

CETECOM™

CETECOM ICT Services
consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-9541/15-02-02-B

Deutsche
Akkreditierungsstelle
D-PL-12076-01-00

Testing laboratory

CETECOM ICT Services GmbH
Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 68 15 98 – 0
Fax: + 49 68 15 98 – 90 75
Internet: <http://www.cetecom.com>
e-mail: ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-00

Applicant

Huf Tools GmbH Velbert
Güterstraße 17
42551 Velbert / GERMANY
Phone: +49 20 51 27 67 – 0
Fax: -/-
Contact: Daniel Klenner
e-mail: daniel.klenner@huf-tools.de
Phone: +49 20 51 27 67 – 77 3

Manufacturer

Huf Tools GmbH Velbert
Güterstraße 17
42551 Velbert / GERMANY

Test standard/s

47 CFR Part 15

Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

RSS - Gen Issue 4

Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: **KeyReader (21.8 kHz and 125 kHz)**
Model name: **Daimler LF-SPG**
FCC ID: **PD6LFSPG125218**
IC: **4008A-LFSPG125218**
Frequency: **21.8 kHz / 125 kHz**
Technology tested: **RFID**
Antenna: **Integrated loop coil and ferrite coil antenna**
Power supply: **10.8 V to 13.2 V DC by external power supply**
Temperature range: **+5°C to +35°C**

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Marco Bertolino
Lab Manager
Radio Communications & EMC

Test performed:

Andreas Luckenbill
Lab Manager
Radio Communications & EMC

1 Table of contents

1	Table of contents	2
2	General information	3
2.1	Notes and disclaimer	3
2.2	Application details	3
3	Test standard/s	3
3.1	Measurement guidance	3
4	Test environment	4
5	Test item	4
5.1	General description	4
5.2	Additional information	4
6	Test laboratories sub-contracted	4
7	Description of the test setup	5
7.1	Shielded fully anechoic chamber	6
7.2	Conducted measurements normal and extreme conditions	7
7.3	AC conducted	8
8	Sequence of testing	9
8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	9
9	Measurement uncertainty	10
10	Summary of measurement results	11
11	Additional comments	11
12	Measurement results	12
12.1	Occupied bandwidth	12
12.2	Field strength of the fundamental	14
12.3	Field strength of the harmonics and spurious	15
12.4	Conducted limits	17
Annex A	Document history	20
Annex B	Further information	20
Annex C	Accreditation Certificate	21

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-9541/15-02-02-A and dated 2015-11-10

2.2 Application details

Date of receipt of order:	2015-09-10
Date of receipt of test item:	2015-10-01
Start of test:	2015-10-01
End of test:	2015-11-10
Person(s) present during the test:	-/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

3.1 Measurement guidance

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+21 °C during room temperature tests No tests under extreme conditions No tests under extreme conditions
Relative humidity content	:		55 %
Barometric pressure	:		not relevant for this kind of testing
Power supply	:	V _{nom} V _{max} V _{min}	12 V DC by external power supply No tests under extreme conditions No tests under extreme conditions

5 Test item

5.1 General description

Kind of test item	:	KeyReader (21.8 kHz and 125 kHz)
Type identification	:	Daimler LF-SPG
HMN	:	-/-
PMN	:	Daimler LF-SPG
HVIN	:	LF_SPG_V3
FVIN	:	V10
S/N serial number	:	No information available!
HW hardware status	:	LF_SPG_V3
SW software status	:	No information available!
Frequency band	:	21.8 kHz / 125 kHz
Type of radio transmission	:	Modulated carrier (A1D)
Use of frequency spectrum	:	
Antenna	:	Integrated loop coil and ferrite coil antenna
Power supply	:	10.8 V to 13.2 V DC by external power supply
Temperature range	:	+5°C to +35°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-9541/15-01-01_AnnexA

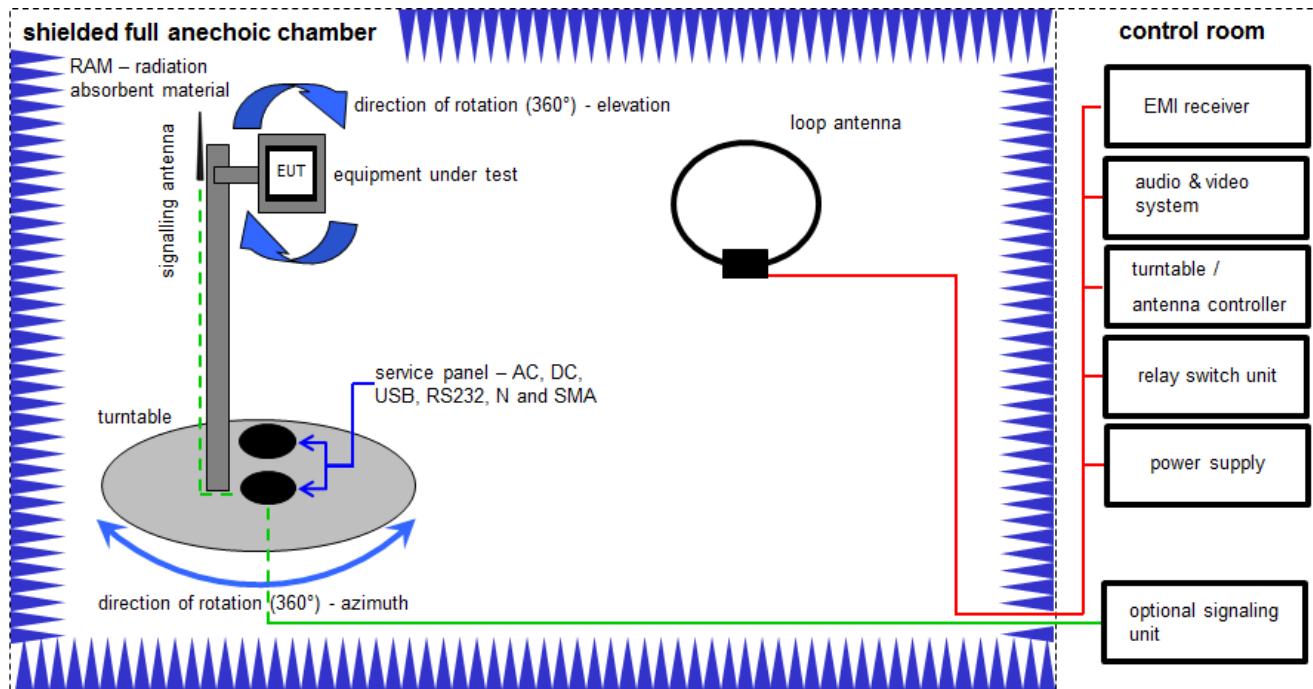
1-9541/15-01-01_AnnexB

1-9541/15-02-01_AnnexC

6 Test laboratories sub-contracted

None

7 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

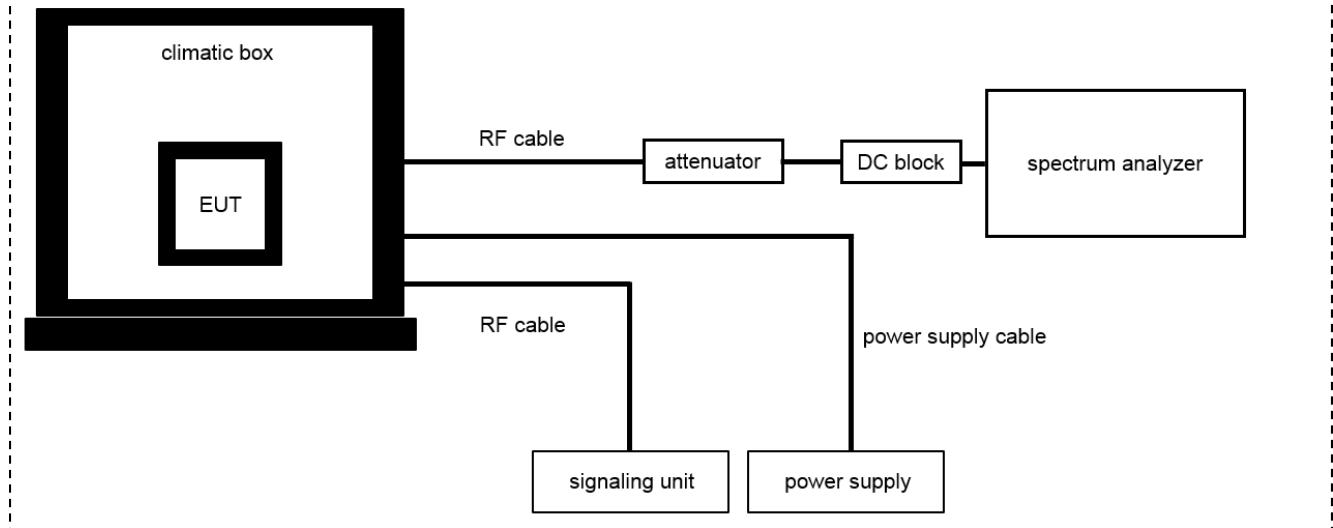
7.1 Shielded fully anechoic chamber

Measurement distance: loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


FS [dB μ V/m] = 40.0 [dB μ V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB μ V/m] (71.61 μ V/m)

Equipment table:

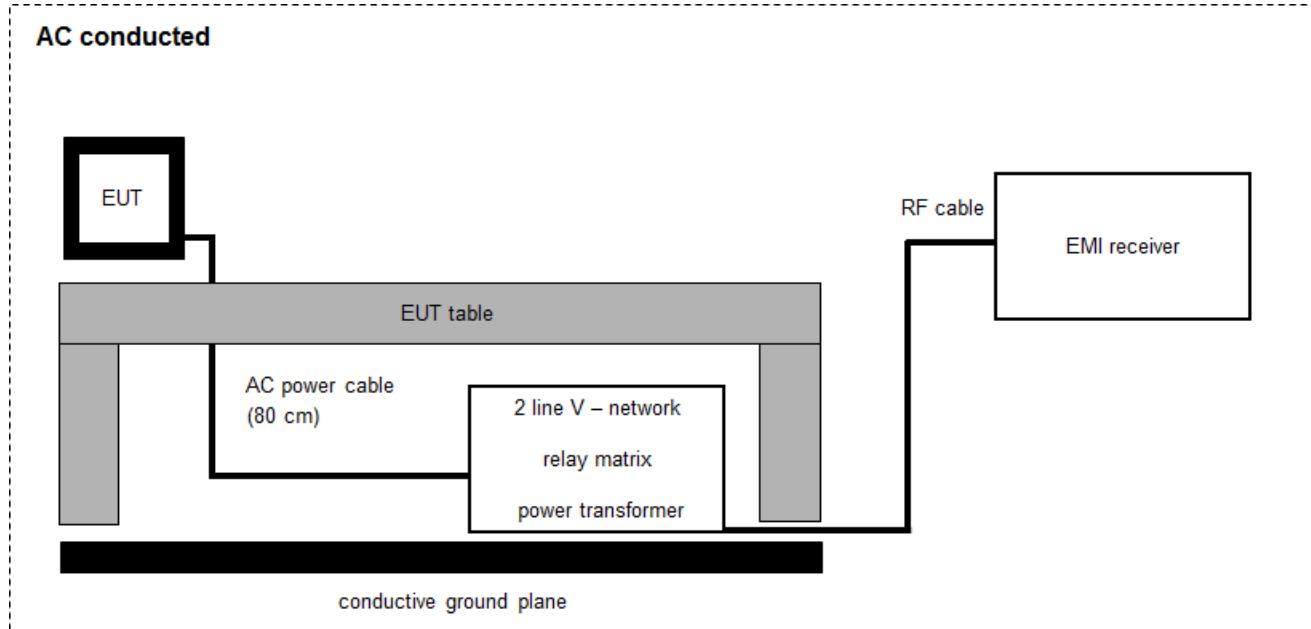
No.	Lab / Item	Equipment	Type	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	A	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
3	A	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	A	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	A	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
6	A	Amplifier	js42-00502650-28-5a	Parzich GMBH	928979	300003143	ne	-/-	-/-
7	A	MXE EMI Receiver 20 Hz to 26.5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	06.03.2015	06.03.2016
8	A	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-

7.2 Conducted measurements normal and extreme conditions

Conducted measurements normal & extreme conditions

OP = AV + CA
 (OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:


OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Type	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A	Temperature Test Chamber	VT 4002	Heraeus Voetsch	521/83761	300002326	ev	03.09.2015	03.09.2017
2	A	Spectrum Analyzer 9kHz to 30GHz - 140...+30dBm	FSP30	R&S	100886	300003575	k	26.08.2014	26.08.2016
3	A	Power Supply 0-20V, 0-5A	6632B	Agilent Technologies	GB42110541	400000562	viKI!	10.01.2013	10.01.2016
4	A	RF-Cable	ST18/SMAm/SMAm/72	Huber & Suhner	Batch no. 699714	400001184	ev	-/-	-/-
5	A	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 699714	400001185	ev	-/-	-/-

7.3 AC conducted

AC conducted

$$FS = UR + CF + VC$$

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

$$FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \mu V/m)$$

Equipment table:

No.	Lab / Item	Equipment	Type	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A	Netznachbildung	ESH3-Z5	R&S	892475/017	300002209	k	17.06.2014	17.06.2016
2	A	EMI-Receiver	8542E	HP	3617A00170	300000568	k	28.01.2015	28.01.2016
3	A	Analyzer-Reference-System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	11.02.2014	11.02.2016

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) – see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty	
Test case	Uncertainty
Occupied bandwidth	± used RBW
Field strength of the fundamental	± 3 dB
Field strength of the harmonics and spurious	± 3 dB
Receiver spurious emissions and cabinet radiations	± 3 dB
Conducted limits	± 2.6 dB

10 Summary of measurement results

<input checked="" type="checkbox"/>	No deviations from the technical specifications were ascertained
<input type="checkbox"/>	There were deviations from the technical specifications ascertained
<input type="checkbox"/>	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS Gen Issue 4	See table!	2015-12-10	-/-

Test specification clause	Test case	Temperature conditions	Power source conditions	C	NC	NA	NP	Remark
RSS Gen Issue 4 (6.6)	Occupied bandwidth	Nominal	Nominal	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§ 15.209	Field strength of the fundamental	Nominal	Nominal	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§ 15.209 RSS Gen Issue 4 (6.13)	Field strength of the harmonics and spurious	Nominal	Nominal	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§ 15.109	Receiver spurious emissions and cabinet radiations	Nominal	Nominal	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	No dedicated receiver mode
§15.107 §15.207	Conducted limits	Nominal	Nominal	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-

Note: NA = Not applicable; NP = Not performed; C = Compliant; NC = Not compliant

11 Additional comments

Reference documents: None

Special test descriptions: None

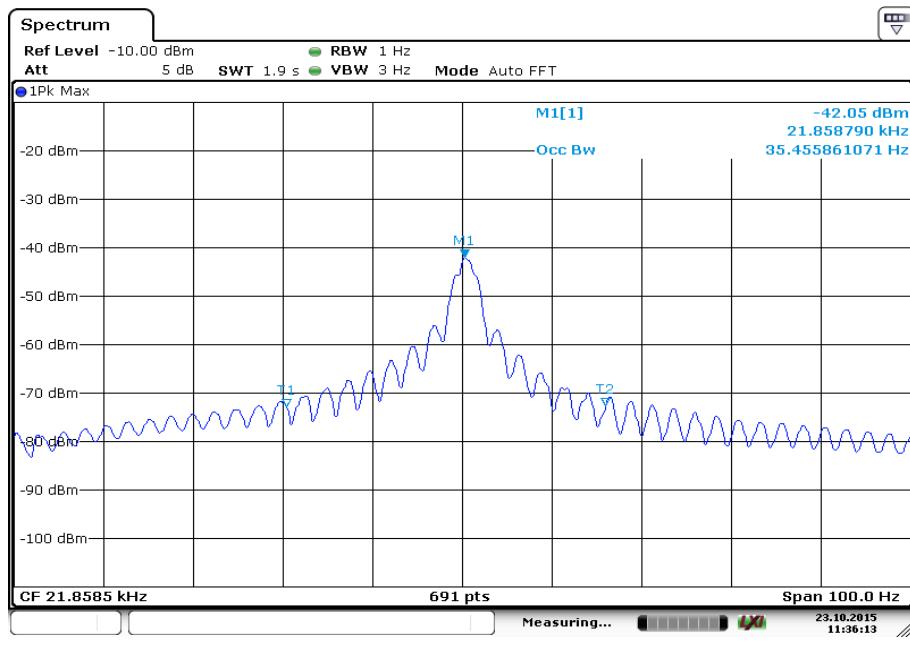
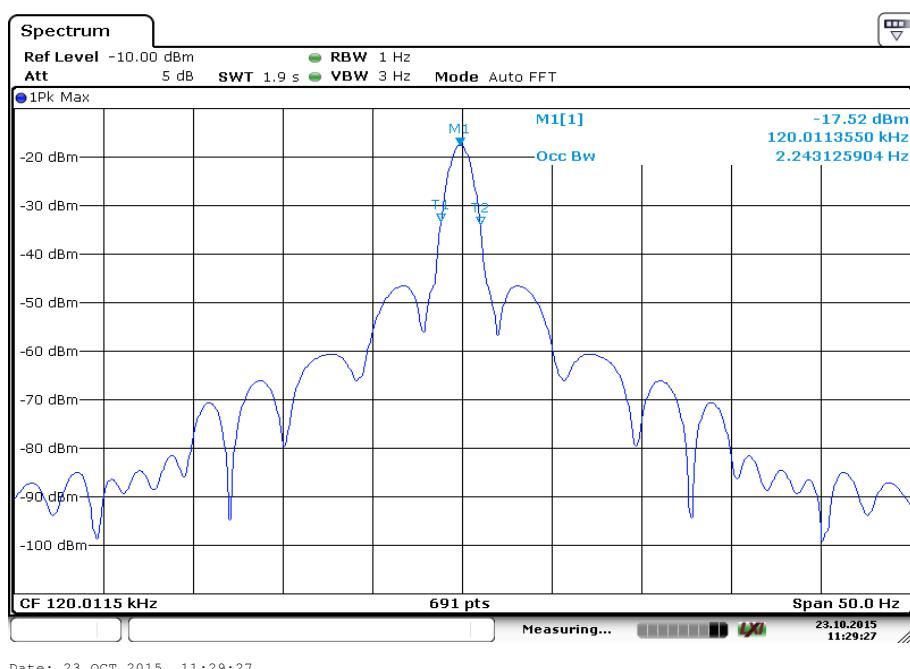
Configuration descriptions: None

12 Measurement results

12.1 Occupied bandwidth

Measurement:

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.



Measurement parameters	
Detector:	Peak
Resolution bandwidth:	1 Hz
Video bandwidth:	≥ 3x RBW
Trace mode:	Max hold
Analyser function:	99 % power function
Used test setup:	See sub clause 7.2 - A
Measurement uncertainty:	See sub clause 9

Limit:

IC
for RSP-100 test report coversheet only

Result:

99% emission bandwidth	
21.8 kHz	35.5 Hz
125 kHz	2.2 Hz

Plot:**Plot 1:** 99 % emission bandwidth, 21.8 kHz**Plot 2:** 99 % emission bandwidth, 125 kHz

12.2 Field strength of the fundamental

Measurement:

The maximum detected field strength for the carrier signal.

Measurement parameters	
Detector:	Quasi peak / peak (worst case)
Resolution bandwidth:	9 kHz
Video bandwidth:	$\geq 3 \times$ RBW
Trace mode:	Max hold
Used test setup	See sub clause 7.1 - A
Measurement uncertainty:	See sub clause 9

Limit:

FCC & IC		
Frequency (MHz)	Field strength (dB μ V/m)	Measurement distance (m)
9 – 490 kHz	$20 \times \log(2400/F)$	300
21.8 kHz	40.8	300
125 kHz	25.7	300

F in kHz

Recalculation:

According to ANSI C63.10		
Frequency	Formula	Correction value
21.8 kHz	$FS_{limit} = FS_{max} - 40 \log\left(\frac{d_{nearfield}}{d_{measure}}\right) - 20 \log\left(\frac{d_{limit}}{d_{nearfield}}\right)$	80
125 kHz		80

Result:

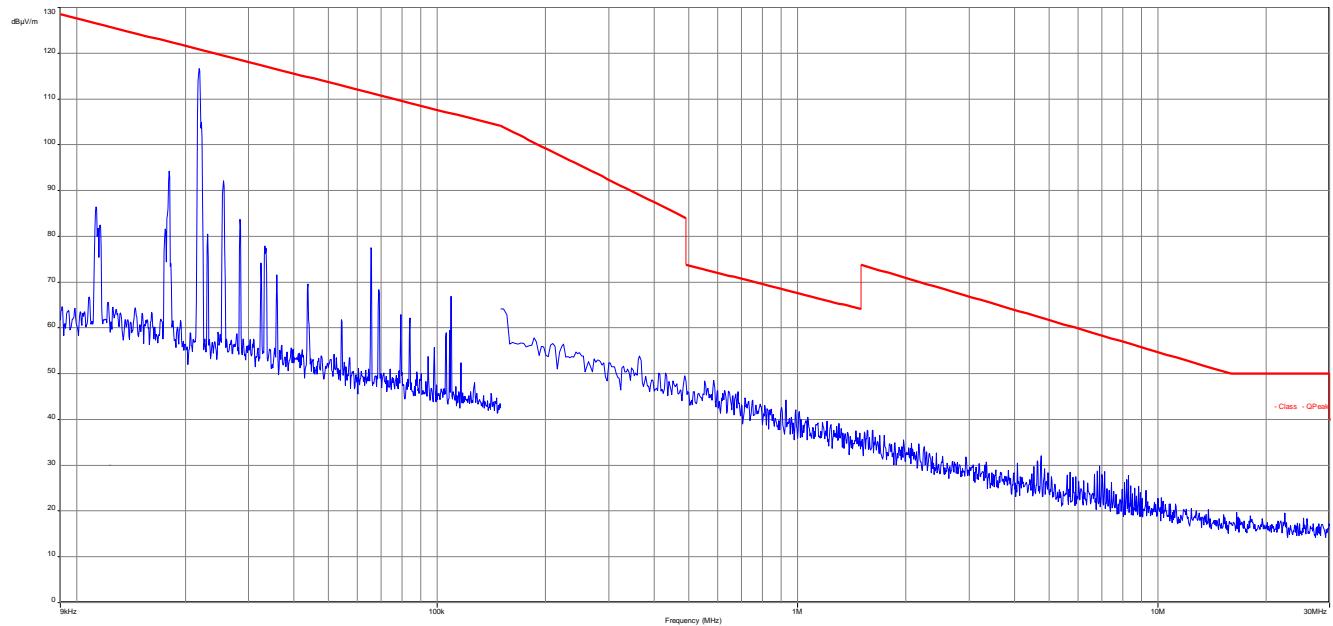
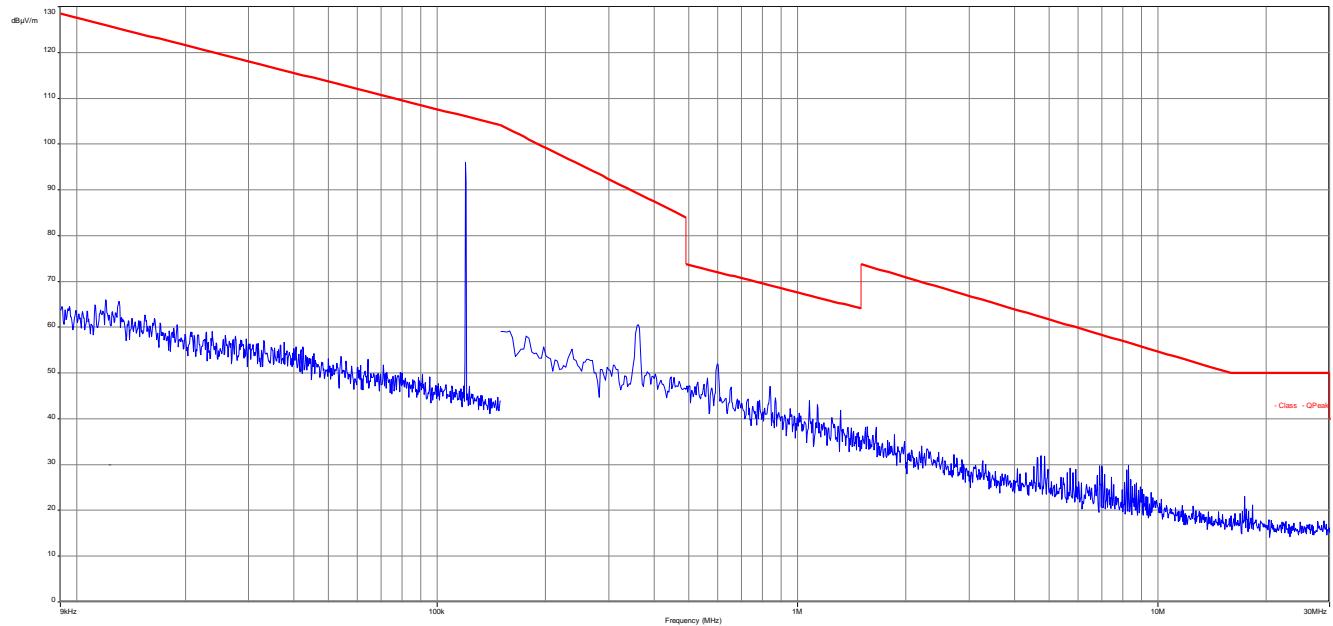
Field strength of the fundamental		
Frequency	21.8 kHz	
Distance	@ 3 m	@ 300 m
Measured / calculated value (QP measurement)	111 dB μ V/m	31 dB μ V/m

Field strength of the fundamental		
Frequency	125 kHz	
Distance	@ 3 m	@ 300 m
Measured / calculated value (QP measurement)	95.2 dB μ V/m	15.2 dB μ V/m

12.3 Field strength of the harmonics and spurious

Measurement:

The maximum detected field strength for the harmonics and spurious.



Measurement parameters	
Detector:	Quasi peak / average or peak (worst case – pre-scan)
Resolution bandwidth:	$F < 150 \text{ kHz}$: 200 Hz $150 \text{ kHz} < F < 30 \text{ MHz}$: 9 kHz $30 \text{ MHz} < F < 1 \text{ GHz}$: 120 kHz
Video bandwidth:	$F < 150 \text{ kHz}$: 1 kHz $150 \text{ kHz} < F < 30 \text{ MHz}$: 100 kHz $30 \text{ MHz} < F < 1 \text{ GHz}$: 300 kHz
Trace mode:	Max hold
Used test setup:	9 kHz to 30 MHz: see sub clause 7.1 - A
Measurement uncertainty:	See sub clause 9

Limit:

FCC & IC		
Frequency (MHz)	Field strength (dB μ V/m)	Measurement distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30 (29.5 dB μ V/m)	30
30 – 88	100 (40 dB μ V/m)	3
88 – 216	150 (43.5 dB μ V/m)	3
216 – 960	200 (46 dB μ V/m)	3

Result:

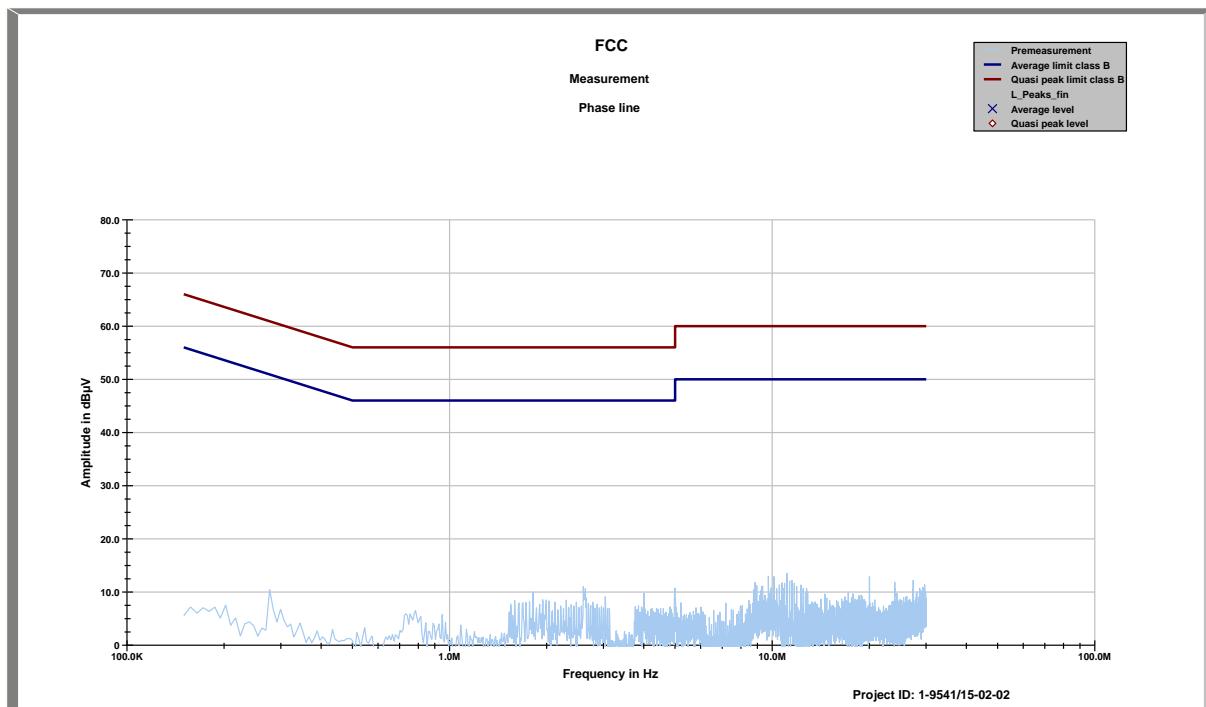
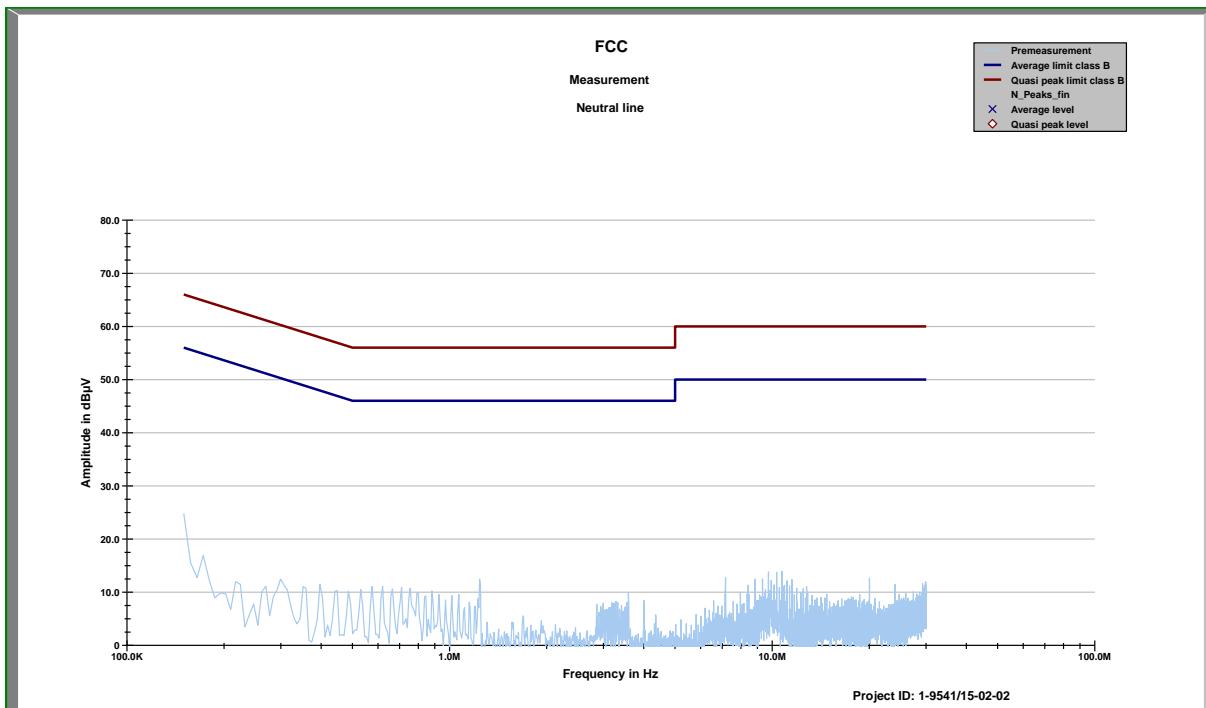
Detected emissions			
Frequency (MHz)	Detector	Resolution bandwidth (kHz)	Detected value
All detected emissions are more than 20 dB below the limit.			

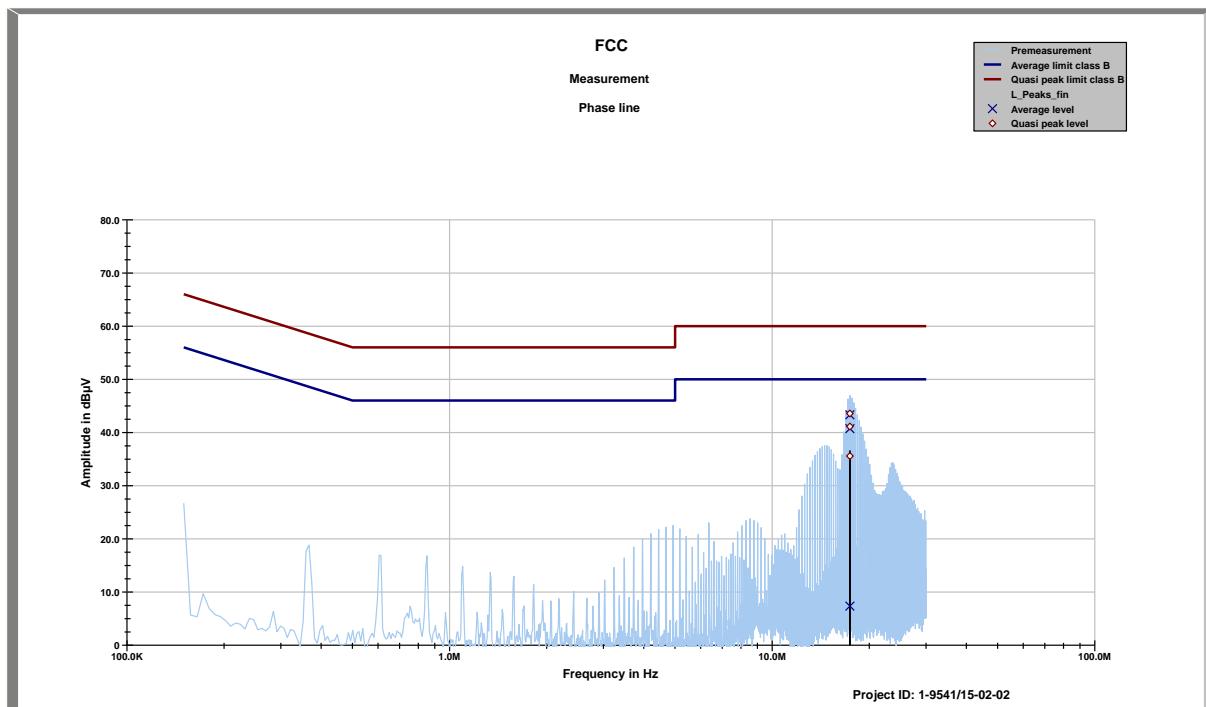
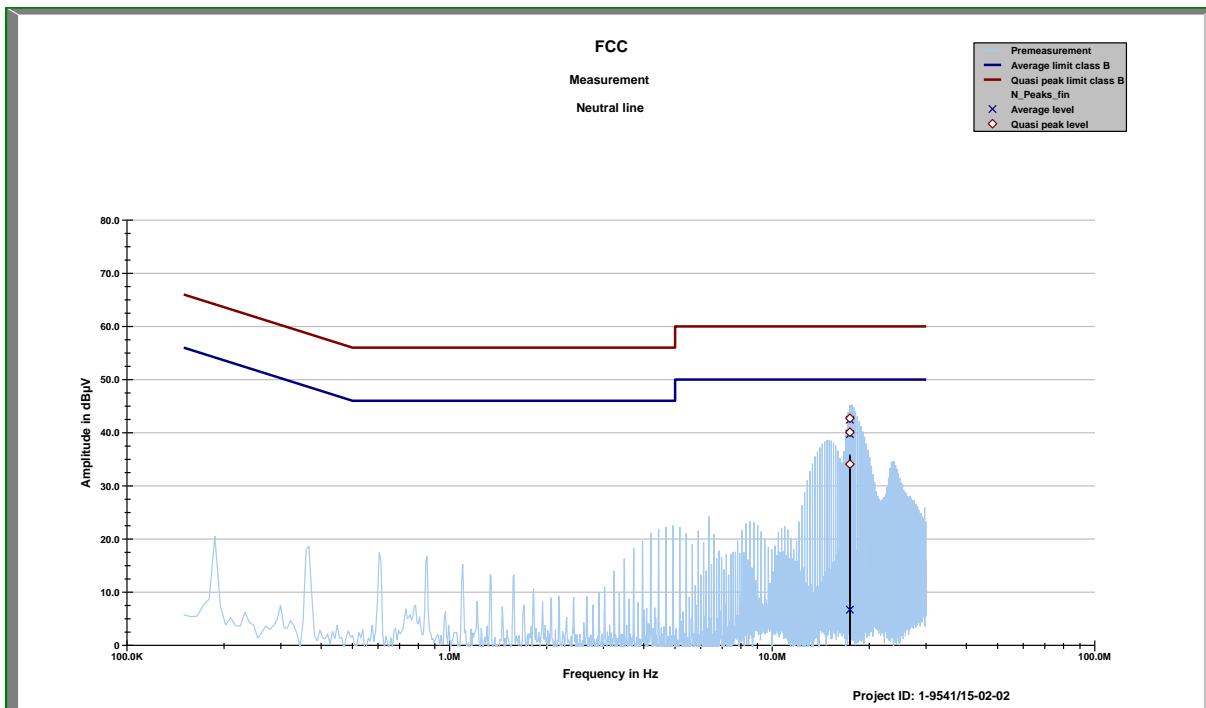
Plots:**Plot 1: 9 kHz – 30 MHz, magnetic emissions, 21.8 kHz****Plot 2: 9 kHz – 30 MHz, magnetic emissions, 125 kHz**

12.4 Conducted limits

Measurement:

Measurement of the conducted spurious emissions for an intentional radiator that is designed to be connected to the public utility (AC) power line.



Measurement parameters	
Detector:	Quasi peak / average or peak (worst case – pre-scan)
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz
Trace mode:	Max hold
Used test setup	See sub clause 7.3 - A
Measurement uncertainty:	See sub clause 9



Limit:

FCC & IC		
Frequency (MHz)	Quasi-peak (dB μ V/m)	Average (dB μ V/m)
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30.0	60	50

Result:

Detected emissions			
Frequency (MHz)	Detector	Resolution bandwidth (kHz)	Detected value
All detected emissions are below the limit.			

Plots: 21.8 kHz**Plot 1:** 150 kHz to 30 MHz, phase line**Plot 2:** 150 kHz to 30 MHz, neutral line

Plots: 125 kHz**Plot 1: 150 kHz to 30 MHz, phase line****Plot 2: 150 kHz to 30 MHz, neutral line**

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2015-10-23
A	Editorial changes; clause conducted limits added	2015-11-10
B	Editorial changes; new IC & FCC ID	2015-12-10

Annex B Further information

Glossary

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software
PMN		Product marketing name
HMN		Host marketing name
HVIN		Hardware version identification number
FVIN		Firmware version identification number

Annex C Accreditation Certificate

Front side of certificate

Back side of certificate

Deutsche Akkreditierungsstelle GmbH

Befähigt gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV
Unterzeichner der Multilateralen Abkommen
von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüfaboratorium

CETECOM ICT Services GmbH
Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen
durchzuführen:

Drahtgebundene Kommunikationen einschließlich xDSL
VoIP und DECT

Akustik

Funk einschließlich WLAN

Short Range Devices (SRD)

RFID

WiMax und Richtfunk

Mobilfunk (GSM / DCS, Over the Air (OTA) Performance)

Elektromagnetische Verträglichkeit (EMV) einschließlich Automotive

Produktsicherheit

SAR and Hearing Aid Compatibility (HAC)

Umweltsimulation

Smart Card Terminals

Bluetooth®

Wi-Fi®-Services

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 07.03.2014 mit der
Akkreditierungsnr. D-PL-12076-01 und ist gültig 17.01.2018. Sie besteht aus diesem Deckblatt, der
Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 77 Seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt am Main, 07.03.2014

in Auftrag gegeben von Ralf Egner

Akkreditigter

Deutsche Akkreditierungsstelle GmbH

Standort Berlin
Spittelmarkt 10
10117 Berlin

Standort Frankfurt am Main
Gartenstraße 6
60594 Frankfurt am Main

Standort: Braunschweig
Bundesallee 100
38115 Braunschweig

Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedeutet die vorherigen schriftlichen
Zusammen mit der Deutsche Akkreditierungsstelle GmbH (DAkkS). Angenommen davon ist die separate
Weiserverfügung des Deckblattes durch die ursprünglich genannte Konformitätsbewertungsstelle in
unveränderter Form.

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche erstreckt,
die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditierung erfolgte gemäß den Gesetzen über die Akkreditierungsstelle (AkkStelleG) vom
31. Juli 2009 (BGBl. I S. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europäischen Parlaments
und des Rates vom 9. Juli 2008 über die Vorschriften für die Akkreditierung und Marktüberwachung
im Zusammenhang mit der Vermarktung von Produkten (Abl. L 238 vom 9. Juli 2008, S. 30).

Die DAkkS ist Unterzeichner der Multilateralen Abkommen zur gegenseitigen Anerkennung der
European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und
der International Laboratory Accreditation Cooperation (ILAC). Die Unterzeichner dieser Abkommen
erkennen ihre Akkreditierungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden:
EA: www.european-accreditation.org
IAF: www.iaf.org
ILAC: www.ilac.org

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

<https://www.cetecom.com/en/cetecom-group/europe/germany-saarbruecken/accreditations.html>