

*EMC Test Report**Application for Grant of Equipment Authorization
Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8
FCC Part 15 Subpart C**ITrip Auto Universal model: P12382*

IC CERTIFICATION #: 6384A-P12382
FCC ID: PAV1131I

APPLICANT: Griffin Technology
2030 Lindell Avenue
Nashville, TN 37203

TEST SITE(S): National Technical Systems - Silicon Valley
41039 Boyce Road.
Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-5

REPORT DATE: April 18, 2013

REISSUED DATE: May 17, 2013

FINAL TEST DATES: December 14, 2012 and January 10, 2013

TOTAL NUMBER OF PAGES: 33

PROGRAM MGR /
TECHNICAL REVIEWER:

Mark E Hill
Staff Engineer

QUALITY ASSURANCE DELEGATE /
FINAL REPORT PREPARER:

David Guidotti
Senior Technical Writer

Testing Cert #0214.26

NTS Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	04-18-2013	First release	
1.0	05-17-2013	Added bandwidth results using 2.5kHz audio source	MEH

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	5
TEST RESULTS SUMMARY	6
DEVICES OPERATING IN THE 88-108 MHZ FM BAND	6
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
OTHER EUT INFORMATION	8
ANTENNA SYSTEM	8
ENCLOSURE	8
MODIFICATIONS	8
SUPPORT EQUIPMENT	8
EUT INTERFACE PORTS	9
EUT OPERATION	9
TEST SITE	10
GENERAL INFORMATION	10
RADIATED EMISSIONS CONSIDERATIONS	10
MEASUREMENT INSTRUMENTATION	11
RECEIVER SYSTEM	11
INSTRUMENT CONTROL COMPUTER	11
FILTERS/ATTENUATORS	12
ANTENNAS	12
ANTENNA MAST AND EQUIPMENT TURNTABLE	12
INSTRUMENT CALIBRATION	12
TEST PROCEDURES	13
EUT AND CABLE PLACEMENT	13
RADIATED EMISSIONS	14
BANDWIDTH MEASUREMENTS	16
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	17
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	17
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	18
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	18
RADIATED FUNDAMENTAL & SPURIOUS EMISSIONS SPECIFICATION LIMITS – 15.239 AND RSS 210 A2.9	18
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	19
SAMPLE CALCULATIONS - RADIATED EMISSIONS	19
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	20
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	21
APPENDIX B TEST DATA	22
END OF REPORT	33

SCOPE

An electromagnetic emissions test has been performed on the Griffin Technology iTrip Auto Universal model P12382, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3
RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"
FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in NTS Silicon Valley test procedures:

ANSI C63.4:2003

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

Testing was performed only on iTrip Auto Universal model P12382. This model was considered representative of the following models:

P11312. The P11312 has the same radio circuitry as the P12382. They differ in the way that that audio input comes from the MP3 player. The P11312 connects to an Apple iPod via the 30pin connector. The P12382 connects to any MP3 player via the analog audio output.

STATEMENT OF COMPLIANCE

The tested sample of Griffin Technology iTrip Auto Universal model P12382 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3
RSS 210 Issue 8 “Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment”
FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Griffin Technology iTrip Auto Universal model P12382 and therefore apply only to the tested sample. The sample was selected and prepared by Michael O'Connor of Griffin Technology.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY**DEVICES OPERATING IN THE 88-108 MHz FM BAND**

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.239 (a)	RSS 210 A2.8	Bandwidth and operating range	169kHz	Bandwidth less than 200kHz contained in the 88 – 108 MHz band	Complies
15.239 (b)	RSS 210 A2.8 (1)	Fundamental Field Strength	47.6 dB μ V/m @ 98.100 MHz (-0.4 dB)	250uV/m at 3m	Complies
-	RSS 210 A2.8 (2)	Fundamental Signal Strength - 88.1; 88.3; 88.5; 107.7; 107.9 and MHz	47.6 dB μ V/m @ 98.100 MHz (-0.4 dB)	1000uV/m at 30m	Complies
15.239 (c) / 15.209	RSS 210 Table 2	Radiated Spurious Emissions, 30 – 540 MHz	42.2 dB μ V/m @ 140.29 MHz (-1.3 dB)	Refer to table in limits section on page 18	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Antenna is integral to the device	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	N/A – The EUT is powered via 12V automotive cigarette lighter adapter. Note 1		
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	42.2 dB μ V/m @ 140.29 MHz (-1.3 dB) – Note 2	Refer to page 18	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to RSS 102 declaration	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	161kHz	For information only	N/A

Note 1 – The EUT is powered from a 12VDC automotive cigarette lighter adapter. The iTrip Auto SE (P1131) does pass the power thru to the iPod for charging of the iPod.

Note 2 – Preliminary testing showed that emissions during the receive operation were equal to or less than the emissions during the transmit operation.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dB μ V/m	25 to 1000 MHz	± 3.6 dB
		1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dB μ V	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS**GENERAL**

The Griffin Technology iTrip Auto Universal model P12382 is a 12V CLA Powered FM Transmitter which is designed to work with iOS devices / Smartphones and Digital Audio Players for in car use. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, placed in this position during emissions testing to simulate the end user environment. The electrical rating of the EUT is (12-16) VDC, 2 Amps.

The sample was received on December 14, 2012 and tested on December 14, 2012 and January 10, 2013. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Griffin Technology	P12382	12VDC CLA powered FM Transmitter for iOS devices/Smartphones/Digital Audio Players	N/A	PAV1131I

OTHER EUT INFORMATION

The iTrip Auto SE (P11312) and the iTrip Auto Universal Plus SE (P12382) use the same radio circuitry and power configuration. They differ in the way that the audio input comes from the MP3 player. The iTrip Auto SE connects to an Apple iPod via the 30pin connector. The iTrip Auto Universal Plus SE (P12382) connects to any MP3 player via the analog audio output.

ANTENNA SYSTEM

The antenna is integral to the device

ENCLOSURE

The EUT enclosure measures approximately 6.6 by 1.2 by 2.9 centimeters. It is primarily constructed of plastic.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Apple	iPod	8Gb iPod	NA	-

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Description	Cable(s) Shielded or Unshielded	Length(m)
Cigarette lighter adapter	12V battery	Power Port	Unshielded	0.5

EUT OPERATION

During emissions testing, the EUT was configured to play an audio file in a continuous loop. The audio file was comprised of instrumental music.

Additional bandwidth measurements were performed using a 2.5kHz audio source, per RSS-210. At the maximum input, the maximum FM deviation observed was 68kHz. Use of this source did not affect the fundamental field strength levels or the spurious emissions.

TEST SITE**GENERAL INFORMATION**

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
	FCC	Canada	
Chamber 4			41039 Boyce Road
Chamber 5	211948	2845B-5	Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION**RECEIVER SYSTEM**

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

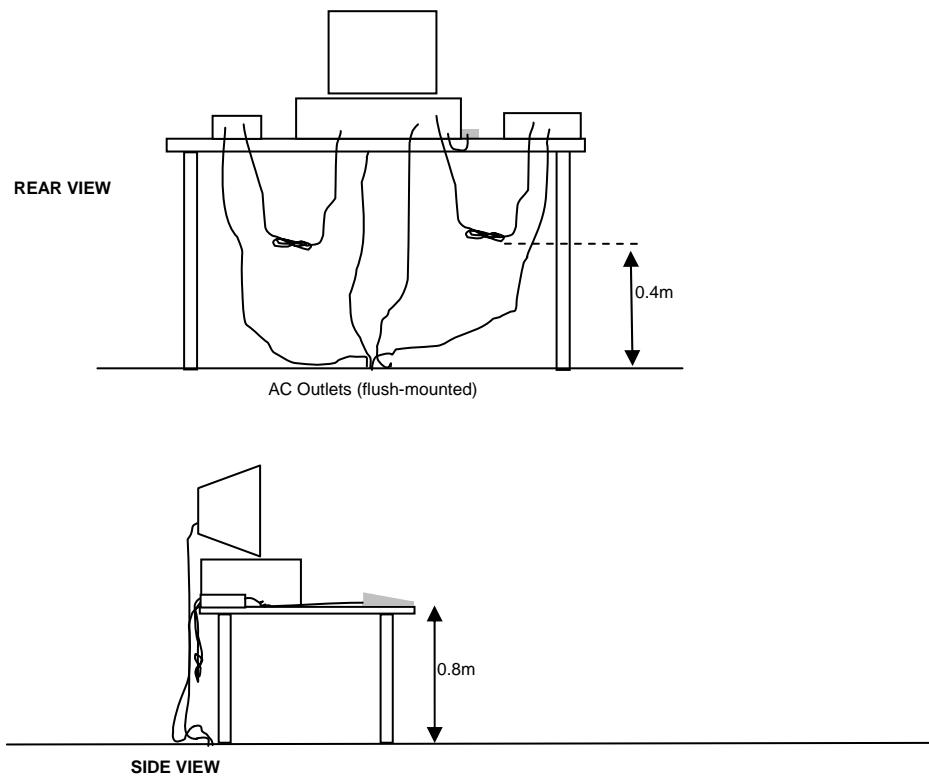
ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

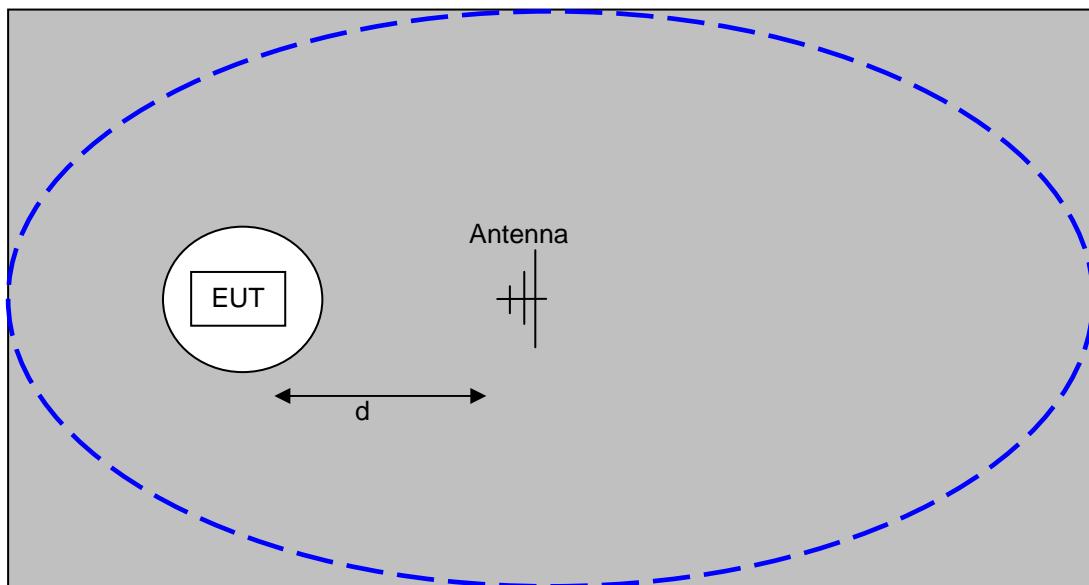
All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES***EUT AND CABLE PLACEMENT***

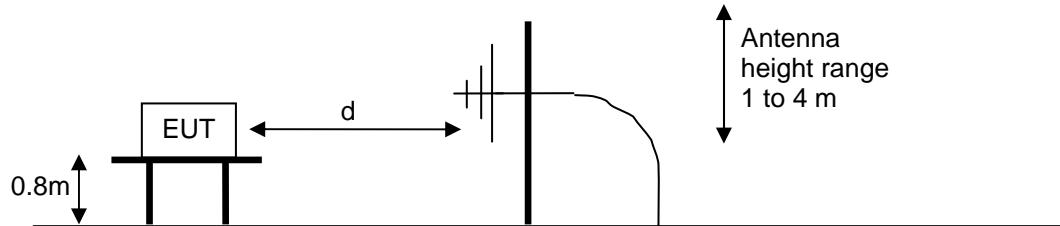
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

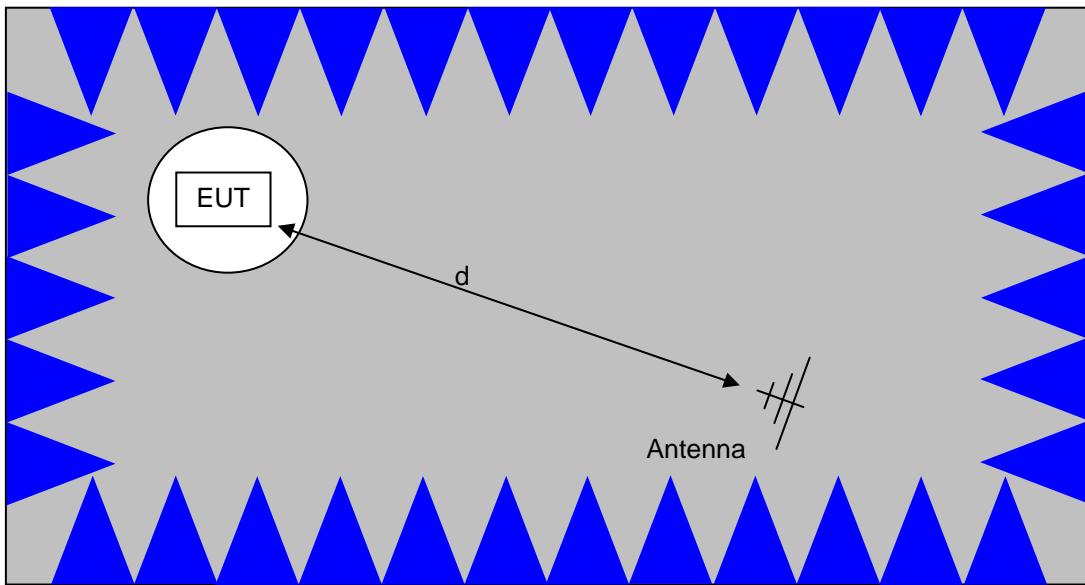

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

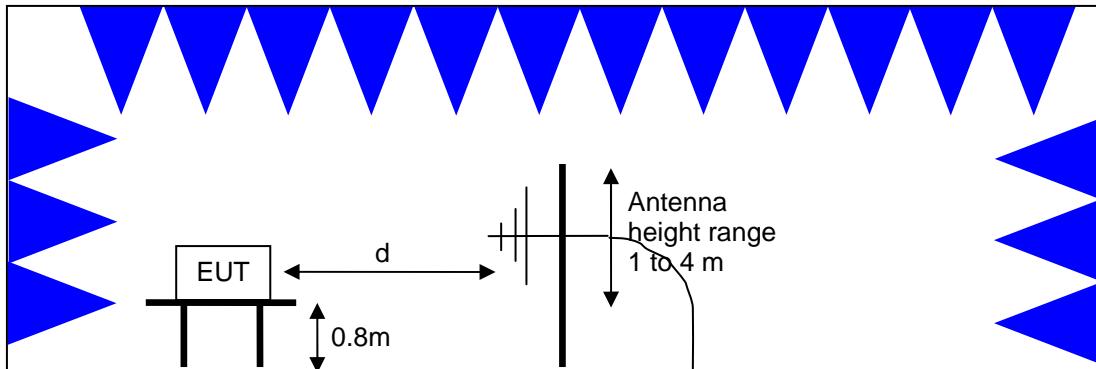

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


Typical Test Configuration for Radiated Field Strength Measurements

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.



Test Configuration for Radiated Field Strength Measurements
OATS- Plan and Side Views

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

Test Configuration for Radiated Field Strength Measurements
Semi-Anechoic Chamber, Plan and Side Views

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

RADIATED FUNDAMENTAL & SPURIOUS EMISSIONS SPECIFICATION LIMITS – 15.239 and RSS 210 A2.9

Frequency Range (MHz)	Limit for Fundamental @ 3m	Limit for all signals outside of the occupied bandwidth @ 3m
88 - 108	250 uV/m 48 dBuV/m	General limits apply
The occupied bandwidth is limited to 200kHz.		

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_f - S = M$$

where:

R_f = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20 * \text{LOG10} (D_m / D_s)$$

where:

F_d = Distance Factor in dB

D_m = Measurement Distance in meters

D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40 * \text{LOG10} (D_m / D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_f + F_d$$

and

$$M = R_c - L_s$$

where:

R_f = Receiver Reading in dBuV/m

F_d = Distance Factor in dB

R_c = Corrected Reading in dBuV/m

L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{d} \text{ microvolts per meter}$$

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Radiated Emissions, 30 - 1,000 MHz, 15-Dec-12

<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	<u>Asset #</u>	<u>Cal Due</u>
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	5/18/2013
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	2/7/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40 GHz	ESIB40 (1088.7490.40)	2493	1/9/2013

Radiated Emissions, 30 - 2,000 MHz, 10-Jan-13

<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	<u>Asset #</u>	<u>Cal Due</u>
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/19/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/12/2013
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1549	5/25/2013

Bandwidth, 09-May-13

Agilent Technologies	3Hz -44GHz PSA Spectrum Analyzer	E4446A	2796	28-Jan-14
----------------------	----------------------------------	--------	------	-----------

Appendix B Test Data

T89397 Pages 23 - 32

EMC Test Data

Client:	Griffin Technology	Job Number:	J89392
Product	P1238 / P2147	T-Log Number:	T89397
		Account Manager:	Sheareen Jacobs
Contact:	Michael O'Connor		
Emissions Standard(s):	FCC 15.239, EN 301 357	Class:	-
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Griffin Technology

Product

P1238 / P2147

Date of Last Test: 5/10/2013

EMC Test Data

Client:	Griffin Technology	Job Number:	J89392
Model:	P1238 / P2147	T-Log Number:	T89397
		Account Manager:	Sheareen Jacobs
Contact:	Michael O'Connor		
Standard:	FCC 15.239, EN 301 357	Class:	-

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 1/10/2013

Config. Used: 1

Test Engineer: M. Birgani

Config Change: -

Test Location: FT Chamber #4

EUT Voltage: 12Vdc

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature: 13-18 °C

Rel. Humidity: 35-45 %

Summary of Results

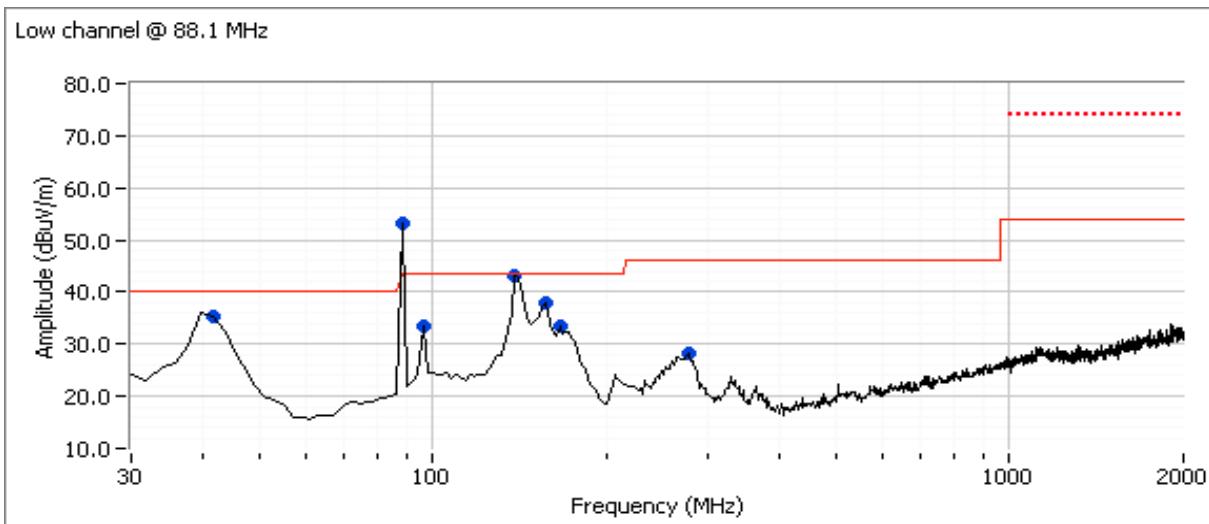
Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions 30 - 2000 MHz, Maximized	Class B	Pass	42.2 dB μ V/m @ 140.29 MHz (Margin: -1.3 dB)
3	20dB BW Measurements	FCC 15.209 & 15.239	Pass	156 kHz
4	99% BW Measurements	RSS-GEN	-	136 kHz

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

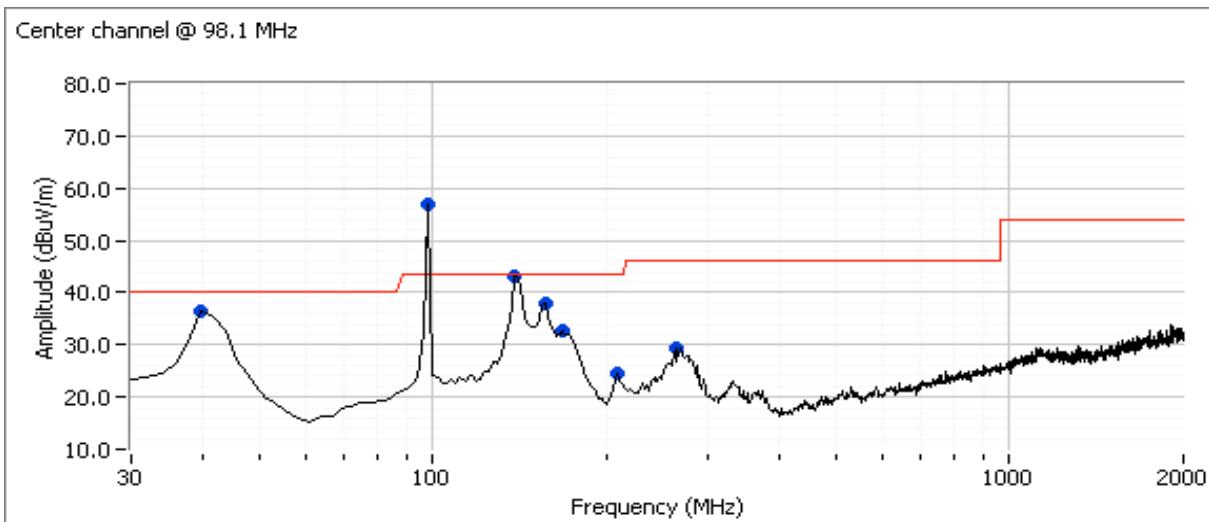

Test Parameters for Preliminary Scan(s)			
Frequency Range	Prescan Distance	Limit Distance	Extrapolation Factor
30 - 2000 MHz	3	3	0.0

EUT and Test Configuration Details:

EUT configured to transmit a song and volume was set to maximum.

FCC Sample, Elliott tag 2012-2532

Client:	Griffin Technology	Job Number:	J89392
Model:	P1238 / P2147	T-Log Number:	T89397
Contact:	Michael O'Connor	Account Manager:	Sheareen Jacobs
Standard:	FCC 15.239, EN 301 357	Class:	-


Run #1: Preliminary Radiated Emissions, 30 - 2000 MHz
Run #1a: Low channel

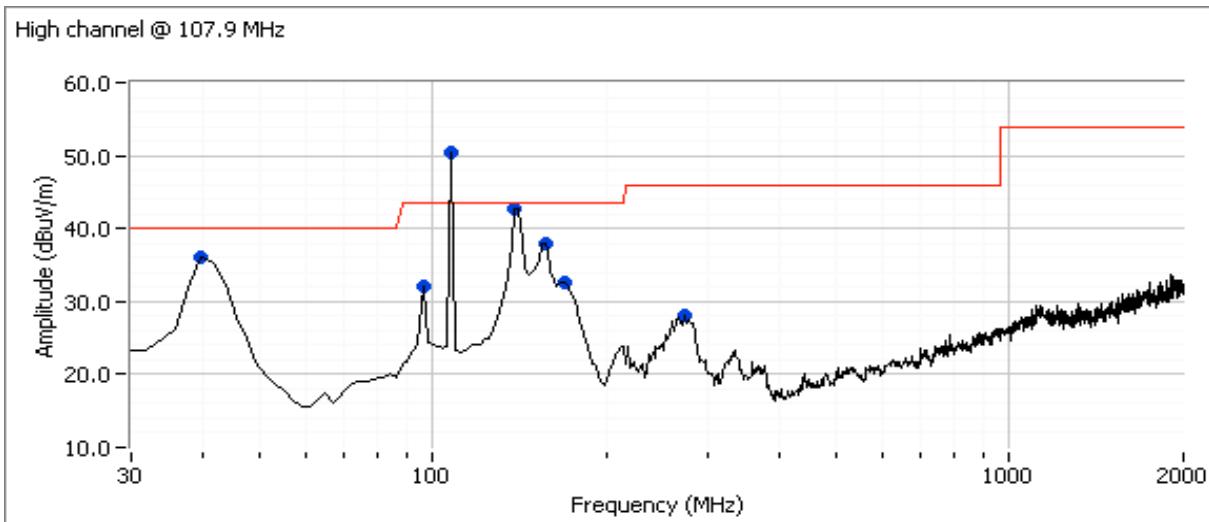
Preliminary peak readings captured during pre-scan

Frequency	Level	Pol	Class B		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
88.100	53.3	V	43.5	9.8	Peak	115	1.0	Fundamental
140.293	43.0	H	43.5	-0.5	Peak	145	3.0	
41.068	35.5	V	40.0	-4.5	Peak	249	1.0	
154.499	38.1	H	43.5	-5.4	Peak	146	2.0	
95.987	33.4	V	43.5	-10.1	Peak	199	1.5	
168.696	33.3	H	43.5	-10.2	Peak	239	2.5	
283.355	28.1	H	46.0	-17.9	Peak	116	1.5	

Maximized readings (includes manipulation of EUT interface cables)

Frequency	Level	Pol	Class B		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
140.293	42.2	H	43.5	-1.3	QP	133	2.2	QP (1.00s)
41.068	31.4	V	40.0	-8.6	QP	257	1.0	QP (1.00s)
154.499	34.4	H	43.5	-9.1	QP	131	2.2	QP (1.00s)
168.696	29.0	H	43.5	-14.5	QP	229	2.3	QP (1.00s)
95.987	22.7	V	43.5	-20.8	QP	197	2.2	QP (1.00s)
283.355	24.7	H	46.0	-21.3	QP	96	1.0	QP (1.00s)

Client:	Griffin Technology	Job Number:	J89392
Model:	P1238 / P2147	T-Log Number:	T89397
Contact:	Michael O'Connor	Account Manager:	Sheareen Jacobs
Standard:	FCC 15.239, EN 301 357	Class:	-


Run #1b: Center channel

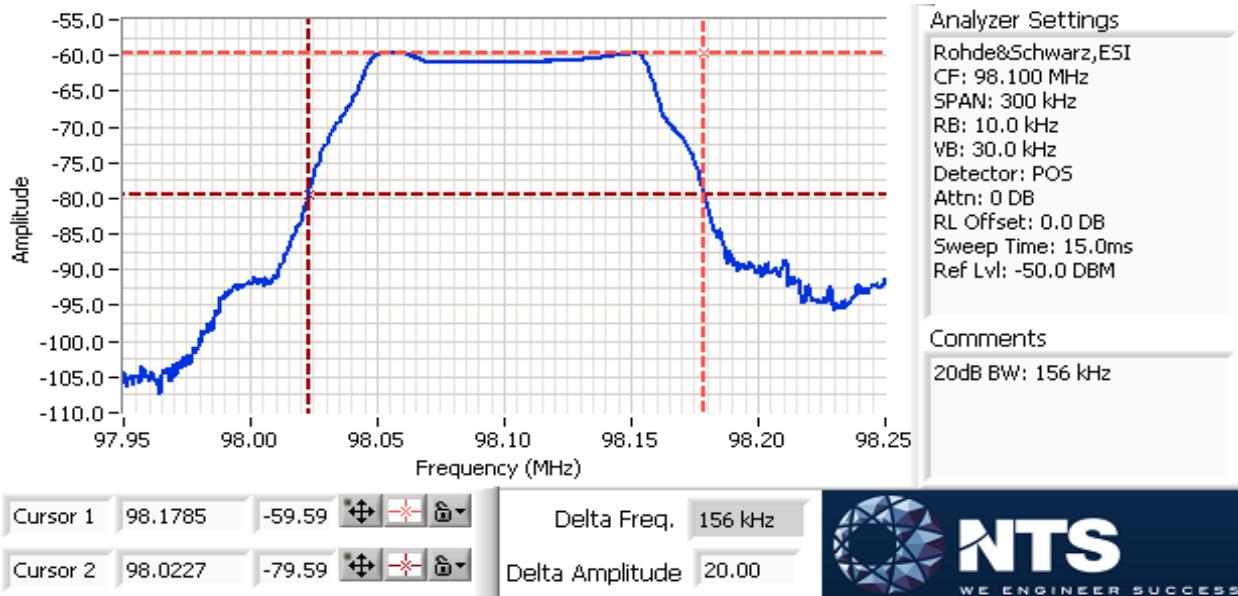
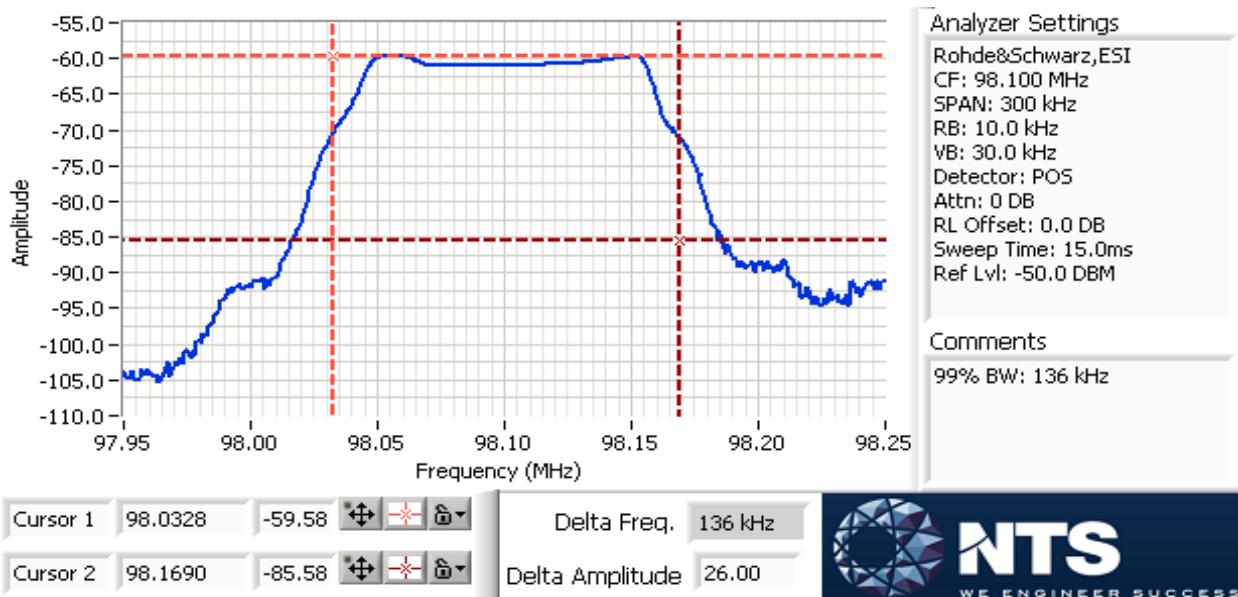
Preliminary peak readings captured during pre-scan

Frequency	Level	Pol	Class B		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
98.118	56.8	V	43.5	13.3	Peak	155	1.0	Fundamental
140.339	43.2	H	43.5	-0.3	Peak	139	2.5	
40.617	36.4	V	40.0	-3.6	Peak	258	1.0	
153.519	37.8	H	43.5	-5.7	Peak	144	2.0	
167.678	32.7	H	43.5	-10.8	Peak	249	2.5	
265.828	29.4	H	46.0	-16.6	Peak	108	1.0	
214.611	24.4	H	43.5	-19.1	Peak	125	1.5	

Maximized readings (includes manipulation of EUT interface cables)

Frequency	Level	Pol	Class B		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
140.339	40.9	H	43.5	-2.6	QP	142	2.4	QP (1.00s)
153.519	34.2	H	43.5	-9.3	QP	130	2.2	QP (1.00s)
40.617	29.6	V	40.0	-10.4	QP	240	1.0	QP (1.00s)
167.678	27.9	H	43.5	-15.6	QP	230	2.2	QP (1.00s)
265.828	20.4	H	46.0	-25.6	QP	108	1.0	QP (1.00s)
214.611	16.4	H	46.0	-29.6	QP	132	1.0	QP (1.00s)

Client:	Griffin Technology	Job Number:	J89392
Model:	P1238 / P2147	T-Log Number:	T89397
Contact:	Michael O'Connor	Account Manager:	Sheareen Jacobs
Standard:	FCC 15.239, EN 301 357	Class:	-



Run #1c: High channel

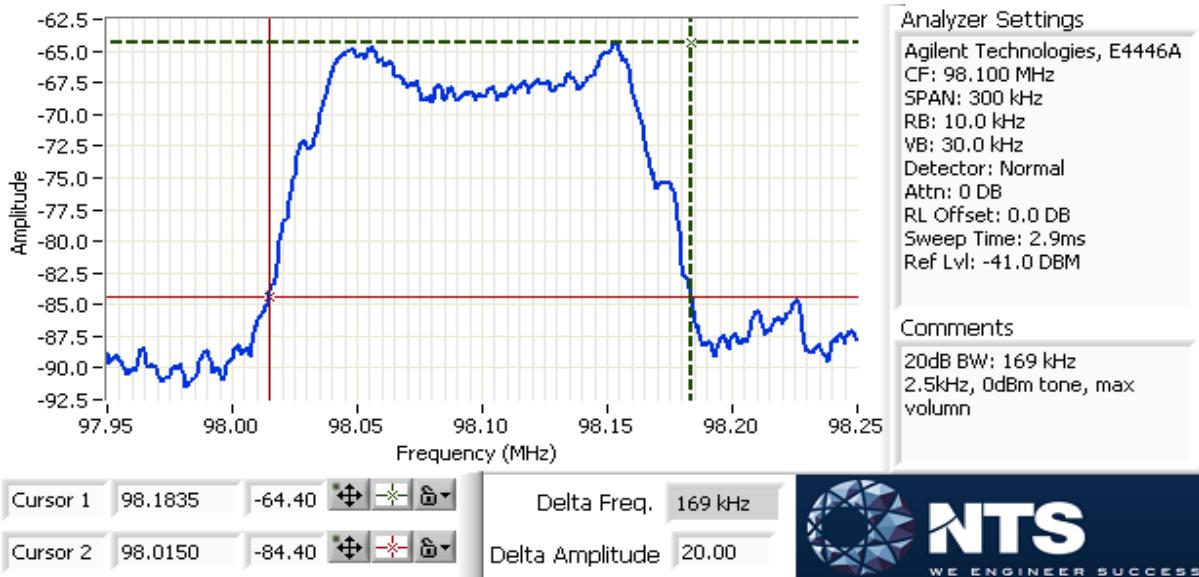
Preliminary peak readings captured during pre-scan

Frequency	Level	Pol	Class B		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
107.908	50.3	H	43.5	6.8	Peak	175	2.5	Fundamental
139.849	42.7	H	43.5	-0.8	Peak	120	2.5	
40.594	36.0	V	40.0	-4.0	Peak	292	1.0	
155.455	37.9	H	43.5	-5.6	Peak	150	2.0	
168.689	32.6	H	43.5	-10.9	Peak	252	2.5	
95.917	32.0	V	43.5	-11.5	Peak	180	1.0	
275.307	28.1	H	46.0	-17.9	Peak	107	1.0	

Maximized readings (includes manipulation of EUT interface cables)

Frequency	Level	Pol	Class B		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
139.849	40.4	H	43.5	-3.1	QP	136	2.3	QP (1.00s)
40.594	31.4	V	40.0	-8.6	QP	278	1.0	QP (1.00s)
155.455	34.4	H	43.5	-9.1	QP	153	2.0	QP (1.00s)
168.689	29.0	H	43.5	-14.5	QP	250	2.3	QP (1.00s)
95.917	22.7	V	43.5	-20.8	QP	180	1.0	QP (1.00s)
275.307	24.7	H	46.0	-21.3	QP	100	1.0	QP (1.00s)

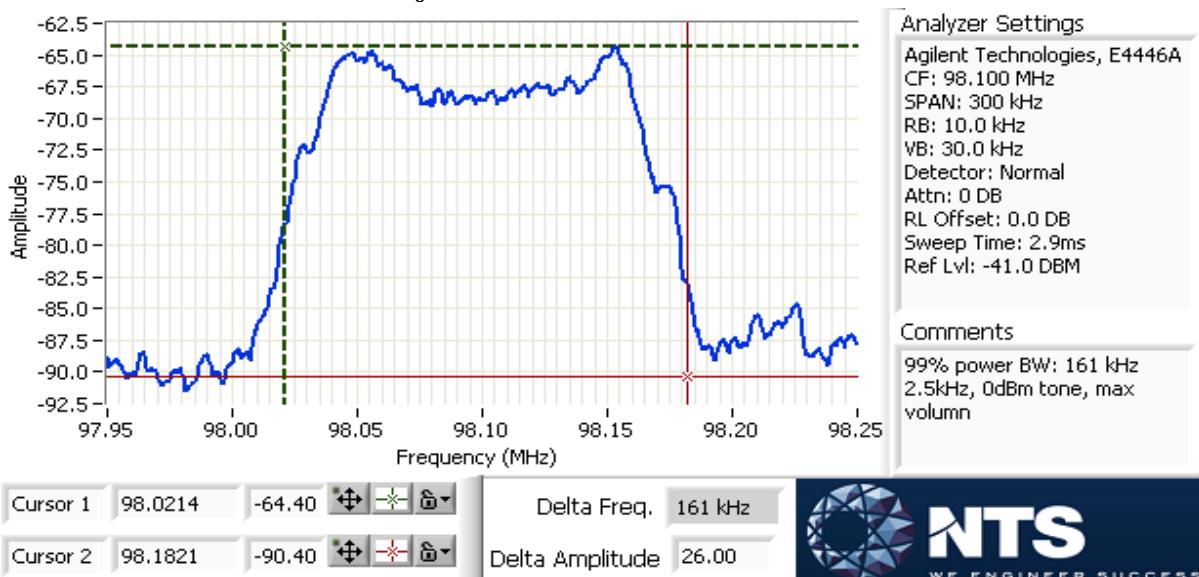
Client:	Griffin Technology	Job Number:	J89392
Model:	P1238 / P2147	T-Log Number:	T89397
Contact:	Michael O'Connor	Account Manager:	Sheareen Jacobs
Standard:	FCC 15.239, EN 301 357	Class:	-


Run #3: 20dB BW Measurements (typical audio file)

Run #4: 99% BW Measurements (typical audio file)

Client:	Griffin Technology	Job Number:	J89392
Model:	P1238 / P2147	T-Log Number:	T89397
Contact:	Michael O'Connor	Account Manager:	Sheareen Jacobs
Standard:	FCC 15.239, EN 301 357	Class:	-

Run #3: 20dB BW Measurements (2.5kHz, 0dBm, max volumn, ~ 68kHz FM deviation)


Test date: 5/9/2013

Test Eng: Mark Hill

Run #4: 99% BW Measurements (2.5kHz, 0dBm, max volumn, ~ 68kHz FM deviation)

Test date: 5/9/2013

Test Eng: Mark Hill

EMC Test Data

Client:	Griffin Technology	Job Number:	J89392
Model:	P1238 / P2147	T-Log Number:	T89397
		Account Manager:	Sheareen Jacobs
Contact:	Michael O'Connor		
Standard:	FCC 15.239, EN 301 357	Class:	-

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 12/14/2012

Config. Used: 1

Test Engineer: Jospgeh Cadigal

Config Change: none

Test Location: FT Chamber#5

EUT Voltage: 12VDC

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

Radiated emissions tests above 1 GHz to FCC Part 15 were performed without floor absorbers in place in accordance with the test methods of ANSI C63.4:2003.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and polarization of the measurement antenna.

Ambient Conditions:

Temperature: 20 °C
Rel. Humidity: 41 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, Fundamental	FCC 15.239	Pass	47.6 dB μ V/m @ 98.100 MHz (-0.4 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

Client:	Griffin Technology	Job Number:	J89392
Model:	P1238 / P2147	T-Log Number:	T89397
Contact:	Michael O'Connor	Account Manager:	Sheareen Jacobs
Standard:	FCC 15.239, EN 301 357	Class:	-

Run #1: Fundamental Field Strength

EUT and Test Configuration Details:

EUT configured to transmit a song and volume was set to maximum.

FCC Sample, Elliott tag 2012-2532

Fundamental Measurements

Frequency	Level	Pol	FCC 15.239		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
EUT Flat								
88.092	47.9	V	48.0	-0.1	AVG	176	1.0	setting = 44
88.092	48.2	V	68.0	-19.8	PK	176	1.0	setting = 44
98.100	47.5	V	48.0	-0.5	AVG	176	1.0	setting = 39
98.100	49.2	V	68.0	-18.8	PK	176	1.0	setting = 39
107.900	47.1	V	48.0	-0.9	AVG	176	1.0	setting = 67
107.900	47.7	V	68.0	-20.3	PK	176	1.0	setting = 67
EUT Side								
88.100	47.3	V	48.0	-0.7	AVG	255	1.0	setting = 42
88.100	48.3	V	68.0	-19.7	PK	255	1.0	setting = 42
98.100	47.6	V	48.0	-0.4	AVG	255	1.0	setting = 41
98.100	49.4	V	68.0	-18.6	PK	255	1.0	setting = 41
107.900	47.5	V	48.0	-0.5	AVG	255	1.0	setting = 66
107.900	47.9	V	68.0	-20.1	PK	255	1.0	setting = 66
EUT Upright								
88.100	47.6	V	48.0	-0.4	AVG	143	1.0	setting = 43
88.100	47.9	V	68.0	-20.1	PK	143	1.0	setting = 43
98.100	47.6	V	48.0	-0.4	AVG	143	1.0	setting = 38
98.100	49.2	V	68.0	-18.8	PK	143	1.0	setting = 38
107.100	47.0	V	48.0	-1.0	AVG	143	1.0	setting = 60
107.100	48.0	V	68.0	-20.0	PK	143	1.0	setting = 60

EMC Test Data

Client:	Griffin Technology	Job Number:	J89392
Model:	P1238 / P2147	T-Log Number:	T89397
Contact:	Michael O'Connor	Account Manager:	Sheareen Jacobs
Standard:	FCC 15.239, EN 301 357	Class:	-

Fundamental Measurements, at previously failing frequencies.

Summary of worse case

Highest power setting the complies for any orientation

Frequency	Level	Pol	FCC 15.239		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
EUT Side								
88.100	47.3	V	48.0	-0.7	AVG	255	1.0	setting = 42
88.100	48.3	V	68.0	-19.7	PK	255	1.0	setting = 42
EUT Upright								
98.100	47.6	V	48.0	-0.4	AVG	143	1.0	setting = 38
98.100	49.2	V	68.0	-18.8	PK	143	1.0	setting = 38
107.100	47.0	V	48.0	-1.0	AVG	143	1.0	setting = 60
107.100	48.0	V	68.0	-20.0	PK	143	1.0	setting = 60

End of Report

This page is intentionally blank and
marks the last page of this test report.