

RADIO TEST REPORT

Test Report No. 14261326H-R1

Customer	Pacific Industrial Company, LTD.
Description of EUT	Tire Pressure Monitoring System Transmitter
Model Number of EUT	PMV-G102
FCC ID	PAXPMVG102
Test Regulation	FCC Part 15 Subpart C: 2022
Test Result	Complied (Refer to SECTION 3)
Issue Date	May 12, 2022
Remarks	-

Representative Test Engineer

Kiyoshiro Okazaki
Engineer

Approved By

Shinichi Miyazono
Engineer

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.
 There is no testing item of "Non-accreditation".

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 20.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the applicant for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14261326H

This report is a revised version of 14261326H. 14261326H is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	14261326H	April 26, 2022	-
1	14261326H-R1	May 12, 2022	Section 3.3 Correction of Test Procedure and Specification for Maximum RF Output Power; - Procedure: from "FCC: KDB 558074 D01 15.247 Meas Guidance v05r02" to "ANSI C63.10:2013 11 Procedures for testing DTS devices" - Specification: from "FCC: KDB 447498 D04" to "Reference data"
1	14261326H-R1	May 12, 2022	APPENDIX 2 Test Instruments - Deletion of "MSA-19", "MLPA-08", and "MJM-24" - Addition of "MLA-22"

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioélectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT).....	5
SECTION 3: Test Specification, Procedures & Results.....	6
SECTION 4: Operation of EUT during testing.....	9
SECTION 5: Radiated Spurious Emission	10
SECTION 6: Automatically deactivate	12
SECTION 7: -20 dB Bandwidth and 99% emission bandwidth	12
SECTION 8: Maximum RF Output Power	12
APPENDIX 1: Test Data.....	13
Automatically deactivate.....	13
Maximum RF Output Power.....	16
Radiated Emission (Fundamental and Spurious Emission)	17
Duty Cycle	19
-20 dB Bandwidth / 99% emission bandwidth.....	20
APPENDIX 2: Test Instruments	21
APPENDIX 3: Photographs of Test Setup	22
Radiated Spurious Emission	22
Worst Case Position.....	24
Maximum RF Output Power.....	25

SECTION 1: Customer Information

Company Name	Pacific Industrial Company, LTD.
Address	1300-1, YOKOI, GODO-CHO, ANPACHI-GUN, GIFU 503-2397, JAPAN
Telephone Number	+81-584-28-0111
Contact Person	Masashi Hattori

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Tire Pressure Monitoring System Transmitter
Model Number	PMV-G102
Serial Number	Refer to SECTION 4.2
Condition	Production prototype (Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	April 4, 2022
Test Date	April 6 and 7, 2022

2.2 Product Description

General Specification

Rating	DC 3.0 V
--------	----------

Radio Specification

Equipment Type	Transceiver
Frequency of Operation	433.92 MHz
Type of Modulation	FSK
Antenna Gain: G _{ANT}	-21.4 dBi

*This transmitter transmits unmodulated center frequency (433.92 MHz) of several hundred μ s before and after transmission.

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C FCC Part 15 final revised on April 1, 2022 and effective May 2, 2022
Title	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators Section 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

* The revision does not affect the test result conducted before its effective date.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.207	N/A	N/A	*1)
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(a)(2) Section 15.231(e)	N/A	Complied a)	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(e)	10.3 dB 433.920 MHz Horizontal PK with Duty Factor	Complied b)	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.205 Section 15.209 Section 15.231(b) Section 15.231(e)	25.4 dB 3471.360 MHz 4339.200 MHz Horizontal PK with Duty Factor	Complied b)	Radiated
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.207	N/A	Complied c)	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

*1) The test is not applicable since the EUT does not have AC Mains.

a) Refer to APPENDIX 1 (data of Automatically Deactivate)

b) Refer to APPENDIX 1 (data of Radiated Emission (Fundamental and Spurious Emission))

c) Refer to APPENDIX 1 (data of -20 dB Bandwidth / 99% emission bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration

FCC Part 15.31 (e)

The test was performed with the New Battery during the tests.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Maximum RF Output Power	ANSI C63.10:2013 11 Procedures for testing DTS devices	Reference data	N/A	Complied a)	Conducted
99 % Occupied Bandwidth	ANSI C63.10:2013 6 Standard test methods	Reference data	N/A	-	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

a) Refer to APPENDIX 1 (data of Maximum RF Output Power)

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor $k=2$.

Test Item	Frequency range			Uncertainty (+/-)
Radiated emission	3 m	9 kHz to 30 MHz		3.2 dB
	10 m			3.0 dB
	3 m	30 MHz to 200 MHz	Horizontal	4.8 dB
			Vertical	5.0 dB
		200 MHz to 1000 MHz	Horizontal	5.1 dB
			Vertical	6.2 dB
	10 m	30 MHz to 200 MHz	Horizontal	4.8 dB
			Vertical	4.8 dB
		200 MHz to 1000 MHz	Horizontal	5.0 dB
			Vertical	5.0 dB
	3 m	1 GHz to 6 GHz		4.9 dB
		6 GHz to 18 GHz		5.2 dB
	1 m	10 GHz to 26.5 GHz		5.4 dB
		26.5 GHz to 40 GHz		5.4 dB
	10 m	1 GHz to 18 GHz		5.4 dB
Automatically Deactivate	-			0.10 %
Maximum RF Output Power	-			1.5 dB
-20 dB Bandwidth / 99% emission bandwidth	-			0.96 %

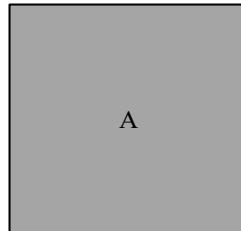
3.5 Test Location

UL Japan, Inc. Ise EMC Lab.
 *A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919
 ISED Lab Company Number: 2973C / CAB identifier: JP0002
 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan
 Telephone: +81-596-24-8999

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test Data, Test Instruments, and Test Set Up


Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Test mode	Remarks
1) Rotating mode 1	Automatically Deactivate
2) Rotating mode 2	
3) Stationary mode	
4) Pressure alert 1	
5) Pressure alert 2	
6) Pressure alert 3	
7) Transmitting mode (Tx 433.92 MHz)	Maximum RF Output Power Electric Field Strength of Fundamental Emission Electric Field Strength of Spurious Emission Duty Cycle -20 dB Bandwidth / 99% emission bandwidth
* The system was configured in typical fashion (as a user would normally use it) for testing.	
*Power of the EUT was set by the software as follows; Software: PMV-G102 Version: 1.0 (Date: 2022.04.01, Storage location: EUT memory)	
*This setting of software is the worst case. Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product.	

4.2 Configuration and Peripherals

* Setup were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial Number	Manufacturer	Remarks
A	Tire Pressure Monitoring System Transmitter	PMV-G102	00000010 *1) 0000002A *2)	Pacific Industrial Company, LTD.	EUT

*1) Used for other tests except for Maximum RF Output Power test

*2) Used for Maximum RF Output Power test only.

SECTION 5: Radiated Spurious Emission

Test Procedure

[For below 30 MHz]

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

[For 30 MHz to 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

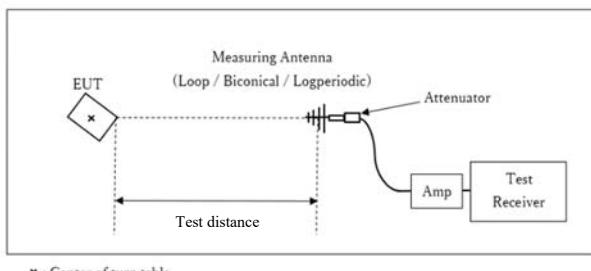
	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz	Above 1 GHz
Detector Type	Peak	Peak	Peak	Peak	Peak and Peak with Duty factor	Peak and Peak with Duty factor
IF Bandwidth	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz, VBW: 3 MHz

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

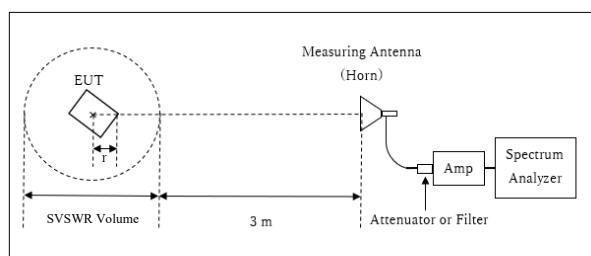
Measurement range

: 9 kHz - 4.4 GHz


Test data

: APPENDIX

Test result


: Pass

[Test Setup]
Below 1 GHz

* : Center of turn table

1 GHz - 4.4 GHz

r : Radius of an outer periphery of EUT
* : Center of turn table

Test Distance: 3 m

Distance Factor: $20 \times \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

* Test Distance: $(3 + \text{SVSWR Volume} / 2) - r = 4.0 \text{ m}$

SVSWR Volume : 2.0 m

(SVSWR Volume has been calibrated based on CISPR 16-1-4.)

r = 0.0 m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX
Test result : Pass

SECTION 7: -20 dB Bandwidth and 99% emission bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-20 dB Bandwidth / 99% emission bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer

*1) Peak hold was applied as Worst-case measurement.

Test data : APPENDIX
Test result : Pass

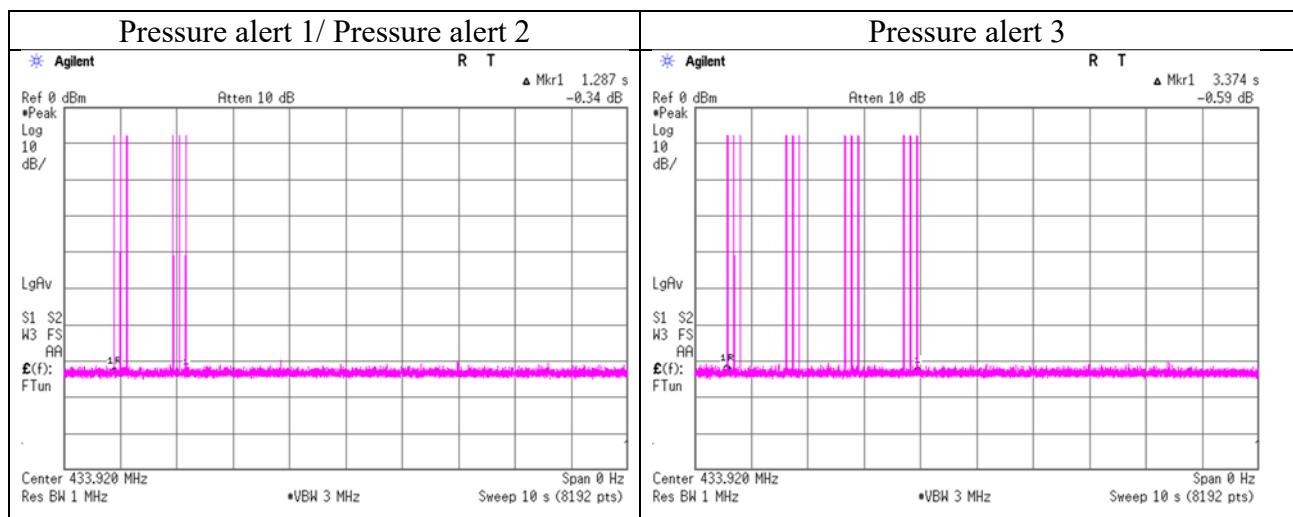
SECTION 8: Maximum RF Output Power

Test Procedure

Maximum RF Output Power was measured with a Power Meter. The measurement was performed under the worst duty cycle conditions.

The test data is reference data for RF Exposure.

Test data : APPENDIX 1


APPENDIX 1: Test Data

Automatically deactivate

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.6
 Date April 7, 2022
 Temperature / Humidity 20 deg. C / 40 % RH
 Engineer Kiyoshiro Okazaki
 Mode Pressure alert

Operation in FCC 15.231(a)(2)

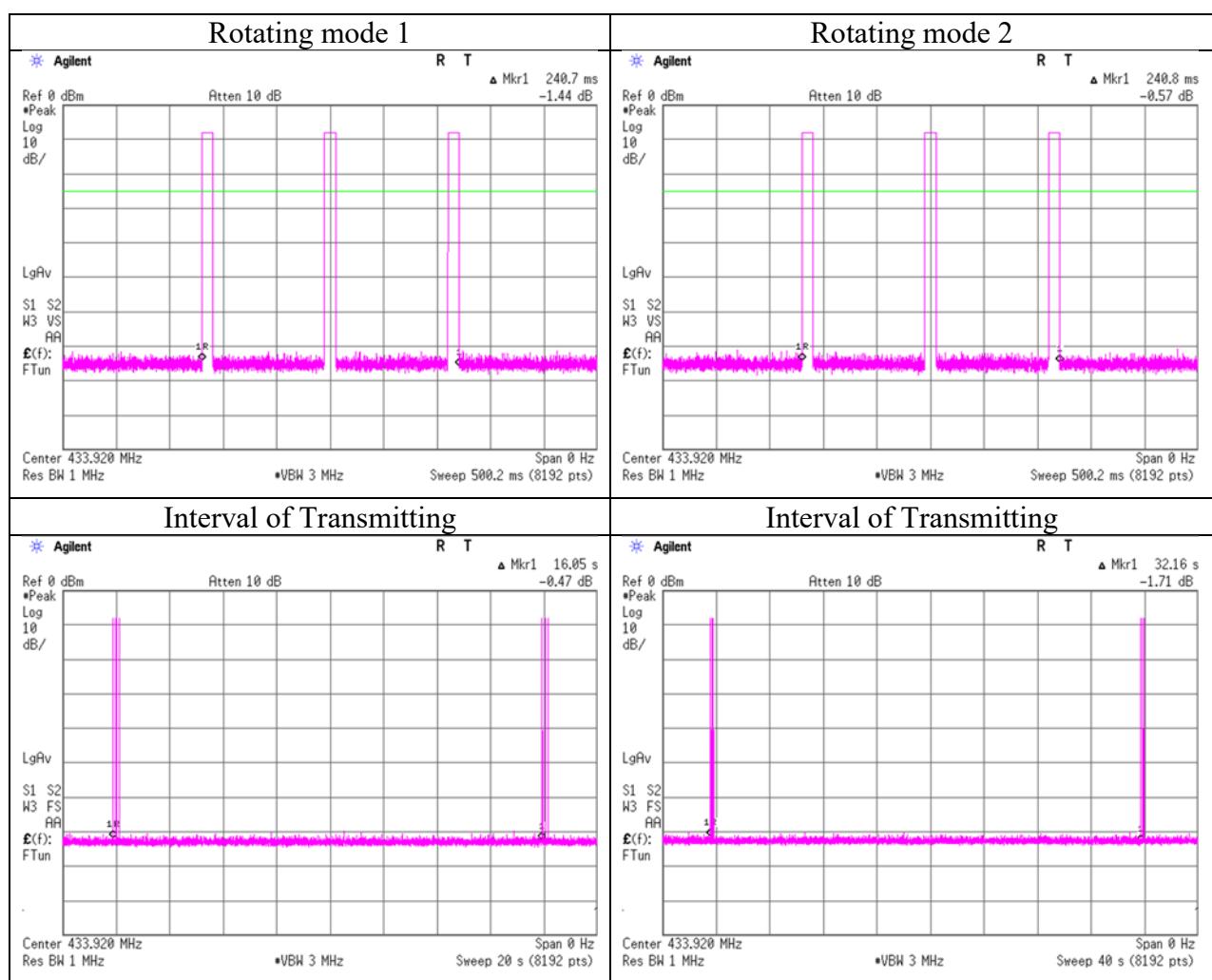
Mode	Tx Frequency [MHz]	Time of Transmitting [s]	Limit [s]	Result
Pressure alert 1/ Pressure alert 2	433.92	1.287	5.00	Pass
Pressure alert 3	433.92	3.374	5.00	Pass

Automatically deactivate

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.6
 Date April 7, 2022
 Temperature / Humidity 20 deg. C / 40 % RH
 Engineer Kiyoshiro Okazaki
 Mode Rotating mode

Operation in FCC 15.231(e)

Rotating mode 1


Duration of transmission: 240.7 ms < 1 s

Silent period between transmissions: 16.05 s - 0.2407 s = 15.8093 s >30 times the duration of transmission and 10 s.

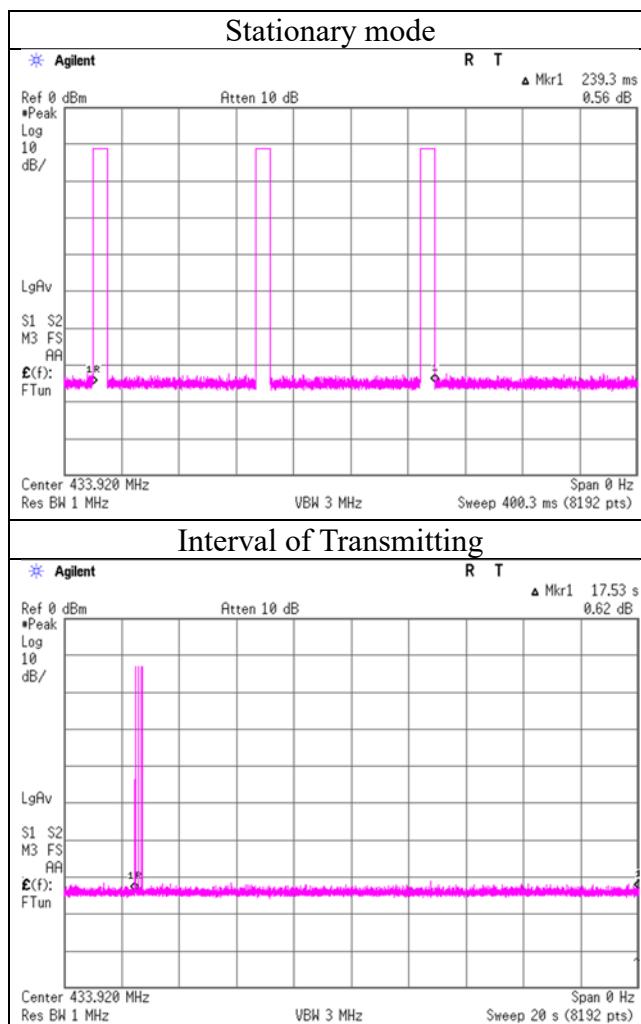
Rotating mode 2

Duration of transmission: 240.8 ms < 1 s

Silent period between transmissions: 32.16 s - 0.2408 s = 31.9192 s >30 times the duration of transmission and 10 s.

Automatically deactivate

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.6
 Date April 7, 2022
 Temperature / Humidity 20 deg. C / 40 % RH
 Engineer Kiyoshiro Okazaki
 Mode Stationary mode


Operation in FCC 15.231(e)

Stationary mode

Duration of transmission: 239.3 ms < 1s

Silent period between transmissions: $46800 \text{ s}^* - 0.2393 \text{ s} = 46799.7607 \text{ s} > 30 \text{ times the duration of transmission and 10 s.}$

*Calculated from the technical documents.

Maximum RF Output Power
(Reference data for RF Exposure)

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.6
 Date April 7, 2022
 Temperature / Humidity 20 deg. C / 40 % RH
 Engineer Kiyoshiro Okazaki
 Mode Tx 433.92 MHz

Freq. [MHz]	Reading (P/M) [dBm]	Cable Loss [dB]	Atten. Loss [dB]	Conducted Power		Antenna Gain [dBi]	e.i.r.p.		Limit		Margin [dB]		
				Result (Time average)			Result		Limit				
				[dBm]	[mW]		[dBm]	[mW]	[dBm]	[mW]			
433.92	-14.14	0.12	9.75	-4.27	0.37	-21.40	-25.67	0.003	0.00	1	25.67		

Sample Calculation:

e.i.r.p. Result = Conducted Power Result + Antenna Gain

*The equipment and cables were not used for factor 0 dB of the data sheets.

Radiated Emission (Fundamental and Spurious Emission)

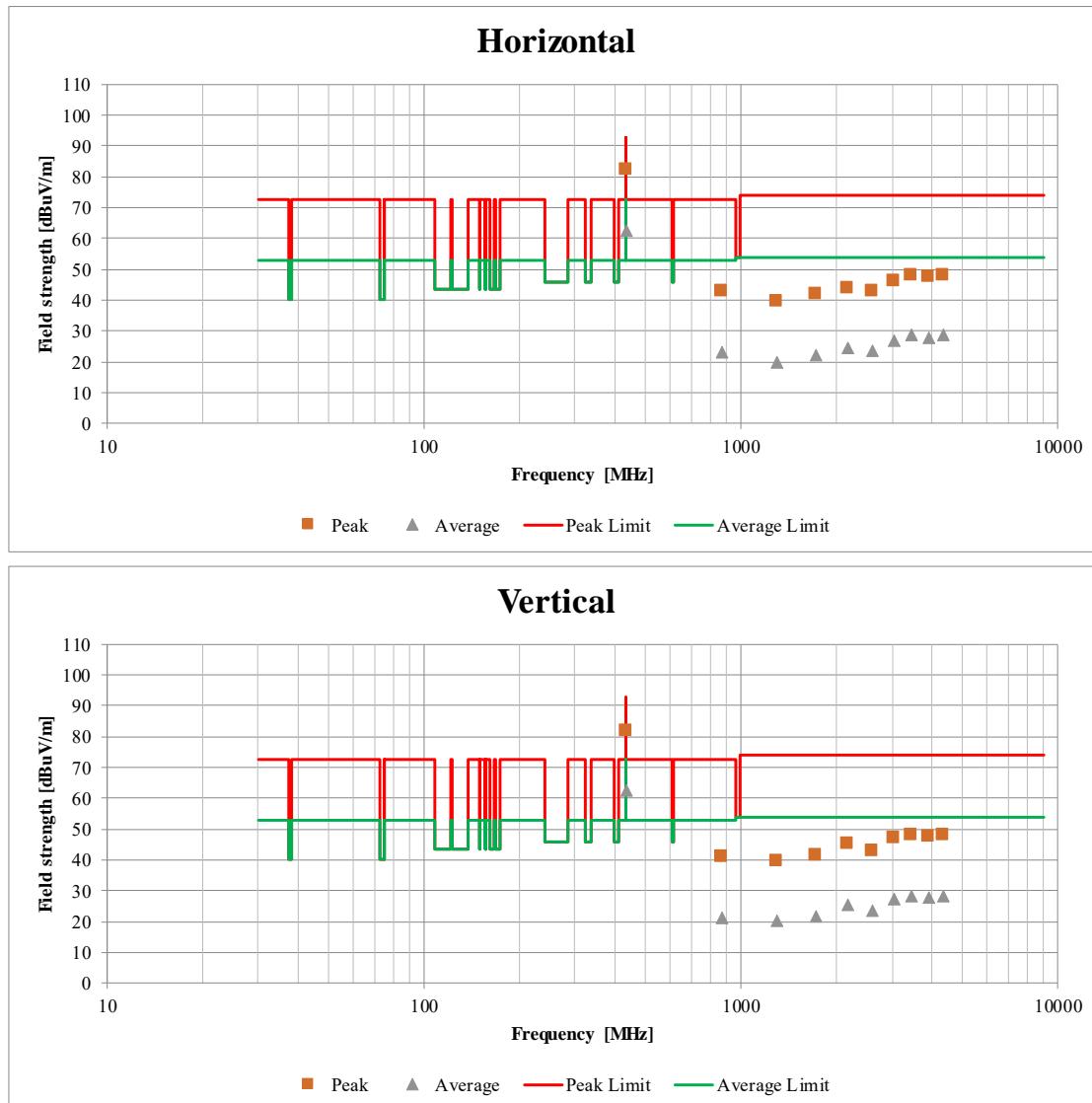
Test place Ise EMC Lab.
 Semi Anechoic Chamber No.3
 Date April 6, 2022
 Temperature / Humidity 20 deg. C / 37 % RH
 Engineer Hiroyuki Furutaka
 Mode Tx 433.92 MHz

Polarity [Hori/Vert]	Frequency [MHz]	Reading (PK) [dBuV]	Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result (PK) [dBuV/m]	Result (PK with Duty Factor) [dBuV/m]	Limit (PK) [dBuV/m]	Limit (AV) [dBuV/m]	Margin (PK) [dB]	Margin (AV) [dB]	Inside or Outside of Restricted Bands	Remarks
Hori.	433.920	86.8	16.4	10.9	32.0	-19.6	82.1	62.5	92.8	72.8	10.7	10.3	Carrier	
Hori.	867.840	38.3	22.0	13.4	31.1	-19.6	42.6	23.0	72.8	52.8	30.2	29.8	Outside	
Hori.	1301.760	42.5	25.7	6.2	34.8	-19.6	39.6	20.0	73.9	53.9	34.3	33.9	Inside	Floor noise
Hori.	1735.680	44.8	25.0	5.8	33.7	-19.6	41.9	22.3	73.9	53.9	32.0	31.6	Outside	
Hori.	2169.600	42.8	28.1	6.0	33.0	-19.6	43.9	24.3	73.9	53.9	30.0	29.6	Outside	
Hori.	2603.520	42.1	27.6	6.1	32.8	-19.6	43.0	23.4	73.9	53.9	30.9	30.5	Outside	Floor noise
Hori.	3037.440	43.9	28.6	6.3	32.6	-19.6	46.2	26.6	73.9	53.9	27.7	27.3	Outside	
Hori.	3471.360	45.3	28.7	6.5	32.4	-19.6	48.1	28.5	73.9	53.9	25.8	25.4	Outside	
Hori.	3905.280	43.1	29.7	6.8	32.3	-19.6	47.3	27.7	73.9	53.9	26.6	26.2	Inside	
Hori.	4339.200	42.7	30.5	7.0	32.1	-19.6	48.1	28.5	73.9	53.9	25.8	25.4	Inside	
Vert.	433.920	86.6	16.4	10.9	32.0	-19.6	81.9	62.3	92.8	72.8	10.9	10.5	Carrier	
Vert.	867.840	36.7	22.0	13.4	31.1	-19.6	41.0	21.4	72.8	52.8	31.8	31.4	Outside	
Vert.	1301.760	42.6	25.7	6.2	34.8	-19.6	39.7	20.1	73.9	53.9	34.2	33.8	Inside	Floor noise
Vert.	1735.680	44.1	25.0	5.8	33.7	-19.6	41.2	21.6	73.9	53.9	32.7	32.3	Outside	
Vert.	2169.600	43.9	28.1	6.0	33.0	-19.6	45.0	25.4	73.9	53.9	28.9	28.5	Outside	
Vert.	2603.520	42.1	27.6	6.1	32.8	-19.6	43.0	23.4	73.9	53.9	30.9	30.5	Outside	Floor noise
Vert.	3037.440	44.7	28.6	6.3	32.6	-19.6	47.0	27.4	73.9	53.9	26.9	26.5	Outside	
Vert.	3471.360	45.1	28.7	6.5	32.4	-19.6	47.9	28.3	73.9	53.9	26.0	25.6	Outside	
Vert.	3905.280	43.1	29.7	6.8	32.3	-19.6	47.3	27.7	73.9	53.9	26.6	26.2	Inside	
Vert.	4339.200	42.5	30.5	7.0	32.1	-19.6	47.9	28.3	73.9	53.9	26.0	25.6	Inside	

Sample calculation:

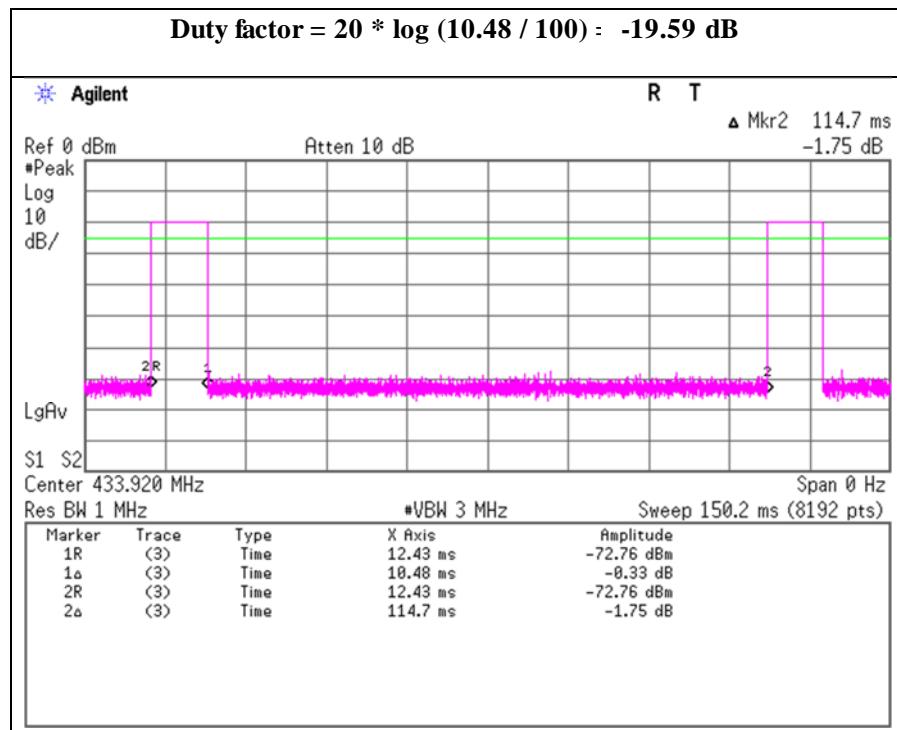
Result of PK = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier)

Result of PK with Duty factor (PK / W) = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor (Refer to Duty cycle data sheet)


For above 1 GHz: Distance Factor: $20 \times \log(4.0 \text{ m}/3.0 \text{ m}) = 2.50 \text{ dB}$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

If Gain 0.0 dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated.


Radiated Spurious Emission
(Plot data, Worst case for Fundamental Emission)

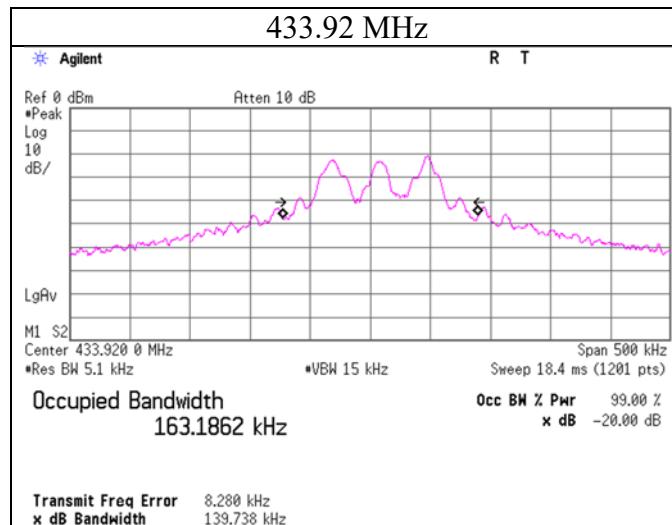
Test place Ise EMC Lab.
Semi Anechoic Chamber No.3
Date April 6, 2022
Temperature / Humidity 20 deg. C / 37 % RH
Engineer Hiroyuki Furutaka
Mode Tx 433.92 MHz

Duty Cycle

Test place Ise EMC Lab.
Semi Anechoic Chamber No.3
Date April 6, 2022
Temperature / Humidity 20 deg. C / 37 % RH
Engineer Hiroyuki Furutaka
Mode Tx 433.92 MHz

The ON time (10.48 ms) appears 1 times in 100 ms.

The actual measurement value was applied as Averaging factor (Duty factor).


-20 dB Bandwidth / 99% emission bandwidth

Test place Ise EMC Lab.
 Semi Anechoic Chamber No.3
 Date April 6, 2022
 Temperature / Humidity 20 deg. C / 37 % RH
 Engineer Hiroyuki Furutaka
 Mode Tx 433.92 MHz

Bandwidth Limit : Fundamental Frequency $433.92 \text{ MHz} \times 0.25\% = 1084.800 \text{ kHz}$

-20dB Bandwidth [kHz]	Bandwidth Limit [kHz]	Result
139.738	1084.800	Pass

99% emission bandwidth [kHz]	Bandwidth Limit [kHz]	Result
163.1862	1084.800	Pass

APPENDIX 2: Test Instruments**Test Equipment**

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2020	24
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/10/2022	12
RE	MMM-08	141532	DIGITAL HiTESTER	HIOKI E.E. CORPORATION	3805	51201197	01/16/2022	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	-
RE	COTS-MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-03-SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/01/2021	24
RE	MTR-08	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	08/05/2021	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	07/19/2021	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/25/2022	12
RE	MBA-08	141427	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103B+BBA9106	08031	07/10/2021	12
RE	MLA-22	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-191	08/21/2021	12
RE	MHA-22	142554	Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA9120LF	224	-	-
RE	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/07/2022	12
RE	MCC-231	177964	Microwave Cable	Junkosha INC.	MMX221	1901S329(1m)/1902S579(5m)	03/15/2022	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/17/2022	12
RE	MHF-27	141297	High Pass Filter (1.1-10GHz)	TOKYO KEIKI	TF219CD1	1001	01/23/2022	12
RE	MLPA-07	142645	Loop Antenna	UL Japan	-	-	-	-
AT	MOS-14	141561	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1401	01/10/2022	12
AT	MMM-18	141558	Digital Tester(TRUE RMS MULTIMETER)	Fluke Corporation	115	17930030	05/24/2021	12
AT	MPM-13	141810	Power Meter	Anritsu Corporation	ML2495A	824014	12/22/2021	12
AT	MPSE-18	141832	Power sensor	Anritsu Corporation	MA2411B	738174	12/22/2021	12
AT	MCC-176	141279	Microwave Cable	Junkosha	MMX221-00500DMSDMS	1502S303	03/15/2022	12
AT	MAT-26	141244	Attenuator(10dB)	Weinschel - API Technologies Corp	WA8-10-34	A198	02/25/2022	12

***Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.**

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item: **RE: Radiated Emission**
AT: Antenna Terminal Conducted