frequency

MHz

2390.000

54

74

-4.2

-16.0

Height

meters

49.8

58.0

Comments

Using 100kHz delta value

Using 100kHz delta value

Using 100kHz delta value

34.5 dB

39.3 dB

Detector

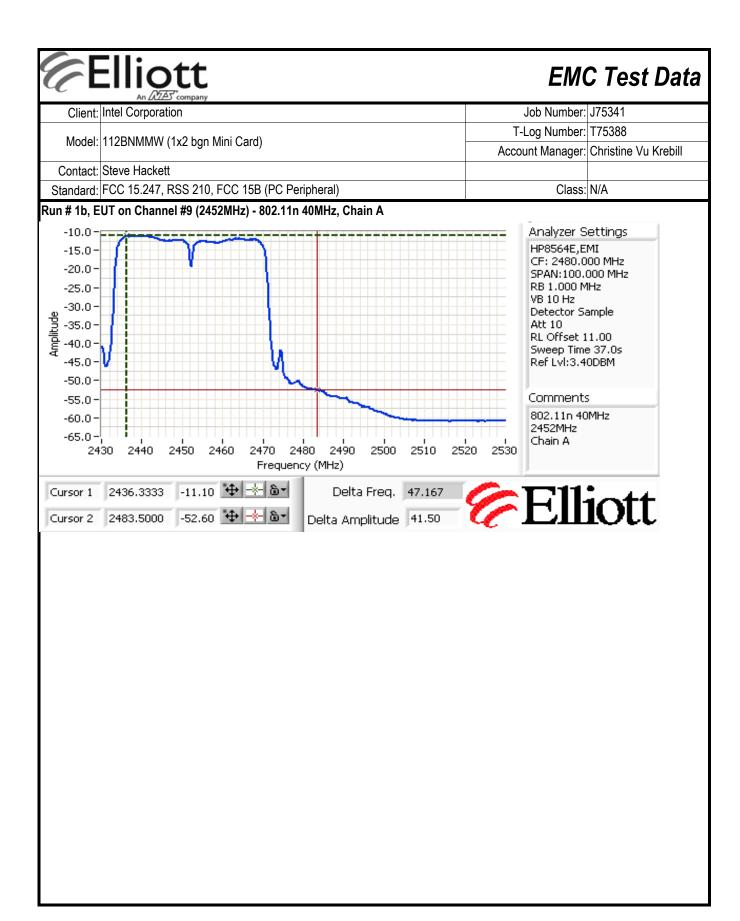
Pk/QP/Avg

Avg

63.2 dBuV/m

50.2 dBuV/m

Azimuth


degrees

Avg

Pk

EMC Test Data Client: Intel Corporation Job Number: J75341 T-Log Number: T75388 Model: 112BNMMW (1x2 bgn Mini Card) Account Manager: Christine Vu Krebill Contact: Steve Hackett Standard: FCC 15.247, RSS 210, FCC 15B (PC Peripheral) Class: N/A Run # 1a, EUT on Channel #3 (2422MHz) - 802.11n 40MHz, Chain A Analyzer Settings -10.0 HP8564E,EMI -15.0-CF: 2393,000 MHz -20.0-SPAN:100.000 MHz RB 1.000 MHz -25.0 VB 10 Hz Detector Sample -30.0 --35.0 --40.0 -Att 10 RL Offset 11.00 Sweep Time 37.0s Ref Lvl:2.30DBM -45.0 -50.0 Comments 802.11n 40MHz -55.0· 2437MHz -60.0 -Chain A 2370 2343 2350 2360 2390 2400 2410 2420 2430 Frequency (MHz) -50.37 💠 🔆 🎅▼ 2390.0000 Delta Freq. 16.667 Cursor 1 -11.03 2406.6667 Delta Amplitude 39.33 Cursor 2

CE.)tt						EMO	C Test	Data
Client:	Intel Corpora	ation					,	Job Number:	J75341	
Madalı	4400010404	1/4:0 han M	" · ' O = "-d\	-			T-I	Log Number:	T75388	-
Modei.	112BNMMW	/ (TXZ bgn ivii	ini Cara)				Accol	unt Manager:	Christine Vu	Krebill
Contact:	Steve Hacke	ətt								
Standard:	FCC 15.247	, RSS 210, F	CC 15B (PC	Peripheral)				Class:	N/A	
Run # 1b, E	EUT on Chan	nel #9 (2452	!MHz) - 802.′		Chain A Settings			1		
	Chain		t (dBm)		ed (dBm)		e Setting			
, ,	Chain A	15	5.0	10	0.0	15	5.0]		
	tal Signal Fie					 	·			
Frequency		Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	4 8 41 1 1	·= 4011	
2436.400	91.6	H	120.0	-28.4	AVG	192	1.0	RB 1 MHz; \		
2436.270	99.3	Н	120.0	-20.7	PK	192	1.0	RB 1 MHz; \		
2436.200	89.6	V	120.0	-30.4	AVG	156	1.0	RB 1 MHz; \		
2435.730	97.3	V	120.0	-22.7	PK	156	1.0	RB 1 MHz; \	/B: 1 MHz	
2483 <u>.5 MHz</u>	z Band Edge	Signal Rad	iate <u>d Field S</u>	Stre <u>ngth - M</u> a	ark <u>er Delta</u>					
					Н	V				
	Fundamental				99.3	97.3	Peak Measurement (RB=VB=1MHz)			
	Fundamental	emission lev	√el @ 3m in *	1MHz RBW:	91.6	89.6		easurement (F		,
				ker - 100kHz	39.3			only be used i	_	signal is
		ated Band-Ed				dBuV/m	highest with	in 2MHz of b	and edge.	
	Calcul	lated Band-Ed				dBuV/m	Margin	Level	Limit	Detector
			lta Marker - 11		36.5		-3.9	50.1	54	Avg
			lta Marker - 1		41.5		-14.0	60.0	74	Pk
Calculated Band-Edge Measurement (Peak):						dBuV/m		Hz delta value	Э	
	Calcula	lated Band-Ed	dge Measure	ment (Avg):	50.1	dBuV/m	Using 1MHz	z delta value		
Frequency	Level	Pol	FCC ¹	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2483.500								Using 1MHz		

E E	Ellic	ott Er company				
Client:	Intel Corpora	ation				
Model:	112BNMMW (1x2 bgn Mir					
Contact:	Steve Hackett					
Standard:	FCC 15.247	, RSS 210, FC				
Run # 2, Band Edge Field Strength - Date of Test: 5/11/2009 Test Engineer: Suhaila Khus Run # 2a, EUT on Channel #1 (2412)						
	Chain	Target (
	Chain A	15.				

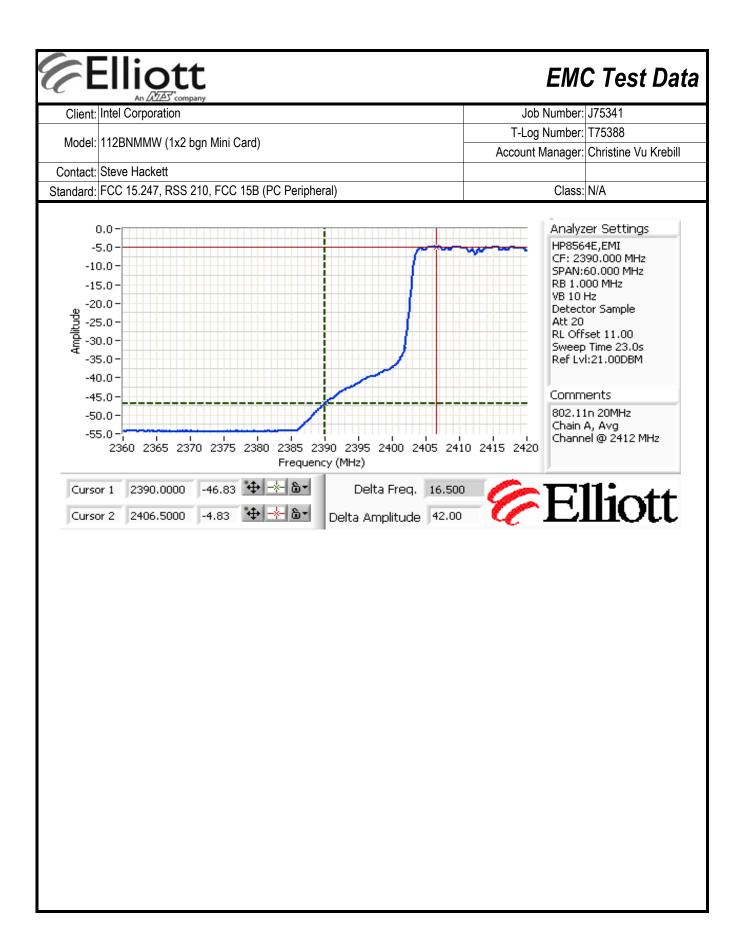
	An AZAS company		
Client:	Intel Corporation	Job Number:	J75341
Madali	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
Model.	112BNWWW (1x2 byll Willi Card)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

802.11n 20MHz, Chain A

Test Location: Chamber # 5 Config Change: none shzad

MHz) - 802.11n 20MHz. Chain A

or on onan	1101#1 (2412111112) 002.	i ili zomiliz, oliulii A						
Chain	Power Settings							
Chain	Target (dBm)	Measured (dBm)	Software Setting					
Chain A	15.0	11.6	16.5					


Fundamental Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2405.070	93.4	Н	-	-	AVG	316	1.3	RB 1 MHz; VB: 10 Hz
2404.720	101.2	Н	-	-	PK	316	1.3	RB 1 MHz; VB: 1 MHz
2408.870	89.1	V	-	-	AVG	245	1.1	RB 1 MHz; VB: 10 Hz
2407.370	97.0	V	-	-	PK	245	1.1	RB 1 MHz; VB: 1 MHz

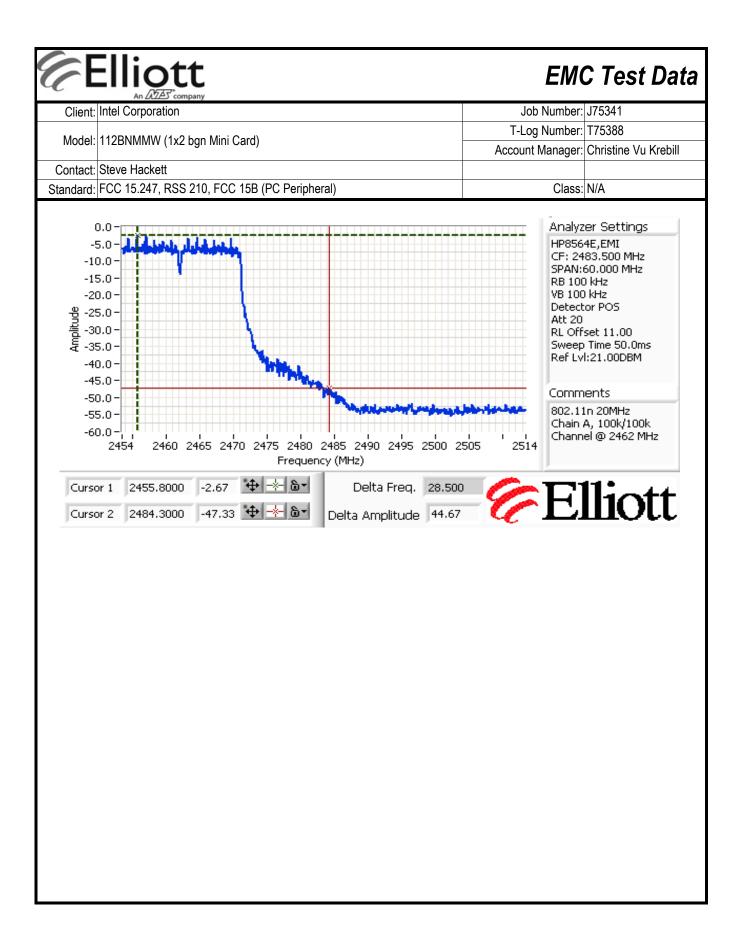
2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta

mile Dania Lago Olgilar Hadratou Front Calongar man	07 2 07tu		-			
	Н	V				
Fundamental emission level @ 3m in 1MHz RBW:	101.2	97.0	Peak Measurement (RB=VB=1MHz)			
Fundamental emission level @ 3m in 1MHz RBW:	93.4	89.1	Average Measurement (RB=1MHz, VB=10Hz)			
Delta Marker - 100kHz	41.8	dB	<- this can only be used if band edge signa			
Calculated Band-Edge Measurement (Peak):	: 59.4 dBuV/m highest within 2MHz of band edge				and edge.	
Calculated Band-Edge Measurement (Avg):	51.6	dBuV/m	Margin	Level	Limit	Detector
Delta Marker - 1MHz/1MHz:	32.5	dB	-2.6	51.4	54	Avg
Delta Marker - 1MHz/10Hz:	42.0	dB	-14.6	59.4	74	Pk
Calculated Band-Edge Measurement (Peak):	68.7	dBuV/m	Using 100kh	Iz delta value	Э	
Calculated Band-Edge Measurement (Avg):	Avg): 51.4 dBuV/m Using 1MHz delta value					
			_			

Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	51.4	-	54.0	-2.6	Avg	-	-	Using 1MHz delta value

E E	Ellic	ott Ærcompany						ЕМО	C Test	Data
Client:	Intel Corpora	ation						Job Number:	J75341	
Madalı	44000114444	1/1v2 ban M	in: Card\				T-l	Log Number:	T75388	
MOGEI.	I IZDINIVIIVIV	/ (1x2 bgn M	ini Caru)				Accou	unt Manager:	Christine Vu	Krebill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247	, RSS 210, F	CC 15B (PC	Peripheral)				Class:	N/A	
Run # 2b, E	UT on Chan	nel #11 (246	32MHz) - 802	.11n 20MHz	, Chain A					
	Chain				Settings			1		
			(dBm)		ed (dBm)		e Setting			
	Chain A	15	5.0	10).2	16	6.5]		
Fundament	al Signal Fie	eld Strength								
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2465.230	94.3	Н	-	-	AVG	166	1.0	RB 1 MHz; \		
2465.300	102.2	Н	-	-	PK	166	1.0	RB 1 MHz; \		
2459.560	91.4	V	-	-	AVG	320	1.8	RB 1 MHz; \		
2457.270	99.4	V	-	-	PK	320	1.8	RB 1 MHz; \	/B: 1 MHz	
2483.5 MHz	Band Edge	Signal Radi	ated Field S	Strength - Ma	arker Delta					
				<u> </u>	Н	V				
ſ	Fundamenta	emission lev	/el @ 3m in '	1MHz RBW:	102.2	99.4	Peak Meası	urement (RB=	VB=1MHz)	
	Fundamenta	emission lev	/el @ 3m in '	1MHz RBW:	94.3	91.4	Average Me	asurement (F	RB=1MHz, V	B=10Hz)
				er - 100kHz	44.7	dB	<- this can o	only be used i	f band edge	signal is
		ted Band-Ed			57.5	dBuV/m	highest with	in 2MHz of b	and edge.	
	Calcul	ated Band-E	dge Measure	ement (Avg):	49.6	dBuV/m	Margin	Level	Limit	Detector
Delta Marker - 1MHz/1MHz:					35.8	dB	-4.4	49.6	54	Avg
Delta Marker - 1MHz/10Hz:				43.8	dB	-16.5	57.5	74	Pk	
	Calculated Band-Edge Measurement (Peak):					dBuV/m		∃z delta value		
Calculated Band-Edge Measurement (Avg):				50.5	dBuV/m	Using 100kl	Hz delta value	Э		
Frequency	Level	Pol	FCC ²	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
0404 200	40.0		E4.0	4.4	Λ.	_		LI-1 400LI	1 1.161	

2484.300


49.6

54.0

-4.4

Avg

Using 100kHz delta value

	11:2	-44								-	
	ZIIIC An A) 【【 经验。company						EM(C Test	Data	
Client:	Intel Corpor	ation						Job Number:	J75341		
Modeli	440001144	M /AvO bass M	": Cond\						T75388		
Modei:	112BNWWW	N (1x2 bgn M	ini Cara)				Accol	unt Manager:	Christine Vu	Krebill	
Contact:	Steve Hack	ett									
Standard:	FCC 15.247	7, RSS 210, F	-CC 15B (PC	Peripheral)			<u> </u>	Class:	N/A		
Run # 3, Ba	nd Edge Fie	eld Strength	- 802.11g, C	hain A							
	Date of Test:		-				Chamber #	5			
	•	: Suhaila Khu				nfig Change:	none				
Run # 3a, El	UT on Char	nnel #1 (2412	MHz) - 802.1					٦.			
	Chain			-	Settings		.				
	•		t (dBm)		ed (dBm)		e Setting				
[Chain A	15	5.0	13	3.4	10	8.5	J			
Fundament	Fundamental Signal Field Strength										
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2405.250	95.2	Н	-	-	AVG	303	1.0	RB 1 MHz; \	VB: 10 Hz		
2405.870	103.0	Н	-	-	PK	303	1.0	RB 1 MHz; \			
2404.990	93.5	V	-	-	AVG	168	1.8	RB 1 MHz; \			
2408.250	101.4	V		<u> </u>	PK	168	1.8	RB 1 MHz; \	VB: 1 MHz		
2200 MU- D		Nissal Dadia	4- d Fiold 04.		des Dalla						
2390 IVITIZ B	and Eage 3	Signal Radiat	iea rieia sir	ength - Wari	Ker Deita H	V	1				
-	-undamenta	al emission lev	vel @ 3m in '	1MHz RRW·		101.4	Doak Measi	urement (RB=	=\/R=1MHz\		
		al emission lev				93.5		easurement (F	,	/R=10Hz)	
	diladillo	T OTTIOGICT: 15		er - 100kHz				only be used			
	Calcula	ated Band-Ed				dBuV/m		in 2MHz of b	_	019.10.11	
		lated Band-E				dBuV/m	Margin	Level	Limit	Detector	
			lta Marker - 1	, ,,			-4.1	49.9	54	Avg	
	Delta Marker - 1MHz/10Hz:					dB	-16.3	57.7	74	Pk	
	Calculated Band-Edge Measurement (Peak):					dBuV/m		Hz delta value	e		
	Calculated Band-Edge Measurement (Avg)					dBuV/m		Hz delta valu			
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments			
		"			DI (OD (A			1			

MHz

2389.700

 $dB\mu V/m$

49.9

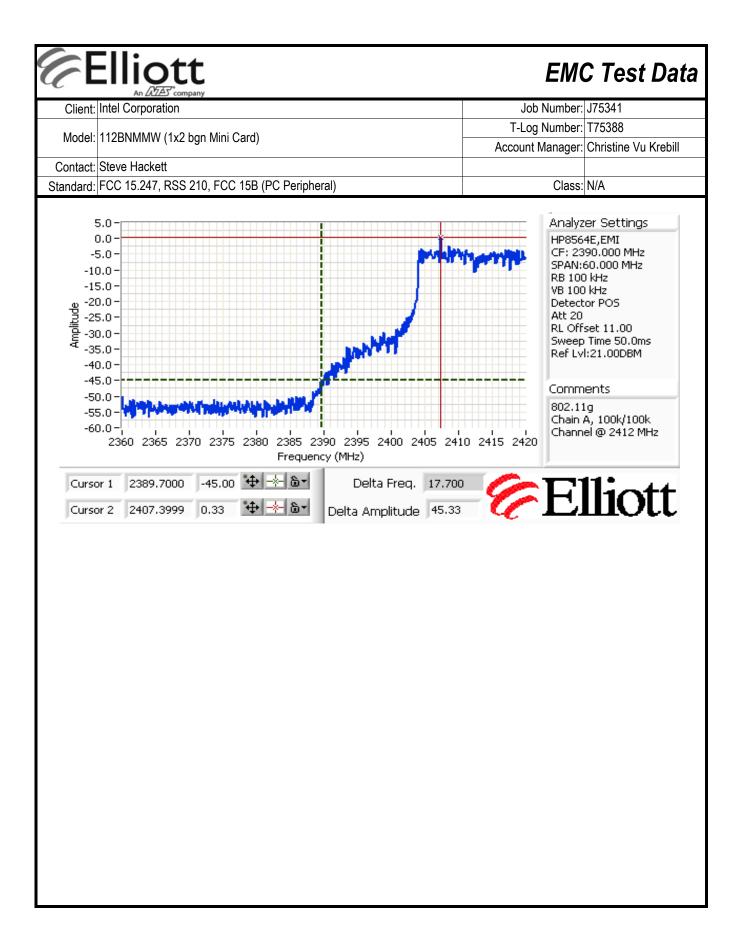
Pk/QP/Avg

Avg

degrees

meters

Using 100kHz delta value


Margin

-4.1

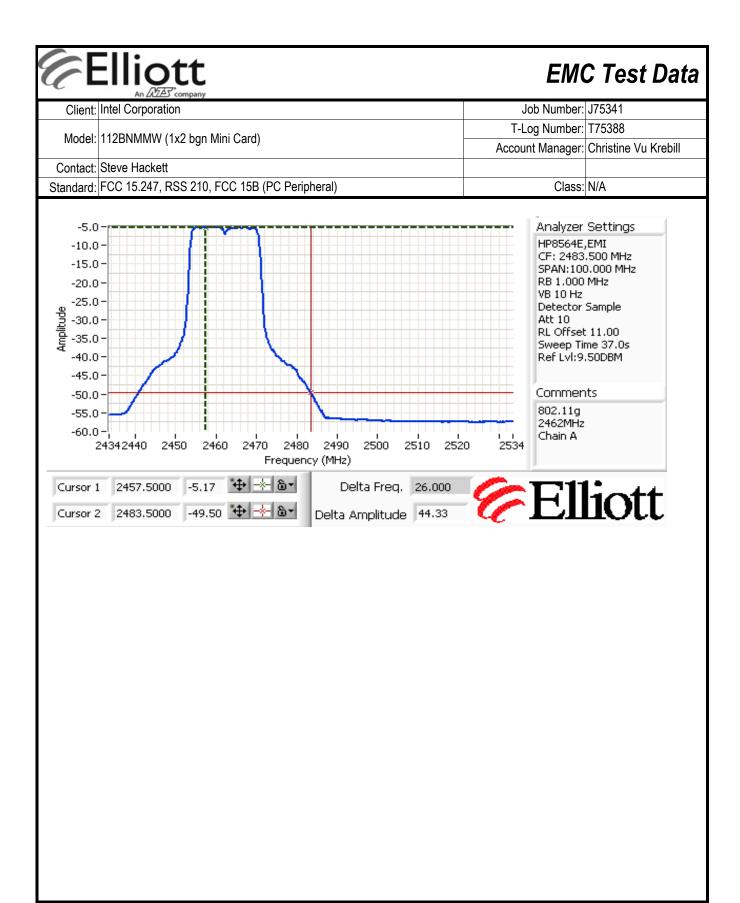
Limit

54.0

v/h

E E	Ellic	ott						EMO	C Test	Data
	Intel Corpor	Company					,	Job Number:	J75341	
	•						T-I	Log Number:	T75388	
Model:	112BNMMV	V (1x2 bgn M	ini Card)					unt Manager:		Krebill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247	', RSS 210, F	CC 15B (PC	Peripheral)				Class:	N/A	
		nel #11 (246	`		Α					
			·/		Settings			1		
	Chain	Target	(dBm)		ed (dBm)	Softwar	e Setting			
	Chain A	15	5.0	1	1.8	18	3.0			
Fundament	al Signal Fi	eld Strength								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2464.800	95.0	Н	-	-	AVG	18	1.0		/B: 10 Hz @	
2465.530	103.0	Н	-	-	PK	18	1.0		/B: 1 MHz @	
2463.240	93.1	V	-	-	AVG	336	1.5		/B: 10 Hz @	
2463.460	101.0	V	-	-	PK	336	1.5	RB 1 MHz; \	/B: 1 MHz @	18.0
2483.5 MHz	Band Edge	Signal Radi	iated Field S	trength - Ma	arker Delta					
					Н	V				
	Fundamenta	l emission lev	vel @ 3m in	1MHz RBW:	103.0	101.0	Peak Meası	urement (RB=	VB=1MHz)	
	Fundamenta	l emission lev	vel @ 3m in	1MHz RBW:	95.0	93.1	Average Me	easurement (F	RB=1MHz, V	B=10Hz)
			Delta Mark	er - 100kHz	42.3	dB	<- this can o	only be used	f band edge	signal is
	Calcula	ited Band-Ed	ge Measurer	nent (Peak):	60.7	dBuV/m	highest with	in 2MHz of b	and edge.	
	Calcul	lated Band-E	dge Measure	ement (Avg):	52.7	dBuV/m	Margin	Level	Limit	Detector
		Del	ta Marker - 1	MHz/1MHz:	37.0	dB	-3.3	50.7	54	Avg
Delta Marker - 1MHz/10Hz:					44.3	dB	-13.3	60.7	74	Pk
	Calculated Band-Edge Measurement (Peak):					dBuV/m	Using 100kl	Hz delta value	e	
	Calculated Band-Edge Measurement (Avg)					dBuV/m	Using 1MHz	z delta value		
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
0400 500	F0 7		E4.0				1	11 ' 48411		

2483.500


50.7

54.0

-3.3

Avg

Using 1MHz delta value

EF.		ott ZAT company						EMO	C Test	Data
Client:	Intel Corpora	ation						Job Number:	J75341	
						-		Log Number:		
Model:	112BNMMW	/ (1x2 bgn M	ini Card)					unt Manager:		Krebill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247,	, RSS <u>210, F</u>	-CC 1 <u>5B (PC</u>	2 Peripheral)				Class:	N/A	
	and Edge Fiel		- 802.11b, C	Chain A						
	Date of Test:					est Location:		r #5		
	est Engineer:					nfig Change:	none			
Run # 4a, E'	UT on Chan	nel #1 (2412	<u>/MHz) - 802.</u>	.11b, Chain A				7		
ļ	Chain	1 +		-	Settings	1 0.6	~			
ļ			t (dBm)		ed (dBm)		e Setting	-		
J	Chain A	10	6.5	10	6.7	11	7.5]		
Fundament	tal Signal Fie	eld Strength)							
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg		meters			
2410.330	102.8	Н	-	-	AVG	337	1.0	RB 1 MHz; \		
2411.130	106.0	Н	-	-	PK	337	1.0	RB 1 MHz; \		
2410.370	101.5	V	-	-	AVG	183	1.8	RB 1 MHz; \		
2411.230	104.7	V	-	-	PK	183	1.8	RB 1 MHz; \	VB: 1 MHz	
2200 MHz F	Pand Edge S	'ianal Padia	tod Eigld St	rength - Mark	war Dalta					
<u> </u>	allu Luge oi	Igilal Naulas	.eu r ieiu ou	engui - mair	H	V	1			
1	Fundamental	emission le	vel @ 3m in	1MHz RBW:		104.7	Peak Meas	urement (RB=	=VR=1MHz)	
	Fundamental					101.5		easurement (F	,	B=10Hz)
				ker - 100kHz				only be used		
	Calculated Band-Edge Measurement (Peak)					dBuV/m		nin 2MHz of b	•	Ü
<u> </u>	Calculated Band-Edge Measurement (Avg					dBuV/m	Margin	Level	Limit	Detector
		Del	lta Marker - 1	1MHz/1MHz:	40.7	dB	-9.7	44.3	54	Avg
			elta Marker - 1						Pk	
				ment (Peak):		dBuV/m	Using 100kHz delta value			
i	Calcula	ated Band-E	.dge Measur	rement (Avg):	44.3	dBuV/m	Using 1MHz delta value			

T7	'53	88	.x	ls
----	-----	----	----	----

Frequency

МНz

2387.333

Detector

Pk/QP/Avg

Avg

Azimuth

degrees

Height

meters

Comments

Using 1MHz delta value

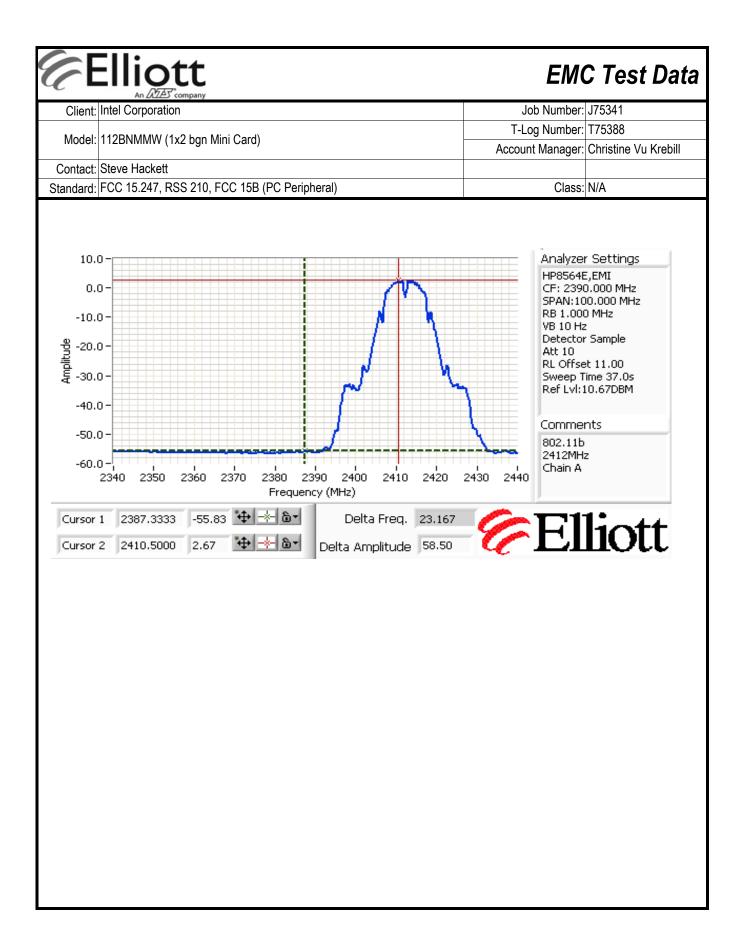
FCC 15.209

Limit

54.0

Margin

-9.7


Pol

v/h

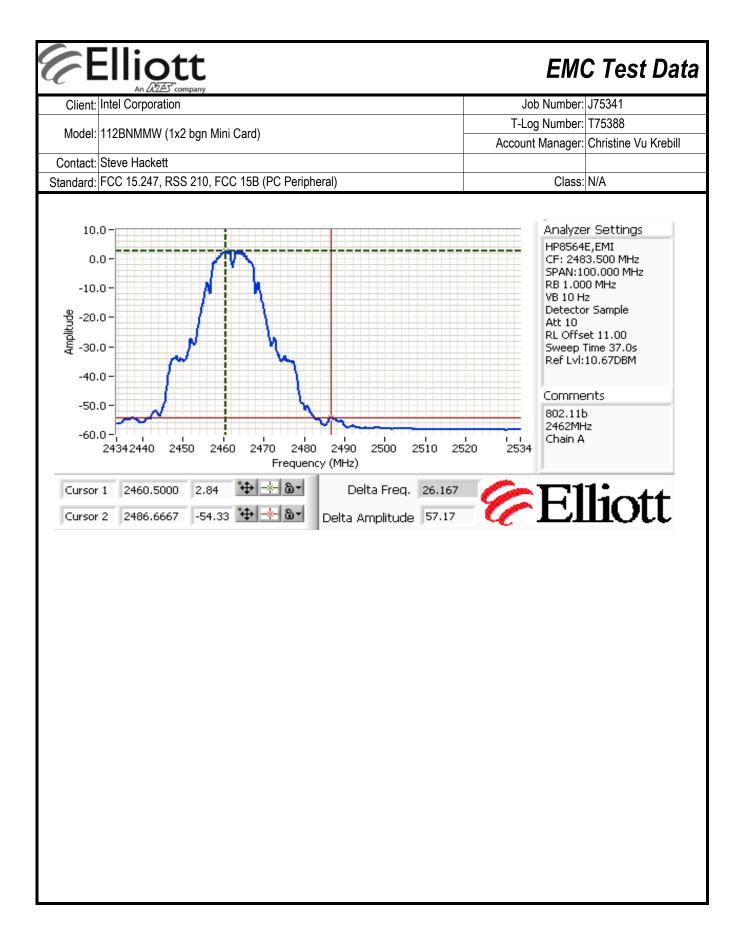
Level

 $dB\mu V/m$

44.3

E E	Ellic	ott As company						EMO	C Test	Data
Client:	Intel Corpor	ation					,	Job Number:	J75341	
Model	4400011141141	1/1v0 han M	:-: Card\				T-l	Log Number:	T75388	
wodei.	I IZDINIVIIVIV	/ (1x2 bgn M	ini Card)				Accol	unt Manager:	Christine Vu	Krebill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247	, RSS 210, F	CC 15B (PC	Peripheral)				Class:	N/A	
Run # 4b, E	UT on Chan	nel #11 (246	32MHz) - 802	2.11b, Chain				_		
	Chain				Settings					
			(dBm)		ed (dBm)		e Setting			
	Chain A	16	6.5	16	5.8	19	9.0			
Fundament	al Signal Fie	eld Strength								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2460.400	104.6	Н	-	-	AVG	339	1.0	RB 1 MHz; \		
2461.170	108.0	Н	-	-	PK	339	1.0	RB 1 MHz; \		
2460.680	99.4	V	-	-	AVG	184	1.0	RB 1 MHz; \		
2460.520	102.8	V	-	-	PK	184	1.0	RB 1 MHz; \	VB: 1 MHz	
2483.5 MHz	Band Edge	Signal Radi	iated Field S	Strength - Ma	arker Delta					
				u. vgu.	Н	V				
	Fundamenta	emission lev	/el @ 3m in	1MHz RBW:	108.0	102.8	Peak Meası	urement (RB=	=VB=1MHz)	
		emission lev			104.6	99.4			RB=1MHz, V	B=10Hz)
			Delta Mark	er - 100kHz	52.8	dB			if band edge	
	Calcula	ted Band-Ed	ge Measurer	nent (Peak):	55.2	dBuV/m	highest with	in 2MHz of b	and edge.	· ·
		ated Band-E				dBuV/m	Margin	Level	Limit	Detector
		Deli	ta Marker - 1	MHz/1MHz:	42.5	dB	-6.6	47.4	54	Avg
		De	lta Marker - 1	1MHz/10Hz:	57.2	dB	-18.8	55.2	74	Pk
Calculated Band-Edge Measurement (Peak):				65.5	dBuV/m	Using 100kl	Iz delta value	е		
	Calculated Band-Edge Measurement (Avg):				47.4	dBuV/m	Using 1MHz	z delta value		
Frequency	Level	Pol	FCC ²	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
0400.000	17.1		E40	~ ~	Λ			LI ANALL		

2486.660

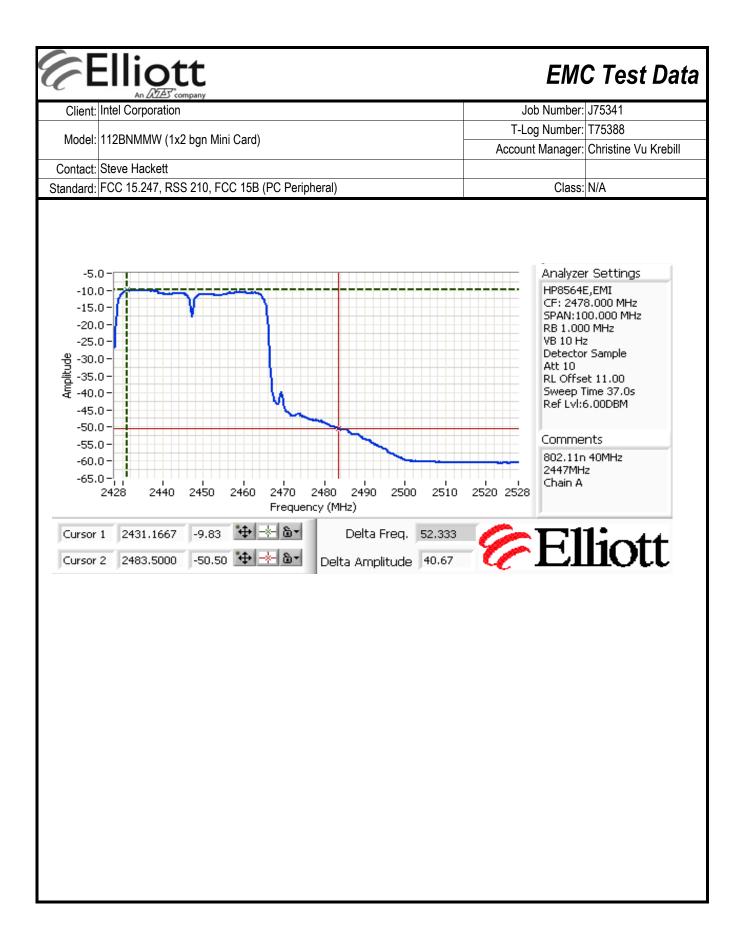

47.4

Avg

-6.6

54.0

Using 1MHz delta value



	Ellic	ott FAT*company						EMO	C Test	Data
Client:	Intel Corpora	ation						Job Number:	J75341	
							T-l	Log Number:	T75388	
Model:	112BNMMW	V (1x2 bgn M	ini Card)					ınt Manager:		Krebill
Contact:	Steve Hacke	ett								
		', RSS 210, F	CC 15B (PC	Peripheral)				Class:	N/A	
		eld Strength	,	_ ' /	Δ					
	Date of Test:		002.1111 40	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		est Location:	FT Chambe	r #5		
		Rafael Varel	las			nfig Change:				
Run # 5a, E	UT on Chan	nel #4 (2427	MHz) - 802.1	11n 40MHz,						
	Chain		•	Power	Settings					
	Citalii		(dBm)	Measure	ed (dBm)	Softwar	e Setting			
	Chain A	15	5.0	10	0.4	1:	5.0			
		eld Strength		145.047	I 5	A 1 (1		lo ,		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	DD 4 MH=. \	/D. 10 LI= @	15.0
2438.070 2437.530	90.1 98.7	H	-	-	AVG PK	336 336	1.2 1.2		/B: 10 Hz @ /B: 1 MHz @	
2437.530	88.4	V	-	-	AVG	335	1.5		/В: 10 Hz @	
2425.540	96.2	V	_	_	PK	335	1.5		<u>ив. 10 на ф</u> /В: 1 МНz @	
2420.040	30.Z	V			110	000	1.0	IND TIVILIZ,	V D. 1 WII 12 (d	, 10.0
2390 MHz E	Band Edge S	Signal Radiat	ted Field Str	ength - Mari	ker Delta					
					Н	V]			
	Fundamental	l emission lev	vel @ 3m in '	1MHz RBW:	98.7	96.2	Peak Measu	rement (RB=	=VB=1MHz)	
	Fundamental	l emission lev	vel @ 3m in '	1MHz RBW:	90.1	88.4	Average Me	asurement (F	RB=1MHz, V	B=10Hz)
				er - 100kHz	39.2	dB		only be used	•	signal is
		ted Band-Ed			59.5	dBuV/m	highest with	in 2MHz of b	and edge.	
	Calculated Band-Edge Measurement (Avg):			50.9 dBuV/m		Margin	Level	Limit	Detector	
	Delta Marker - 1MHz/1MHz:			35.2 dB		-3.4	50.6	54	Avg	
	Delta Marker - 1MHz/10Hz:				1110			Pk		
	Calculated Band-Edge Measurement (Peak):					dBuV/m	Using 100kHz delta value			
	Calculated Band-Edge Measurement (Avg)					dBuV/m	Using 1MHz delta value			

Frequency	Level	Pol	FCC ²	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2389.660	50.6	-	54.0	-3.4	Avg	ı	-	Using 1MHz delta value

E E		ott Æ*company						EMO	C Test	Data
Client:	Intel Corpor	ation					,	Job Number:	J75341	
*4. 1.1	440011141414						T-I	og Number:	T75388	
Modei:	112BNWWw	V (1x2 bgn M	ini Card)				Accou	ınt Manager:	Christine Vu	Krebill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247	, RSS 210, F	CC 15B (PC	Peripheral)				Class:	N/A	
Run # 5b, E	UT on Chan	nel #8 (2447	'MHz) - 802.	11n 40MHz,	Chain A					
•	Chain				Settings					
	Ullaili		(dBm)		ed (dBm)		e Setting			
<u> </u>	Chain A	15	5.0	10).4	15	5.5			
		eld Strength			•			•		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2462.600	91.0	H	-	-	AVG	321	1.2		/B: 10 Hz @	
2457.800	98.9	Н	-	-	PK	321	1.2		/B: 1 MHz @	
2431.400	90.0 97.9	V	-	-	AVG PK	342	1.8 1.8		/B: 10 Hz @	
2436.470	97.9	V	-	-	PN	342	1.0	RB I MHZ; V	/B: 1 MHz @) 15.5
2483.5 MHz	Band Edge	Signal Radi	iated Field S	Strenath - Ma	arker Delta					
		o.g		u. vgu.	Н	V]			
F	undamenta	l emission lev	vel @ 3m in '	1MHz RBW:	98.9	97.9	Peak Meası	rement (RB=	VB=1MHz)	
F	undamenta	l emission lev	vel @ 3m in '	1MHz RBW:	91.0	90.0	Average Me	asurement (F	RB=1MHz, V	B=10Hz)
			Delta Mark	er - 100kHz	40.7	dB	<- this can o	nly be used i	f band edge	signal is
		ited Band-Ed			58.2	dBuV/m	highest with	in 2MHz of b	and edge.	
	Calcul	lated Band-E	•	, σ,		dBuV/m	Margin	Level	Limit	Detector
			ta Marker - 1		34.3		-3.7	50.3	54	Avg
Delta Marker - 1MHz/10H					40.7		-15.8	58.2	74	Pk
Calculated Band-Edge Measurement (Peal Calculated Band-Edge Measurement (Avg						dBuV/m		Hz delta value	9	
	Calcul	lated Band-E	dge Measure	ement (Avg):	50.3	dBuV/m	Using 1MHz	delta value		
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2483.500	50.3	-	54.0	-3.7	Avg	-	-	Using 1MHz	delta value	

	An ZAZES company		
Client:	Intel Corporation	Job Number:	J75341
Madal	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
Model.	112BINMINIVY (1X2 Dgil Millil Cald)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	N/A

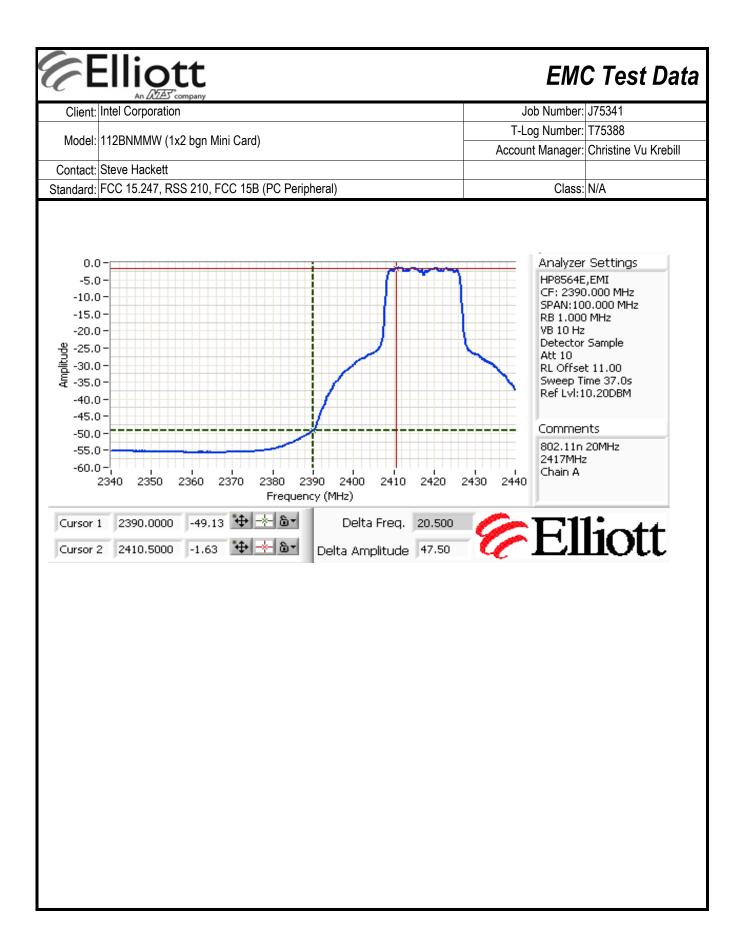
Run # 6, Band Edge Field Strength - 802.11n 20MHz, Chain A

Run # 6a, EUT on Channel #2 (2417MHz) - 802.11n 20MHz, Chain A

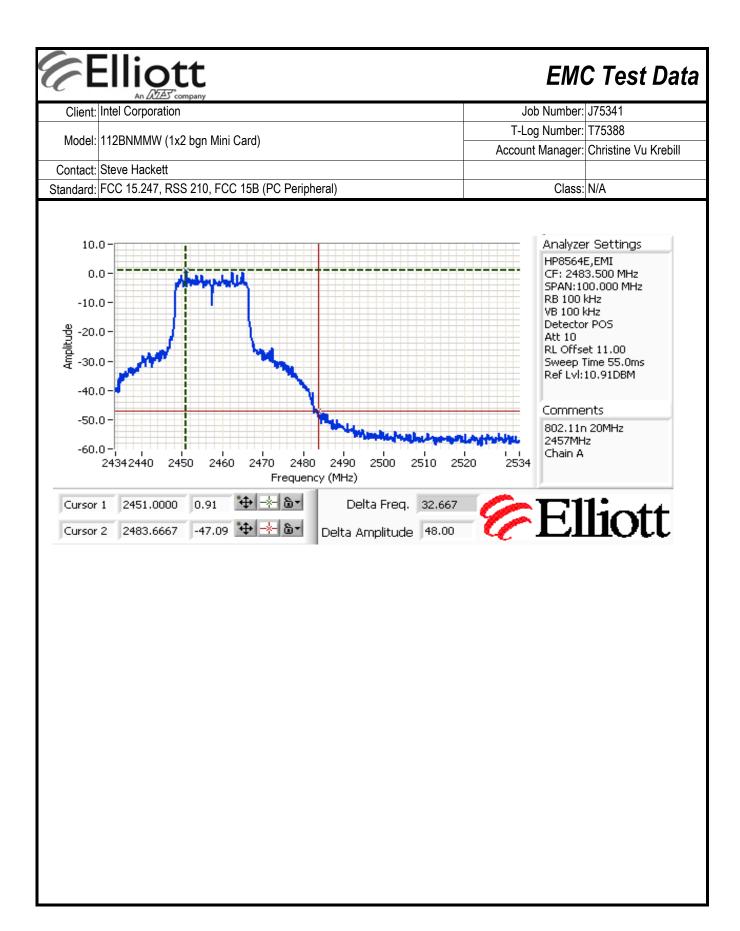
Date of Test: 5/13/2009 Test Location: FT Chamber #5

Test Engineer: Rafael varelas Config Change: none

Chain	Power Settings							
Gliaili	Target (dBm)	Measured (dBm)	Software Setting					
Chain A	16.5	16.1	22.0					


Fundamental Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2422.300	98.1	Н	-	-	AVG	332	1.0	RB 1 MHz; VB: 10 Hz @ 22.0
2420.470	106.2	Н	-	-	PK	332	1.0	RB 1 MHz; VB: 1 MHz @ 22.0
2409.970	95.2	V	-	-	AVG	177	1.5	RB 1 MHz; VB: 10 Hz @ 22.0
2412.030	103.1	V	-	-	PK	177	1.5	RB 1 MHz; VB: 1 MHz @ 22.0


2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta

			_					
	Н	V						
Fundamental emission level @ 3m in 1MHz RBW:			Peak Measurement (RB=VB=1MHz)					
Fundamental emission level @ 3m in 1MHz RBW:	98.1		Average Measurement (RB=1MHz, VB=10Hz)					
Delta Marker - 100kHz	45.8	dB	<- this can only be used if band edge signal					
Calculated Band-Edge Measurement (Peak):	-45.8	dBuV/m	highest within 2MHz of band edge.					
Calculated Band-Edge Measurement (Avg):	52.3	dBuV/m	Margin Level Limit					
Delta Marker - 1MHz/1MHz:	38.2	dB	-3.4	50.6	54	Avg		
Delta Marker - 1MHz/10Hz:	47.5	dB	-119.8	-45.8	74	Pk		
Calculated Band-Edge Measurement (Peak):	-38.2	dBuV/m	Using 100kh	Iz delta value	9			
Calculated Band-Edge Measurement (Avg):	50.6	dBuV/m	Using 1MHz delta value					

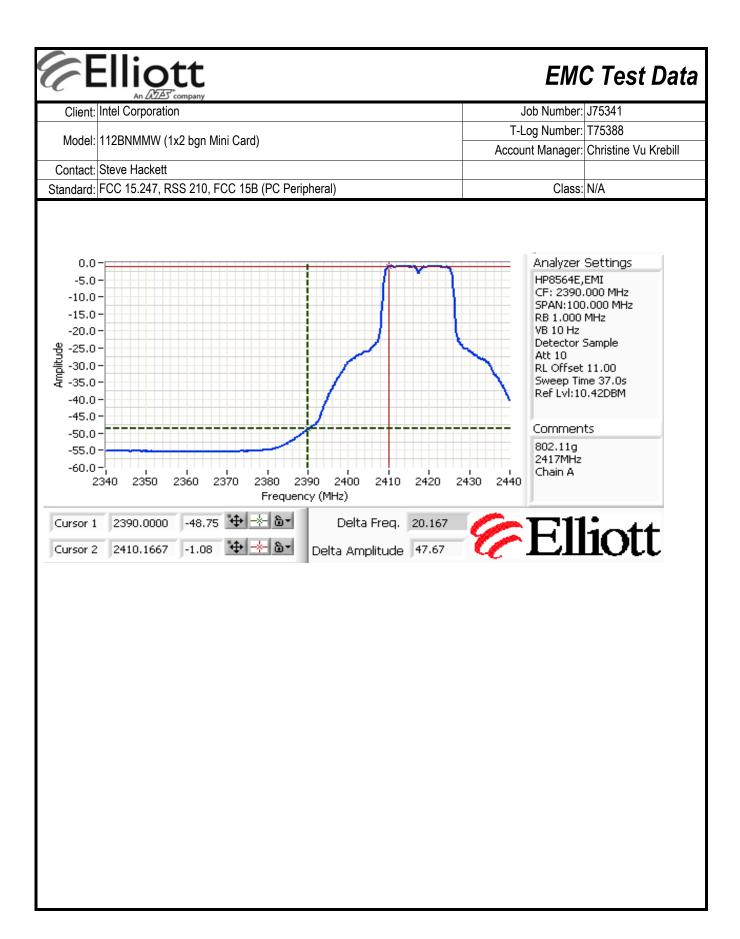
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	50.6	-	54.0	-3.4	Avg	-	-	Using 1MHz delta value

E		ott Ar company						EMO	C Test	Data
Client:	Intel Corpor	ation						Job Number:	J75341	
							T-I	Log Number:	T75388	
Model:	112BNMMV	V (1x2 bgn M	ini Card)					Account Manager: Christine Vu Kre		
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247	', RSS 210, F	CC 15B (PC	Peripheral)				Class:	N/A	
		nel #10 (245	•		Chain A				-	
	ate of Test:		77 1411 12) - 002			est Location:	FT Chambe	r #5		
		Rafael Vare	las			nfig Change:				
ſ				Power	Settings			1		
	Chain	Target	(dBm)	Measure	ed (dBm)	Softwar	e Setting			
	Chain A	15	5.0	15	5.1	2	1.5]		
		eld Strength					1	T -		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	DD 4 MILL A	/D 4011 O	04.5
2460.330 2460.400	98.5	H	-	-	AVG	316	1.2 1.2		/B: 10 Hz @	
2460.400	106.6 97.3	V	-	-	PK AVG	316 335	1.7		/B: 1 MHz @ /B: 10 Hz @	
2460.170	105.4	V		-	PK	335	1.7		<u>ив. 10 на ф</u> /В: 1 МНz @	
2400.070	100.4	V			110	000	1.7	IND I WILL,	VD. I WII IZ W	, 21.0
2483.5 MHz	Band Edge	Signal Radi	iated Field S	Strenath - Ma	arker Delta					
				g	Н	V]			
F	undamenta	l emission lev	vel @ 3m in	1MHz RBW:	106.1	105.3	Peak Meası	urement (RB=	=VB=1MHz)	
F	undamenta	l emission lev	vel @ 3m in	1MHz RBW:	98.5	97.3	Average Me	easurement (I	RB=1MHz, V	'B=10Hz)
				er - 100kHz	48.0	dB		only be used		signal is
		ited Band-Ed			58.1	dBuV/m	highest with	in 2MHz of b	and edge.	
	Calcul	lated Band-E	dge Measure	ement (Avg):		dBuV/m	Margin	Level	Limit	Detector
			ta Marker - 1		39.5		-3.5	50.5	54	Avg
			lta Marker -		47.2		-15.9	58.1	74	Pk
		ted Band-Ed				dBuV/m		Hz delta value		
	Calculated Band-Edge Measurement (Avg					dBuV/m	Using 100kl	Hz delta valu	9	
Frequency	Level	Pol	FCC	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2483.660 50.5 - 54.0 -3.5					Avg	-	-	Using 100kl	Iz delta valu	е

	Ellic	ott Ar company						EMO	C Test	Data
Client:	Intel Corpora	ation					,	Job Number:	J75341	
	•						T-I	Log Number:	T75388	
Model:	112BNMMV	V (1x2 bgn M	lini Card)					unt Manager:		ı Krebill
Contact:	Steve Hacke	ett					7.000			
			-CC 15B (PC	Peripheral)				Class:	N/A	
			- 802.11g, C	• '						
[Te	Date of Test: st Engineer:	5/13/2009 Rafael Vare	•		Cor	est Location: nfig Change:	FT Chambe none	r #5		
			, , , , , , , , , , , , , , , , , , , ,	Power	Settings			1		
	Chain	Target	t (dBm)	Measure	ed (dBm)	Softwar	e Setting			
	Chain A 16.5					2	2.0			
Fundament	al Signal Fie	eld Strength	,							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2423.770	98.3	Н	-	-	AVG	334	1.0	RB 1 MHz; \		
2420.470	106.3	Н	-	-	PK	334	1.0		VB: 1 MHz @	
2409.800	96.4	V	-	-	AVG	180	1.7		√B: 10 Hz @	
2410.070	104.3	V	-	-	PK	180	1.7	RB 1 MHz; \	√B: 1 MHz @	22.0
2390 MHz E	Band Edge S	ignal Radia	ted Field Str	ength - Marl	ker Delta					
					Н	V]			
	Fundamenta	l emission le	vel @ 3m in '	1MHz RBW:	106.3	104.3	Peak Measu	urement (RB=	=VB=1MHz)	
	Fundamenta	l emission le	vel @ 3m in '	1MHz RBW:	98.3	96.4	Average Me	asurement (I	RB=1MHz, V	B=10Hz)
			Delta Mark	er - 100kHz	46.2	dB	<- this can o	only be used	if band edge	signal is
	Calcula	ted Band-Ed	ge Measurer	nent (Peak):	60.1	dBuV/m	highest with	in 2MHz of b	and edge.	
	Calcul	ated Band-E	dge Measure	ement (Avg):	52.1	dBuV/m	Margin	Level	Limit	Detector
		Del	ta Marker - 1	MHz/1MHz:	40.7	dB	-3.4	50.6	54	Avg
		De	lta Marker - 1	1MHz/10Hz:	47.7	dB	-13.9	60.1	74	Pk
	2						I			

Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	50.6	-	54.0	-3.4	Avg	-	-	Using 1MHz delta value

65.6 dBuV/m


50.6 dBuV/m

Using 100kHz delta value

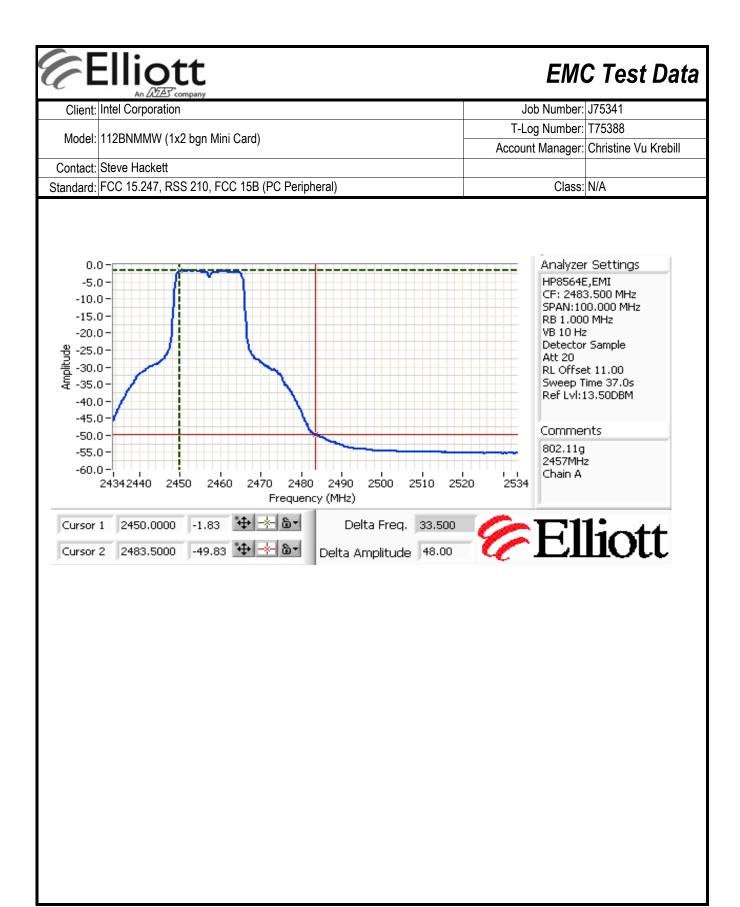
Using 1MHz delta value

Calculated Band-Edge Measurement (Peak):

Calculated Band-Edge Measurement (Avg):

E E	Ellic	ott						EMO	C Test	Data
	Intel Corpor	Company						Job Number:	J75341	
	•						T-I	Log Number:	T75388	
Model:	112BNMMV	V (1x2 bgn M	ini Card)					unt Manager:		Krebill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247	', RSS 210, F	CC 15B (PC	Peripheral)				Class:	N/A	
		nel #10 (245	`		A					
,					Settings			1		
	Chain	Target	(dBm)		ed (dBm)	Softwar	e Setting			
	Chain A	16	6.5	15	5.5	22	2.0			
Fundament	al Signal Fi	eld Strength								
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2459.730	99.0	Н	-	-	AVG	338	1.0		/B: 10 Hz @	
2460.500	106.8	Н	-	-	PK	338	1.0		/B: 1 MHz @	
2458.210	94.5	V	-	-	AVG	182	1.8		/B: 10 Hz @	
2455.640	102.1	V	-	-	PK	182	1.8	RB 1 MHz; \	/B: 1 MHz @	22.0
2483.5 MHz	Band Edge	Signal Radi	iated Field S	Strength - Ma	arker Delta					
				<u> </u>	Н	V	1			
	Fundamenta	l emission lev	vel @ 3m in	1MHz RBW:	106.8		Peak Meası	urement (RB=	VB=1MHz)	
	Fundamenta	l emission lev	vel @ 3m in	1MHz RBW:	99.0		Average Me	easurement (F	RB=1MHz, V	B=10Hz)
			Delta Mark	er - 100kHz	46.2	dB		only be used i	•	signal is
		ited Band-Ed			60.6	dBuV/m	highest with	in 2MHz of b	and edge.	
	Calcul	lated Band-E	dge Measure	ement (Avg):	52.8	dBuV/m	Margin	Level	Limit	Detector
		Del	ta Marker - 1	MHz/1MHz:	40.8	dB	-3.0	51.0	54	Avg
			lta Marker - 1		48.0		-13.4	60.6	74	Pk
	Calculated Band-Edge Measurement (Peak)					dBuV/m		Hz delta value	Э	
	Calculated Band-Edge Measurement (Avg)				51.0	dBuV/m	Using 1MHz	z delta value		
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
0.400 500	F4.0		E4.0			_	1	11 ' 48411		

2483.500


51.0

54.0

-3.0

Avg

Using 1MHz delta value

_											
CE.	Ellic	ott Ærcompany						EMO	C Test	Data	
Client:	Intel Corpora	ation						Job Number:	J75341		
Madal	44000114444	V (40 ls sus M	:-: 01\				T-l	_og Number:	T75388		
Model:	TIZBINIVIIVIV	V (1x2 bgn M	ini Card)				Accou	ınt Manager:	Christine Vu	Krebill	
Contact:	Steve Hacke	ett									
Standard:	FCC 15.247	', RSS 210, F	CC 15B (PC	Peripheral)				Class:	N/A		
Run #8. Bai	nd Fdae Fie	ld Strength	802.11n 40	MHz. Chain	Α						
. tu "o, _u.		• • 9	002								
	Date of Test:	5/11/2009			Te	est Location:	FT Chambe	r #5			
Te	st Engineer:	Rafael Vare	las		Cor	nfig Change:	none				
Run #8a, El	JT on Chani	nel #5 (2432)	MHz) - 802.1					•			
	Chain				Settings						
			(dBm)		ed (dBm)		e Setting				
	Chain A	15	5.0	1′	1.7	10	6.5				
Fundament	al Signal Fie	eld Strength									
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2421.000	90.4	Н	-	-	AVG	319	1.0	RB 1 MHz; \	/B: 10 Hz @	16.5	
2435.330	99.3	Н	1	-	PK	319	1.0	RB 1 MHz; \	/B: 1 MHz @) 16.5	
2429.270	91.0	V	-	-	AVG	335	1.5		/B: 10 Hz @		
2428.270	99.2	V	-	-	PK	335	1.5	RB 1 MHz; \	/B: 1 MHz @) 16.5	
2390 MHz B	and Edge S	ignal Radia	ed Field Str	ength - Mari	ker Delta						
	una Lago o	ngirai readia.		ongui man	H	V	1				
	undamenta	l emission lev	/el @ 3m in	1MHz RBW:	99.3	99.2	Peak Measu	rement (RB=	=VB=1MHz)		
		l emission lev			90.4	91.0		asurement (F		B=10Hz)	
			Delta Mark	er - 100kHz	40.0	dB		nly be used			
	Calcula	ited Band-Ed	ge Measurer	ment (Peak):	59.3	dBuV/m	highest with	in 2MHz of b	and edge.		
	Calcul	lated Band-E	dge Measure	ement (Avg):	51.0	dBuV/m	Margin	Level	Limit	Detector	
		Del	ta Marker - 1	MHz/1MHz:	34.8	dB	-3.0	51.0	54	Avg	
			lta Marker - 1		39.8		-14.7	59.3	74	Pk	
		ited Band-Ed				dBuV/m		Iz delta value			
	Calcul	lated Band-E	dge Measure	ement (Avg):	51.2	dBuV/m	Using 100kl	Hz delta value	Э		

Frequency

MHz

2389.830

Level

dBμV/m

51.0

Pol

v/h

Detector

Pk/QP/Avg

Avg

Azimuth

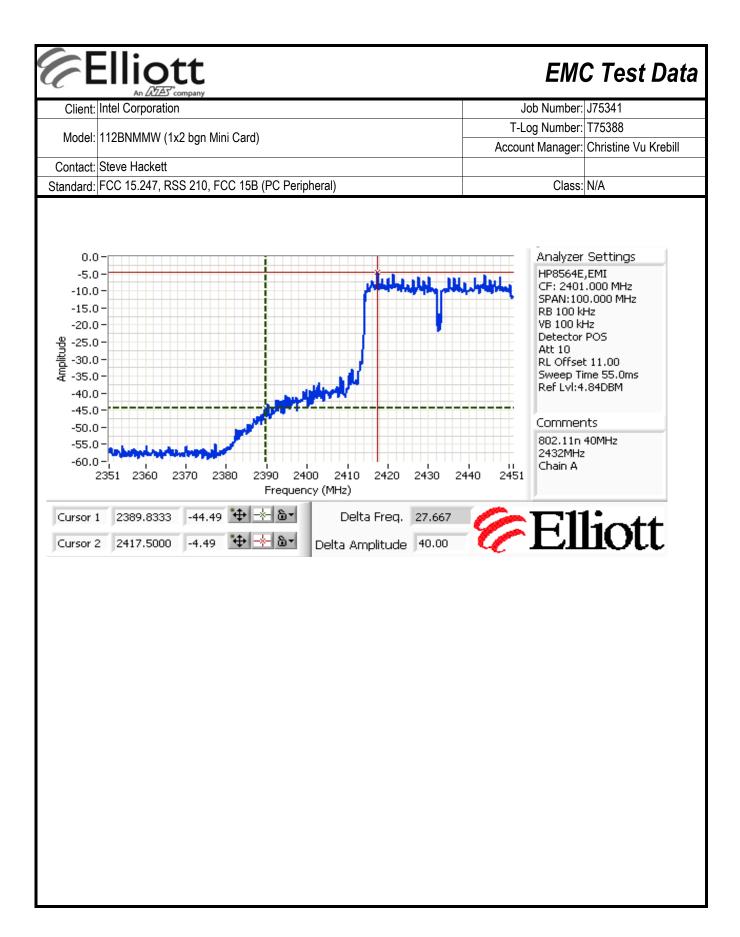
degrees

Comments

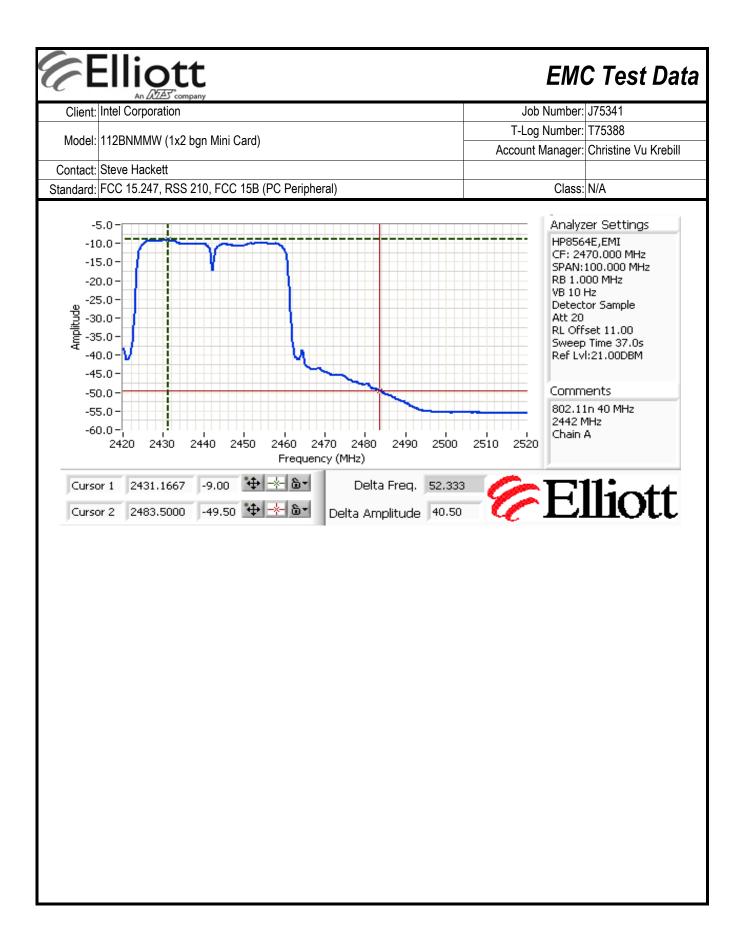
Using 100kHz delta value

Height

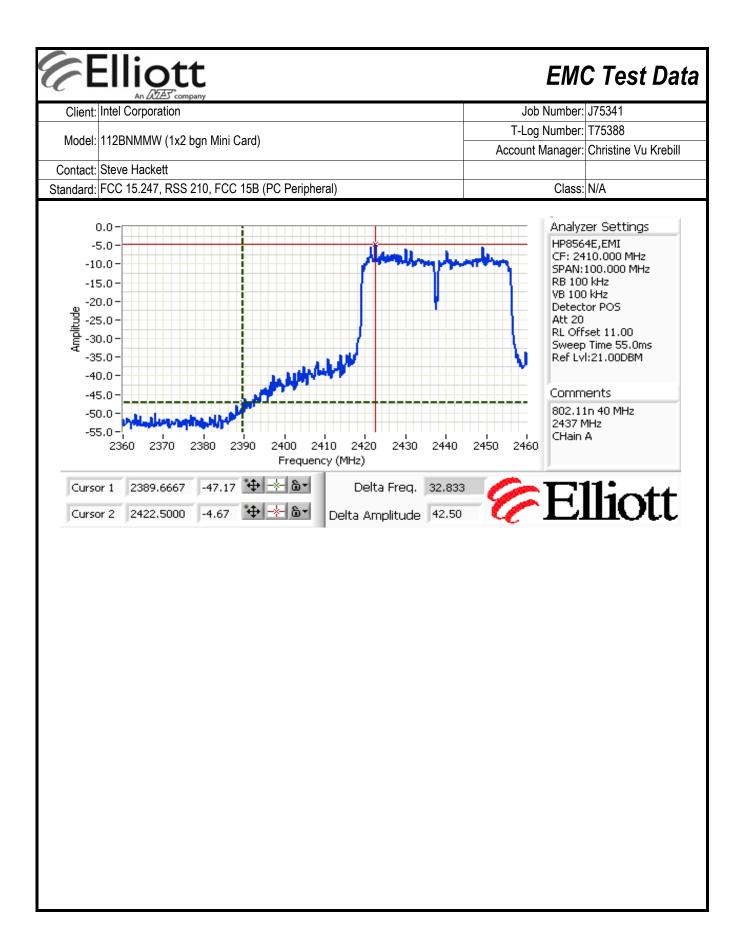
meters

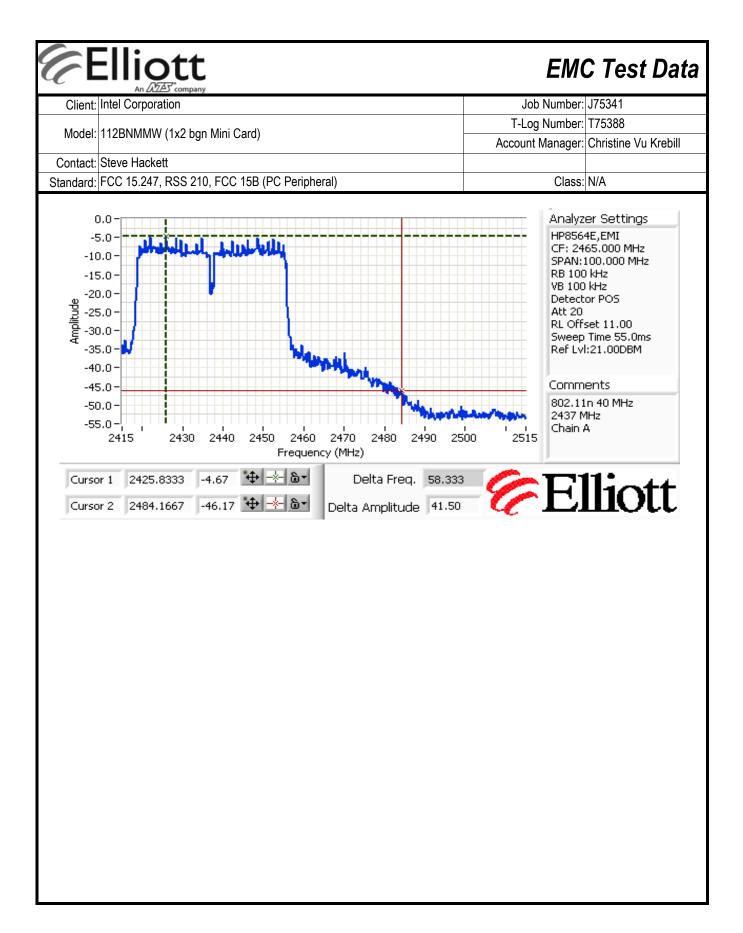

FCC 15.209

Margin


-3.0

Limit


54.0


E E)tt						EMO	C Test	Data
Client:	Intel Corpora	ation					,	Job Number:	J75341	
							T-I	Log Number:	T75388	
Modei:	112BNMMW	(1x2 bgn ivii	ini Card)				Accol	unt Manager:	Christine Vu	. Krebill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247,	, RSS 210, F	CC 15B (PC	Peripheral)				Class:	N/A	
D	UT on Chann Date of Test: est Engineer:	5/12/2009	·	11n 40MHz, C	Te	est Location: nfig Change:	FT Chambe none	r #5		
	Chain	Target	t (dBm)	-	ed (dBm)	Softwar	e Setting			
	Chain A		5.0		0.8		6.0			
	al Signal Fie	. 		115.047				- -		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	4 MII \	25 40 115	~ 10
2430.930	91.1	V		!	AVG	332	1.5	RB 1 MHz; \		@16
2430.930	98.8	V		- '	PK	332	1.5	RB 1 MHz; \		@16
2430.930 2430.670	90.8 98.4	H	-	-	AVG PK	318 318	1.3	RB 1 MHz; \ RB 1 MHz; \		
	<u>. </u>			Strength - Ma	l l	V	1		VD. 1	
F	Fundamental	amission le	ച_ര 3m in ¹	1MHz RRW·		98.8	Dook Moasi	urement (RB=	-\/D=1MHz)	
	Fundamental					91.1	-	easurement (F	,	'R=10Hz)
	WITH WITH THE PARTY OF THE PART	0100.2		ker - 100kHz	<u> </u>			only be used		,
	Calcula	ted Band-Ed	lge Measuren			dBuV/m		in 2MHz of b	•	
			dge Measure			dBuV/m	Margin	Level	Limit	Detector
			ta Marker - 11	, ,,	36.5		-3.4	50.6	54	Avg
			lta Marker - 1		40.5	dB	-13.5	60.5	74	Pk
			lge Measuren dge Measure	, ,		dBuV/m dBuV/m		Hz delta value z delta value	e	
Frequency	Level	Pol	FCC ⁴	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2483.500	50.6	_	54.0	-3.4	Avg	_	_	Using 1MHz	Julia III	

Model:		ation						Job Number:	J75341	
Model.	112BNMMW	/ (1v2 han M	ini Card)				T-	Log Number:	T75388	
	I IZDINIVIIVIVI	/ (TAZ DGIT IVI	iiii Caiu)				Acco	unt Manager:	Christine V	u Krebill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247	, RSS 210, F	CC 15B (PC	Peripheral)				Class:	N/A	
Run #8c, El	JT on Chanr	nel #6 (2437)	MHz) - 802.1	1n 40MHz, (Chain A			_		
	Chain			•	Settings					
		Target	,		ed (dBm)		e Setting	_		
- ,	Chain A		5.0	12	2.1	1.	7.5			
	tal Signal Fie Level	Pol	15 200	/ 15.247	Detector	Azimuth	Hoight	Comments		
Frequency MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	Height meters	Comments		
2425.930	92.3	Н	-	- Wargin	AVG	316	1.3	RB 1 MHz; \	/B· 10 Hz	@17.5
	100.1	Н	-	-	PK	316	1.3	RB 1 MHz; \		@17.5
2426.470										
	92.2	V	-	-	AVG	333	1.5	RB 1 MHz; \	VD. IU NZ	@17.5
2425.930 2426.470	92.2 100.3	V	-	-	PK	333	1.5	RB 1 MHz; \		@17.5
2425.930 2426.470 2390 MHz E	92.2 100.3 Band Edge S Fundamental	V ignal Radiate	ed Field Str	ength - Mar 1MHz RBW:	PK ker Delta H 100.1	333 V 100.3	1.5 Peak Meas	RB 1 MHz; \	VB: 1 MHz =VB=1MHz	@17.5
2425.930 2426.470 2390 MHz E	92.2 100.3 Band Edge S	V ignal Radiate	red Field Str vel @ 3m in vel @ 3m in vel @ 3m in vel @ 3m in vel	ength - Mar 1MHz RBW: 1MHz RBW:	PK ker Delta H 100.1 92.7	V 100.3 92.2	1.5 Peak Meas Average Me	RB 1 MHz; \understand	VB: 1 MHz =VB=1MHz) RB=1MHz,	@17.5 0 VB=10Hz)
	92.2 100.3 Band Edge S Fundamental Fundamental	V ignal Radiate emission levenission levenis l	red Field Str vel @ 3m in vel	ength - Mar 1MHz RBW: 1MHz RBW: er - 100kHz	PK ker Delta H 100.1 92.7 42.5	333 V 100.3 92.2 dB	1.5 Peak Meas Average Me	RB 1 MHz; \understand urement (RB= easurement (Fonly be used in the coll) and the coll \text{poly be used in the coll of	VB: 1 MHz =VB=1MHz) RB=1MHz, if band edg	@17.5 0 VB=10Hz)
2425.930 2426.470 2390 MHz E	92.2 100.3 Band Edge S Fundamental Fundamental	V ignal Radiate emission levented Band-Ed	red Field Str vel @ 3m in r vel @ 3m in r Delta Mark ge Measurer	ength - Mar 1MHz RBW: 1MHz RBW: er - 100kHz nent (Peak):	PK ker Delta H 100.1 92.7 42.5 57.8	V 100.3 92.2 dB dBuV/m	1.5 Peak Meas Average Me this can o	RB 1 MHz; \understand urement (RB= easurement (Ronly be used in 2MHz of both the subsection of t	VB: 1 MHz =VB=1MHz, RB=1MHz, if band edge and edge.	@17.5 VB=10Hz) e signal is
2425.930 2426.470 2390 MHz E	92.2 100.3 Band Edge S Fundamental Fundamental	V ignal Radiate emission level emission level ted Band-Edated Band-Edated Band-E	red Field Str vel @ 3m in vel		PK ker Delta H 100.1 92.7 42.5 57.8 50.2	V 100.3 92.2 dB dBuV/m dBuV/m	1.5 Peak Meas Average Meas - this can of highest with Margin	urement (RB= easurement (F only be used in 2MHz of but Level	vB: 1 MHz =vB=1MHz, RB=1MHz, if band edge and edge. Limit	@17.5 VB=10Hz) e signal is Detect
2425.930 2426.470 3 90 MHz E	92.2 100.3 Band Edge S Fundamental Fundamental	V ignal Radiate emission levented Band-Ed ated Band-E	red Field Str vel @ 3m in r vel @ 3m in r Delta Mark ge Measurer dge Measurer da Marker - 1	rength - Mari 1MHz RBW: 1MHz RBW: rer - 100kHz ment (Peak): ement (Avg): MHz/1MHz:	PK ker Delta H 100.1 92.7 42.5 57.8 50.2 37.2	V 100.3 92.2 dB dBuV/m dBuV/m	Peak Meas Average Me - this can of highest with Margin -3.8	urement (RB=easurement (FBonly be used in 2MHz of bull bound bull bull bull bull bull bull bull bul	VB: 1 MHz =VB=1MHz, RB=1MHz, if band edge. Limit 54	@17.5 VB=10Hz) e signal is Detect Avg
2425.930 2426.470 2390 MHz E	92.2 100.3 Band Edge S Fundamental Fundamental Calcula Calcul	V ignal Radiate emission leventssion levented Band-Edeted Band-Band-Edeted Band-Edeted Band-Edeted Band-Band-Band-Band-Band-Band-Band-Band-	red Field Str vel @ 3m in vel	- IMHz RBW: IMHz RBW: IMHz RBW: er - 100kHz nent (Peak): ement (Avg): MHz/1MHz: IMHz/10Hz:	PK ker Delta H 100.1 92.7 42.5 57.8 50.2 37.2 41.3	V 100.3 92.2 dB dBuV/m dBuV/m dB	Peak Meas Average Me - this can of highest with Margin -3.8 -16.2	urement (RB=easurement (Ronly be used in 2MHz of bull books 50.2 57.8	VB: 1 MHz =VB=1MHz, RB=1MHz, if band edge. Limit 54 74	@17.5 VB=10Hz) e signal is Detect
2425.930 2426.470 2390 MHz E	92.2 100.3 Band Edge S Fundamental Fundamental Calcula Calcula	V ignal Radiate emission level emission level ted Band-Edeted Band	red Field Str vel @ 3m in vel	ength - Mari 1MHz RBW: 1MHz RBW: er - 100kHz ment (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: ment (Peak):	PK ker Delta H 100.1 92.7 42.5 57.8 50.2 37.2 41.3 63.1	V 100.3 92.2 dB dBuV/m dBuV/m dB dB	Peak Meas Average Me this can of highest with Margin -3.8 -16.2 Using 100k	urement (RB=easurement (RBonly be used in 2MHz of bull by 150.2 57.8 Hz delta value	VB: 1 MHz =VB=1MHz, RB=1MHz, if band edge. Limit 54 74 e	@17.5 VB=10Hz) e signal is Detect Avg
2425.930 2426.470 2390 MHz E	92.2 100.3 Band Edge S Fundamental Fundamental Calcula Calcula	V ignal Radiate emission leventssion levented Band-Edeted Band-Band-Edeted Band-Edeted Band-Edeted Band-Band-Band-Band-Band-Band-Band-Band-	red Field Str vel @ 3m in vel	ength - Mari 1MHz RBW: 1MHz RBW: er - 100kHz ment (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: ment (Peak):	PK ker Delta H 100.1 92.7 42.5 57.8 50.2 37.2 41.3 63.1	V 100.3 92.2 dB dBuV/m dBuV/m dB	Peak Meas Average Me this can of highest with Margin -3.8 -16.2 Using 100k	urement (RB=easurement (Ronly be used in 2MHz of bull books 50.2 57.8	VB: 1 MHz =VB=1MHz, RB=1MHz, if band edge. Limit 54 74 e	@17.5 VB=10Hz) e signal is Detect Avg
2425.930 2426.470 2390 MHz E	92.2 100.3 Band Edge S Fundamental Fundamental Calcula Calcula	V ignal Radiate emission level emission level ted Band-Edeted Band	red Field Str vel @ 3m in vel	ength - Mari 1MHz RBW: 1MHz RBW: er - 100kHz ment (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: ment (Peak):	PK ker Delta H 100.1 92.7 42.5 57.8 50.2 37.2 41.3 63.1	V 100.3 92.2 dB dBuV/m dBuV/m dB dB	Peak Meas Average Me this can of highest with Margin -3.8 -16.2 Using 100k	urement (RB=easurement (RBonly be used in 2MHz of bull by 150.2 57.8 Hz delta value	VB: 1 MHz =VB=1MHz, RB=1MHz, if band edge. Limit 54 74 e	@17.5 VB=10Hz) e signal is Detect Avg
2425.930 2426.470 390 MHz E	92.2 100.3 Band Edge S Fundamental Fundamental Calcula Calcul Calcula	ignal Radiate emission levented Band-Edeted Band-Edete	red Field Str vel @ 3m in vel	rength - Mari MHz RBW: 1MHz RBW: rer - 100kHz ment (Peak): rement (Avg): MHz/1MHz: 1MHz/10Hz: ment (Peak): rement (Avg):	PK ker Delta H 100.1 92.7 42.5 57.8 50.2 37.2 41.3 63.1 51.4	V 100.3 92.2 dB dBuV/m dBuV/m dB dB dBuV/m dBuV/m	Peak Meas Average Me - this can of highest with Margin -3.8 -16.2 Using 100k Using 100k	urement (RB= easurement (RB= e	VB: 1 MHz VB: 1 MHz, RB=1MHz, if band edge. Limit 54 74 e	@17.5 VB=10Hz) e signal is Detect Avg Pk

	(1x2 bgn M	ini Card)						J75341	
	(IXZ DGII IVI	iiiii Caiu)				T-I	_og Number:	T75388	
						Accol	ınt Manager:	Christine Vu	Krebill
ve Hacke									
C 15.247,	RSS 210, F	-CC 15B (PC	Peripheral)				Class:	N/A	
nd Edge	Signal Rad	iated Field S	Strength - Ma			7			
-1			AMIL DOW] D I M	(/DD	\/D 4MIL\	
							,	,	D-10U-\
uamentai	emission ie						,		,
Calculate	ed Band-Ed								oigridi io
							Level	Limit	Detecto
	Del	ta Marker - 1	MHz/1MHz:	36.0	dB	-3.2	50.8	54	Avg
				41.3	dB	-15.2	58.8	74	Pk
		•	, ,						
Calcula	ited Band-E	dge Measure	ement (Avg):	51.0	dBuV/m	Using 100kl	Hz delta value	9	
Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments		
BμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
50.8	-	54.0	-3.2	Avg	-	-	Using 100kh	łz delta valu	е
	damental damental Calculate Calculat	damental emission levidamental emission emiss	damental emission level @ 3m in damental emission level @ 3m in Delta Mark Calculated Band-Edge Measurer Calculated Band-Edge Measurer Delta Marker - 1 Delta Marker - 1 Calculated Band-Edge Measurer Level Pol FCC	damental emission level @ 3m in 1MHz RBW: damental emission level @ 3m in 1MHz RBW: Delta Marker - 100kHz Calculated Band-Edge Measurement (Peak): Calculated Band-Edge Measurement (Avg): Delta Marker - 1MHz/10Hz: Delta Marker - 1MHz/10Hz: Calculated Band-Edge Measurement (Peak): Calculated Band-Edge Measurement (Avg): Calculated Band-Edge Measurement (Avg): Level Pol FCC 15.209 BµV/m v/h Limit Margin	And Edge Signal Radiated Field Strength - Marker Delta H damental emission level @ 3m in 1MHz RBW: 100.1 damental emission level @ 3m in 1MHz RBW: 92.3 Delta Marker - 100kHz 41.5 Calculated Band-Edge Measurement (Peak): 58.8 Calculated Band-Edge Measurement (Avg): 50.8 Delta Marker - 1MHz/1MHz: 36.0 Delta Marker - 1MHz/10Hz: 41.3 Calculated Band-Edge Measurement (Peak): 64.3 Calculated Band-Edge Measurement (Avg): 51.0 Level Pol FCC 15.209 Detector BµV/m v/h Limit Margin Pk/QP/Avg	Adamental emission level @ 3m in 1MHz RBW: 100.1 100.3 damental emission level @ 3m in 1MHz RBW: 92.3 92.2 Delta Marker - 100kHz 41.5 dB Calculated Band-Edge Measurement (Peak): 58.8 dBuV/m Calculated Band-Edge Measurement (Avg): 50.8 dBuV/m Delta Marker - 1MHz/1MHz: 36.0 dB Delta Marker - 1MHz/10Hz: 41.3 dB Calculated Band-Edge Measurement (Peak): 64.3 dBuV/m Calculated Band-Edge Measurement (Avg): 51.0 dBuV/m Calculated Band-Edge Measurement (Avg): 51.0 dBuV/m Level Pol FCC 15.209 Detector Azimuth BµV/m v/h Limit Margin Pk/QP/Avg degrees	Average Measurement (Avg): Calculated Band-Edge Measurement (Peak): Delta Marker - 1MHz/1MHz: Delta Marker - 1MHz/10Hz: Delta Marker - 1MHz/10Hz: Calculated Band-Edge Measurement (Peak): Delta Marker - 1MHz/10Hz: Calculated Band-Edge Measurement (Avg): Delta Marker - 1MHz/10Hz: Calculated Band-Edge Measurement (Peak): Delta Marker - 1MHz/10Hz: Calculated Band-Edge Measurement (Peak): Delta Marker - 1MHz/10Hz: Calculated Band-Edge Measurement (Peak): Calculated Band-Edge Measurement (Peak): Calculated Band-Edge Measurement (Peak): Calculated Band-Edge Measurement (Peak): Calculated Band-Edge Measurement (Avg): Detector Azimuth Height BµV/m V/h Limit Margin Pk/QP/Avg degrees meters	Adamental emission level @ 3m in 1MHz RBW: 100.1 100.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 92.2 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RB=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RD=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RD=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RD=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measurement (RD=damental emission level @ 3m in 1MHz RBW: 92.3 Average Measu	H V Deak Measurement (RB=VB=1MHz, V Delta Marker - 100kHz Delta Marker - 10MHz/1MHz; Solution Solu

E E	lliott An 公运 company	EMO	C Test Dat
Client:	Intel Corporation	Job Number:	J75341
Madalı	110DNIMMW (1v0 ban Mini Cord)	T-Log Number:	T75388
woder.	112BNMMW (1x2 bgn Mini Card)	Account Manager:	Christine Vu Krebill

RSS 210 and FCC 15.247 Transmitter Radiated Spurious Emissions, 30MHz - 26GHz

EMC Test Data

Class: N/A

Test Specific Details

Contact: Steve Hackett

Standard: FCC 15.247, RSS 210, FCC 15B (PC Peripheral)

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT was installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results

MAC Address: 001E64004794 CRTU Tool Version 5.10.24.0 Driver version 12.5.0.41

Run#	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
		#1	16.5	16.7	Radiated Emissions,	FCC 15.209 / 15.247	54.6dBµV/m @
		2412 MHz			1 - 26 GHz		1330.3MHz (-19.4dB)
1	802.11b	#6	16.5	16.6	Radiated Emissions,	FCC 15.209 / 15.247	35.8dBµV/m @
	002.110	2437 MHz	10.5	10.0	1 - 26 GHz	1 00 10.2037 10.247	4874.0MHz (-18.2dB)
		#11	16.5	16.8	Radiated Emissions,	FCC 15.209 / 15.247	41.3dBµV/m @
		2462 MHz			1 - 26 GHz		4924.0MHz (-12.7dB)
Run #2 - th	e worst cas	e OFDM mo	de (g, n20 o	r n40) was d	etermined to be 802.11g	mode through prelimir	nary scans
		#1	16 E	16.6	Radiated Emissions,	FCC 15.209 / 15.247	42.6dBµV/m @
		2412 MHz	16.5	10.0	1 - 26 GHz	FCC 15.2097 15.247	2220.6MHz (-11.4dB)
2	2 802.11g		16 E	16.6	Radiated Emissions,	FCC 15.209 / 15.247	46.8dBµV/m @
2			16.5	10.0	1 - 26 GHz	FCC 15.2097 15.247	2223.7MHz (-7.2dB)
		#11	16.5	16.5	Radiated Emissions,	FCC 15.209 / 15.247	42.8dBµV/m @
		2462 MHz	16.5	10.5	1 - 26 GHz	1 00 13.209 / 13.247	2221.1MHz (-11.2dB)

Ambient Conditions:

Rel. Humidity: 22.3 % Temperature: 42 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	An 2/223 company		
Client:	Intel Corporation	Job Number:	J75341
Model	Model: 112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
Model.	112BNWWW (1x2 bgil Willi Cald)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	В

Radiated Emissions - Transmitter/Receiver Spurious 30 - 1000 MHz Receiver Spurious 1 - 7.5GHz

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/14/2009 Config. Used: #1 (Module outside of host device)

Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 21.5 °C

Rel. Humidity: 40 %

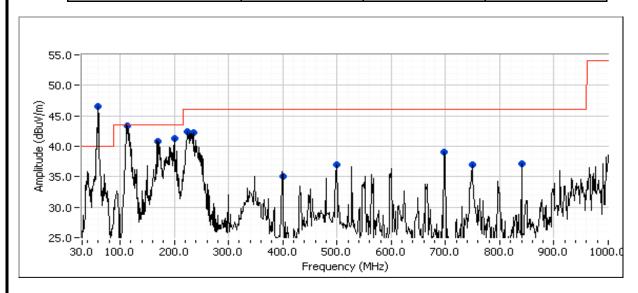
Summary of Results

MAC Address: 001E64004794 CRTU Tool Version 5.10.24.0 Driver version 12.5.0.41

Run #	Test Performed	Limit	Result	Margin
1,2	RE, 30 - 1000 MHz,	FCC 15.209 / RSS GEN	Pass	38.6dBµV/m @
1,2	Maximized Emissions		F455	59.052MHz (-1.4dB)
3 (20MHz)	RE, 1000 - 7500 MHz, Maximized	RSS 210 / RSS GEN	Pass	48.6dBµV/m @
3 (201VII 12)	Emissions - Chain A	(Receiver spurious)	Fa55	6000.7MHz (-5.4dB)
4 (40MHz)	RE, 1000 - 7500 MHz, Maximized	RSS 210 / RSS GEN	Door	49.4dBµV/m @
4 (40IVII 12)	Emissions - Chain A	(Receiver spurious)	Pass	3000.3MHz (-4.6dB)
5 (20MHz)	RE, 1000 - 7500 MHz, Maximized	RSS 210 / RSS GEN	Pass	48.7dBµV/m @
3 (20IVII 12)	Emissions - Chain A + B	(Receiver spurious)	Fa55	3000.4MHz (-5.3dB)
6 (40MHz)	RE, 1000 - 7500 MHz, Maximized	RSS 210 / RSS GEN	Door	48.0dBµV/m @
0 (40IVITZ)	Emissions - Chain A + B	(Receiver spurious)	Pass	3000.3MHz (-6.0dB)
7 (20MHz)	RE, 1000 - 7500 MHz, Maximized	RSS 210 / RSS GEN	Door	47.9dBµV/m @
7 (ZUIVITZ)	Emissions - Chain B	(Receiver spurious)	Pass	6000.7MHz (-6.1dB)
8 (40MHz)	RE, 1000 - 7500 MHz, Maximized	RSS 210 / RSS GEN	Door	47.6dBµV/m @
0 (40NITZ)	Emissions - Chain B	(Receiver spurious)	Pass	6000.7MHz (-6.4dB)

	An 2022 company		
Client:	Intel Corporation	Job Number:	J75341
Madal	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
Model.	112BNWIWW (1X2 Dgit Willi Galu)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	В

Modifications Made During Testing


No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Preliminary peak readings captured during pre-scan

		. 3						
Frequency	Level	Pol	FCC B / I	RSS GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
59.052	46.6	V	40.0	6.6	Peak	341	1.0	Broadband
113.346	43.4	V	43.5	-0.1	Peak	129	1.0	
169.818	40.8	V	43.5	-2.7	Peak	113	1.0	
199.086	41.2	Н	43.5	-2.3	Peak	3	1.0	
224.855	42.4	Н	46.0	-3.6	Peak	358	1.0	
235.384	42.3	Н	46.0	-3.7	Peak	351	1.0	
398.411	35.1	Н	46.0	-10.9	Peak	181	1.0	
498.197	37.0	Н	46.0	-9.0	Peak	161	1.0	
699.832	39.0	Н	46.0	-7.0	Peak	128	1.0	
749.242	37.0	Н	46.0	-9.0	Peak	101	1.0	
840.090	37.1	Н	46.0	-8.9	Peak	101	1.0	

	All Deed Company		
Client:	Intel Corporation	Job Number:	J75341
Model:	Model: 112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
woder.	112BINMINIVY (1X2 DGIT IMITIT CATU)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	В

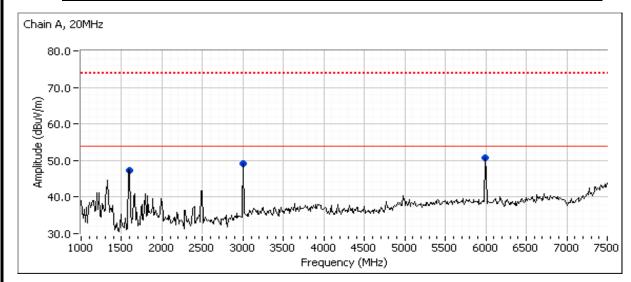
Preliminary quasi-peak readings (no manipulation of EUT interface cables)

Level	Pol	FCC B / F	RSS GEN	Detector	Azimuth	Height	Comments
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
39.6	V	40.0	-0.4	QP	339	1.0	QP (1.00s), Broadband
39.8	Н	46.0	-6.2	QP	359	1.0	QP (1.00s)
36.1	Н	46.0	-9.9	QP	349	1.0	QP (1.00s)
33.1	Н	46.0	-12.9	QP	180	1.0	QP (1.00s)
32.6	Н	46.0	-13.4	QP	159	1.0	QP (1.00s)
37.3	Н	46.0	-8.7	QP	126	1.0	QP (1.00s)
41.6	V	43.5	-1.9	QP	130	1.0	QP (1.00s)
37.8	V	43.5	-5.7	QP	110	1.0	QP (1.00s)
30.2	Н	46.0	-15.8	QP	99	1.0	QP (1.00s)
36.4	Н	46.0	-9.6	QP	102	1.0	QP (1.00s)
37.1	Н	43.5	-6.4	QP	1	1.0	QP (1.00s)
	dBμV/m 39.6 39.8 36.1 33.1 32.6 37.3 41.6 37.8 30.2 36.4	dBμV/m v/h 39.6 V 39.8 H 36.1 H 33.1 H 32.6 H 37.3 H 41.6 V 37.8 V 30.2 H 36.4 H	dBμV/m v/h Limit 39.6 V 40.0 39.8 H 46.0 36.1 H 46.0 33.1 H 46.0 32.6 H 46.0 37.3 H 46.0 41.6 V 43.5 37.8 V 43.5 30.2 H 46.0 36.4 H 46.0	dBμV/m v/h Limit Margin 39.6 V 40.0 -0.4 39.8 H 46.0 -6.2 36.1 H 46.0 -9.9 33.1 H 46.0 -12.9 32.6 H 46.0 -8.7 41.6 V 43.5 -1.9 37.8 V 43.5 -5.7 30.2 H 46.0 -15.8 36.4 H 46.0 -9.6	dBμV/m v/h Limit Margin Pk/QP/Avg 39.6 V 40.0 -0.4 QP 39.8 H 46.0 -6.2 QP 36.1 H 46.0 -9.9 QP 33.1 H 46.0 -12.9 QP 32.6 H 46.0 -8.7 QP 37.3 H 46.0 -8.7 QP 41.6 V 43.5 -1.9 QP 37.8 V 43.5 -5.7 QP 30.2 H 46.0 -15.8 QP 36.4 H 46.0 -9.6 QP	dBμV/m v/h Limit Margin Pk/QP/Avg degrees 39.6 V 40.0 -0.4 QP 339 39.8 H 46.0 -6.2 QP 359 36.1 H 46.0 -9.9 QP 349 33.1 H 46.0 -12.9 QP 180 32.6 H 46.0 -13.4 QP 159 37.3 H 46.0 -8.7 QP 126 41.6 V 43.5 -1.9 QP 130 37.8 V 43.5 -5.7 QP 110 30.2 H 46.0 -15.8 QP 99 36.4 H 46.0 -9.6 QP 102	dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.6 V 40.0 -0.4 QP 339 1.0 39.8 H 46.0 -6.2 QP 359 1.0 36.1 H 46.0 -9.9 QP 349 1.0 33.1 H 46.0 -12.9 QP 180 1.0 32.6 H 46.0 -13.4 QP 159 1.0 37.3 H 46.0 -8.7 QP 126 1.0 41.6 V 43.5 -1.9 QP 130 1.0 37.8 V 43.5 -5.7 QP 110 1.0 30.2 H 46.0 -15.8 QP 99 1.0 36.4 H 46.0 -9.6 QP 102 1.0

Run #2: Maximized Readings From Run #1

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0


Frequency	Level	Pol	FCC B / I	RSS GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
59.052	38.6	V	40.0	-1.4	QP	339	1.0	QP (1.00s)
113.346	41.6	V	43.5	-1.9	QP	130	1.0	QP (1.00s)
169.818	37.8	V	43.5	-5.7	QP	110	1.0	QP (1.00s)
224.855	39.8	Н	46.0	-6.2	QP	359	1.0	QP (1.00s)
199.086	37.1	Н	43.5	-6.4	QP	1	1.0	QP (1.00s)
699.832	37.3	Н	46.0	-8.7	QP	126	1.0	QP (1.00s)

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J75341
Model	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
Model.	112BNWWW (1x2 bgit with Galu)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	В

Run #3: Maximized Readings, 1000 - 7500 MHz, Receiver, Chain A, 20MHz

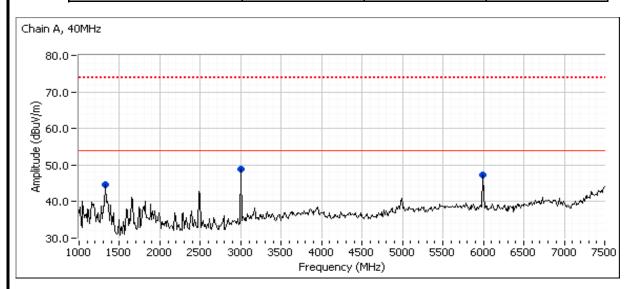
Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 7500Hz	3	3	0.0

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

		tan tan ing tan tan ing pro tan ing pro tan ing tan in ing tan in ing								
Frequency	Level	Pol	RSS GEN	N / FCC B	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
1601.000	45.6	V	54.0	-8.4	Peak	99	1.0			
3004.170	49.9	V	54.0	-4.1	Peak	110	1.3			
5994.170	50.4	V	54.0	-3.6	Peak	144	1.0			

Final peak and average readings

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 7500Hz	3	3	0.0


								1
Frequency	Level	Pol	RSS GEN	N / FCC B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
6000.720	48.6	V	54.0	-5.4	AVG	142	1.0	RB 1 MHz; VB: 10 Hz
3000.340	43.4	Н	54.0	-10.6	AVG	111	1.6	RB 1 MHz; VB: 10 Hz
6000.770	52.1	V	74.0	-21.9	PK	142	1.0	RB 1 MHz; VB: 1 MHz
1597.930	30.4	Н	54.0	-23.6	AVG	98	1.0	RB 1 MHz; VB: 10 Hz
3000.350	49.1	Н	74.0	-24.9	PK	111	1.6	RB 1 MHz; VB: 1 MHz
1599.810	46.5	Н	74.0	-27.5	PK	98	1.0	RB 1 MHz; VB: 1 MHz

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J75341
Model	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
Model.	112BNWWW (1x2 bgit with Galu)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	В

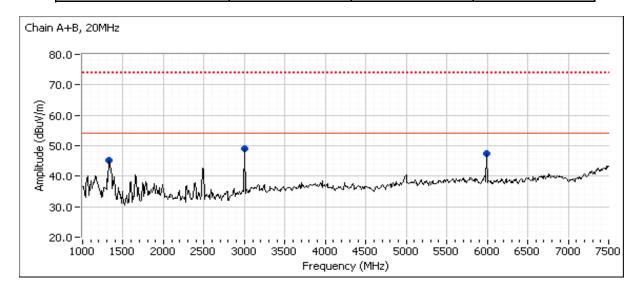
Run #4: Maximized Readings, 1000 - 7500 MHz, Receiver, Chain A, 40MHz

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 7500Hz	3	3	0.0

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

· · · · · · · · · · · · · · · · · · ·		, and the same great and the sam								
Frequency	Level	Pol	RSS GEN	N / FCC B	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
1321.720	44.6	V	54.0	-9.4	Peak	268	1.0			
3000.130	48.9	V	54.0	-5.1	Peak	262	1.3			
6000.860	47.4	V	54.0	-6.6	Peak	144	1.0			

Final peak and average readings


	Fre	quency Ra	nge	Test D	istance	tance Limit Distance		Extrapolation Factor
	10)00 - 7500l	Ηz	;	3	3		0.0
Frequency	Level	Pol	RSS GEN	N / FCC B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3000.340	49.4	V	54.0	-4.6	AVG	265	1.3	RB 1 MHz; VB: 10 Hz
6000.730	48.5	V	54.0	-5.5	AVG	139	1.0	RB 1 MHz; VB: 10 Hz
3000.420	53.3	V	74.0	-20.7	PK	265	1.3	RB 1 MHz; VB: 1 MHz
6000.600	51.8	V	74.0	-22.2	PK	139	1.0	RB 1 MHz; VB: 1 MHz
1322.560	25.5	V	54.0	-28.5	AVG	284	1.0	RB 1 MHz; VB: 10 Hz
1321.660	41.5	V	74.0	-32.5	PK	284	1.0	RB 1 MHz; VB: 1 MHz

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J75341
Model	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
Model.	112BNWWW (1x2 bgit with Galu)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	В

Run #5: Maximized Readings, 1000 - 7500 MHz, Receiver, Chain A+B, 20MHz

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 7500Hz	3	3	0.0

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

Frequency	Level	Pol	RSS GEN	N / FCC B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1315.160	45.3	V	54.0	-8.7	Peak	124	1.3	
3000.260	49.1	V	54.0	-4.9	Peak	266	1.3	
6000.860	47.4	V	54.0	-6.6	Peak	145	1.3	

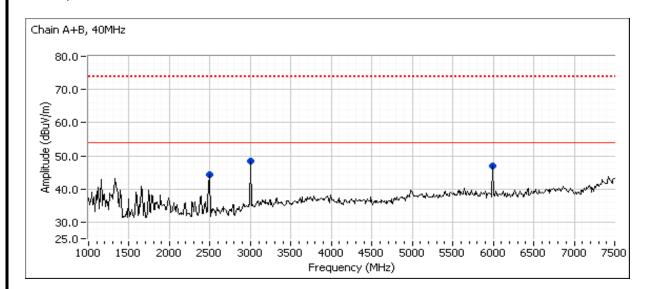
Final peak and average readings

Frequency Range

	1000 - 7500Hz		3		3		0.0		
Frequency	Level	Pol	RSS GEN	N / FCC B	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
3000.350	48.7	V	54.0	-5.3	AVG	266	1.3	RB 1 MHz; VB: 10 Hz	
3000.250	52.5	V	74.0	-21.5	PK	266	1.3	RB 1 MHz; VB: 1 MHz	
6000.720	47.5	V	54.0	-6.5	AVG	143	1.3	RB 1 MHz; VB: 10 Hz	
6000.690	51.6	V	74.0	-22.4	PK	143	1.3	RB 1 MHz; VB: 1 MHz	
1315.800	29.1	V	54.0	-24.9	AVG	122	1.3	RB 1 MHz; VB: 10 Hz	
1316.230	47.6	V	74.0	-26.4	PK	122	1.3	RB 1 MHz; VB: 1 MHz	

Limit Distance

Extrapolation Factor


Test Distance

	All Dell's Company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
woder.	112BNWWW (1X2 bgit Willi Cald)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	В

Run #6: Maximized Readings, 1000 - 7500 MHz, Receiver, Chain A+B, 40MHz

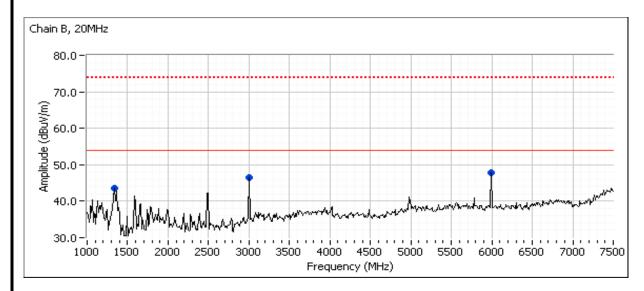
Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 7500Hz	3	3	0.0

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

j	promise and the same of the same (promise and great and								
Frequency	Level	Pol	RSS GEN	N / FCC B	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2497.900	44.2	V	54.0	-9.8	Peak	143	1.3		
3000.260	48.4	V	54.0	-5.6	Peak	194	1.0		
6000.860	46.9	V	54.0	-7.1	Peak	143	1.3		

Final peak and average readings

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 7500Hz	3	3	0.0


Frequency	Level	Pol	RSS GEN	N / FCC B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3000.340	48.0	V	54.0	-6.0	AVG	192	1.0	RB 1 MHz; VB: 10 Hz
3000.190	52.4	V	74.0	-21.6	PK	192	1.0	RB 1 MHz; VB: 1 MHz
6000.730	47.6	V	54.0	-6.4	AVG	142	1.2	RB 1 MHz; VB: 10 Hz
6000.710	52.0	V	74.0	-22.0	PK	142	1.2	RB 1 MHz; VB: 1 MHz
2497.070	32.8	V	54.0	-21.2	AVG	142	1.3	RB 1 MHz; VB: 10 Hz
2498.200	50.5	V	74.0	-23.5	PK	142	1.3	RB 1 MHz; VB: 1 MHz

	All Dell's Company		
Client:	Intel Corporation	Job Number:	J75341
Model:	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
woder.	112BNWWW (1X2 bgit Willi Cald)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	В

Run #7: Maximized Readings, 1000 - 7500 MHz, Receiver, Chain B, 20MHz

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 7500Hz	3	3	0.0

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

	poun rouun	.go oapta.	ou uui iiig p	ro obari (pot	an roudingo	ro. a.c.ago		
Frequency	Level	Pol	RSS GEN	N / FCC B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1336.970	43.6	V	54.0	-10.4	Peak	262	1.6	
3000.260	46.4	V	54.0	-7.6	Peak	100	1.3	
6000.860	47.8	V	54.0	-6.2	Peak	144	1.0	

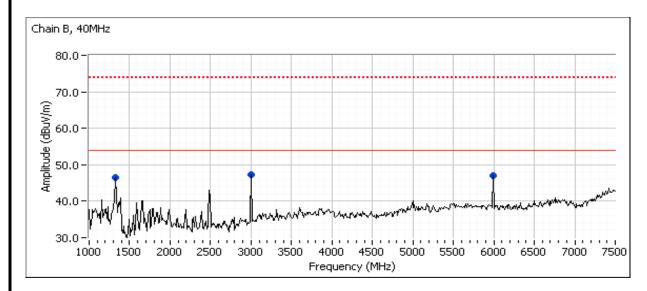
Final peak and average readings

Frequency Range

		1	J -						
	10	000 - 7500H	Нz	,	3	3		0.0	
Frequency	Level	Pol	RSS GEI	N / FCC B	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
6000.730	47.9	V	54.0	-6.1	AVG	140	1.0	RB 1 MHz; VB: 10 Hz	
3000.350	45.9	V	54.0	-8.1	AVG	98	1.1	RB 1 MHz; VB: 10 Hz	
1337.210	33.1	V	54.0	-20.9	AVG	260	1.6	RB 1 MHz; VB: 10 Hz	
6000.770	52.3	V	74.0	-21.7	PK	140	1.0	RB 1 MHz; VB: 1 MHz	
1336.610	51.2	V	74.0	-22.8	PK	260	1.6	RB 1 MHz; VB: 1 MHz	
3000.210	51.1	V	74.0	-22.9	PK	98	1.1	RB 1 MHz: VB: 1 MHz	

Limit Distance

Extrapolation Factor


Test Distance

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J75341
Model	112BNMMW (1x2 bgn Mini Card)	T-Log Number:	T75388
Model.	112BNWWW (1x2 bgit with Galu)	Account Manager:	Christine Vu Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, RSS 210, FCC 15B (PC Peripheral)	Class:	В

Run #8: Maximized Readings, 1000 - 7500 MHz, Receiver, Chain B, 40MHz

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor	
1000 - 7500Hz	3	3	0.0	

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

Frequency	Level	Pol	RSS GEN	N / FCC B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1323.990	46.6	V	54.0	-7.4	Peak	94	1.0	
3000.130	47.4	V	54.0	-6.6	Peak	192	1.0	
6000.860	47.1	V	54.0	-6.9	Peak	142	1.0	

Final peak and average readings

	Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
	1000 - 7500Hz	3	3	0.0
'-				

Frequency	Level	Pol	RSS GEN	N / FCC B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
6000.710	47.6	V	54.0	-6.4	AVG	141	1.0	RB 1 MHz; VB: 10 Hz
3000.360	47.1	V	54.0	-6.9	AVG	196	1.0	RB 1 MHz; VB: 10 Hz
6000.720	52.4	V	74.0	-21.6	PK	141	1.0	RB 1 MHz; VB: 1 MHz
3000.210	51.7	V	74.0	-22.3	PK	196	1.0	RB 1 MHz; VB: 1 MHz
1324.710	28.3	V	54.0	-25.7	AVG	93	1.0	RB 1 MHz; VB: 10 Hz
1323.540	46.2	V	74.0	-27.8	PK	93	1.0	RB 1 MHz; VB: 1 MHz