

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION

Test Lab

CELLTECH LABS INC.
Testing and Engineering Services
1955 Moss Court
Kelowna, B.C.
Canada V1Y 9L3
Phone: 250-448-7047
Fax: 250-448-7046
e-mail: info@celltechlabs.com
web site: www.celltechlabs.com

Applicant Information

ASCALADE TECHNOLOGIES INC.
12051 Riverside Way
Richmond, BC
Canada V6W 1K7

FCC IDENTIFIER:
IC IDENTIFIER:
Model No.(s):
Trade Name(s):

PBWDT19R26
3842A-DT19R26
B154U, B154UH, CIT200
Ascalade, Linksys

Rule Part(s):
Test Procedure(s):

FCC 47 CFR §2.1093; IC RSS-102 Issue 1 (Provisional)
FCC OET Bulletin 65, Supplement C (Edition 01-01)
IEEE Standard 1528-2003

FCC Classification:
Device Description:
IC Device Classification:

Part 15 Unlicensed PCS portable Tx held to ear (PUE)
Portable UPSCS VoIP Cordless Handset
2 GHz Licence-Exempt Personal Communications Service (PCS) (RSS-213 Issue 1)

Tx Frequency Range: 1921.536 - 1928.448 MHz
Mode of Operation: TDMA (Time Division Multiple Access)
Modulation Type: GFSK (Gaussian Frequency Shift Key)
Max. RF Output Power Level Measured: 0.258 Watts / 24.12 dBm EIRP (1924.992 MHz)
Source-Based Time-Av. Duty Cycle Tested: 12% (Crest Factor: 1:8.3)
Max. Source-Based Time-Av. Power Tested: 0.031 Watts / 14.91 dBm EIRP (1924.992 MHz)

Antenna Type(s) Tested: Internal
Battery Type(s) Tested: NiMH 1.2 V, 750 mAh AAA (x2)
Body-worn Accessories Tested: Plastic Belt-Clip
Audio Accessories Tested: Earbud with Lapel-Microphone (P/N: WDCP045)

Max. SAR Level(s) Evaluated: Head: 0.155 W/kg (1g average)
Body: 0.174 W/Kg (1g average)

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and IEEE Standard 1528-2003, and Industry Canada RSS-102 Issue 1 (Provisional) for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Performed By:

Sean Johnston
Compliance Technologist
Celltech Labs Inc.

Reviewed By:

Spencer Watson
Senior Compliance Technologist
Celltech Labs Inc.

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPSCS VoIP Cordless Handset	1921.536 - 1928.448 MHz			

TABLE OF CONTENTS

1.0 INTRODUCTION	3
2.0 DESCRIPTION of Device Under Test (DUT)	3
3.0 SAR MEASUREMENT SYSTEM	4
4.0 MEASUREMENT SUMMARY	5
5.0 DETAILS OF SAR EVALUATION	7
6.0 EVALUATION PROCEDURES	8
7.0 SYSTEM PERFORMANCE CHECK	10
8.0 SIMULATED EQUIVALENT TISSUES	11
9.0 SAR SAFETY LIMITS	11
10.0 ROBOT SYSTEM SPECIFICATIONS	12
11.0 PROBE SPECIFICATION (ET3DV6)	13
12.0 SAM PHANTOM V4.0C	13
13.0 DEVICE HOLDER	13
14.0 TEST EQUIPMENT LIST	14
15.0 MEASUREMENT UNCERTAINTIES	15
16.0 REFERENCES	17
APPENDIX A - SAR MEASUREMENT DATA	18
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	26
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	29
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	32
APPENDIX E - SYSTEM VALIDATION	43
APPENDIX F - PROBE CALIBRATION	44
APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY	45

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

1.0 INTRODUCTION

This measurement report demonstrates that the ASCALADE TECHNOLOGIES INC. Model(s): B154U, B154UH, CIT200 Portable UPCS VoIP Cordless Handset FCC ID: PBWDT19R26 complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]), and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]), and IEEE Standard 1528-2003 (see reference [4]), and IC RSS-102 Issue 1 (Provisional) (see reference [5]), were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the provisions of the rules are included within this test report.

2.0 DESCRIPTION of Device Under Test (DUT)

FCC Device Classification	Part 15 Unlicensed PCS portable Tx held to ear (PUE)			15(D)
IC Device Classification	2 GHz Licence-Exempt Personal Communications Service Devices (PCS)			RSS-213 Issue 1
FCC Rule Part(s)	47 CFR §2.1093			
IC Rule Part(s)	RSS-102 Issue 1 (Provisional)			
Test Procedure(s)	FCC OET Bulletin 65, Supplement C (01-01)			
	IEEE Standard 1528-2003			
Device Description	Portable UPCS VoIP Cordless Handset			
FCC IDENTIFIER	PBWDT19R26			
IC IDENTIFIER	3842A-DT19R26			
Model No.(s)	B154U	B154UH	CIT200	
Trade Name(s)	Ascalade		Linksys	
Serial No.	AA00000008		Identical Prototype	
Tx Frequency Range	1921.536 - 1928.448 MHz			
Mode of Operation	TDMA		Time Division Multiple Access	
Modulation Type	GFSK		Guassian Frequency Shift Key	
Max. RF Output Power Measured	0.258 Watts	24.12 dBm	Peak RMS	EIRP
Source-Based Time-Averaged RF Output Power Tested	0.031 Watts	14.91 dBm	Peak RMS	EIRP
Source-Based Time-Averaged Duty Cycle Tested	12 %		Crest Factor: 1:8.3	
Battery Type(s) Tested	NiMH	1.2 V	750 mAh	AAA (x2)
Antenna Type(s) Tested	Internal			
Body-Worn Accessories Tested	Plastic Belt-Clip		3 mm thickness	
Audio Accessories Tested	Earbud with Lapel-Microphone		P/N: WDCP045	

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset	1921.536 - 1928.448 MHz			

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE3 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 Measurement System with SAM Phantom

DASY4 Measurement System with SAM Phantom

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

4.0 MEASUREMENT SUMMARY

HEAD SAR EVALUATION RESULTS

Freq. (MHz)	Chan.	Test Mode	Battery Type	Antenna Position	Phantom Section	Test Position	Start Power EIRP (mW)		Measured SAR 1g (W/kg)	SAR Drift During Test (dB)	Scaled SAR 1g (W/kg) with Droop
							Measured	SBTA			
1924.992	3	TDMA	NiMH	Internal	Left Ear	Ear/Tilt (15°)	258	31	0.0889	-0.0566	0.0901
1924.992	3	TDMA	NiMH	Internal	Left Ear	Cheek/Touch	258	31	0.148	-0.208	0.155
1924.992	3	TDMA	NiMH	Internal	Right Ear	Ear/Tilt (15°)	258	31	0.0848	0.0180	0.0848
1924.992	3	TDMA	NiMH	Internal	Right Ear	Cheek/Touch	258	31	0.126	0.0226	0.126

ANSI / IEEE C95.1 1999 - SAFETY LIMIT
BRAIN: 1.6 W/kg (averaged over 1 gram)
Spatial Peak - Uncontrolled Exposure / General Population

Test Date(s)	June 22, 2005			Relative Humidity	36	%	
Measured Fluid Type	1920 MHz Brain			Atmospheric Pressure	101.6	kPa	
Dielectric Constant ϵ_r	IEEE Target		Measured	Deviation	Ambient Temperature	23.4	°C
	40.0	± 5%	38.1	-4.7%	Fluid Temperature	23.6	°C
Conductivity σ (mho/m)	IEEE Target		Measured	Deviation	Fluid Depth	≥ 15	cm
	1.40	± 5%	1.47	+5.0%	ρ (Kg/m ³)	1000	

Note(s):

1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
2. The transmission band of the DUT is less than 10 MHz; therefore mid channel data only is reported (per FCC OET Bulletin 65, Supplement C, Edition 01-01 - see reference [3]).
3. The power droops measured by the DASY4 system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above test data table.
4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
5. The dielectric parameters of the simulated tissue mixture were measured prior to the evaluations using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters).
6. The SAR measurements were performed within 24 hours of the system performance check.

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

MEASUREMENT SUMMARY (Cont.)

BODY-WORN SAR EVALUATION RESULTS

Freq. (MHz)	Chan.	Test Mode	Battery Type	Antenna Position	Phantom Section	DUT Test Position	Separation Distance to Planar Phantom (mm)	Accessories		Start Power EIRP (mW)		Meas. SAR 1g (W/kg)	SAR Drift During Test (dB)	Scaled SAR 1g (W/kg) with Droop
								Body- Worn	Audio	Meas.	SBTA			
1924.992	3	TDMA	NiMH	Internal	Planar	Back Side	3.0	Belt-Clip	Earbud	258	31	0.172	-0.0499	0.174

ANSI / IEEE C95.1 1999 - SAFETY LIMIT
BODY: 1.6 W/kg (averaged over 1 gram)
Spatial Peak - Uncontrolled Exposure / General Population

Test Date(s)		June 22, 2005			Relative Humidity			32		%	
Measured Fluid Type		1920 MHz Body			Atmospheric Pressure			101.6		kPa	
Dielectric Constant ϵ_r		IEEE Target	Measured	Deviation	Ambient Temperature			25.2		°C	
		53.3	± 5%	51.1	Fluid Temperature			23.7		°C	
Conductivity σ (mho/m)		IEEE Target	Measured	Deviation	Fluid Depth			≥ 15		cm	
		1.52	± 5%	1.58	ρ (Kg/m ³)			1000			

Note(s):

1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
2. The transmission band of the DUT is less than 10 MHz; therefore mid channel data only is reported (per FCC OET Bulletin 65, Supplement C, Edition 01-01 - see reference [3]).
3. The power droop measured by the DASY4 system for the duration of the SAR evaluation was added to the measured SAR level to report a scaled SAR result as shown in the above test data table.
4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
5. The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters).
6. The SAR measurements were performed within 24 hours of the system performance check.

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

5.0 DETAILS OF SAR EVALUATION

The ASCALADE TECHNOLOGIES INC. Model(s): B154U, B154UH, CIT200 Portable UPCS VoIP Cordless Handset FCC ID: PBWDT19R26 was compliant for localized Specific Absorption Rate (SAR) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

Ear-held Configuration

- 1) The DUT was tested in an ear-held configuration on both the left and right sections of the SAM phantom at the mid channel of the operating band. The transmission band of the DUT is less than 10 MHz; therefore mid channel data only is reported (per FCC OET Bulletin 65, Supplement C, Edition 01-01 - see reference [3]).
- a) The handset was placed in the device holder in a normal operating position with the test device reference point located along the vertical centerline on the front of the device aligned to the ear reference point, with the center of the earpiece touching the center of the ear spacer of the SAM phantom.
- b) With the handset positioned parallel to the cheek, the test device reference point was aligned to the ear reference point on the head phantom, and the vertical centerline was aligned to the phantom reference plane (initial ear position).
- c) While maintaining the three alignments, the body of the handset was gradually adjusted to each of the following test positions:
 - Cheek/Touch Position: the handset was brought toward the mouth of the head phantom by pivoting against the ear reference point until any point of the mouthpiece or keypad touched the phantom.

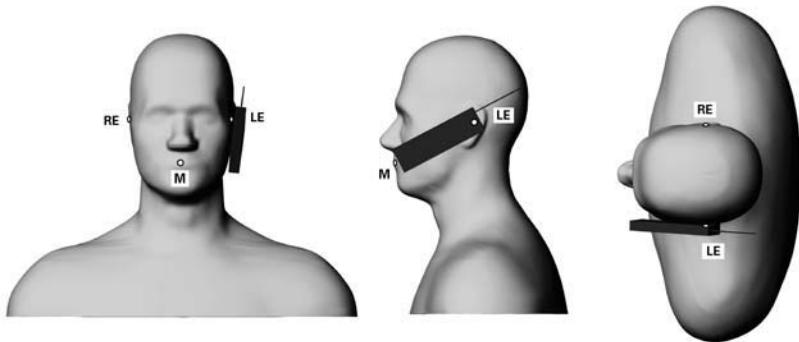


Figure 1. Phone position 1, “cheek” or “touch” position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated (Shoulders are shown for illustration only).

- Ear/Tilt Position: With the phone aligned in the Cheek/Touch position, the handset was tilted away from the mouth with respect to the test device reference point by 15 degrees.

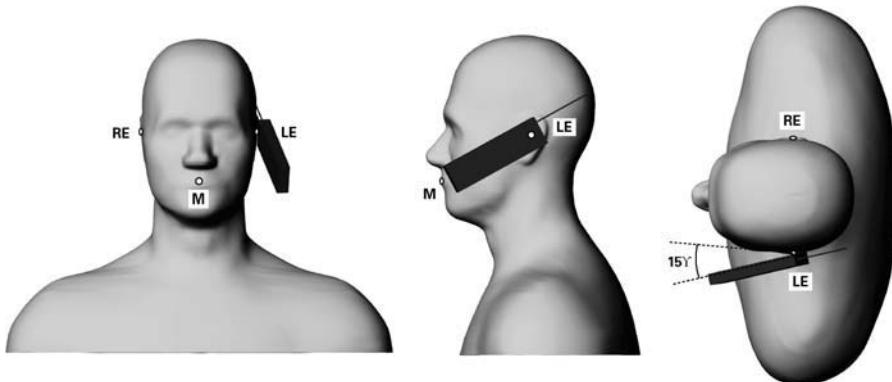


Figure 2. Phone position 2 - “tilted position.” The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated (Shoulders are shown for illustration only).

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

DETAILS OF SAR EVALUATION (Cont.)

Body-worn Configuration

- 2) The DUT was tested in a body-worn configuration with the back side of the device placed parallel to the outer surface of the SAM phantom (planar section). The attached plastic belt-clip accessory was touching the outer surface of the SAM phantom (planar section) and provided a 3 mm separation distance from the back of the DUT to the SAM phantom (planar section). The DUT was evaluated for body-worn SAR with the earbud and lapel-microphone audio accessory connected to the audio port.

Test Mode & Power Setting

- 3) The DUT was placed into test mode using internal software controlled by the keypad.
- 4) The DUT was tested at max. power setting in TDMA mode with a duty cycle of 12% and a crest factor of 1:8.3.
- 5) The RF conducted output power of the DUT could not be measured for the SAR evaluations due to internal antenna. The DUT was evaluated for SAR at the maximum RF conducted output power level preset by the manufacturer.
- 6) The DUT was evaluated for SAR at the maximum EIRP level measured prior to the SAR evaluations on a 3-meter Open Area Test Site using the signal substitution method in accordance with ANSI/TIA-603-C-2004 (see reference [6]).
- 7) The power drops measured by the DASY4 system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the test data tables (page 5-6).
- 8) The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- 9) The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters).
- 10) The DUT was evaluated with fully charged batteries for each test.
- 11) The SAR measurements were performed within 24 hours of the system performance check.

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
(ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5x5x7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7x7x7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

EVALUATION PROCEDURES (Cont.)

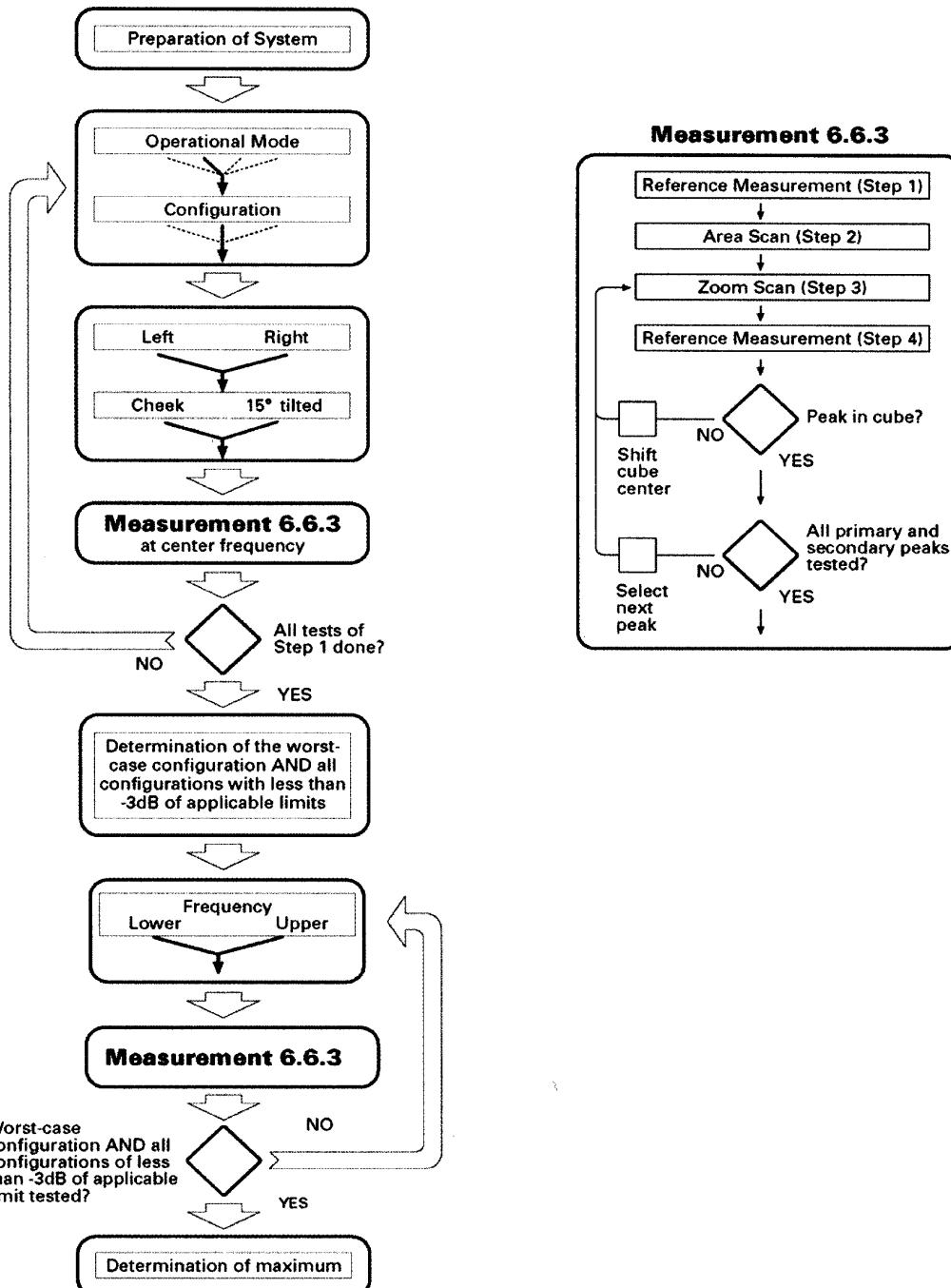


Figure 3. Flow Chart for determining the largest peak spatial-average SAR from all device configurations per IEEE Standard 1528-2003 (see reference [5]).

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed at the planar section of the SAM phantom with a 1900MHz dipole (see Appendix E for system validation procedures). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ (see Appendix B for system performance check test plot).

SYSTEM PERFORMANCE CHECK

Test Date	1900MHz Equiv. Tissue	SAR 1g (W/kg)			Dielectric Constant ϵ_r			Conductivity σ (mho/m)			ρ (Kg/m ³)	Amb. Temp. (°C)	Fluid Temp. (°C)	Fluid Depth (cm)	Humid. (%)	Barom. Press. (kPa)
		IEEE Target	Meas.	Dev.	IEEE Target	Meas.	Dev.	IEEE Target	Meas.	Dev.						
6/22/05	Brain	9.93 $\pm 10\%$	10.4	+4.7%	40.0 $\pm 5\%$	38.2	-4.5%	1.40 $\pm 5\%$	1.45	+3.6%	1000	23.4	23.6	≥ 15	36	101.6

Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.

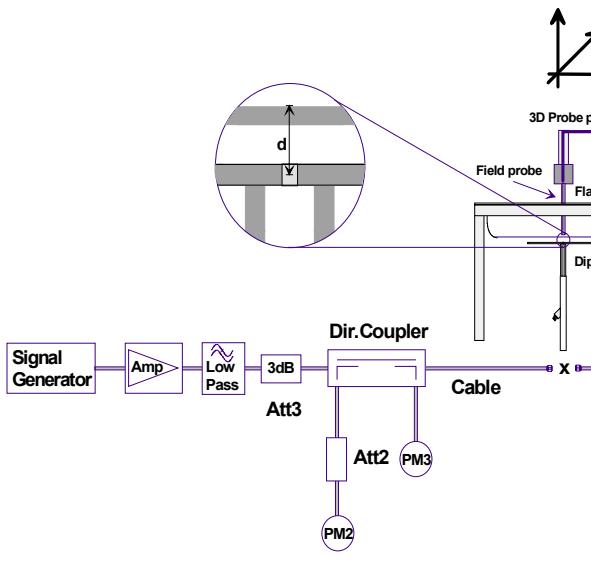


Figure 4. System Performance Check Setup Diagram

1900MHz Dipole Setup

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset	1921.536 - 1928.448 MHz			

8.0 SIMULATED EQUIVALENT TISSUES

The 1900MHz simulated equivalent tissue mixtures consist of Glycol-monobutyl, water, and salt. The fluids were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

1900 MHz SIMULATED TISSUE MIXTURES		
INGREDIENT	1900 MHz Brain	1900 MHz Body
	System Performance Check & DUT Evaluation	DUT Evaluation
Water	55.85 %	69.85 %
Glycol Monobutyl	44.00 %	29.89 %
Salt	0.15 %	0.26 %

9.0 SAR SAFETY LIMITS

EXPOSURE LIMITS	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Notes:

1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER: Stäubli Unimation Corp. Robot Model: RX60L
Repeatability: 0.02 mm
No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: AMD Athlon XP 2400+
Clock Speed: 2.0 GHz
Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic
Software: DASY4 software
Connecting Lines: Optical downlink for data and status info.
 Optical uplink for commands and clock

DASY4 Measurement Server

Function: Real-time data evaluation for field measurements and surface detection
Hardware: PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections: COM1, COM2, DAE, Robot, Ethernet, Service Interface

E-Field Probe

Model: ET3DV6
Serial No.: 1590
Construction: Triangular core fiber optic detection system
Frequency: 10 MHz to 6 GHz
Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Phantom(s)

Type: SAM V4.0C
Shell Material: Fiberglass
Thickness: 2.0 ± 0.1 mm
Volume: Approx. 25 liters

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

11.0 PROBE SPECIFICATION (ET3DV6)


Construction:	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g. glycol)
Calibration:	In air from 10 MHz to 2.5 GHz In brain simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy \pm 8%)
Frequency:	10 MHz to >6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)
Directivity:	\pm 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation normal to probe axis)
Dynamic Range:	5 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB
Surface Detection:	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Dimensions:	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application:	General dosimetry up to 3 GHz Compliance tests of portable phone

ET3DV6 E-Field Probe

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix G for specifications of the SAM phantom V4.0C).

SAM Phantom V4.0C

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

14.0 TEST EQUIPMENT LIST

TEST EQUIPMENT		ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION DUE DATE
USED	DESCRIPTION				
x	Schmid & Partner DASY4 System	-	-	-	-
x	-DASY4 Measurement Server	00158	1078	N/A	N/A
x	-Robot	00046	599396-01	N/A	N/A
	-DAE4	00019	353	15Jun05	15Jun06
x	-DAE3	00018	370	25Jan05	25Jan06
	-ET3DV6 E-Field Probe	00016	1387	18Mar05	18Mar06
x	-ET3DV6 E-Field Probe	00017	1590	20May05	20May06
	-EX3DV4 E-Field Probe	00125	3547	21Jan05	21Jan06
	-300MHz Validation Dipole	00023	135	26Oct04	26Oct05
	-450MHz Validation Dipole	00024	136	04Nov04	04Nov05
	-835MHz Validation Dipole	00022	411	Brain	30Mar05
				Body	12Apr05
	-900MHz Validation Dipole	00020	054	Brain	10Jun05
				Body	10Jun05
	-1800MHz Validation Dipole	00021	247	Brain	14Jun05
				Body	14Jun05
x	-1900MHz Validation Dipole	00032	151	Brain	17Jun05
				Body	22Apr05
	-2450MHz Validation Dipole	00025	150	Brain	30Sep04
				Body	22Apr05
	-5000MHz Validation Dipole	00126	1031	Brain	11Jan05
				Body	11Jan05
x	-SAM Phantom V4.0C	00154	1033	N/A	N/A
	-Barski Planar Phantom	00155	03-01	N/A	N/A
	-Plexiglas Planar Phantom	00156	161	N/A	N/A
	-Validation Planar Phantom	00157	137	N/A	N/A
	HP 85070C Dielectric Probe Kit	00033	N/A	N/A	N/A
x	ALS-PR-DIEL Dielectric Probe Kit	00160	260-00953	N/A	N/A
	Gigatronics 8652A Power Meter	00110	1835801	16Apr05	16Apr06
x	Gigatronics 8652A Power Meter	00008	1835267	29Apr05	29Apr06
	Gigatronics 8652A Power Meter	00007	1835272	18Oct04	18Oct05
	Gigatronics 80701A Power Sensor	00013	1833713	11Oct04	11Oct05
x	Gigatronics 80701A Power Sensor	00011	1833542	08Oct04	08Oct05
x	Gigatronics 80701A Power Sensor	00109	1834366	16Apr05	16Apr06
x	HP 8753ET Network Analyzer	00134	US39170292	04May05	04May06
x	HP 8648D Signal Generator	00005	3847A00611	29Apr05	29Apr06
	Rohde & Schwarz SMR40 Signal Generator	00006	100104	12Apr05	12Apr06
x	Amplifier Research 5S1G4 Power Amplifier	00106	26235	N/A	N/A

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

15.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c_i 1g	Standard Uncertainty ±% (1g)	v_i or v_{eff}
Measurement System						
Probe calibration	± 8.25	Normal	1	1	± 8.25	∞
Axial isotropy of the probe	± 4.7	Rectangular	$\sqrt{3}$	0.7	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	$\sqrt{3}$	0.7	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
Boundary effects	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Probe linearity	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Readout electronics	± 0.3	Normal	1	1	± 0.3	∞
Response time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	∞
Integration time	± 2.6	Rectangular	$\sqrt{3}$	1	± 1.5	∞
RF ambient conditions	± 3.0	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	$\sqrt{3}$	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Extrapolation & integration	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Test Sample Related						
Device positioning	± 2.9	Normal	$\sqrt{3}$	1	± 2.9	12
Device holder uncertainty	± 3.6	Normal	$\sqrt{3}$	1	± 3.6	8
Power drift	± 5.0	Rectangular	$\sqrt{3}$	1	± 2.9	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.7	± 2.0	∞
Liquid conductivity (measured)	± 4.3	Rectangular	$\sqrt{3}$	0.7	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (measured)	± 4.3	Rectangular	$\sqrt{3}$	0.6	± 1.5	∞
Combined Standard Uncertainty						
Expanded Uncertainty (k=2)						
± 12.24						
± 24.56						

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Note:

The frequency range of the dielectric E-field probe, as applied to the conversion factors, is 1710-1910 MHz. The mid channel of this band is 1925 MHz. To account for SAR results tested at a frequency outside the given frequency range applied by the system manufacturer, we have increased the uncertainty of the conversion factors. The test frequency is 115 MHz away from the mid channel of the dielectric probe conversion factor frequency range so we suggest a worst-case uncertainty of 1.5 times the current value at k=1. This takes the standard dielectric probe conversion factor uncertainty of 5.5% to 8.25%.

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

MEASUREMENT UNCERTAINTIES (Cont.)

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c_i 1g	Standard Uncertainty ±% (1g)	v_i or v_{eff}
Measurement System						
Probe calibration	± 5.5	Normal	1	1	± 5.5	∞
Axial isotropy of the probe	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Spherical isotropy of the probe	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
Spatial resolution	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
Boundary effects	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Probe linearity	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Readout electronics	± 0.3	Normal	1	1	± 0.3	∞
Response time	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
Integration time	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
RF ambient conditions	± 3.0	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	$\sqrt{3}$	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Extrapolation & integration	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Dipole						
Dipole Axis to Liquid Distance	± 2.0	Rectangular	$\sqrt{3}$	1	± 1.2	∞
Input Power	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.64	± 1.8	∞
Liquid conductivity (measured)	± 2.5	Normal	$\sqrt{3}$	0.64	± 1.6	∞
Liquid permittivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (measured)	± 2.5	Normal	$\sqrt{3}$	0.6	± 1.5	∞
Combined Standard Uncertainty						
Expanded Uncertainty (k=2)						
± 8.78						
± 17.57						

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

16.0 REFERENCES

- [1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.
- [3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.
- [5] IEEE Standard 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] ANSI/TIA-603-C, "Land Mobile FM or PM Communications Equipment - Measurement and Performance Standards": December 2004.

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

APPENDIX A - SAR MEASUREMENT DATA

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

Date Tested: 06/22/2005

Head SAR - Left Ear - Tilt Position (15°)

DUT: Ascalade Model: B154U; Type: Portable UPCS VoIP Cordless Phone; Serial: AA00000008

Ambient Temp: 23.4 °C; Fluid Temp: 23.6 °C; Barometric Pressure: 101.6 kPa; Humidity: 36%

Communication System: TDMA

RF Output Power: 31 mW (EIRP)

1.2V 750mAh NiMH Batteries AAA (x2)

Frequency: 1924.992 MHz; Channel 3; Duty Cycle: 1:8.3

Medium: HSL1900 ($\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1590; ConvF(5.44, 5.44, 5.44); Calibrated: 20/05/2005

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

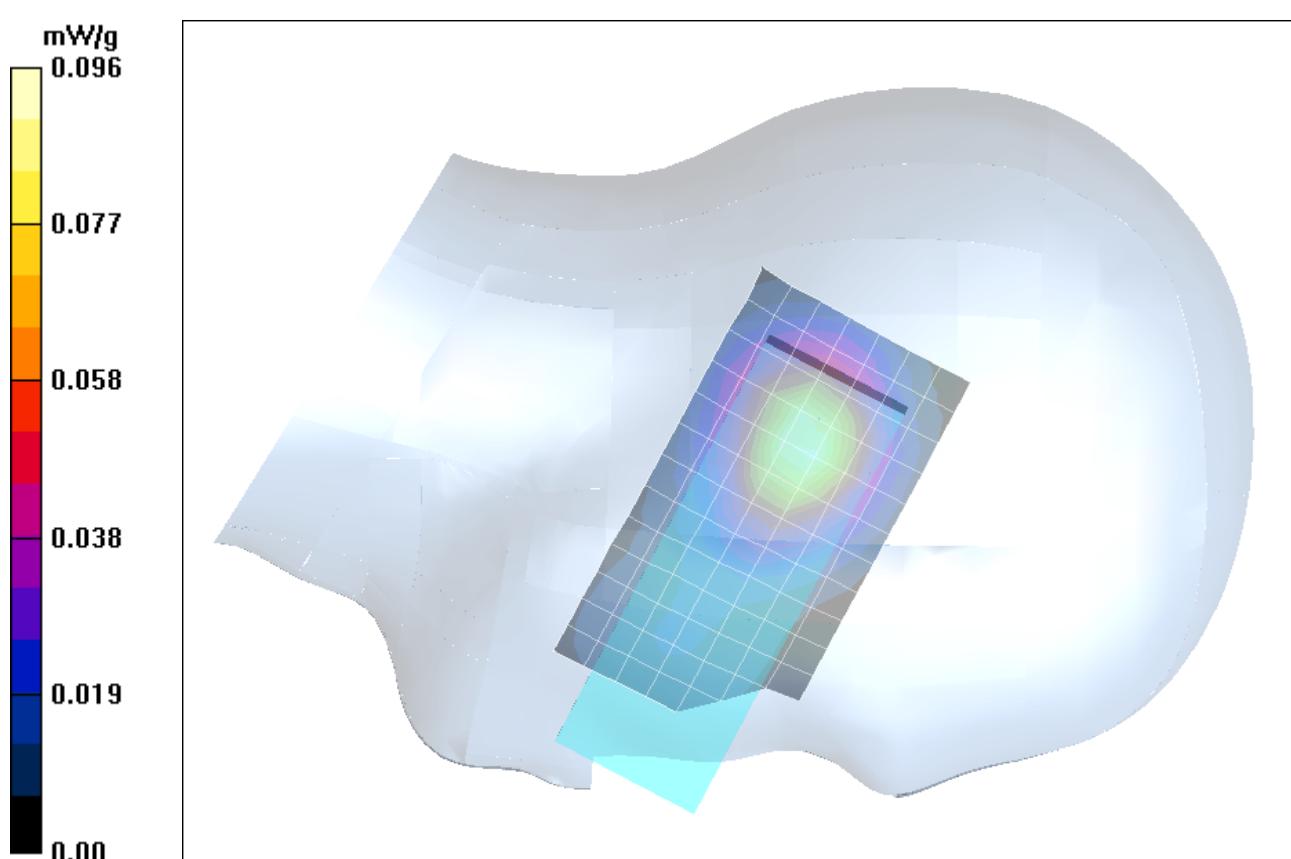
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Head SAR - Left Ear - Tilt Position (15°) - Mid Channel/Area Scan (8x14x1):

Measurement grid: dx=10mm, dy=10mm


Head SAR - Left Ear - Tilt Position (15°) - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.36 V/m; Power Drift = -0.0566 dB

Peak SAR (extrapolated) = 0.135 W/kg

SAR(1 g) = 0.0889 mW/g; SAR(10 g) = 0.054 mW/g

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

Date Tested: 06/22/2005

Head SAR - Left Ear - Cheek/Touch Position

DUT: Ascalade Model: B154U; Type: Portable UPCS VoIP Cordless Phone; Serial: AA00000008

Ambient Temp: 23.4 °C; Fluid Temp: 23.6 °C; Barometric Pressure: 101.6 kPa; Humidity: 36%

Communication System: TDMA

RF Output Power: 31 mW (EIRP)

1.2V 750mAh NiMH Batteries AAA (x2)

Frequency: 1924.992 MHz; Channel 3; Duty Cycle: 1:8.3

Medium: HSL1900 ($\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1590; ConvF(5.44, 5.44, 5.44); Calibrated: 20/05/2005

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

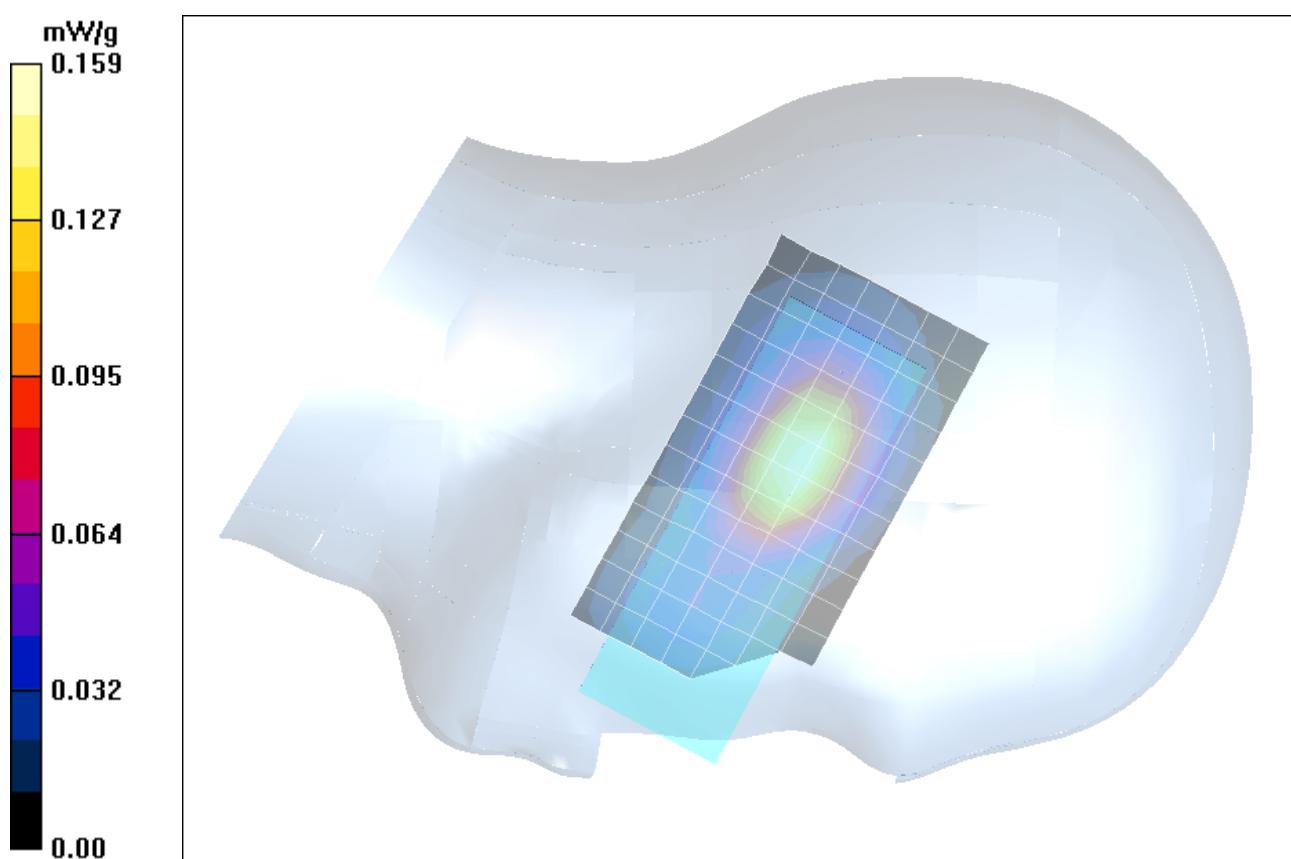
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

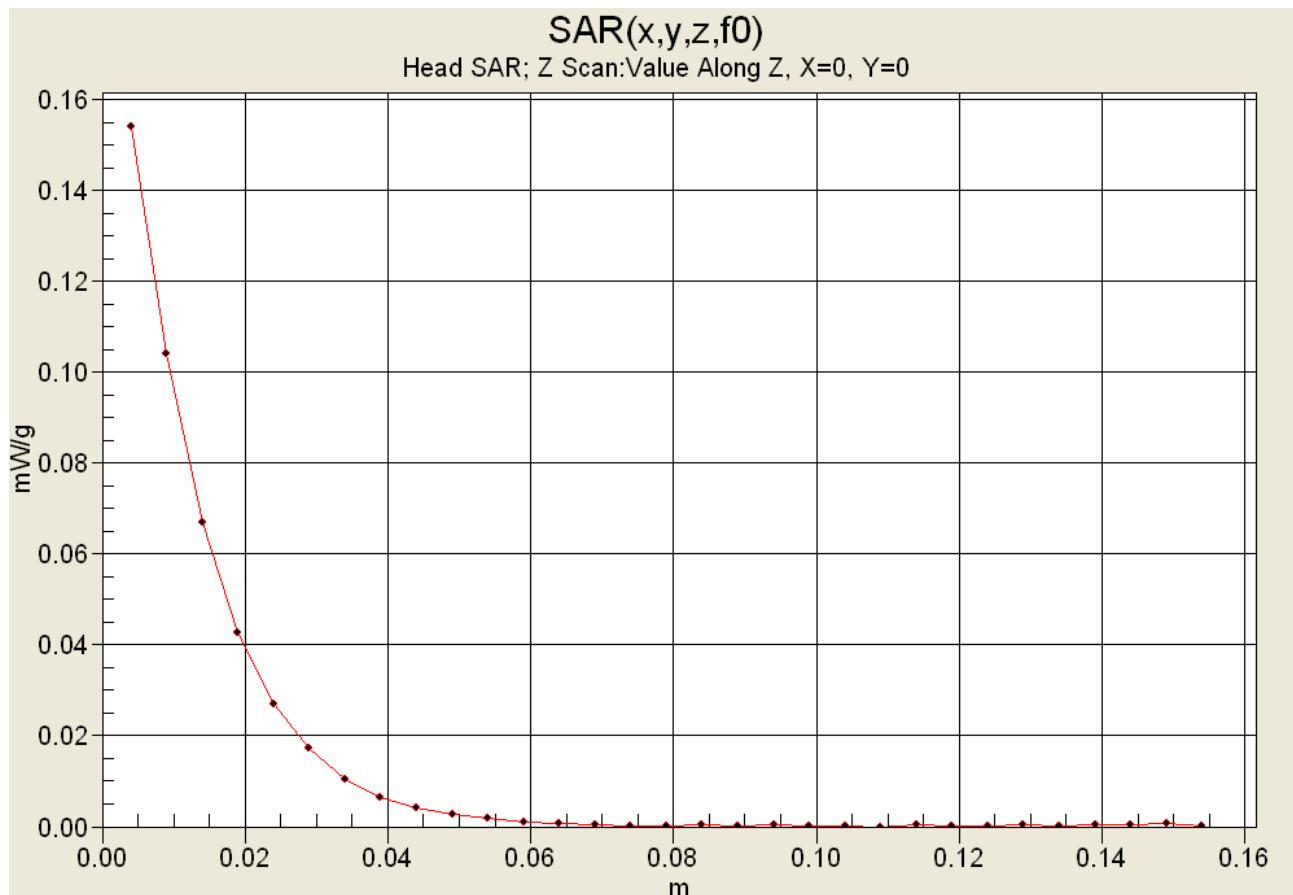
Head SAR - Left Ear - Cheek/Touch Position - Mid Channel/Area Scan (8x14x1):

Measurement grid: dx=10mm, dy=10mm


Head SAR - Left Ear - Cheek/Touch Position - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.9 V/m; Power Drift = -0.208 dB


Peak SAR (extrapolated) = 0.218 W/kg

SAR(1 g) = 0.148 mW/g; SAR(10 g) = 0.089 mW/g

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

Z-Axis Scan

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

Date Tested: 06/22/2005

Head SAR - Right Ear - Tilt Position (15°)

DUT: Ascalade Model: B154U; Type: Portable UPCS VoIP Cordless Phone; Serial: AA00000008

Ambient Temp: 23.4 °C; Fluid Temp: 23.6 °C; Barometric Pressure: 101.6 kPa; Humidity: 36%

Communication System: TDMA

RF Output Power: 31 mW (EIRP)

1.2V 750mAh NiMH Batteries AAA (x2)

Frequency: 1924.992 MHz; Channel 3; Duty Cycle: 1:8.3

Medium: HSL1900 ($\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1590; ConvF(5.44, 5.44, 5.44); Calibrated: 20/05/2005

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

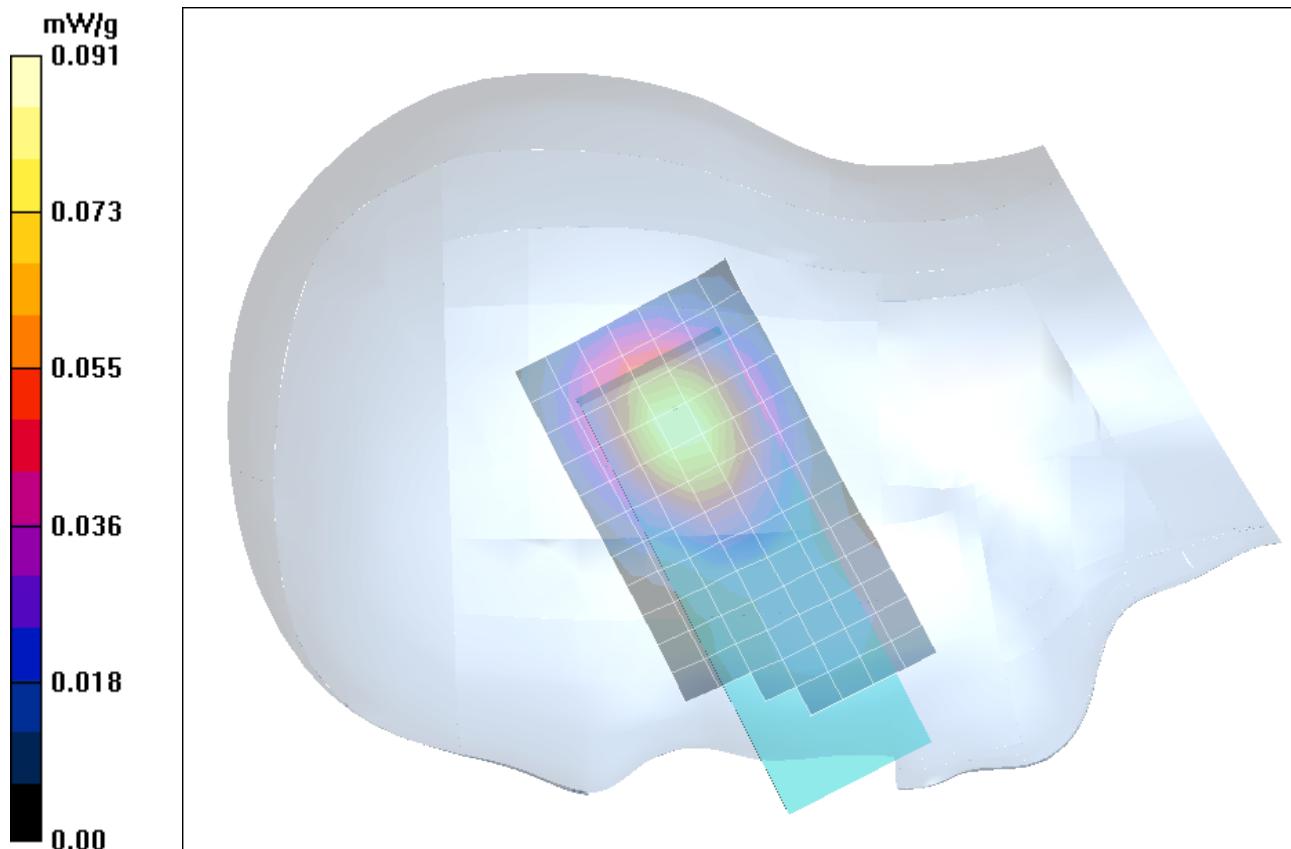
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Head SAR - Right Ear - Tilt Position (15°) - Mid Channel/Area Scan (8x14x1):

Measurement grid: dx=10mm, dy=10mm


Head SAR - Right Ear - Tilt Position (15°) - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.00 V/m; Power Drift = 0.0180 dB

Peak SAR (extrapolated) = 0.126 W/kg

SAR(1 g) = 0.0848 mW/g; SAR(10 g) = 0.052 mW/g

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset	1921.536 - 1928.448 MHz			

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

Date Tested: 06/22/2005

Head SAR - Right Ear - Cheek/Touch Position

DUT: Ascalade Model: B154U; Type: Portable UPCS VoIP Cordless Phone; Serial: AA00000008

Ambient Temp: 23.4 °C; Fluid Temp: 23.6 °C; Barometric Pressure: 101.6 kPa; Humidity: 36%

Communication System: TDMA

RF Output Power: 31 mW (EIRP)

1.2V 750mAh NiMH Batteries AAA (x2)

Frequency: 1924.992 MHz; Channel 3; Duty Cycle: 1:8.3

Medium: HSL1900 ($\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1590; ConvF(5.44, 5.44, 5.44); Calibrated: 20/05/2005

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

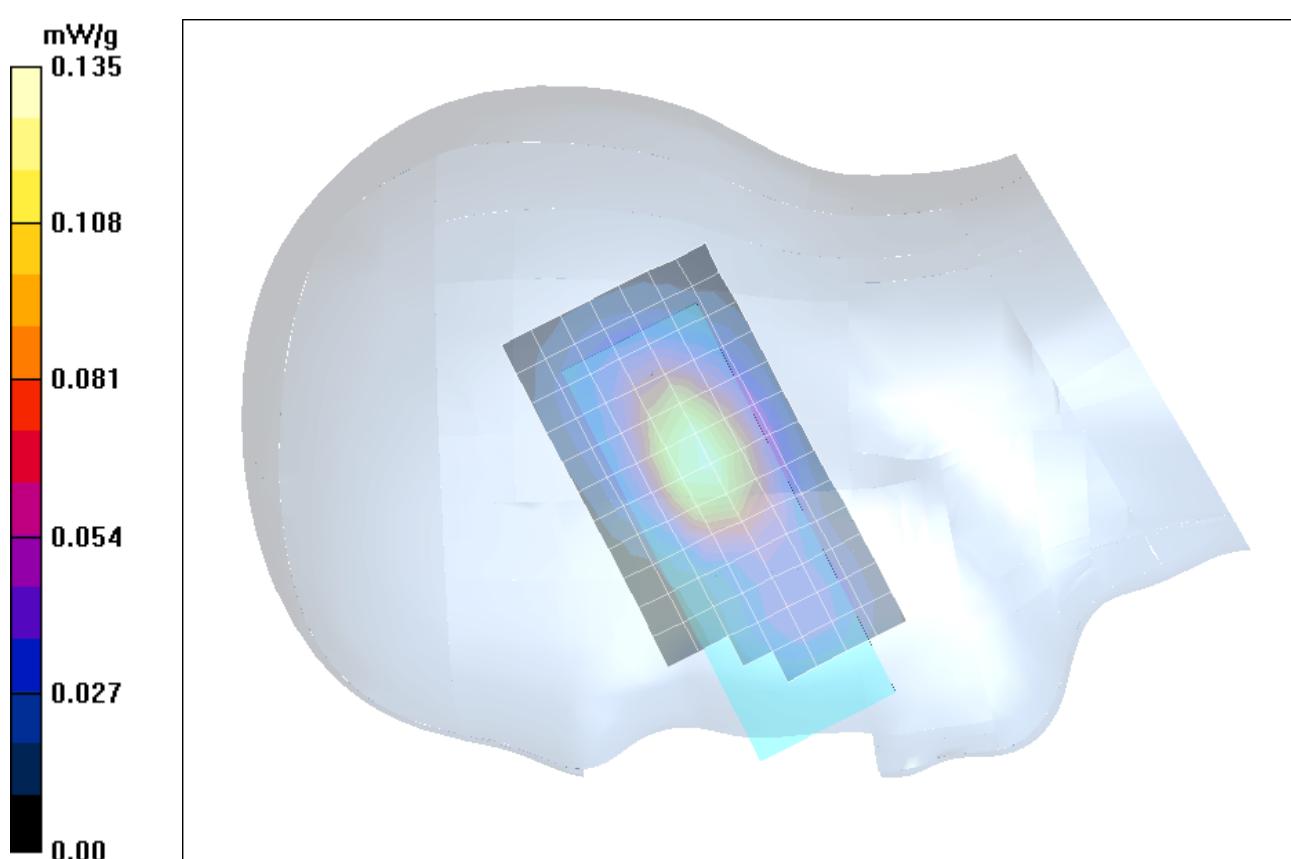
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Head SAR - Right Ear - Cheek/Touch Position - Mid Channel/Area Scan (8x14x1):

Measurement grid: dx=10mm, dy=10mm


Head SAR - Right Ear - Cheek/Touch Position - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.1 V/m; Power Drift = 0.0226 dB

Peak SAR (extrapolated) = 0.184 W/kg

SAR(1 g) = 0.126 mW/g; SAR(10 g) = 0.077 mW/g

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset	1921.536 - 1928.448 MHz			
2005 Celltech Labs Inc.		This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				23 of 45

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

Date Tested: 06/22/2005

Body-Worn SAR with 3 mm Plastic Belt-Clip

DUT: Ascalade Model: B154U; Type: Portable UPCS VoIP Cordless Phone; Serial: AA00000008

Body-Worn Accessories: Plastic Belt-Clip; Audio Accessories: Earbud with Lapel-Microphone (P/N: WDCP045)

Ambient Temp: 25.2 °C; Fluid Temp: 23.7 °C; Barometric Pressure: 101.6 kPa; Humidity: 32%

Communication System: TDMA

RF Output Power: 31 mW (EIRP)

1.2V 750mAh NiMH Batteries AAA (x2)

Frequency: 1924.992 MHz; Channel 3; Duty Cycle: 1:8.3

Medium: M1900 ($\sigma = 1.58 \text{ mho/m}$; $\epsilon_r = 51.1$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1590; ConvF(4.85, 4.85, 4.85); Calibrated: 20/05/2005

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

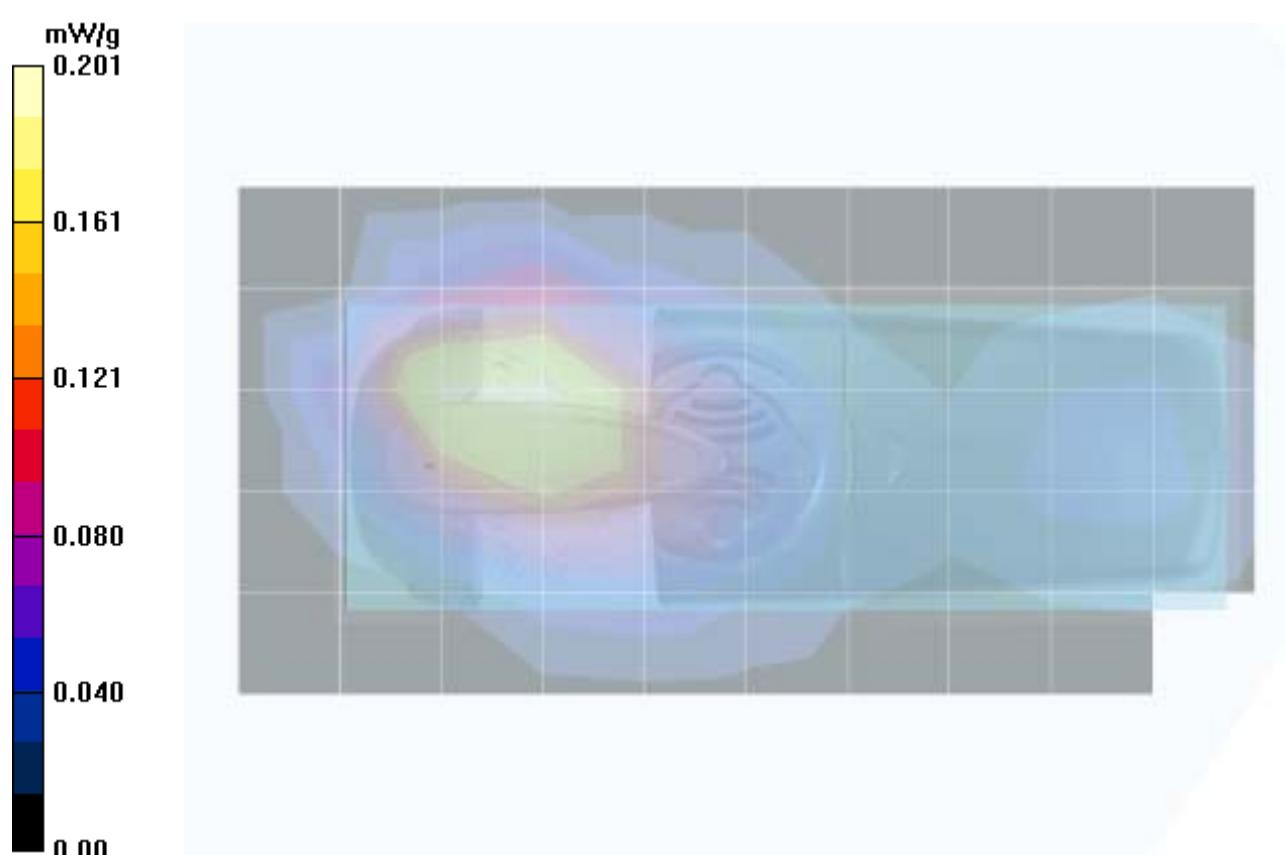
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

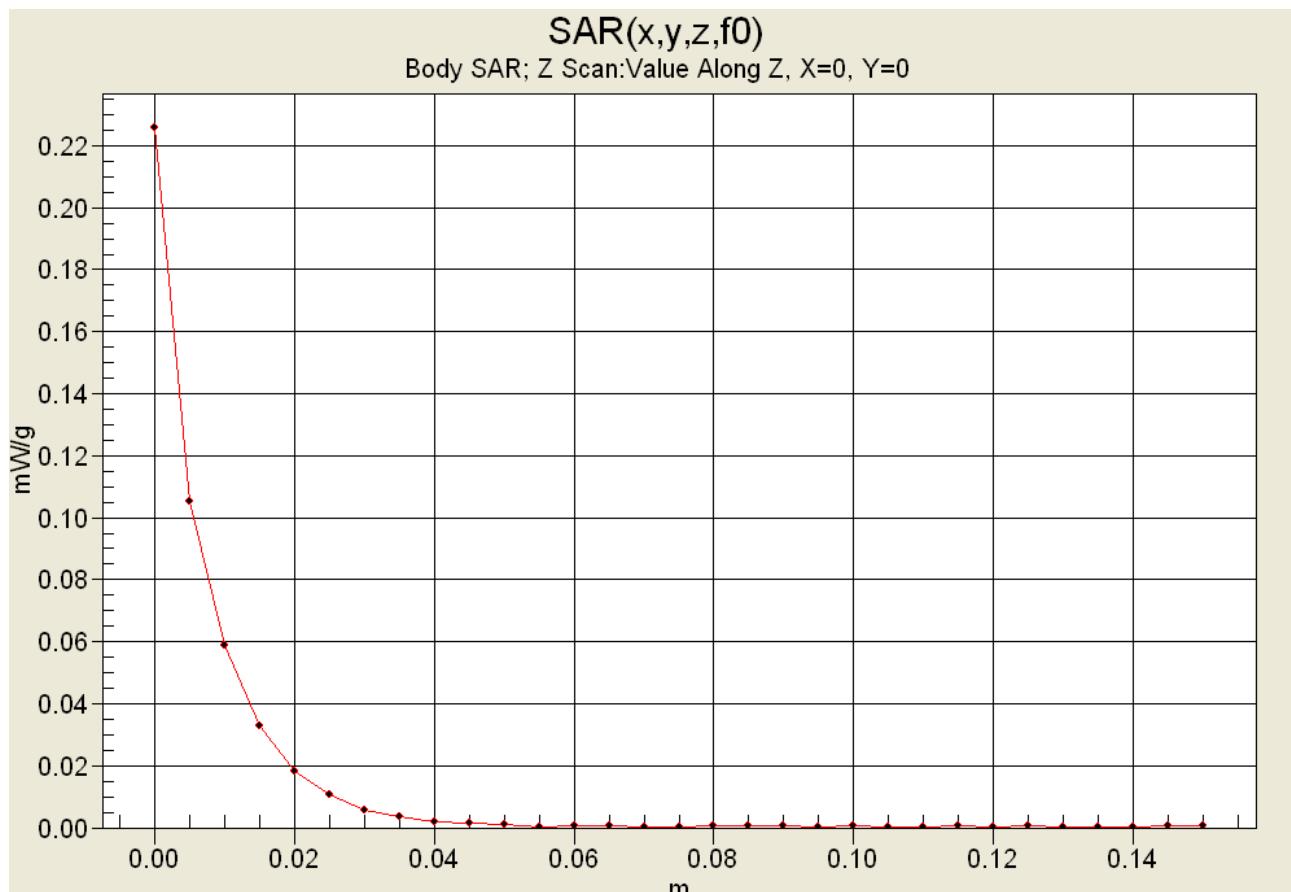
Body-Worn SAR - 3 mm Belt-Clip Separation Distance - Mid Channel/Area Scan (6x11x1):

Measurement grid: dx=15mm, dy=15mm


Body-Worn SAR - 3 mm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.65 V/m; Power Drift = -0.0499 dB


Peak SAR (extrapolated) = 0.366 W/kg

SAR(1 g) = 0.172 mW/g; SAR(10 g) = 0.092 mW/g

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset	1921.536 - 1928.448 MHz			

Z-Axis Scan

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

Date Tested: 06/22/2005

System Performance Check (Brain) - 1900 MHz Dipole

DUT: Dipole 1900 MHz; Model: D1900V2; Type: System Performance Check; Serial: 151; Calibrated: 06/17/05

Ambient Temp: 23.4 °C; Fluid Temp: 23.6 °C; Barometric Pressure: 101.6 kPa; Humidity: 36%

Communication System: CW

Forward Conducted Power: 250 mW

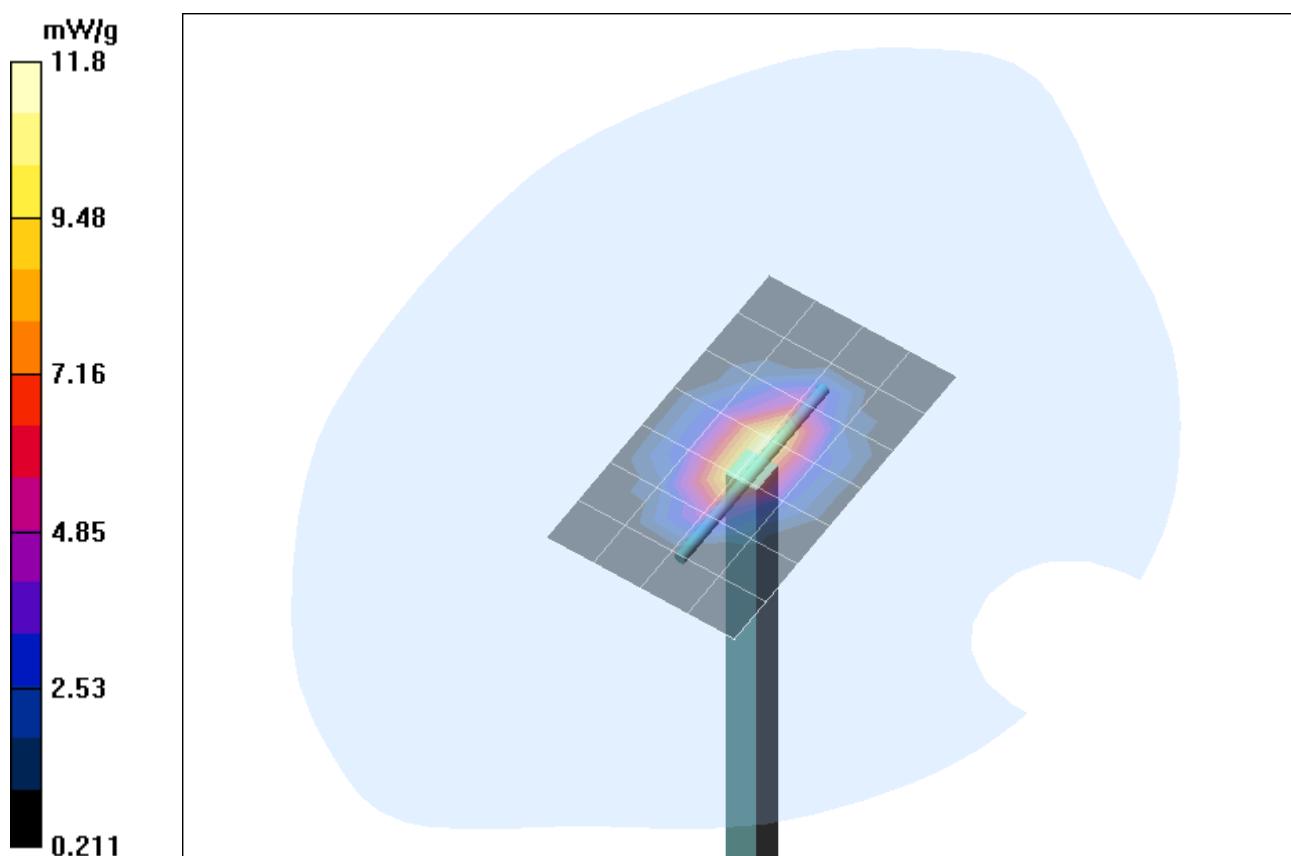
Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 ($\sigma = 1.45$ mho/m; $\epsilon_r = 38.2$; $\rho = 1000$ kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(5.44, 5.44, 5.44); Calibrated: 20/05/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

1900 MHz Dipole - System Performance Check/Area Scan (5x8x1):

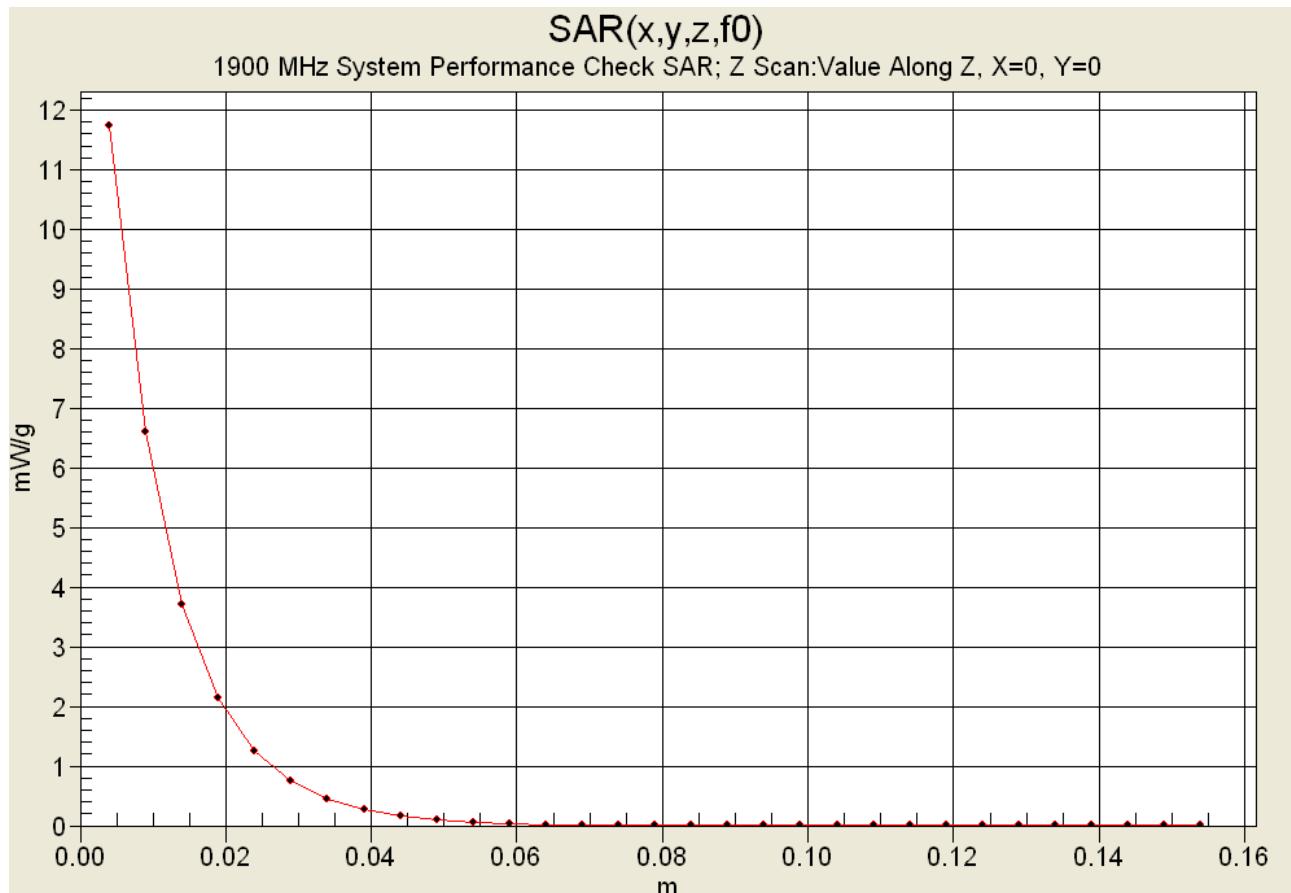
Measurement grid: dx=15mm, dy=15mm


1900 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.4 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 18.4 W/kg


SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.41 mW/g

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPSCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 27 of 45

Z-Axis Scan

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPSCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		
2005 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				29 of 45	

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

1900 MHz System Performance Check & DUT Evaluation (Head)

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Wed 22/Jun/2005

Freq Frequency (GHz)

FCC_eH FCC OET 65 Supplement C (June 2001) Limits for Head Epsilon

FCC_sH FCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM

Freq	FCC_eH	FCC_sH	Test_e	Test_s
1.8000	40.00	1.40	38.54	1.34
1.8100	40.00	1.40	38.48	1.36
1.8200	40.00	1.40	38.50	1.36
1.8300	40.00	1.40	38.47	1.38
1.8400	40.00	1.40	38.42	1.39
1.8500	40.00	1.40	38.40	1.40
1.8600	40.00	1.40	38.38	1.41
1.8700	40.00	1.40	38.29	1.41
1.8800	40.00	1.40	38.28	1.43
1.8900	40.00	1.40	38.22	1.44
1.9000	40.00	1.40	38.24	1.45
1.9100	40.00	1.40	38.11	1.46
1.9200	40.00	1.40	38.13	1.47
1.9300	40.00	1.40	38.12	1.48
1.9400	40.00	1.40	38.08	1.49
1.9500	40.00	1.40	37.98	1.50
1.9600	40.00	1.40	37.95	1.51
1.9700	40.00	1.40	37.91	1.52
1.9800	40.00	1.40	37.88	1.53
1.9900	40.00	1.40	37.77	1.54
2.0000	40.00	1.40	37.71	1.56

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPSCS VoIP Cordless Handset	1921.536 - 1928.448 MHz			

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

1900 MHz DUT Evaluation (Body)

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Wed 22/Jun/2005

Freq Frequency (GHz)

FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon

FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon

FCC_sb FCC Limits for Body Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM

Freq	FCC_eB	FCC_sb	Test_e	Test_s
1.8000	53.30	1.52	51.31	1.43
1.8100	53.30	1.52	51.28	1.45
1.8200	53.30	1.52	51.31	1.47
1.8300	53.30	1.52	51.30	1.48
1.8400	53.30	1.52	51.34	1.49
1.8500	53.30	1.52	51.33	1.51
1.8600	53.30	1.52	51.32	1.50
1.8700	53.30	1.52	51.31	1.51
1.8800	53.30	1.52	51.24	1.52
1.8900	53.30	1.52	51.14	1.53
1.9000	53.30	1.52	51.15	1.55
1.9100	53.30	1.52	50.98	1.57
1.9200	53.30	1.52	51.07	1.58
1.9300	53.30	1.52	50.97	1.59
1.9400	53.30	1.52	51.13	1.61
1.9500	53.30	1.52	50.98	1.61
1.9600	53.30	1.52	51.08	1.62
1.9700	53.30	1.52	50.91	1.62
1.9800	53.30	1.52	50.82	1.63
1.9900	53.30	1.52	50.81	1.65
2.0000	53.30	1.52	50.63	1.67

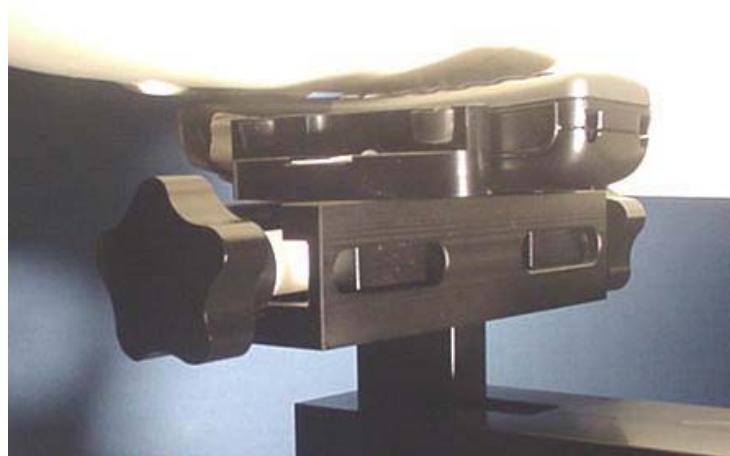
Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPSCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

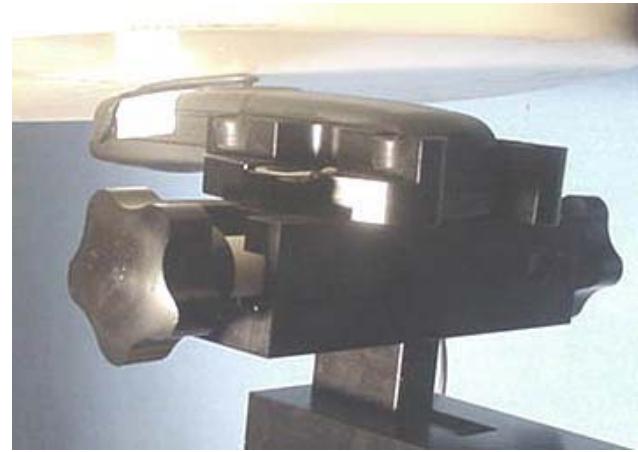
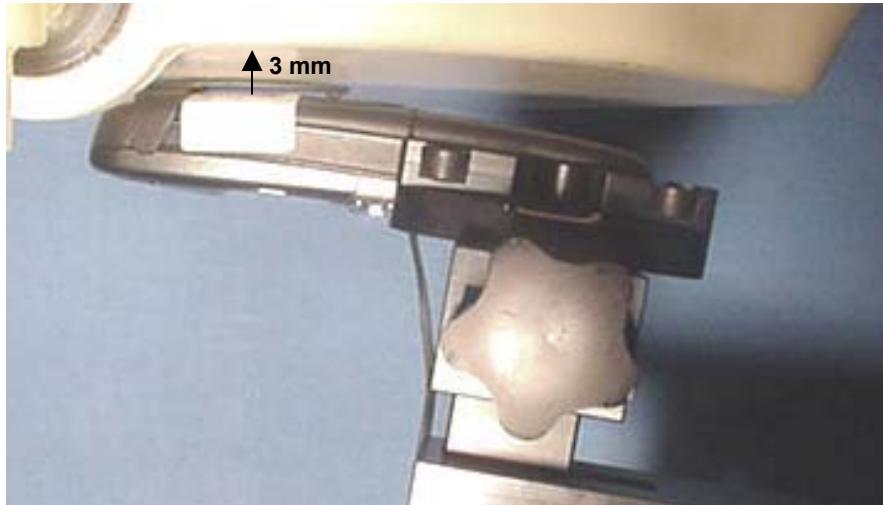
Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		
2005 Celltech Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				32 of 45	

HEAD SAR TEST SETUP PHOTOGRAPHS
Left Head Section / Ear-Tilt Position (15°)


HEAD SAR TEST SETUP PHOTOGRAPHS
Left Head Section / Cheek-Touch Position



HEAD SAR TEST SETUP PHOTOGRAPHS
Right Head Section / Ear-Tilt Position (15 °)

HEAD SAR TEST SETUP PHOTOGRAPHS
Right Head Section / Cheek-Touch Position

BODY-WORN SAR TEST SETUP PHOTOGRAPHS
3 mm Belt-Clip Separation Distance from Back Side of DUT to Planar Phantom
Earbud with Lapel-Microphone Audio Accessory

DUT PHOTOGRAPHS

Front of DUT

Back of DUT

Back of DUT with Belt-Clip

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	Ascalade
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

Test Report Serial No.:	062005PBW-T650-S15T
Test Date(s):	June 22, 2005
Test Type:	FCC/IC SAR Evaluation

DUT PHOTOGRAPHS

Top end of DUT

Bottom end of DUT

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

DUT PHOTOGRAPHS

Left Side of DUT

Right Side of DUT

Plastic Belt-Clip Accessory

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	Ascalade
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

DUT PHOTOGRAPHS

DUT Battery Compartment

NiMH AAA Batteries

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	Ascalade
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

DUT PHOTOGRAPHS

DUT with Earbud and Lapel-Microphone audio accessory (P/N: WDCP045)

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

APPENDIX E - SYSTEM VALIDATION

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

1900 MHz SYSTEM VALIDATION DIPOLE

Type:

1900 MHz Validation Dipole

Asset Number:

00032

Serial Number:

151

Place of Calibration:

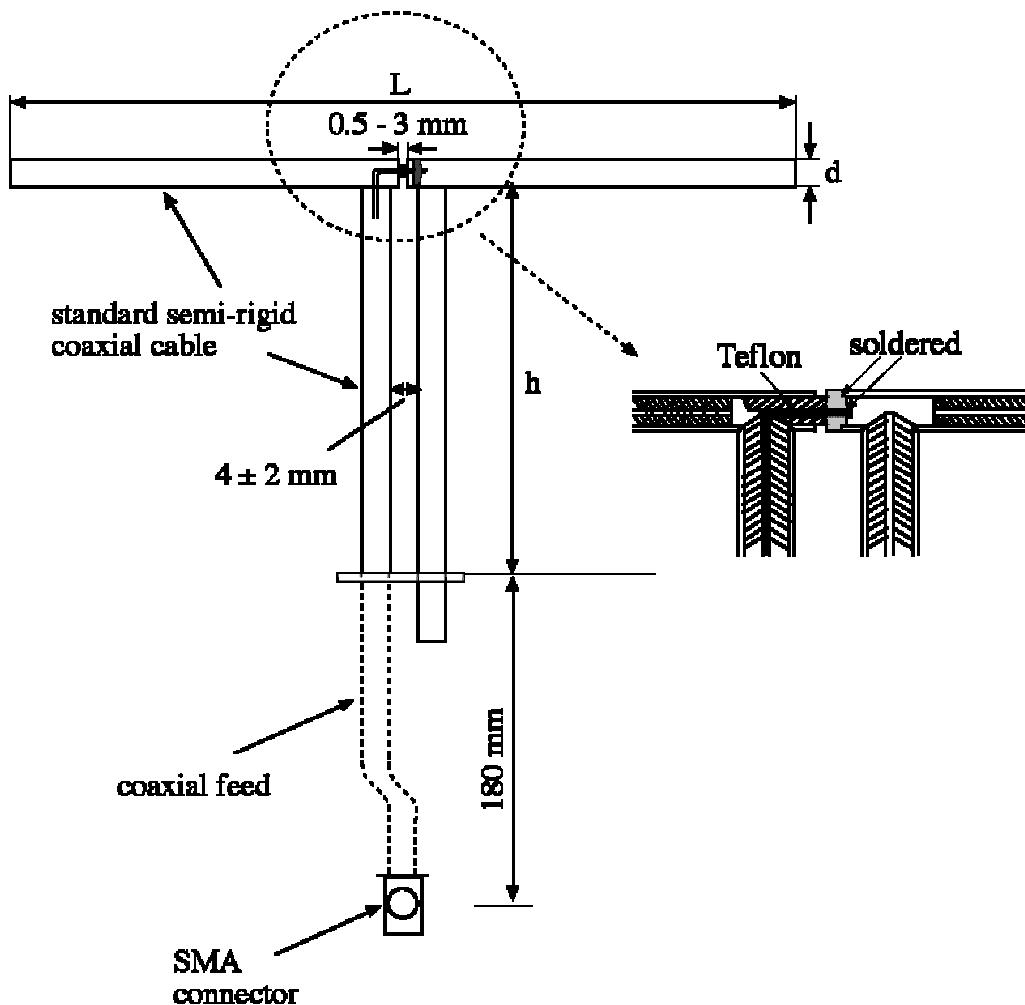
Celltech Labs Inc.

Date of Calibration:

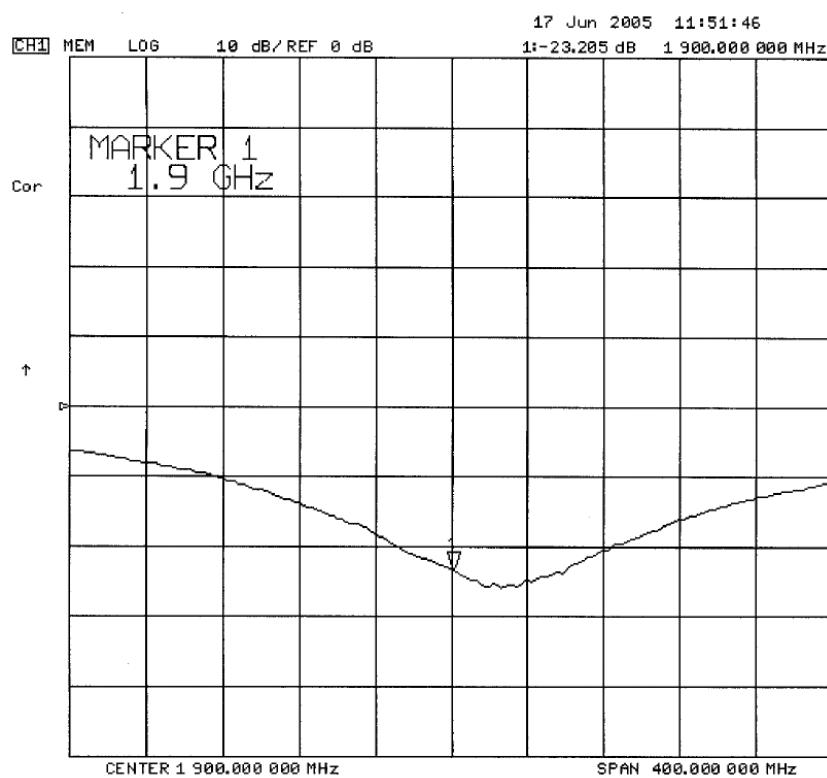
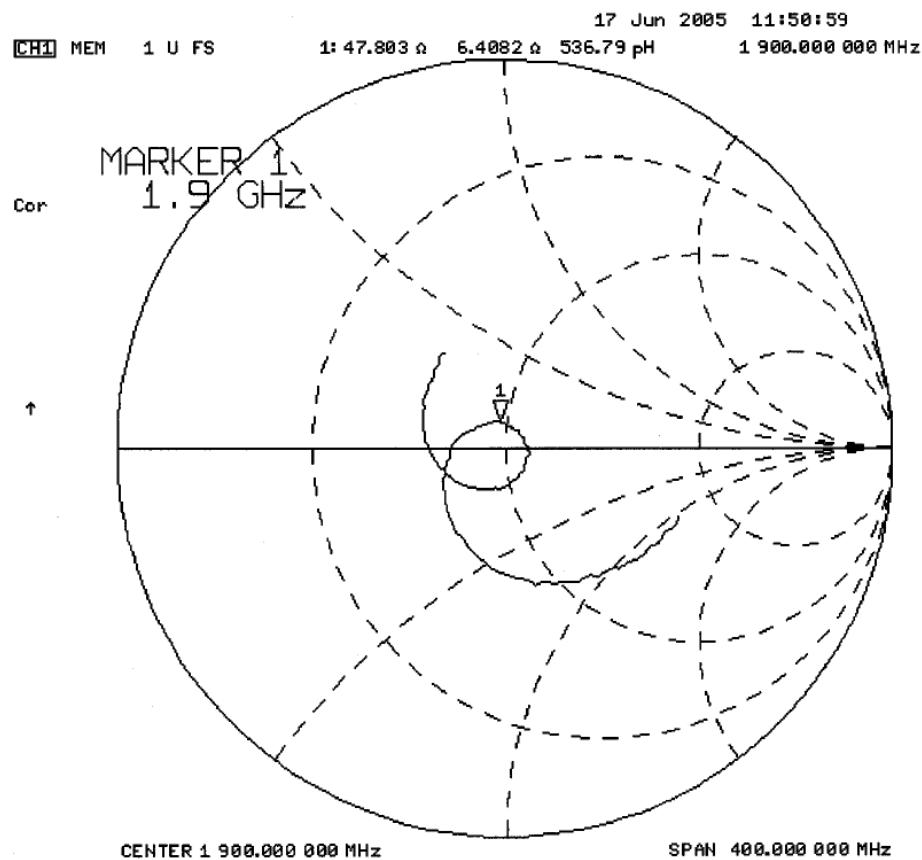
June 17, 2005**Celltech Labs Inc. hereby certifies that this device has been calibrated on the date indicated above.**

Calibrated by:

Approved by:



1. Dipole Construction & Electrical Characteristics



The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 1900MHz $\text{Re}\{Z\} = 47.803\Omega$
 $\text{Im}\{Z\} = 6.4002\Omega$

Return Loss at 1900MHz -23.205dB

2. Validation Dipole VSWR Data

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

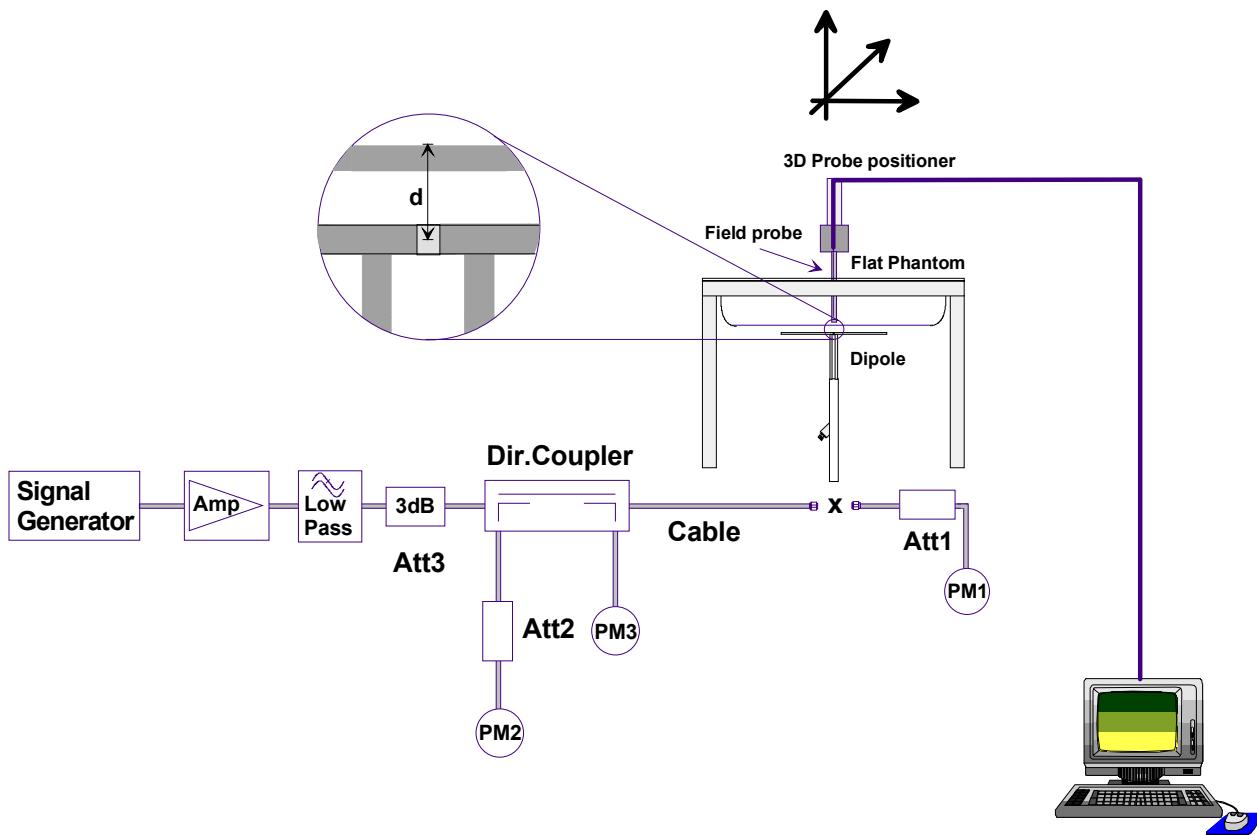
Shell Thickness: 2.0 ± 0.1 mm
Filling Volume: Approx. 25 liters
Dimensions: 50 cm (W) x 100 cm (L)

5. 1900 MHz System Validation Setup

1900 MHz System Validation Setup

6. Measurement Conditions

The SAM phantom was filled with 1900 MHz brain simulating tissue.


Relative Permittivity: 38.4
Conductivity: 1.40 mho/m
Ambient Temperature: 23.4 °C
Fluid Temperature: 22.7 °C
Fluid Depth: ≥ 15.0 cm
Barometric Pressure: 100.6 kPa
Humidity: 35%

The 1900 MHz tissue simulant consists of the following ingredients:

Ingredient	Percentage by weight
Water	55.85%
Glycol	44.00%
Salt	0.15%
Target Dielectric Parameters at 22 °C	$\epsilon_r = 40.0$ $\sigma = 1.40 \text{ S/m}$

7. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

8. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	9.97	39.88	5.20	20.80	17.7
Test 2	10.0	40.00	5.19	20.76	17.9
Test 3	10.1	40.40	5.21	20.84	18.1
Test 4	9.98	39.92	5.20	20.80	17.8
Test 5	9.96	39.84	5.19	20.76	17.7
Test 6	9.99	39.96	5.18	20.72	17.9
Test 7	9.89	39.56	5.16	20.64	17.5
Test 8	9.95	39.80	5.19	20.76	17.6
Test 9	9.96	39.84	5.20	20.80	17.6
Test 10	9.92	39.68	5.19	20.76	17.5
Average	9.972	39.888	5.191	20.764	17.73

The results have been normalized to 1W (forward power) into the dipole.

1g/10g Averaged	Average Measured SAR @ 1W Input	IEEE Target SAR @ 1W Input	Deviation (%)
1 gram	39.888	39.7	+ 0.474
10 gram	20.764	20.5	+ 1.29

1900 MHz System Validation - June 17, 2005

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 151
 Ambient Temp: 23.4 °C; Fluid Temp: 22.7 °C; Barometric Pressure: 100.6 kPa; Humidity: 35%
 Communication System: CW
 Frequency: 1900 MHz; Duty Cycle: 1:1
 Medium: HSL1900 ($\sigma = 1.40$ mho/m; $\epsilon_r = 38.4$; $\rho = 1000$ kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(5.44, 5.44, 5.44); Calibrated: 20/05/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

1900 MHz System Validation/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

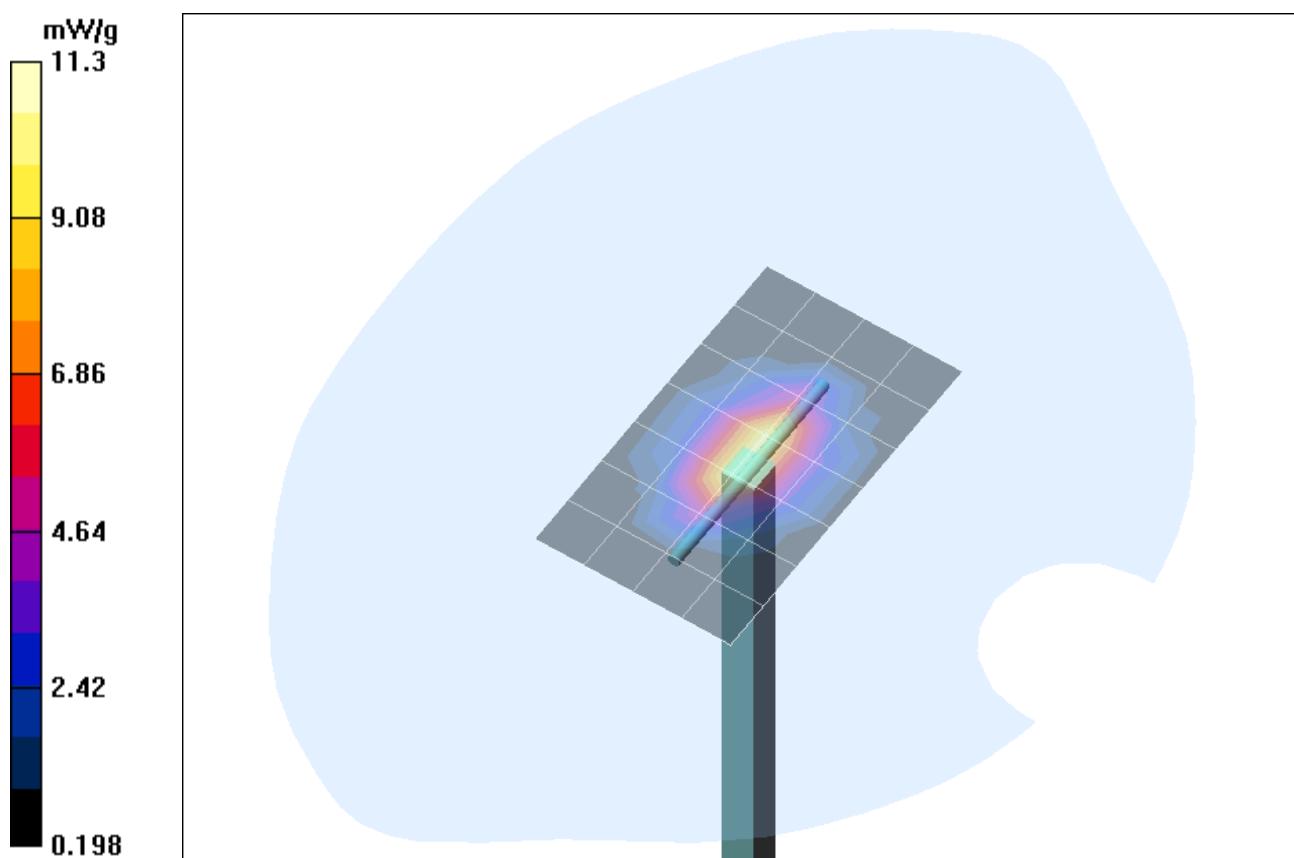
1900 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 94.6 V/m; Power Drift = -0.018 dB
 Peak SAR (extrapolated) = 17.7 W/kg
SAR(1 g) = 9.97 mW/g; SAR(10 g) = 5.20 mW/g

1900 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 93.6 V/m; Power Drift = -0.025 dB
 Peak SAR (extrapolated) = 17.9 W/kg
SAR(1 g) = 10.0 mW/g; SAR(10 g) = 5.19 mW/g

1900 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 94.1 V/m; Power Drift = -0.011 dB
 Peak SAR (extrapolated) = 18.1 W/kg
SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.21 mW/g

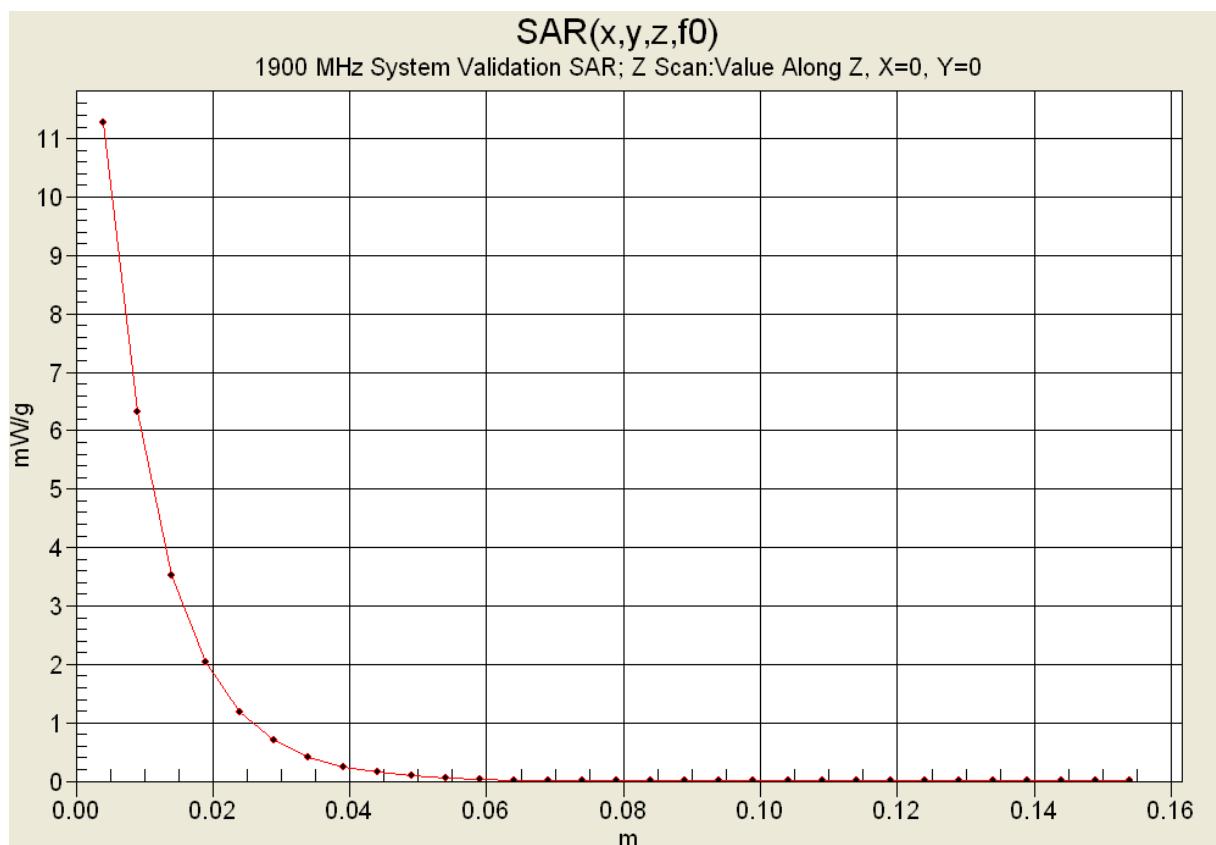
1900 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 94.8 V/m; Power Drift = 0.00 dB
 Peak SAR (extrapolated) = 17.8 W/kg
SAR(1 g) = 9.98 mW/g; SAR(10 g) = 5.20 mW/g

1900 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 94.8 V/m; Power Drift = -0.01 dB
 Peak SAR (extrapolated) = 17.7 W/kg
SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.19 mW/g


1900 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 95.6 V/m; Power Drift = -0.081 dB
 Peak SAR (extrapolated) = 17.9 W/kg
SAR(1 g) = 9.99 mW/g; SAR(10 g) = 5.18 mW/g

1900 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 94.6 V/m; Power Drift = -0.019 dB
 Peak SAR (extrapolated) = 17.5 W/kg
SAR(1 g) = 9.89 mW/g; SAR(10 g) = 5.16 mW/g

1900 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 95.0 V/m; Power Drift = -0.016 dB
 Peak SAR (extrapolated) = 17.6 W/kg
SAR(1 g) = 9.95 mW/g; SAR(10 g) = 5.19 mW/g


1900 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 95.0 V/m; Power Drift = 0.00 dB
 Peak SAR (extrapolated) = 17.6 W/kg
SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.20 mW/g

1900 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
 Reference Value = 94.7 V/m; Power Drift = -0.00 dB
 Peak SAR (extrapolated) = 17.5 W/kg
SAR(1 g) = 9.92 mW/g; SAR(10 g) = 5.19 mW/g

1 g average of 10 measurements: 9.972 mW/g

10 g average of 10 measurements: 5.191 mW/g

System Validation - 1900 MHz Dipole (Brain)

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Fri 17/Jun/2005

Freq Frequency (GHz)

FCC_eH FCC OET 65 Supplement C (June 2001) Limits for Head Epsilon

FCC_sH FCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM

Freq	FCC_eH	FCC_sH	Test_e	Test_s
------	--------	--------	--------	--------

1.8000	40.00	1.40	38.82	1.30
1.8100	40.00	1.40	38.66	1.32
1.8200	40.00	1.40	38.64	1.33
1.8300	40.00	1.40	38.60	1.33
1.8400	40.00	1.40	38.57	1.34
1.8500	40.00	1.40	38.47	1.34
1.8600	40.00	1.40	38.40	1.36
1.8700	40.00	1.40	38.44	1.37
1.8800	40.00	1.40	38.34	1.38
1.8900	40.00	1.40	38.39	1.38
1.9000	40.00	1.40	38.37	1.40
1.9100	40.00	1.40	38.32	1.41
1.9200	40.00	1.40	38.34	1.42
1.9300	40.00	1.40	38.30	1.42
1.9400	40.00	1.40	38.31	1.44
1.9500	40.00	1.40	38.27	1.44
1.9600	40.00	1.40	38.20	1.46
1.9700	40.00	1.40	38.23	1.47
1.9800	40.00	1.40	38.11	1.49
1.9900	40.00	1.40	38.02	1.50
2.0000	40.00	1.40	38.11	1.52

Test Report Serial No.:	062005PBW-T650-S15T	
Test Date(s):	June 22, 2005	Issue 1
Test Type:	FCC/IC SAR Evaluation	

APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Ascalade Technologies Inc.	FCC ID:	PBWDT19R26	IC ID:	3842A-DT19R26	
Model(s):	B154U, B154UH, CIT200	Portable UPCS VoIP Cordless Handset		1921.536 - 1928.448 MHz		

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9

(*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date 18.11.2001

Signature / Stamp

Schmid & Partner
Engineering AG

Zeughausstrasse 43, CH-8004 Zurich
Tel. +41 1 245 97 00, Fax +41 1 245 97 79