

Engineering and Testing for EMC and Safety Compliance

TYPE CERTIFICATION REPORT

Comspace Corporation 955 Freeport Parkway Suite 100 Coppell, TX 75019 (972) 745-1367

MODEL: CDRTL841FL000

FCC ID: PCKCDRTL841FL0001

November 20, 2000

STANDARDS REFERENCED FOR THIS REPORT				
PART 2: 1999	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS			
PART 15: 1999	§15.109: RADIATED EMISSIONS LIMITS			
PART 90: 1998	PRIVATE LAND MOBILE RADIO SERVICES			
ANSI C63.4-1992	STANDARD FORMAT MEASUREMENT/TECHNICAL REPORT PERSONAL COMPUTER AND PERIPHERALS			
ANSI/TIA/EIA603- 1992	LAND MOBILE FM OR PM COMMUNICATIONS EQUIPMENT			
	MEASUREMENT AND PERFORMANCE STANDARDS			
ANSI/TIA/EIA 603-1-1998	ADDENDUM TO ANSI/TIA/EIA 603-1992			

F	CC Rules Parts	Frequency Range	Output Power (W)	Freq. Tolerance	Emission Designator
2, 15, 9)	851 – 869 MHz	4	2.5	
2, 15, 90)	806 – 824 MHz	4	2.5	

REPORT PREPARED BY:

Test Engineer: Daniel Baltzell Technical Writer: Daniel Baltzell

Rhein Tech Laboratories, Inc. Document Number: 2000459/QRTL00-369

No part of this report may be reproduced without the full written approval of Rhein Tech Laboratories, Inc.

Phone: 703-689-0368; Fax: 703-689-2056; Metro: 703-471-6441

TABLE OF CONTENTS

1 G	ENERAL INFORMATION	4
1.1	TEST FACILITY	
1.2	RELATED SUBMITTAL(S)/GRANT(S)	
1.3	CONFORMANCE STATEMENT	
1.4	FIELD STRENGTH CALCULATION	
1.5	CONDUCTED MEASUREMENT	
1.6	RADIATED MEASUREMENT	
	CC RULES AND REGULATIONS PART 2 §2.1046 (A): RF POWER OUTPUT	
2.1 2.2	TEST PROCEDURE	
2.3	TEST DATA	
	CC RULES AND REGULATIONS PART 2 §2.1051: SPURIOUS EMISSIONS	
	ENNA TERMINALS	
3.1	Test Procedure	
3.2	TEST DATA	
3.2	2.1 CFR Part 90 Requirements	
3.3	TEST EQUIPMENT	9
4 F	CC RULES AND REGULATIONS PART 2 §2.1053 (A): FIELD STRENGTH ()F
SPUR	TIOUS RADIATION	10
4.1	TEST PROCEDURE	10
4.2	TEST DATA	
4.3	Test Equipment	10
	CC RULES AND REGULATIONS PART 2 §2.1049 (C) (1): OCCUPIED	
	OWIDTH	
5.1	Test Procedure	
5.2	TEST DATA	
5.3	TEST EQUIPMENT	
	CC RULES AND REGULATION PART 2 §2.1055: FREQUENCY STABILITY	
6.1	Test Procedure	
6.2	TEST DATA	
6.2	2.1 Frequency stability/Frequency variation	
6.2	2.2 Frequency Stability/Voltage Variation	
6.3	Test Equipment	13
	CC RULES AND REGULATIONS PART 15 §15.107 (A): CONDUCTED	
	SIONS (CLASS B LIMITS)	14
8 F	CC RULES AND REGULATIONS PART 15 §15.109 (A): RADIATED EMISSI	ONS
(CLA	SS B LIMITS)	16
9 F	CC RULES AND REGULATIONS PART 15 §15.111 (A): ANTENNA POWER	
CONI	DUCTION FOR RECEIVERS	16
10	FCC RULES AND REGULATIONS PART 2 §2.202: NECESSARY	
BANI	DWIDTH AND EMISSION BANDWIDTH	16
11	TEST CONFIGURATION PHOTOGRAPHS	17
12	INTERNAL EUT PICTURES	
13	EXTERNAL EUT PICTURES	
14	LABEL INFORMATION	
	LABEL	
	LOCATION OF LABEL ON EUT	

15	PRODUCT DESCRIPTION	77
16	SCHEMATICS	91
	BLOCK DIAGRAM	
	OPERATOR'S MANUAL	

COMPANY NAME: EUT: WORK ORDER NUMBER: FCC ID:

COM SPACE CORPORATION CDRTL841FL000 2000460 PCKCDRTL841FL0001

1 GENERAL INFORMATION

The following Report of a Type Certification is prepared on behalf of *ComSpace Corporation* in accordance with the Federal Communications Commissions and Industry Canada Rules and Regulations. The Equipment Under Test (EUT) was the *CDRTL841FL000*; *FCC ID: PCKCDRTL841FL0001*. The test results reported in this document relate only to the item that was tested.

All measurements contained in this application were conducted in accordance with FCC Rules and Regulations CFR 47, and ANSI C63.4 Methods of Measurement of Radio Noise Emissions, 1992. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.1 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report dated March 3, 1994, submitted to and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 1992).

1.2 Related Submittal(s)/Grant(s)

This is an original application report.

COMPANY NAME: **COM SPACE CORPORATION EUT**: WORK ORDER NUMBER: 2000460 FCC ID:

CDRTL841FL000 PCKCDRTL841FL0001

1.3 **Conformance Statement**

We, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this attached test record. No modifications were made to the equipment during testing in order to achieve compliance with these standards.

Furthermore, there was no deviation from, additions to or exclusions from the FCC Part 2, FCC Part 90 and Industry Canada RSS-119 Certification methodology.

Signature:	Date: December 4, 2000
Typed/Printed Name: Bruno Clavie	Position: Vice President of Operations
Daniel W. Bolget	
Signature:	Date: November 14, 2000
Typed/Printed Name: Daniel W. Balt	zell Position: Test Engineer

Accredited by the National Voluntary Accreditation Program for the specific scope of accreditation under Lab Code 200061-0.

Note: This report may not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

COMPANY NAME: COM SPANEUT: CDRTL84
WORK ORDER NUMBER: 2000460
FCC ID: PCKCDR

COM SPACE CORPORATION CDRTL841FL000 2000460 PCKCDRTL841FL0001

1.4 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FI(dBuV/m) = SAR(dBuV) + SCF(dB/m) FI = Field Intensity SAR = Spectrum Analyzer Reading SCF = Site Correction Factor

The Site Correction Factor (SCF) used in the above equation is determined empirically, and is expressed in the following equation:

SCF(dB/m) = -PG(dB) + AF(dB/m) + CL(dB) SCF = Site Correction Factor PG = Pre-amplifier Gain AF = Antenna FactorCL = Cable Loss

The field intensity in microvolts per meter can then be determined according to the following equation:

$$FI(uV/m) = 10FI(dBuV/m)/20$$

For example, assume a signal at a frequency of 125 MHz has a received level measured as 49.3 dBuV. The total Site Correction Factor (antenna factor plus cable loss minus preamplifier gain) for 125 MHz is -11.5 dB/m. The actual radiated field strength is calculated as follows:

 $49.3 \, dBuV - 11.5 \, dB/m = 37.8 \, dBuV/m$

$$10^{37.8/20} = 10^{1.89} = 77.6 \, \text{uV/m}$$

COMPANY NAME: WORK ORDER NUMBER: 2000460 FCC ID: PCKCDR

COM SPACE CORPORATION EUT: CDRTL841FL000 PCKCDRTL841FL0001

1.5 **Conducted Measurement**

The power line conducted emission measurements were performed in a Series 81 type shielded enclosure manufactured by Rayproof. The EUT was assembled on a wooden table 80 centimeters high. Power was fed to the EUT through a 50 ohm / 50 microhenry Line Impedance Stabilization Network (EUT LISN). The EUT LISN was fed power through an A.C. filter box on the outside of the shielded enclosure. The filter box and EUT LISN housing are bonded to the ground plane of the shielded enclosure. A second LISN, the peripheral LISN, provides isolation for the EUT test peripherals. This peripheral LISN was also fed A.C. power. A metal power-outlet box, which is bonded to the ground plane and electrically connected to the peripheral LISN, powers the EUT host peripherals.

The spectrum analyzer was connected to the A.C. line through an isolation transformer. The 50-ohm output of the EUT LISN was connected to the spectrum analyzer input through a Solar 400 kHz high-pass filter. The filter is used to prevent overload of the spectrum analyzer from noise below 400 kHz. Conducted emission levels were measured on each current-carrying line with the spectrum analyzer operating in the CISPR quasi-peak mode (or peak mode if applicable). The analyzer's 6dB bandwidth was set to 9 kHz. Video filters less than 10 times the resolution bandwidth was not used. Average measurements are performed in linear mode using a 10 kHz resolution bandwidth, a 1 Hz video bandwidth, and by increasing the sweep time in order to obtain a calibrated measurement. The emission spectrum was scanned from 450 kHz to 30 MHz. The highest emission amplitudes relative to the appropriate limit were measured and have been recorded in this report.

1.6 **Radiated Measurement**

Before final measurements of radiated emissions were made on the open-field three meter range, the EUT was scanned indoors at a three meter distance in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to insure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three-meter, open-field test site. The EUT was placed on a nonconductive turntable approximately 0.8 meters above the ground plane.

At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations.

Note: Rhein Tech Laboratories, Inc. has implemented procedures to minimize errors that occur from test instruments, calibration, procedures, and test setups. Test instrument and calibration errors are documented from the manufacturer or calibration lab. Other errors have been defined and calculated within the Rhein Tech quality manual, section 6.1. Rhein Tech implements the following procedures to minimize errors that may occur: yearly as well as daily calibration methods, technician training, and emphasis to employees on avoiding error.

FCC RULES AND REGULATIONS PART 2 §2.1046 (A): RF POWER OUTPUT: **CONDUCTED**

2.1 **Test Procedure**

ANSI/TIA/EIA-603-1992, section 2.2.1

The EUT was connected to a coaxial attenuator having a 50 Ω load impedance.

2.2 **Test Data**

The following channels (in MHz) were tested: 815.0125, 805.0125, and 825.0125 MHz The worst-case Output Power (highest) levels are shown.

CARRIER OUTPUT POWER (UNMODULATED)

Frequency (MHz)	RF Power measured (Watt)*
868.9875	85.5
860.0125	90.0
851.0125	88.0

^{*}Measurement accuracy: +/- 3%

Rated Power:

Rated Power	(W)
85	

2.3 **Test Equipment**

Power Meter	HP437B	s/n 2949A02966
	HP 8901A	s/n 2545A04102 (power mode)
Power Sensor	HP8481B	s/n 2702A05059
Frequency Counter	HP8901A	s/n 2545A04102 (Frequency mode)

COMPANY NAME: **COM SPACE CORPORATION EUT**: WORK ORDER NUMBER: 2000460 FCC ID:

CDRTL841FL000 PCKCDRTL841FL0001

FCC RULES AND REGULATIONS PART 2 §2.1051: SPURIOUS EMISSIONS AT ANTENNA TERMINALS

3.1 **Test Procedure**

ANSI/TIA/EIA-603-1992, Section 2.2.13

The transmitter is terminated with a 50Ω load and interfaced with a spectrum analyzer.

The transmitter is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1000 Hz.

3.2 **Test Data**

CFR PART 90 REQUIREMENTS 3.2.1

Frequency range of measurement per Part 2.1057: 9kHz to 10 x Fc

Limits: Mask B (dBm): P(dBm) – (43+10xLOG P(W))

The worst case (unwanted emissions) are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

(860.0125) - 90 Watt and 25 kHz Channel Bandwidth: Mask B

Frequency (MHz)	Level Measured (dBm)	Limit (dBm)	Margin (dB)
.05472	-41.1	-13.0	-28.1
1720.025	-35.0	-13.0	-22.0
2580.0375	-32.6	-13.0	-20.6
3440.05	NF		
4300.0625	NF		
5160.075	NF		
6020.0875	NF		
6880.1	NF		
7740.1125	NF		
8600.125	NF		

3.3 **Test Equipment**

Audio Generator:

Synthesized Level Generator HP3336B s/n 2127A00559 Audio Signal Analyzer Tektronix ASG 100 s/n B032374

Spectrum Analyzer:

HP8564E s/n 3943A01719 HP8546A s/n 3525A00159

FCC RULES AND REGULATIONS PART 2 §2.1053 (A): FIELD STRENGTH OF **SPURIOUS RADIATION**

4.1 **Test Procedure**

ANSI/TIA/EIA-603-1992, section 2.2.12. The transmitter is terminated with a 50 Ω . Refer to section "Radiated Measurement" in this report for further information.

4.2 **Test Data**

The worst-case emissions test data are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

90 W 2	25 kHz							
	Radiated Emissions (860.0125 MHz)							
	Substitution Method							
]	Frequency S/G level (dBm) Cable Loss* TX Ant. gain diff. (ref. To 1/2 wave dipole) Emission level (dBm) Mask B Margin							
	1720.000	-27.0	7.1	-4.8	-29.3	-13.0	-16.3	
	2580.000	-45.4	11.3	-4.8	-51.9	-13.0	-38.9	
	3440.000	N.F.						
	4300.000	N.F.						
	5160.000	-55.0	21.3	-4.8	-71.5	-13.0	-58.5	
	6020.000	N.F.						
	6880.000	N.F.						
	7740.000	N.F.						
	8600.000	N.F.						

^{*}This insertion loss corresponds to the cable connecting the RF Signal Generator to the 1/2 wave dipole antenna.

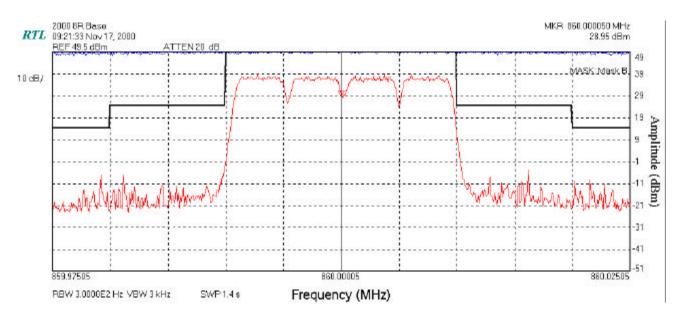
4.3 **Test Equipment**

Antenna: CHASE CBL6112 s/n 2099

Amplifier: HP8449B s/n 3008A00505 Spectrum analyzer: HP8564E s/n 3943A01719 RF Signal Generator s/n 3537A01741 HP8648C Synthesized Sweeper HP83752A s/n 3610A00846

5 FCC RULES AND REGULATIONS PART 2 §2.1049 (C) (1): OCCUPIED BANDWIDTH

OCCUPIED BANDWIDTH - COMPLIANCE WITH THE EMISSION MASKS


5.1 Test Procedure

ANSI/TIA/EIA-603-1992, section 2.2.11

Device with digital modulation: N/A

5.2 Test Data

5.2.1 90 W FOR 25 KHZ CHANNEL BANDWIDTH: MASK B

5.3 Test Equipment

Spectrum Analyzer HP8564E s/n 3943A01719

6 FCC RULES AND REGULATION PART 2 §2.1055: FREQUENCY STABILITY

6.1 Test Procedure

ANSI/TIA/EIA-603-1992, section 2.2.2

The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

The EUT was evaluated over the temperature range -30° C to $+50^{\circ}$ C.

The temperature was initially set to -30°C and a period was observed for stabilization of the EUT. The frequency stability was measured within one minute after application of primary power to the transmitter. The temperature was raised at intervals of 10 degrees centigrade through the range. A sufficient period of time was

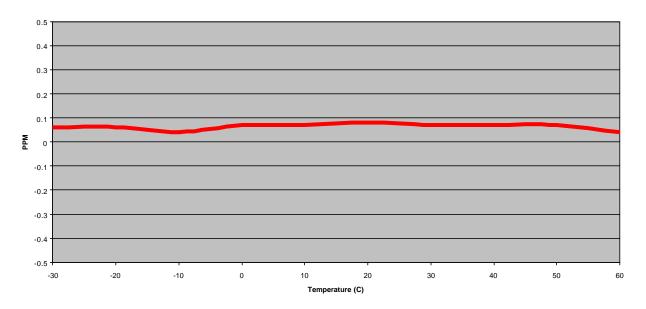
COM SPACE CORPORATION EUT: **WORK ORDER NUMBER:** FCC ID:

CDRTL841FL000 2000460 PCKCDRTL841FL0001

observed to stabilize the EUT at each measurement step and the frequency stability was measured within one minute after application of primary power to the transmitter.

Additionally, the power supply voltage of the EUT was varied from 85% to 115% of the nominal voltage of 115VAC

The worst-case test data are shown.


6.2 **Test Data**

6.2.1 FREQUENCY STABILITY/FREQUENCY VARIATION

Limit is 5 ppm for device with a 25 kHz channel bandwidth

90 Watt s was tested with a 25 kHz channel bandwidth. The worst-case temperature deviation is 0.08 PPM.

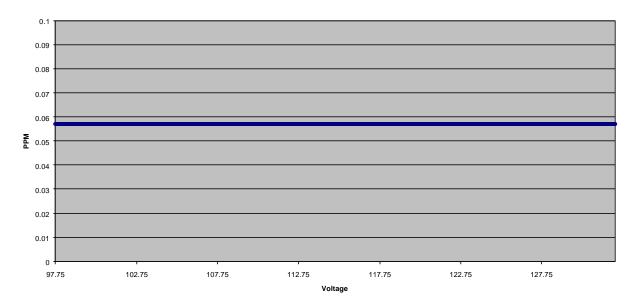
Assigned Frequency 860.0125 MHz

Temperature Frequency Stability

6.2.2 FREQUENCY STABILITY/VOLTAGE VARIATION

Limit is 5 ppm for device with a 25 kHz channel bandwidth

90 Watt s was tested with a 25 kHz channel bandwidth. The worst-case voltage deviation is 0.057 PPM.


Assigned Frequency 860.0125 MHz

COMPANY NAME: EUT: WORK ORDER NUMBER: FCC ID:

COM SPACE CORPORATION CDRTL841FL000 2000460 PCKCDRTL841FL0001

Voltage Frequency Stability

6.3 Test Equipment

Temperature Chamber Tenney TH65 s/n 11380 Frequency Counter HP8901A (Frequency Mode) s/n 2545A04102

FCC RULES AND REGULATIONS PART 15 §15.107 (A): CONDUCTED **EMISSIONS (CLASS B LIMITS)**

Digital **NEUTRAL SIDE (Line 1)**

Emission Frequency	Test Detector	Analyzer Reading	Site Correction	Emission Level	FCC QP	FCC QP
(MHz)		(dBuV)	Factor (dB)	(dBuV)	Limit (dBuV)	Margin (dBuV)
0.693	Pk	33.5	0.6	34.1	48.0	-13.9
2.109	Pk	39.7	1.2	40.9	48.0	-7.1
6.447	Pk	37.5	2.0	39.5	48.0	-8.5
6.499	Pk	41.6	2.0	43.6	48.0	-4.4
6.552	Pk	39.1	2.1	41.2	48.0	-6.8
8.125	Pk	37.6	2.2	39.8	48.0	-8.2
15.393	Pk	45.1	3.2	48.3	48.0	0.3
15.393	Qp	41.1	3.2	44.3	48.0	-3.7
15.393	Av	34.6	3.2	37.8	48.0	-10.2
29.183	Pk	35.9	3.7	39.6	48.0	-8.4

HOT SIDE (Line 2)

Emission	Test	Analyzer	Site	Emission	FCC	FCC
Frequency	Detector	Reading	Correction	Level	\mathbf{AV}	\mathbf{AV}
(MHz)		(dBuV)	Factor	(dBuV)	Limit	Margin
			(dB)		(dBuV)	(dBuV)
6.447	Pk	36.0	2.2	38.2	48.0	-9.8
6.447	Pk	36.0	2.2	38.2	48.0	-9.8
6.498	Pk	41.5	2.2	43.7	48.0	-4.3
6.498	Pk	41.5	2.2	43.7	48.0	-4.3
8.123	Pk	36.9	2.4	39.3	48.0	-8.7
9.750	Pk	37.0	2.7	39.7	48.0	-8.3
14.379	Pk	40.0	3.2	43.2	48.0	-4.8
28.572	Pk	32.0	3.9	35.9	48.0	-12.1

PA **NEUTRAL SIDE (Line 1)**

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	FCC QP Limit (dBuV)	FCC QP Margin (dBuV)
1.914	Pk	36.4	1.2	37.6	48.0	-10.4
1.914	Pk	36.4	1.2	37.6	48.0	-10.4
2.010	Pk	37.1	1.2	38.3	48.0	-9.7
2.108	Pk	36.4	1.2	37.6	48.0	-10.4
15.183	Qp	43.4	3.1	46.5	48.0	-1.5
15.174	Av	38.1	3.1	41.2	48.0	-6.8
17.046	Pk	39.2	3.3	42.5	48.0	-5.5
23.530	Pk	38.9	3.8	42.7	48.0	-5.3

HOT SIDE (Line 2)

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	FCC QP Limit (dBuV)	FCC QP Margin (dBuV)
1.819	Pk	35.3	1.1	36.4	48.0	-11.6
6.801	Pk	31.1	2.3	33.4	48.0	-14.6
8.813	Pk	30.9	2.5	33.4	48.0	-14.6
15.277	Qp	44.5	3.4	47.9	48.0	-0.1
15.284	Av	39.5	3.4	42.9	48.0	-5.1
17.078	Pk	40.7	3.6	44.3	48.0	-3.7
22.988	Pk	39.0	4.0	43.0	48.0	-5.0

COMPANY NAME:

COM SPACE CORPORATION EUT: CDRTL841FL000 WORK ORDER NUMBER: 2000460 FCC ID: PCKCDRTL841FL0001

FCC RULES AND REGULATIONS PART 15 §15.109 (A): RADIATED EMISSIONS (CLASS B LIMITS)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
83.495	Qp	V	0	1.0	67.2	-21.4	45.8	49.5	-3.7
129.995	Qp	V	100	1.0	67.9	-15.4	52.5	54.0	-1.5
142.995	Qp	V	0	1.0	63.0	-16.3	46.7	54.0	-7.3
166.995	Qp	V	90	1.0	69.8	-17.2	52.6	54.0	-1.4
208.745	Qp	V	90	1.0	65.6	-17.2	48.4	54.0	-5.6
246.995	Qp	V	270	1.0	69.7	-15.2	54.5	56.9	-2.4
250.495	Qp	V	10	1.0	67.5	-15.1	52.4	56.9	-4.5
272.995	Qp	V	270	1.0	66.3	-14.5	51.8	56.9	-5.1
285.995	Qp	V	270	1.0	67.5	-14.0	53.5	56.9	-3.4
298.995	Op	V	250	1.0	69.3	-14.0	55.3	56.9	-1.6

FCC RULES AND REGULATIONS PART 15 §15.111 (A): ANTENNA POWER **CONDUCTION FOR RECEIVERS**

Using resolution bandwidths to 100Hz no visible emissions were observed from 9kHz to 10 x the fundamental.

10 FCC RULES AND REGULATIONS PART 2 §2.202: NECESSARY BANDWIDTH AND EMISSION BANDWIDTH

Type of Emission:

Necessary Bandwidth and Emission Bandwidth: 25kHzBn =

Calculation:

Max modulation(M) in kHz: Max deviation (D) in kHz: Constant factor (K): 1 Bn =

11 TEST CONFIGURATION PHOTOGRAPHS

Radiated Front View

Radiated Back View

12 INTERNAL EUT PICTURES

12740 A.

13 EXTERNAL EUT PICTURES

BACK

14 LABEL INFORMATION

14.1 Label

14.2 Location of Label on EUT

15 PRODUCT DESCRIPTION

Please see the following pages

16 SCHEMATICS

COMPANY NAME:

NAME: COM SPACE CORPORATION EUT: CDRTL841FL000 WORK ORDER NUMBER: 2000460 FCC ID: PCKCDRTL841FL0001

17 BLOCK DIAGRAM

Please see the product Description in section 15 of this report.

OPERATOR'S MANUAL

Please see the following pages.