

FCC TEST REPORT

CATEGORY : Limited Module Approval
PRODUCT NAME : WLAN 11b USB module 12x71
FCC ID. : PANWL1205
FILING TYPE : Certification
BRAND NAME : CC&C
MODEL NAME : WL-1205

APPLICANT : **CC&C Technologies, Inc.**
8F, 150, Jian Yi Road, Chung Ho City, Taipei County, Taiwan,
2354, R.O.C.
MANUFACTURER : Same as Applicant

ISSUED BY : **SPORTON INTERNATIONAL INC.**
6F, No. 106, Sec. 1, Hsin Tai Wu Rd., His Chih, Taipei Hsien,
Taiwan, R.O.C.

Statements:

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Certificate or Test Report could not be used by the applicant to claim the product endorsement by CNLA, NVLAP or any agency of U.S. government.

The test equipment used to perform the test are calibrated and traceable to NML/ROC or NIST/USA.

Dr. Alan Lane
Vice General Manager
SPORTON International Inc.

1190
ILAC MRA

Lab Code: 200079-0

Table of Contents

History of this test report.....	ii
1. General Description of Equipment under Test.....	1
1.1. Applicant.....	1
1.2. Manufacturer	1
1.3. Basic Description of Equipment under Test	1
1.4. Features of Equipment under Test.....	1
1.5. Table for Carrier Frequencies	2
2. Test Configuration of the Equipment under Test.....	3
2.1. Description of the Test	3
2.2. Frequency Range Investigated	3
2.3. Description of Test Supporting Units.....	4
2.4. Connection Diagram of Test System	5
2.5. Test Software	6
3. Test Location and Standards	7
3.1. Test Location.....	7
3.2. Test Conditions	7
3.3. Standards for Methods of Measurement.....	7
3.4. DoC Statement.....	7
4. List of Measurements.....	8
4.1. Summary of the Test Results	8
5. Test Result	9
5.1. Test of 6dB Spectrum Bandwidth (DSSS System)	9
5.2. Test of Maximum Peak Output Power	12
5.3. Test of Peak Power Spectral Density.....	13
5.4. Test of Band Edges Emission	16
5.5. Test of AC Power Line Conducted Emission	19
5.6. Test of Spurious Radiated Emission	24
5.7. Antenna Requirements	43
5.8. RF Exposure	44
6. List of Measuring Equipments Used	46
Appendix A. Photographs of EUT.....	A1 ~ A5

History of this test report

No additional attachment.
 Additional attachment were issued as following record:

1. General Description of Equipment under Test

1.1. Applicant

CC&C Technologies Inc.

8F, 150, Jian Yi Road, Chung Ho City, Taipei County, Taiwan 235, R.O.C.

1.2. Manufacturer

Same as Applicant

1.3. Basic Description of Equipment under Test

This product is a Module with IEEE 802.11b/g wireless LAN solution which is going to be integrated inside the notebook computer. The used interface of this module is USB. The technical data has been listed on section " Features of Equipment under Test ".

1.4. Features of Equipment under Test

ITEMS	DESCRIPTION
Type of Modulation	DSSS (CCK / DQPSK / DBPSK),
Number of Channels	11
Frequency Band	2400MHz ~ 2483.5MHz
Carrier Frequency of Each Channel	Please reference table below.
Channel Bandwidth	22MHz
Output Power	13.50 dBm (peak)
Antenna Type / Gain	On board chip antenna / 0dBi
Function Type	Transceiver
Data Rate	1, 2, 5.5, 11Mbps
Humidity Range	5% ~ 90%
Temperature Range (Operating)	0 ~ 55°C

1.5. Table for Carrier Frequencies

Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412 MHz	5	2432 MHz	9	2452 MHz
2	2417 MHz	6	2437 MHz	10	2457 MHz
3	2422 MHz	7	2442 MHz	11	2462 MHz
4	2427 MHz	8	2447 MHz		

2. Test Configuration of the Equipment under Test

2.1. Description of the Test

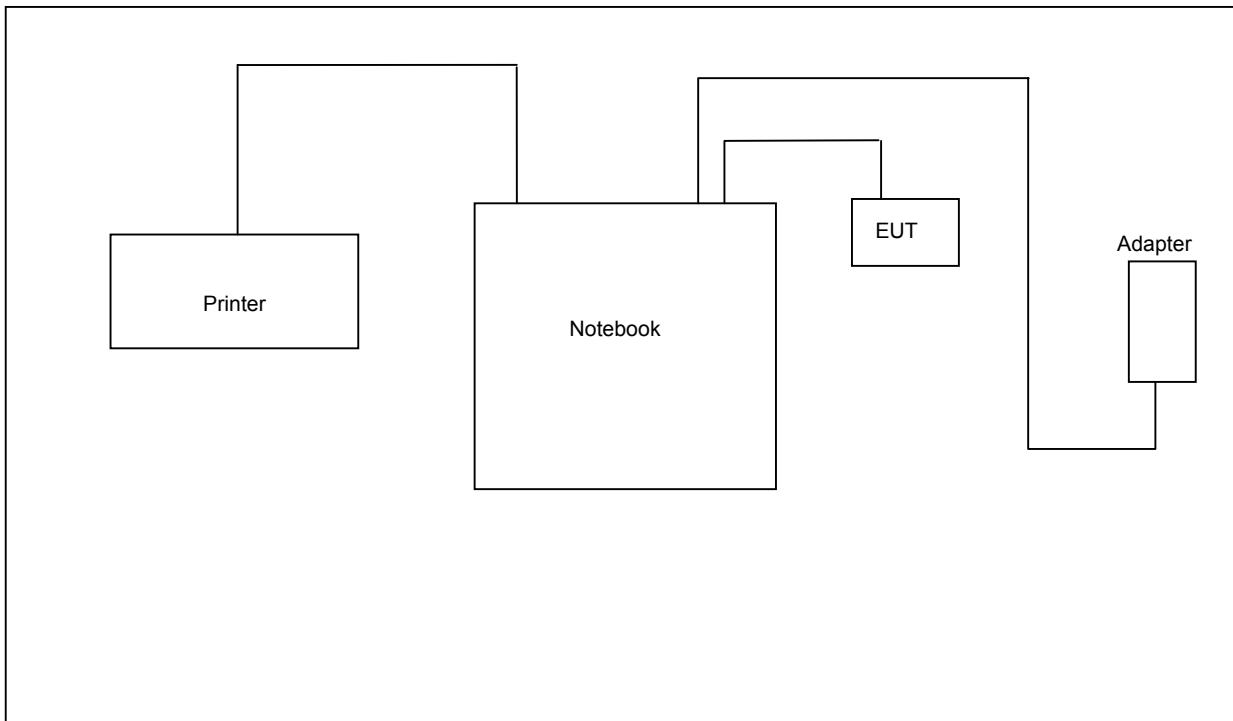
- a. During testing, the equipment was placed on a non-conducting support.
- b. This module was tested under stand-alone test configuration. There is an USB port in the test feature which can be used to connect with the notebook.
- c. The following test modes were performed:
 - Mode 1 : CH 01 2412MHz
 - Mode 2 : CH 06 2437MHz
 - Mode 3 : CH 11 2462MHz
- d. Spurious emission below 1GHz is independent of channel selection, so only Channel 11 was tested.
- e. For spurious emission above 1GHz, lowest, middle and highest channel with 11Mbps data rate was tested.
- f. The EUT has been programmed to continuously transmit or receive mode during testing. The used peripherals as well as the configuration fulfill the requirements of ANSI C63.4:2001.
- g. The configuration is operated in a manner which tends to maximize its emission characteristics in a typical application.
- h. 3 meters measurement distance in semi-anechoic chamber was used in this test.

2.2. Frequency Range Investigated

- a. Conducted power line test: from 150 kHz to 30 MHz
- b. Radiated emission test: from 30 MHz to 25000 MHz

2.3. Description of Test Supporting Units

Support Unit 1. -- Notebook (COMPAQ)


FCC ID : N/A
Model No. : PRESARIO 1500
Power Supply Type : Switching
Power Cord : Non-Shielded
Serial No. : SP0034
Remark : This support device was tested to comply with FCC standards and authorized under a declaration of conformity.

Support Unit 2. -- Printer (EPSON)

FCC ID : N/A
Model No. : STYLUS COLOR 680
Power Supply Type : Linear
Power Cord : Non-Shielded
Serial No. : SP0048
Data Cable : Shielded, 1.35m
Remark : This support device was tested to comply with FCC standards and authorized under a declaration of conformity.

2.4. Connection Diagram of Test System

2.5. Test Software

There are 2 software may be used in the testing.

- a. Channel & Power Controlling Software: This was provided by the manufacturer and is able to let the test engineer select the operating channel as well as the RF output power. The parameters for channel selection is trying to offer the test engineer the ability to fix the operating channel for testing, both normal data and continuously transmitting modes are allowed, and that for RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.
- b. "H" Pattern Generator: Except Access Point, the supporting equipment such as monitor or printer is always available. Under testing, these supporting equipment has to also under working condition. "H" Pattern Generator is able to continuously transmitting "H" character to those supporting equipments.

3. Test Location and Standards

3.1. Test Location

Test Location : Sporton Hwa Ya Testing Building

Address : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Tel: +886 3 327 3456 Fax: +886 3 318 0055

Test Site No. : CO01-HY, 03CH03-HY

3.2. Test Conditions

Normal Voltage : 110V/60Hz

Extreme Voltages : 138V and 102V

Normal Temperature : 20 °C

Extreme Temperature : 0 °C and 55 °C

3.3. Standards for Methods of Measurement

Here is the list of the standards followed in this test report.

ANSI C63.4-2001

47 CFR Part 15 Subpart C (Section 15.247)

3.4. DoC Statement

This EUT is also classified as a device of computer peripheral Class B which DoC has to be followed. It has been verified according to the rule of 47 CFR part 15 Subpart B, and found that all the requirements has been fulfilled.

SPORTON LAB.

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

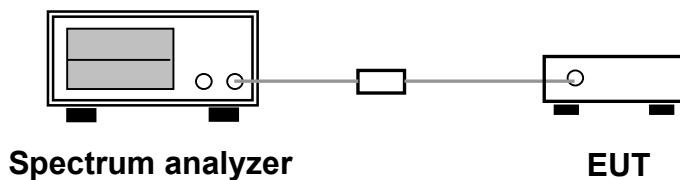
4. List of Measurements

4.1. Summary of the Test Results

Applied Standard: 47 CFR Part 15 and Part 2			
Paragraph	FCC Rule	Description of Test	Result
5.1	15.247(a)(2)	6dB Spectrum Bandwidth (DSSS System)	Pass
5.2	15.247(b)	Maximum Peak Output Power	Pass
5.3	15.247(d)	Peak Power Spectral Density	Pass
5.4	15.247(c)	Band Edges Emission	Pass
5.5	15.107/15.207	AC Power Line Conducted Emission	Pass
5.6	15.209/15.247(c)	Spurious Radiated Emission	Pass
5.7	15.203	Antenna Requirement	Pass

5. Test Result

5.1. Test of 6dB Spectrum Bandwidth (DSSS System)


5.1.1 Measuring Instruments

Item 9 of the table on section 6.

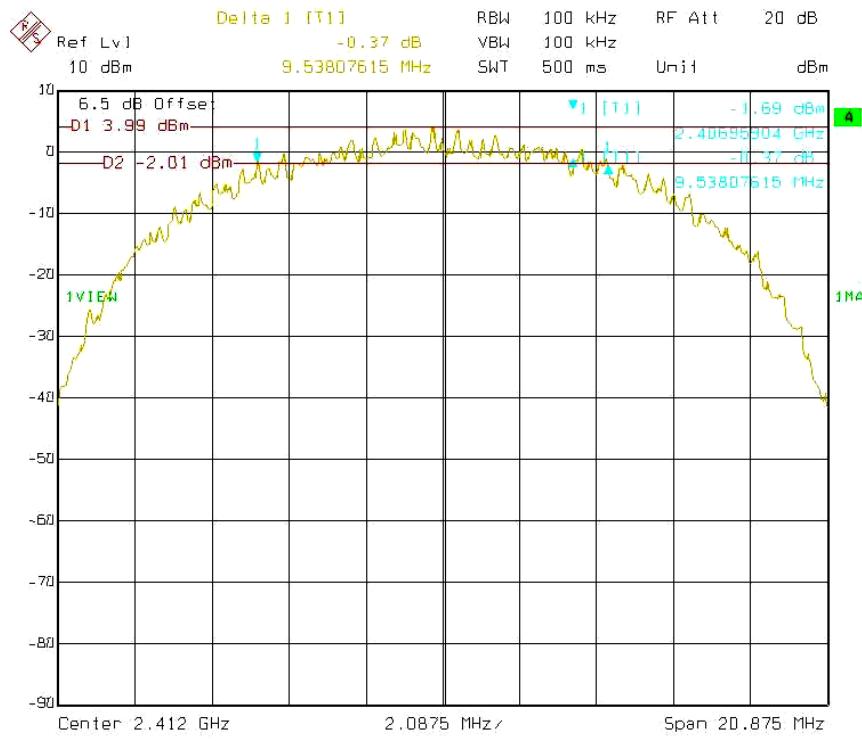
5.1.2 Test Procedures

1. The transmitter output was connected to the spectrum analyzer through an attenuator.
2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
3. The 6dB bandwidth is defined as the spectrum width with level higher than 6dB below the peak level.
4. Repeat above 1~3 points for the middle and highest channel of the EUT.

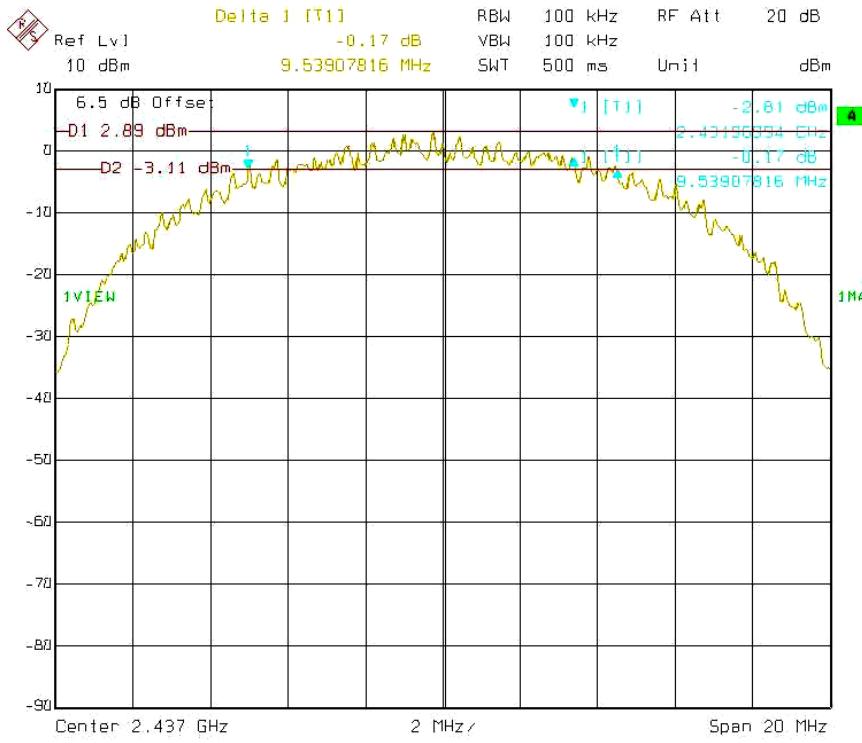
5.1.3 Test Setup Layout

5.1.4 Test Result : See spectrum analyzer plots below

- Temperature: 27°C
- Relative Humidity: 57%
- Test Engineer: Murray Lu


Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Min. Limit (MHz)
01	2412	9.54	0.5
06	2437	9.54	0.5
11	2462	9.54	0.5

FCC ID: PANWL1205
Issued on May 31, 2004


Report No.: F452108

(Channel 01) :

Date: 27.MAY.2004 12:23:01

(Channel 06) :

Date: 27.MAY.2004 12:39:53

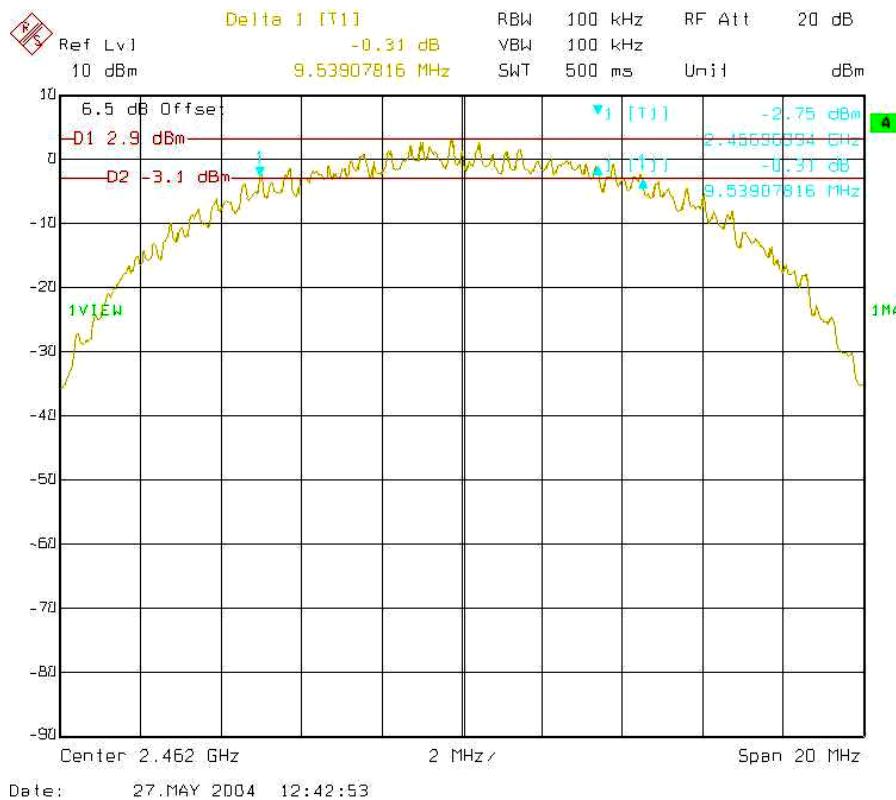
SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205

Page No. : 10 of 47


Issued Date : May 31, 2004

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

(Channel 11) :

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205

Page No. : 11 of 47

Issued Date : May 31, 2004

5.2. Test of Maximum Peak Output Power

5.2.1 Measuring Instruments

Item 9 of the table on section 6.

5.2.2 Test Procedures

1. The transmitter output was connected to the vertical channel of the oscilloscope through a detector.
2. Observe the duty cycle X from the oscilloscope and the record the detected voltage level A.
3. Replace the EUT via the signal generator, calibrate the reading via the carrier frequency.
4. The duty cycle X has to be calibrated on the output power of the signal generator.
5. Repeated the 1~4 for the middle and highest channel of the EUT.

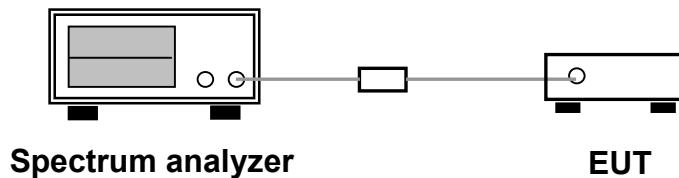
5.2.3 Test Setup Layout

5.2.4 Test Result : See spectrum analyzer plots below

- Temperature: 27°C
- Relative Humidity: 57 %
- Test Engineer: Murray Lu

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (mWatt)	Limits (dBm)
01	2412	13.50	22.38	30 dBm
06	2437	13.30	21.38	30 dBm
11	2462	13.10	20.42	30 dBm

5.3. Test of Peak Power Spectral Density


5.3.1 Measuring Instruments

Item 9 of the table on section 6.

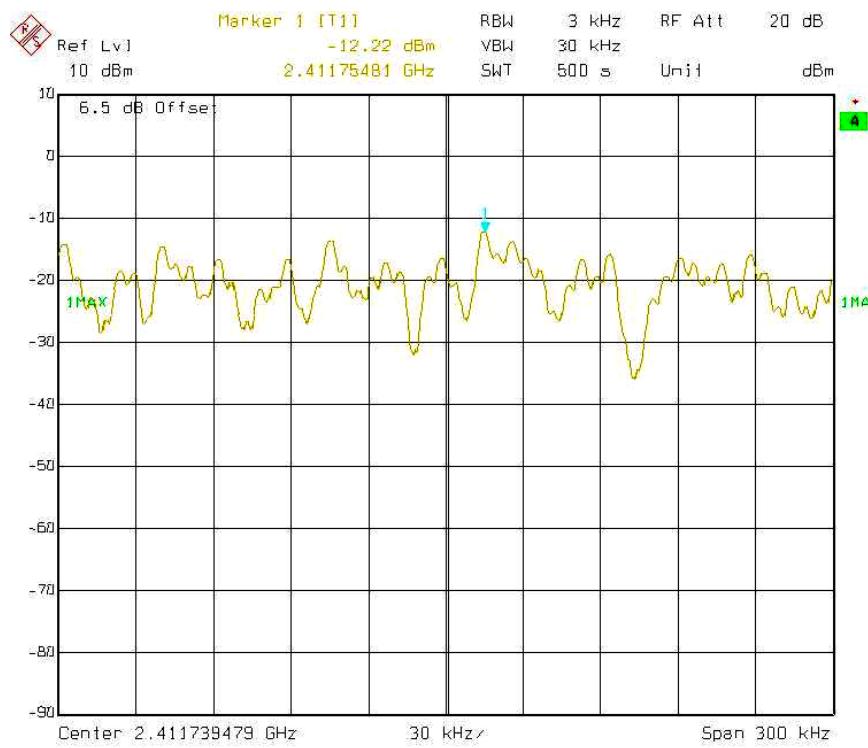
5.3.2 Test Procedures

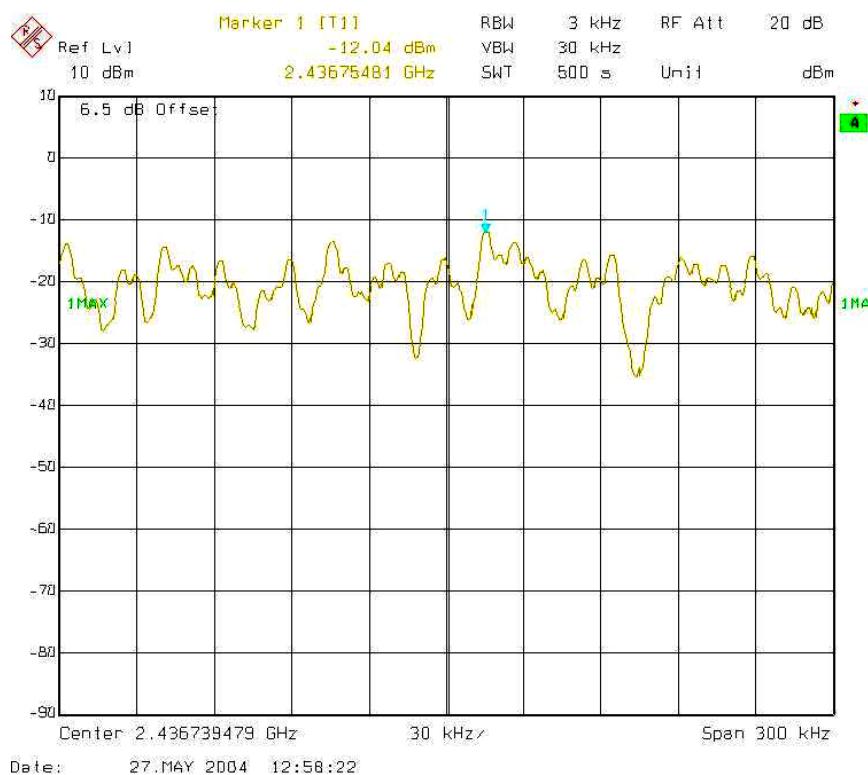
1. The transmitter output is connected to the spectrum analyzer through an attenuator.
2. Set RBW of spectrum analyzer to 3kHz and VBW to 30kHz.
3. Mark the frequency with maximum peak power as the center of the display of the spectrum
4. Set the span to 1.5MHz and the sweep time to 500s and record the maximum peak value.
5. Repeated the 1~4 for the middle and highest channel of the EUT.

5.3.3 Test Setup Layout

5.3.4 Test Result : See spectrum analyzer plots below

- Temperature: 27°C
- Relative Humidity: 57 %
- Test Engineer: Murray Lu


Channel	Frequency (MHz)	Power Density (dBm)	Limits
			(dBm)
01	2412	-12.22	8
06	2437	-12.04	8
11	2462	-12.60	8


FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

(Channel 01) :

(Channel 06) :

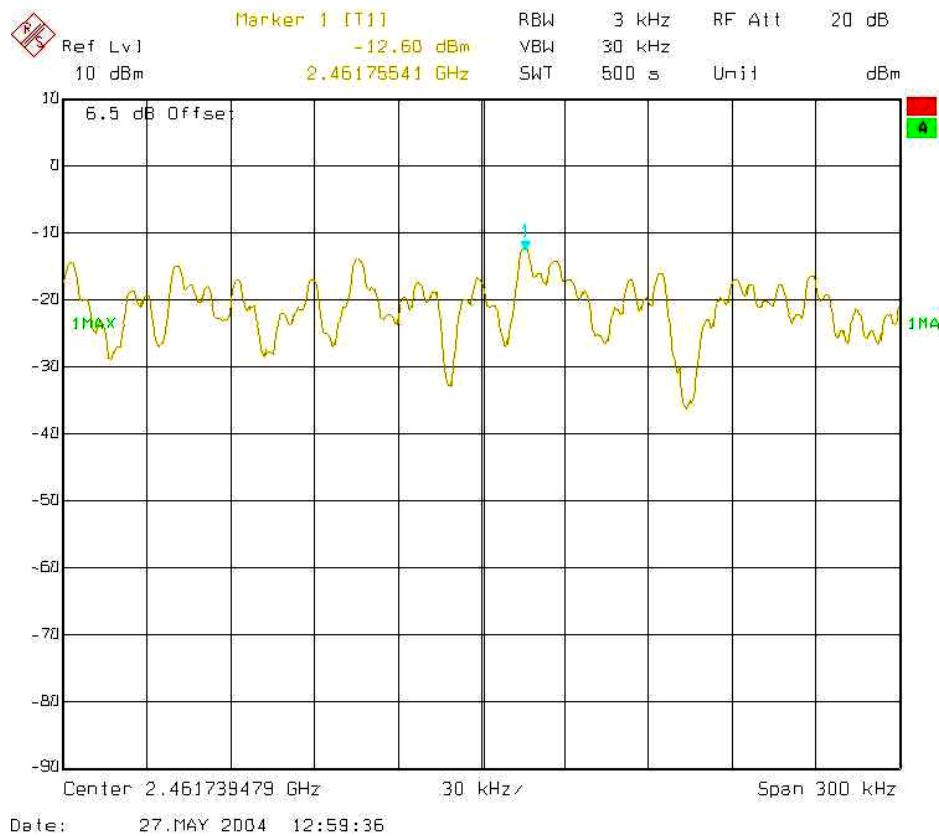
SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205

Page No. : 14 of 47


Issued Date : May 31, 2004

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

(Channel 11) :

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205

Page No. : 15 of 47

Issued Date : May 31, 2004

5.4. Test of Band Edges Emission

5.4.1 Measuring Instruments

Item 9 of the table on section 6.

5.4.2 Test Procedures

1. The transmitter is set to the lowest channel.
2. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
3. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100MHz bandwidth from lower band edge.
4. The lowest band edges emission was measured and recorded.
5. The transmitter set to the highest channel and repeated 2~4.

5.4.3 Test Result :

- Modulation Type: CCK
- Test Engineer: Murray Lu

(A) Left Edge

The band edge emission plot shows 62.21dB delta between carrier maximum power and local maximum emission in the restricted band.


CH01 Carrier power strength (dBuV/m)	Delta (dB)	The maximum field strength in restrict band (dBuV/m)	Limit (dBuV/m)	Margin (dB)
99.78	62.21	37.57	54.00	-16.43

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

(Channel 01) :

SPORTON International Inc.

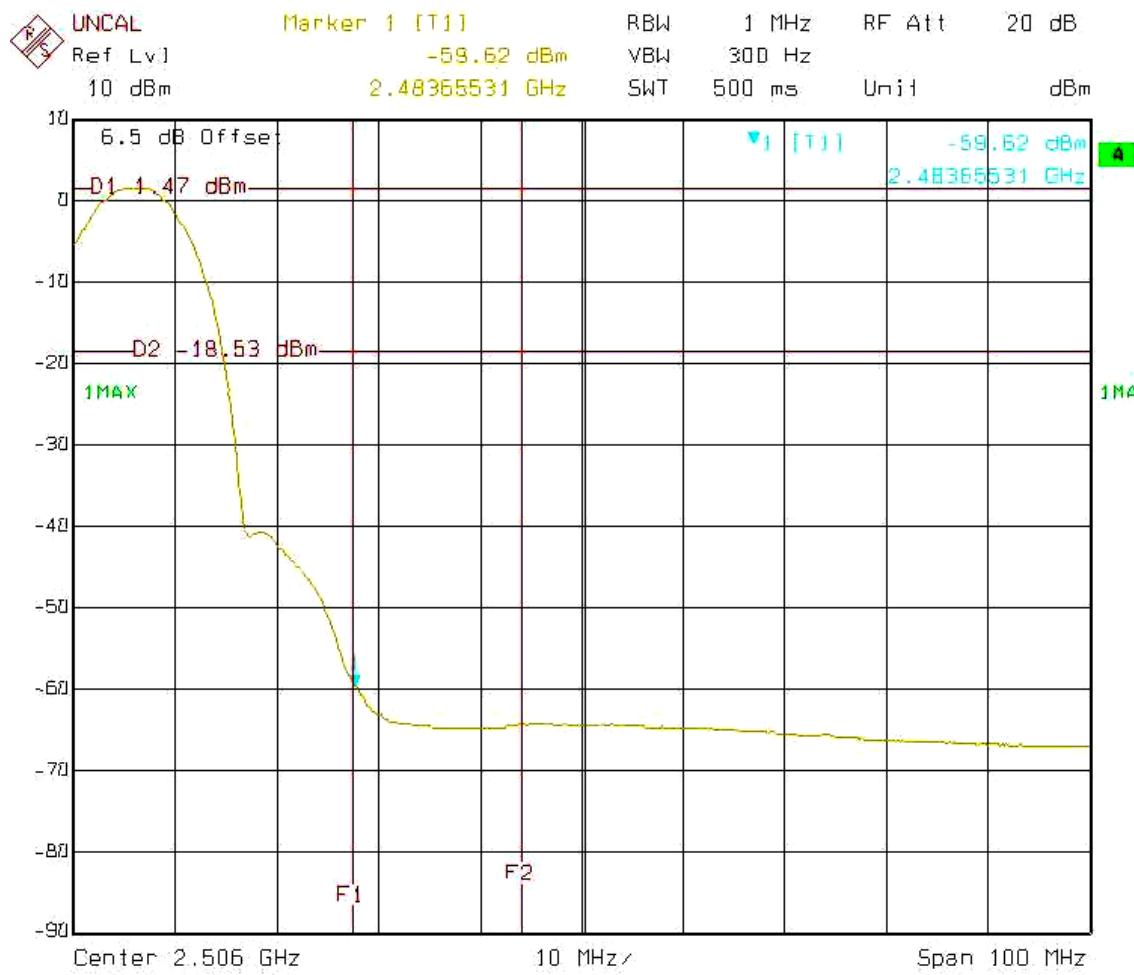
TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205

Page No. : 17 of 47

Issued Date : May 31, 2004


(B) Right Edge

The band edge emission plot shows 61.09dB delta between carrier maximum power and local maximum emission in the restricted band.

CH11 Carrier power strength (dBuV/m)	Delta (dB)	The maximum field strength in restrict band (dBuV/m)	Limit (dBuV/m)	Margin (dB)
97.36	61.09	36.27	54.00	-17.73

* The maximum field strength in restricted band is the emission of carrier power strength subtract to the delta between carrier maximum power and local maximum emission in the restricted band.

Modulation Type: CCK (Channel 11) :

Date: 27.MAY.2004 12:46:42

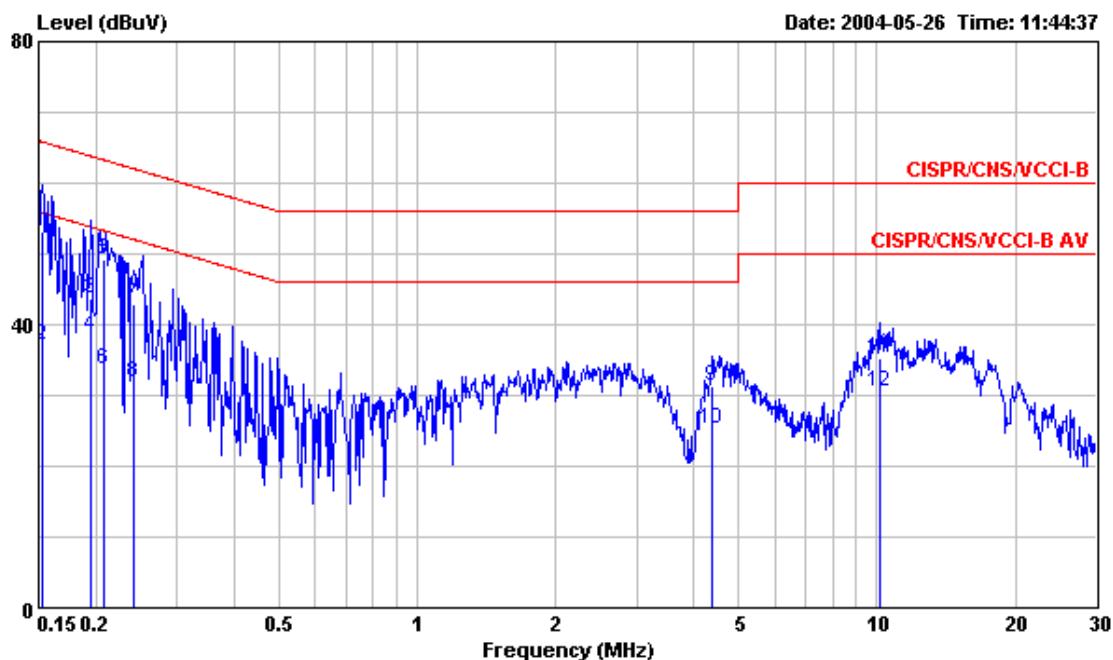
Observation : All emissions in the 100kHz bandwidth are 20dB lower than the carrier strength.

5.5. Test of AC Power Line Conducted Emission

5.5.1 Measuring Instruments

Please reference item 1~7 in chapter 6 for the instruments used for testing.

5.5.2 Test Procedures


1. Configure the EUT according to ANSI C63.4.
2. The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
4. All the support units are connected to the other LISNs. The LISN should provides 50uH/50ohms coupling impedance.
5. The frequency range from 150 KHz to 30 MHz was searched.
6. Use the Channel & Power Controlling software to make the EUT working on selected channel and expected output power, then use the "H" Patter Generator software to make the supporting equipments stay on working condition.
7. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
8. The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.

5.5.3 Test Result of Conducted Emission

Test Mode	RF LINK	Tested By	Brian Lin
Temperature / Humidity	27deg. C / 57%		

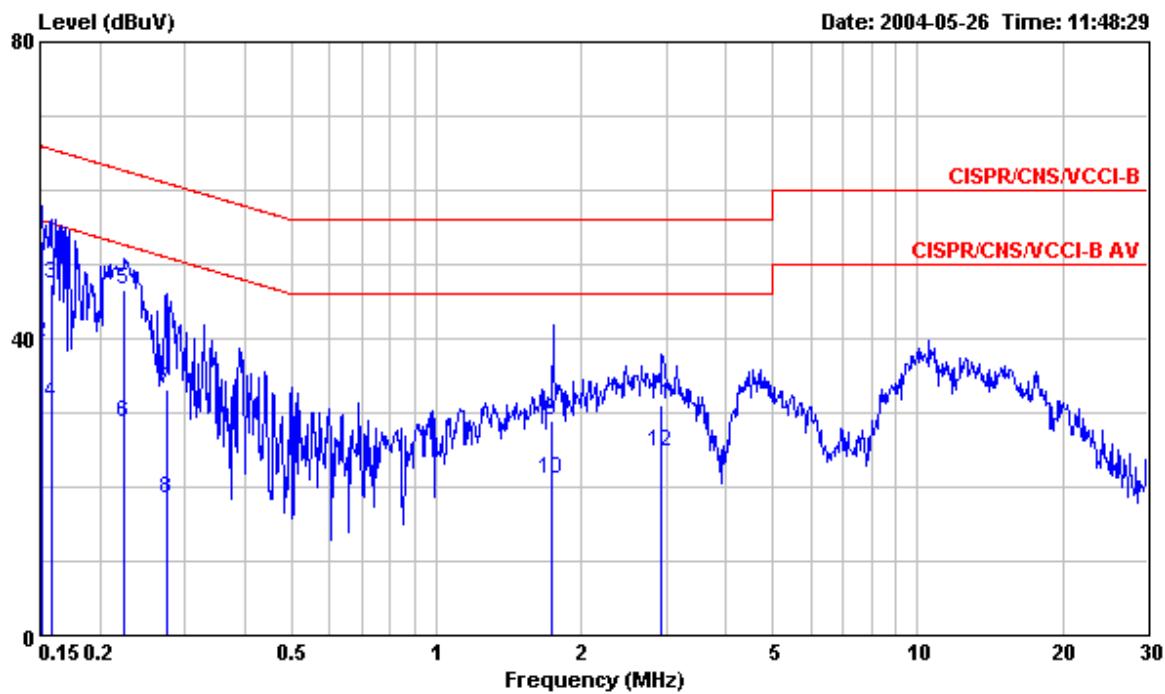
Line to Ground

Freq	Level	Over	Limit	Read	LISN	Cable	Remark
		Limit	Line	Level	Factor	Loss	
MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1 @0.1524030	53.19	-12.68	65.87	53.08	0.10	0.01	QP
2 0.1524030	37.22	-18.65	55.87	37.11	0.10	0.01	Average
3 0.1944650	43.58	-20.26	63.84	43.47	0.10	0.01	QP
4 0.1944650	38.39	-15.45	53.84	38.28	0.10	0.01	Average
5 0.2079210	49.27	-14.02	63.29	49.16	0.10	0.01	QP
6 0.2079210	33.65	-19.64	53.29	33.54	0.10	0.01	Average
7 0.2405760	43.00	-19.08	62.08	42.89	0.10	0.01	QP
8 0.2405760	31.71	-20.37	52.08	31.60	0.10	0.01	Average
9 4.380	31.22	-24.78	56.00	31.05	0.10	0.07	QP
10 4.380	25.26	-20.74	46.00	25.09	0.10	0.07	Average
11 10.130	35.39	-24.61	60.00	35.18	0.10	0.11	QP
12 10.130	30.44	-19.56	50.00	30.23	0.10	0.11	Average

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

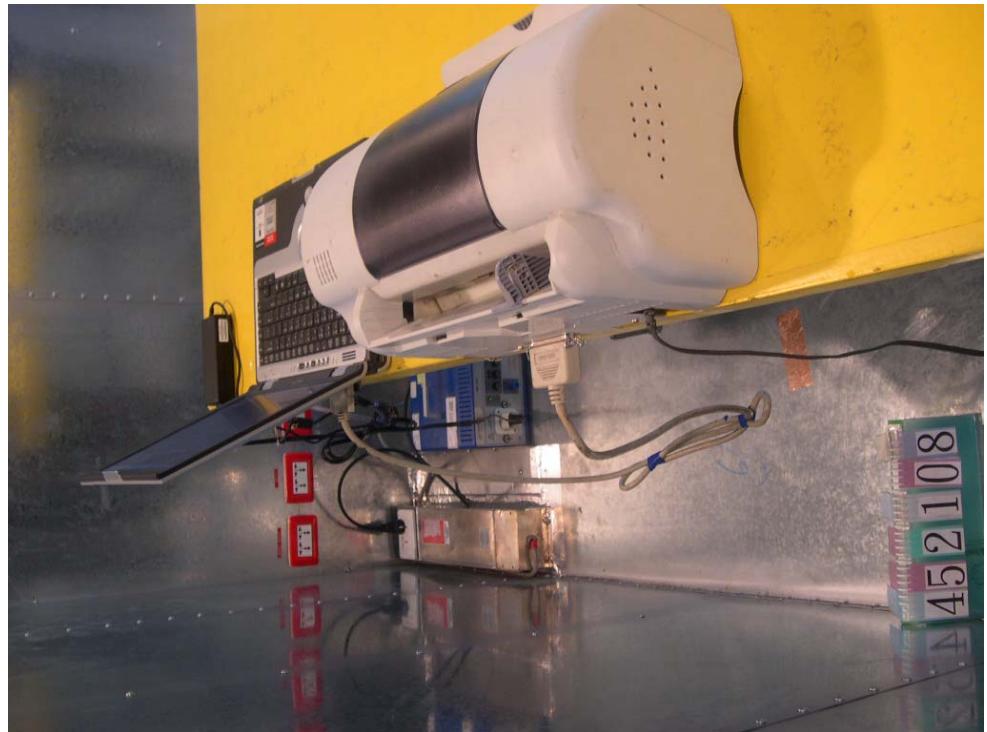

FCC ID. : PANWL1205

Page No. : 20 of 47

Issued Date : May 31, 2004

Neutral to Ground

Freq	Level	Over Limit	Limit Line	Read Level		LISN Factor	Cable Loss	Remark
				dBuV	dB			
1	0.1507970	53.13	-12.83	65.96	53.02	0.10	0.01	QP
2	0.1507970	39.34	-16.62	55.96	39.23	0.10	0.01	Average
3	0.1590020	47.39	-18.13	65.52	47.28	0.10	0.01	QP
4	0.1590020	31.22	-24.30	55.52	31.11	0.10	0.01	Average
5	0.2243730	46.46	-16.20	62.66	46.35	0.10	0.01	QP
6	0.2243730	28.81	-23.85	52.66	28.70	0.10	0.01	Average
7	0.2744160	33.24	-27.74	60.98	33.13	0.10	0.01	QP
8	0.2744160	18.32	-32.66	50.98	18.21	0.10	0.01	Average
9	1.740	29.05	-26.95	56.00	28.93	0.10	0.02	QP
10	1.740	21.09	-24.91	46.00	20.97	0.10	0.02	Average
11	2.930	30.99	-25.01	56.00	30.84	0.10	0.05	QP
12	2.930	24.83	-21.17	46.00	24.68	0.10	0.05	Average


5.5.4 Photographs of Conducted Emission Test Configuration

- The photographs show the configuration that generates the maximum emission.

FRONT VIEW

REAR VIEW

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

SIDE VIEW

SPORTON International Inc.

TEL : 886-2-2696-2468

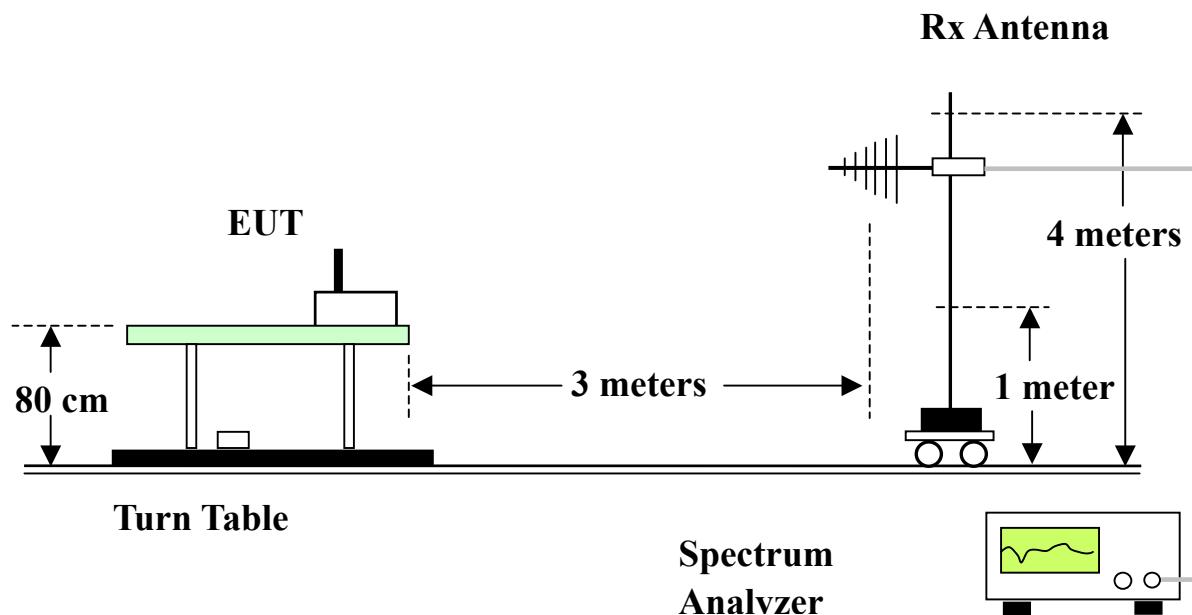
FAX : 886-2-2696-2255

FCC ID. : PANWL1205

Page No. : 23 of 47

Issued Date : May 31, 2004

5.6. Test of Spurious Radiated Emission


5.6.1 Measuring Instruments

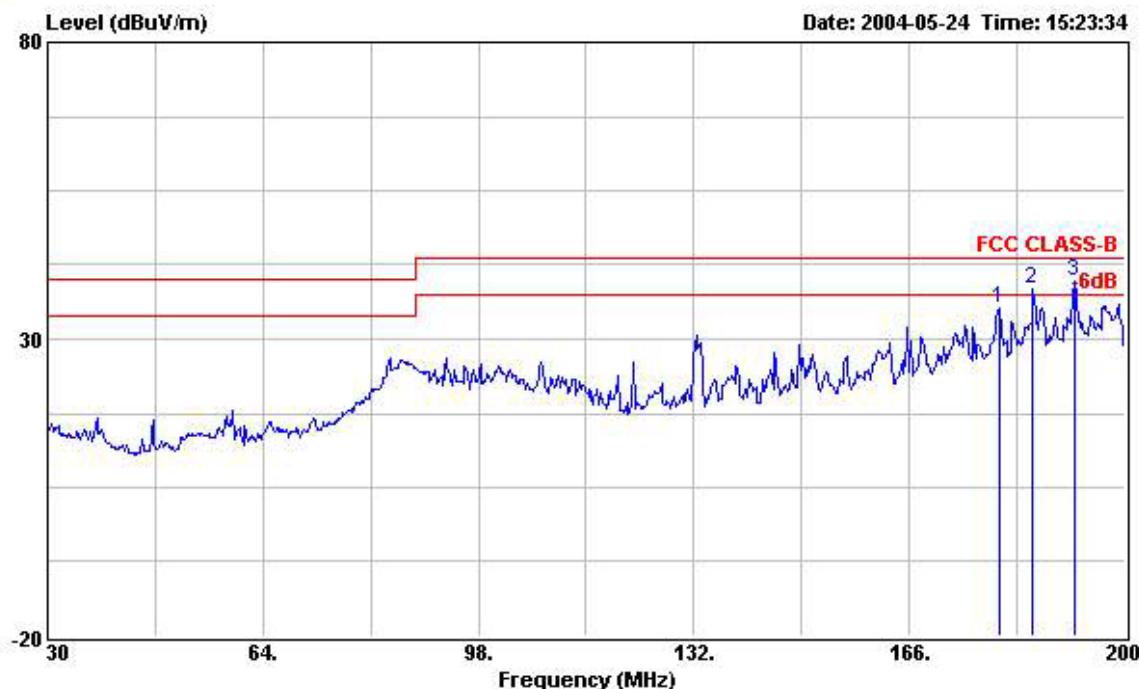
Please reference item 8~19 in chapter 6 for the instruments used for testing.

5.6.2 Test Procedures

- a) Configure the EUT according to ANSI C63.4.
- b) The EUT was placed on the top of the turn table 0.8 meter above ground.
- c) The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turn table.
- d) Power on the EUT and all the supporting units.
- e) The turn table was rotated by 360 degrees to determine the position of the highest radiation.
- f) The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- g) For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- h) Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- i) For emission above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- j) If the emission level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz and average method for above the 1GHz. the reported.
- k) For testing above 1GHz, the emission level of the EUT in peak mode was 20dB higher than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

5.6.3 Test Setup Layout

5.6.4 Test Results and Limit

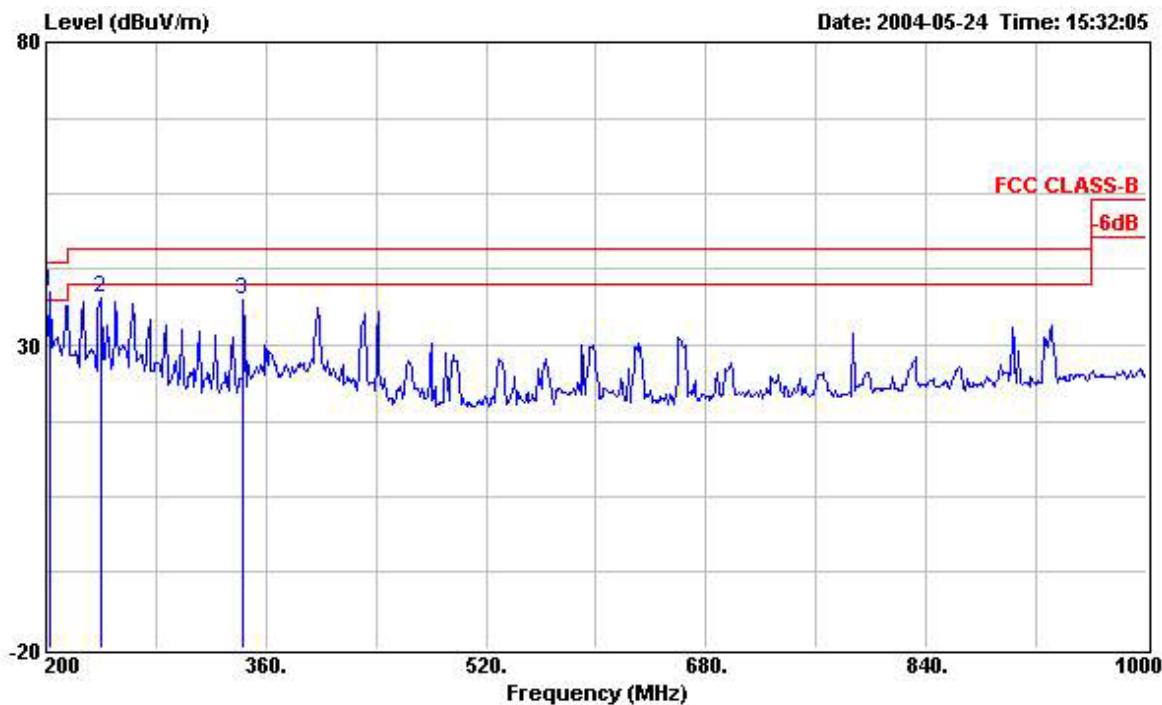

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Test Mode	RF LINK	Temperature	25 deg. C	Tested By	Steve Chen
Freq. Range	30MHz~1GHz	Humidity	65%		

(A) Polarization: Horizontal



Freq	Level	Over	Limit	Read	Probe	Cable	Preampl	Ant	Table	
		Limit	Line	Level	Factor	Cable	Preampl			
MHz		dBuV/m	dB	dBuV/m	dBuV	dB	dB	cm	deg	
1	180.110	35.27	-8.23	43.50	47.02	13.56	2.43	27.74	QP	---
2	185.550	38.36	-5.14	43.50	49.53	14.11	2.45	27.73	QP	---
3	192.180	39.64	-3.86	43.50	50.24	14.62	2.49	27.71	QP	105 215

FCC ID: PANWL1205
Issued on May 31, 2004

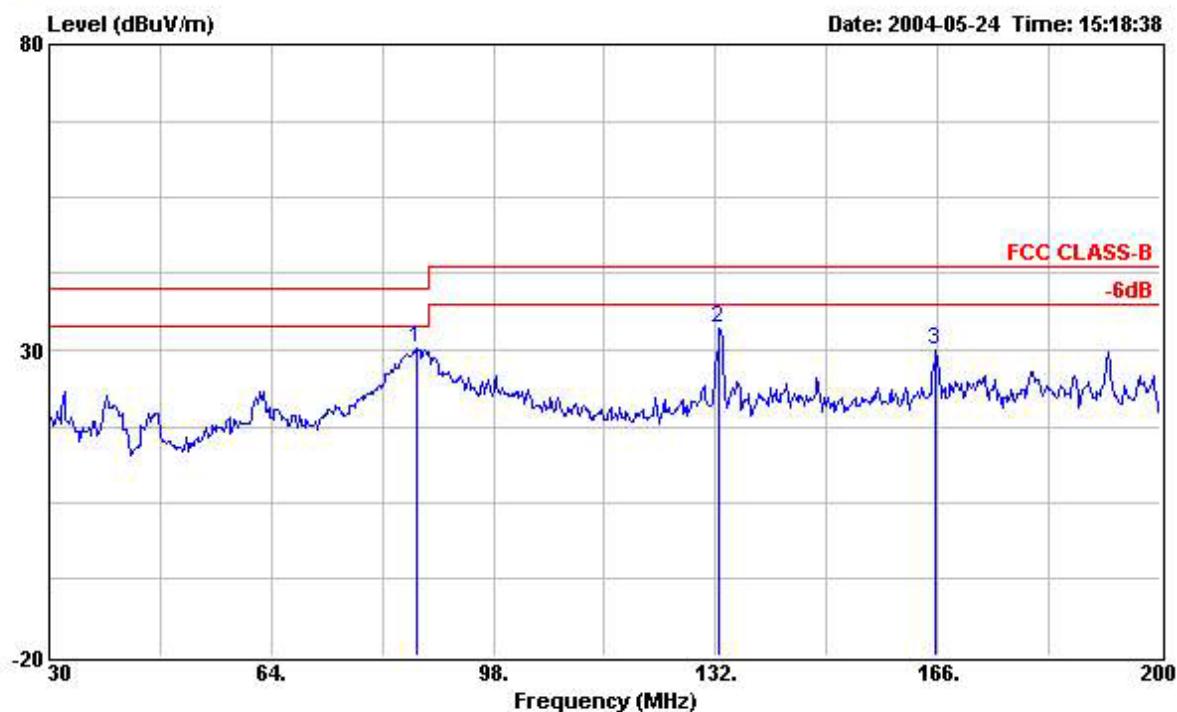
Report No.: F452108

Freq	Level	Over Limit		Read Level	Probe Factor	Cable Preamp			Ant Pos	Table Pos
		MHz	dBuV/m	dB	Line	dBuV	dB	dB		
1	202.400	38.76	-4.74	43.50	48.62	15.25	2.58	27.69	QP	---
2	240.000	37.64	-8.36	46.00	49.53	12.85	2.80	27.54	QP	---
3	343.200	37.49	-8.51	46.00	46.49	15.30	3.21	27.51	QP	---

SPORTON International Inc.

TEL : 886-2-2696-2468

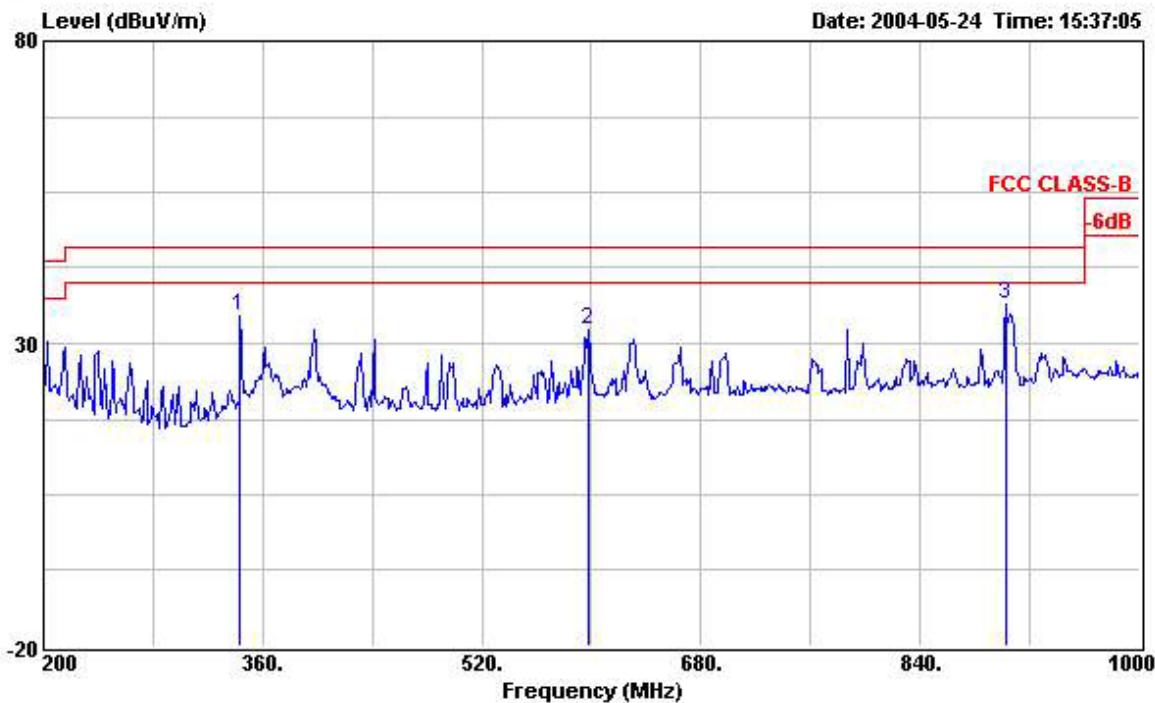
FAX : 886-2-2696-2255


FCC ID. : PANWL1205

Page No. : 27 of 47

Issued Date : May 31, 2004

(B) Polarization: Vertical



Freq MHz	Level dBuV/m	Over Limit		Read Line Level dBuV	Probe Factor dB	Cable Loss dB		Preamp Factor dB	Remark	Ant Pos cm	Table Pos deg
		Limit dB	Line dBuV/m			dB	dB				
1	86.270	30.17	-9.83	40.00	46.95	9.57	1.58	27.93	QP	---	---
2	132.510	33.44	-10.06	43.50	47.76	11.46	2.05	27.83	QP	---	---
3	165.660	30.09	-13.41	43.50	42.52	13.01	2.33	27.77	QP	---	---

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

Freq	Level	Over Limit		Read Line	Probe Factor	Cable Preamp			Ant	Table
		Limit	Line			dBuV	dB	dB		
MHz	dBuV/m	dB	dBuV/m						cm	deg
1 343.200	34.66	-11.34	46.00	43.66	15.30	3.21	27.51	Peak	---	---
2 598.400	32.15	-13.85	46.00	37.62	18.96	4.37	28.80	QP	---	---
3 902.400	36.52	-9.48	46.00	38.35	21.12	5.35	28.30	QP	---	---

SPORTON International Inc.

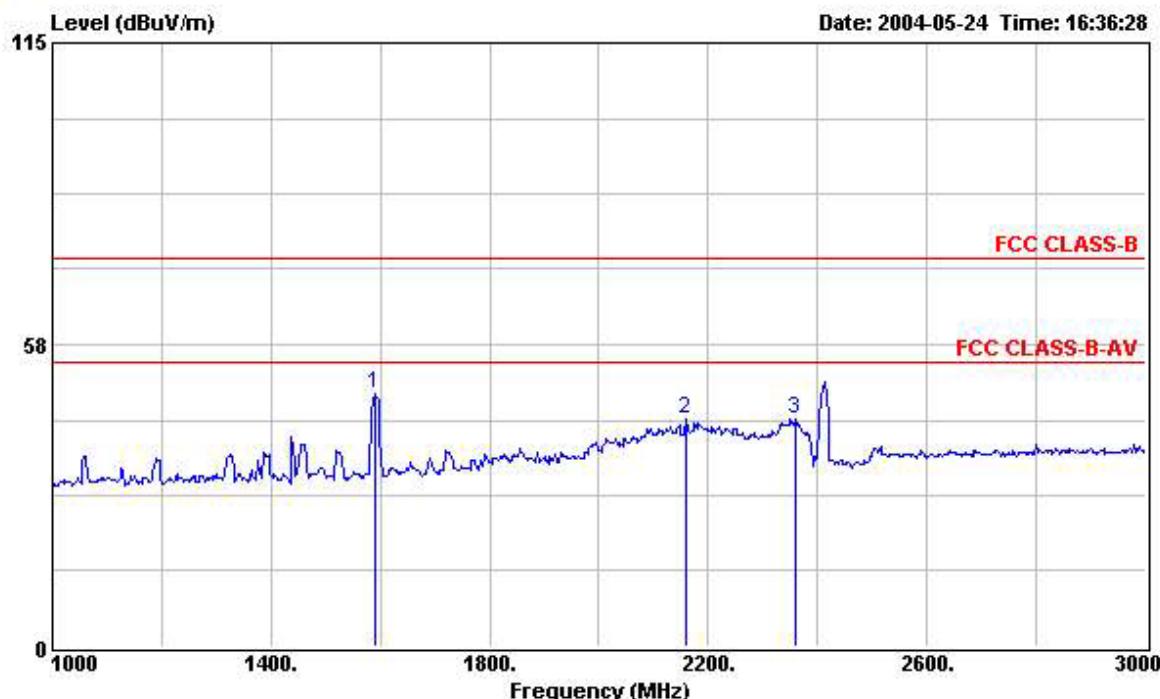
TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205

Page No. : 29 of 47

Issued Date : May 31, 2004



FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

Test Mode	Mode 1 (2412MHz)	Temperature	25 deg. C	Tested By	Steve Chen
Freq. Range	1GHz~25GHz	Humidity	65%		

(A) Polarization: Horizontal

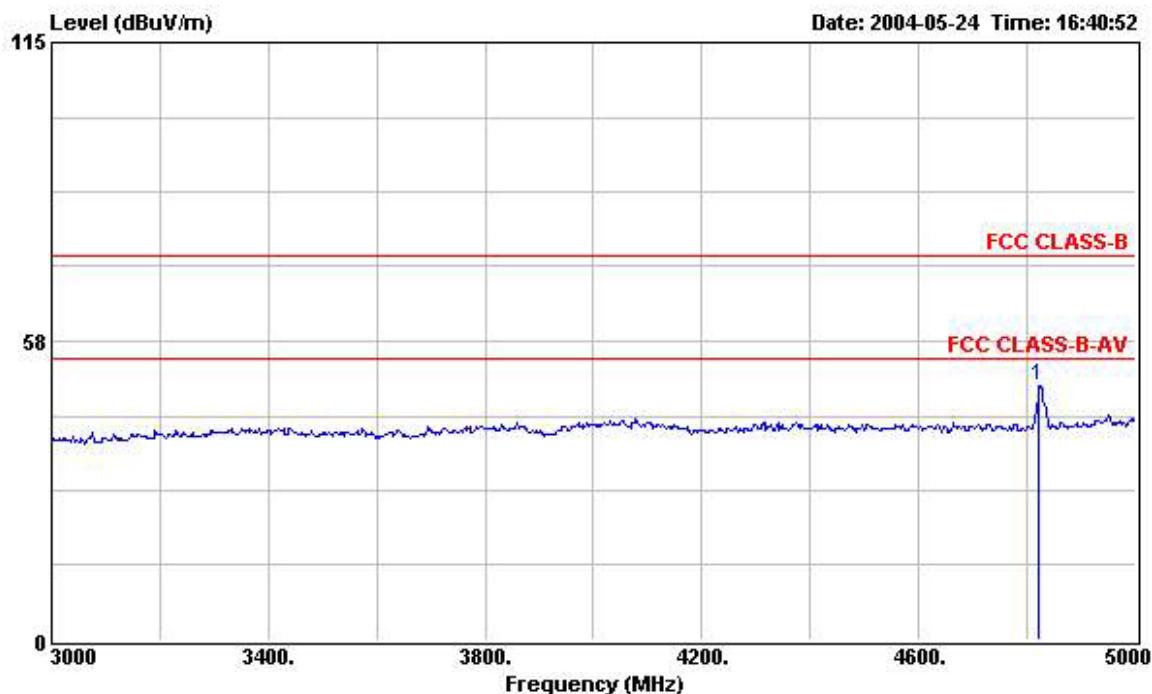
Freq	Level	Over	Limit	Read	Probe	Cable	Preamp	Ant	Table
		Limit	Line	Level	Factor	Loss	Factor		
		MHz	dBuV/m		dB	dBuV/m	dB	dB	dB
1	1590.000	48.23	-5.77	54.00	61.80	25.59	1.50	40.66	Average
2	2158.000	43.19	-10.81	54.00	54.97	27.53	1.69	41.00	Average
3	2358.000	43.49	-10.51	54.00	54.86	28.06	1.69	41.12	Average

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205


Page No. : 30 of 47

Issued Date : May 31, 2004

FCC ID: PANWL1205
Issued on May 31, 2004

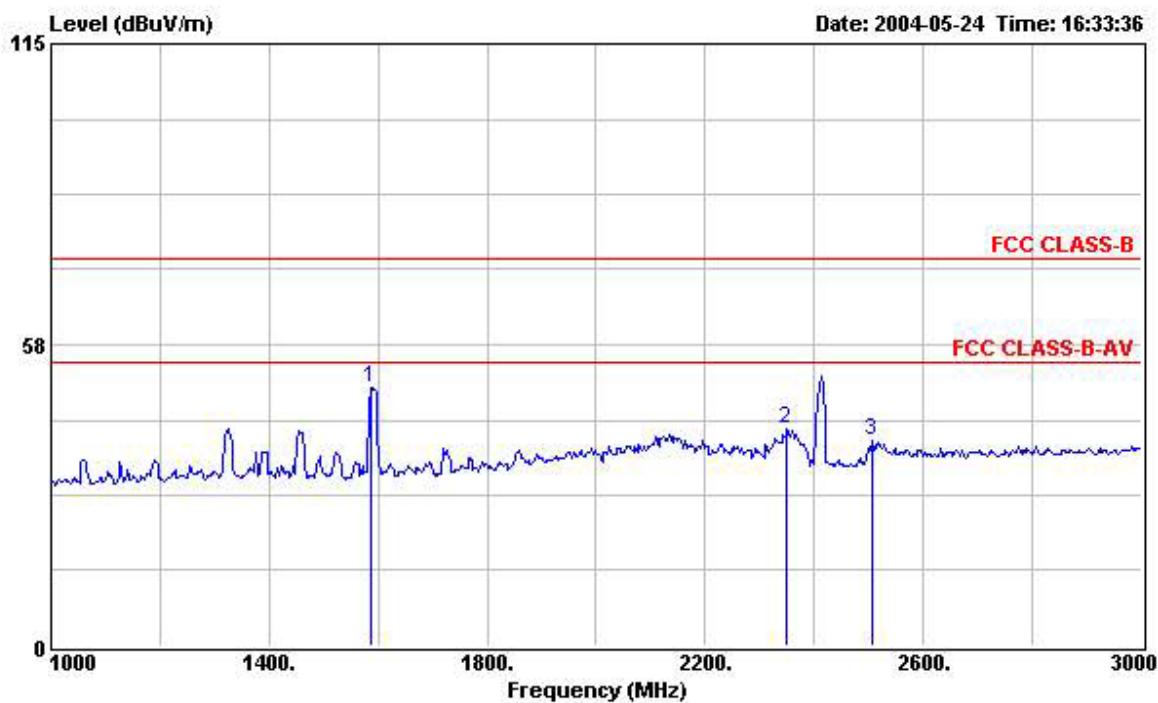
Report No.: F452108

Freq	Level	Over	Limit	Read	Probe	Cable	Preampl	Ant	Table	
		Line	Limit	Line	Factor	Loss	Factor			
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	cm	deg	
1	4822.000	49.03	-4.97	54.00	55.70	33.23	2.47	42.37	Average	---

SPORTON International Inc.

TEL : 886-2-2696-2468

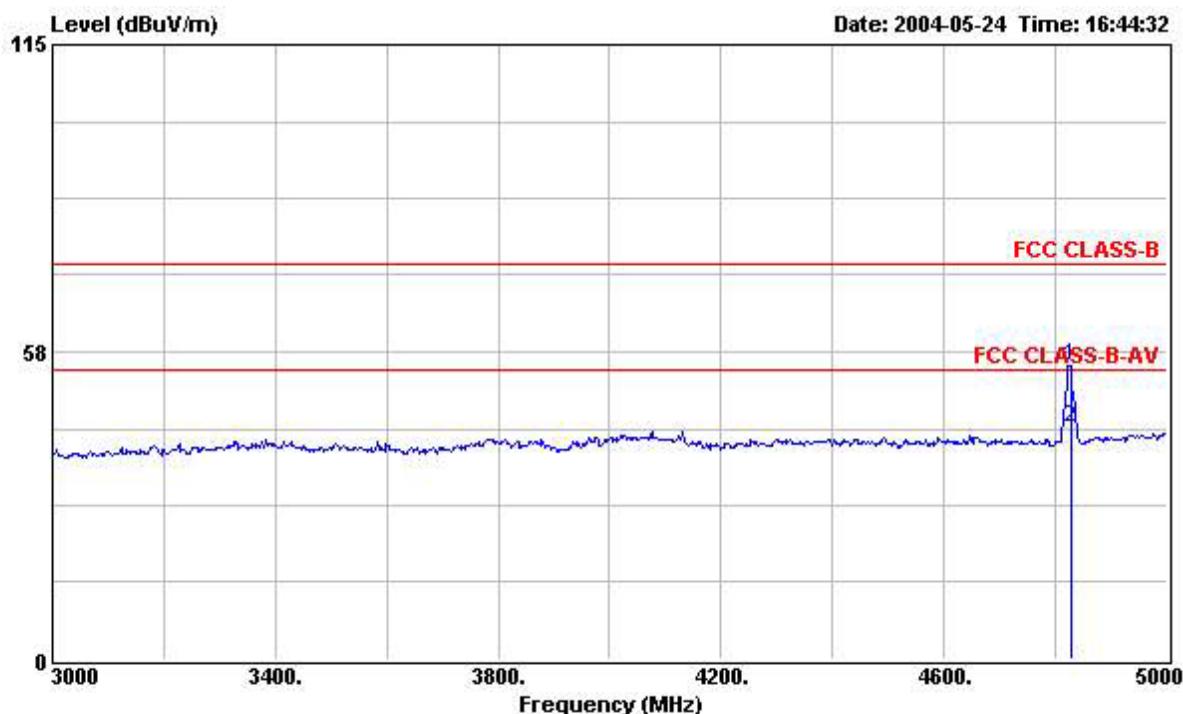
FAX : 886-2-2696-2255


FCC ID. : PANWL1205

Page No. : 31 of 47

Issued Date : May 31, 2004

(B) Polarization: Vertical



Freq	Level	Over Limit		Read Line	Probe Level	Cable Preamp		Ant	Table
		Limit	dB			Factor	Loss		
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	cm	deg
1	1588.000	49.29	-4.71	54.00	62.87	25.58	1.50	40.66	Average
2	2350.000	41.46	-12.54	54.00	52.86	28.04	1.68	41.12	Average
3	2508.000	39.26	-14.74	54.00	50.13	28.47	1.86	41.20	Average

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

Freq	Level	Over	Limit	Read	Probe	Cable	Preamp	Ant	Table
		Limit	Line	Level	Factor	Loss	Factor		
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	cm	deg
1	4828.000	55.00	-19.00	74.00	61.65	33.24	2.49	42.38	Peak
2	4828.000	43.26	-10.74	54.00	49.91	33.24	2.49	42.38	Average

SPORTON International Inc.

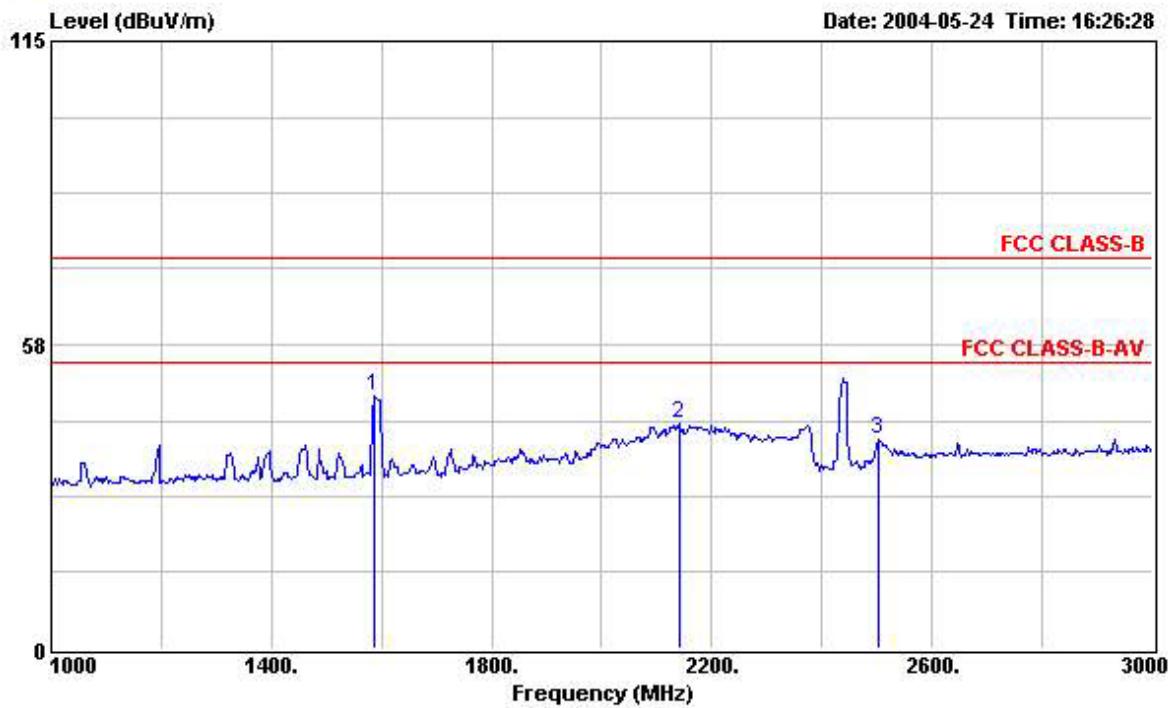
TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205

Page No. : 33 of 47

Issued Date : May 31, 2004



FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

Test Mode	Mode 2 (2437MHz)	Temperature	25 deg. C	Tested By	Steve Chen
Freq. Range	1GHz~25GHz	Humidity	65%		

(A) Polarization: Horizontal

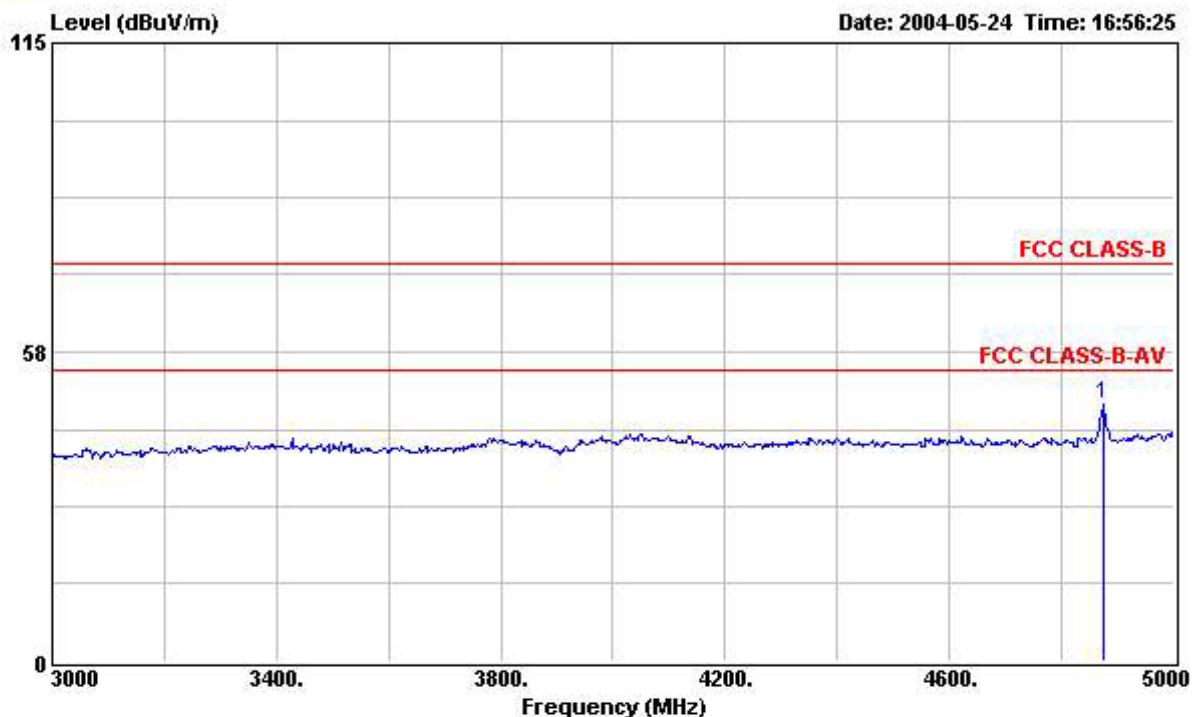
Freq	Level	Over	Limit	Read	Probe	Cable	Preamp	Ant	Table
		Limit	Line	Level	Factor	Loss	Factor		
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB
1	1588.000	47.73	-6.27	54.00	61.31	25.58	1.50	40.66	Average
2	2140.000	42.60	-11.40	54.00	54.42	27.48	1.69	40.99	Average
3	2502.000	39.47	-14.53	54.00	50.37	28.45	1.85	41.20	Average

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205


Page No. : 34 of 47

Issued Date : May 31, 2004

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

	Freq	Over Level	Limit	Limit	Read Line	Probe Level	Cable Factor	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB		cm	deg
1	4876.000	47.88	-6.12	54.00	54.45	33.35	2.52	42.44	Average	---	---

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205

Page No. : 35 of 47

Issued Date : May 31, 2004

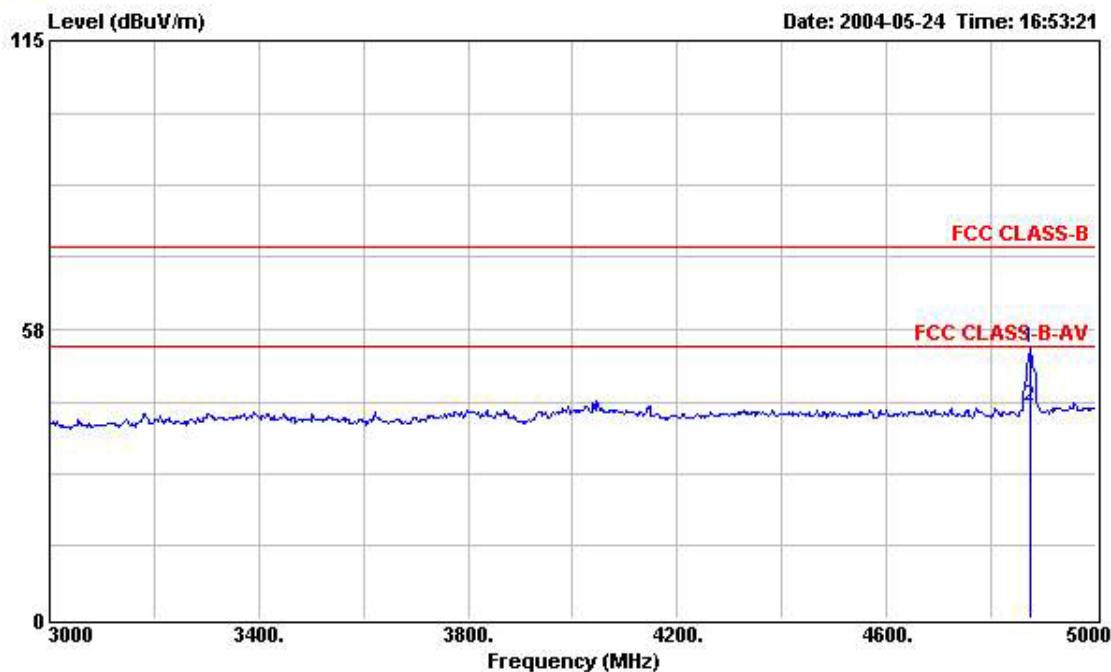
FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

(B) Polarization: Vertical

Freq	Level	Over	Limit	Read	Probe	Cable	Preamp	Ant	Table		
		Limit	Line	Level	Factor	Loss	Factor				
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	cm	deg		
1	1588.000	49.53	-4.47	54.00	63.11	25.58	1.50	40.66	Average	105	202
2	2366.000	40.13	-13.87	54.00	51.48	28.08	1.70	41.13	Average	---	---
3	2508.000	40.87	-13.13	54.00	51.74	28.47	1.86	41.20	Average	---	---

SPORTON International Inc.


TEL : 886-2-2696-2468
FAX : 886-2-2696-2255

FCC ID. : PANWL1205
Page No. : 36 of 47
Issued Date : May 31, 2004

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

Freq	Level	Over Limit		Read Line		Probe Factor	Cable Preamp		Remark	Ant Pos	Table Pos
		MHz	dBuV/m	dB	dBuV/m		dBuV	dB			
1	4876.000	53.84	-20.16	74.00	60.41	33.35	2.52	42.44	Peak	---	---
2	4876.000	42.09	-11.91	54.00	48.66	33.35	2.52	42.44	Average	---	---

SPORTON International Inc.

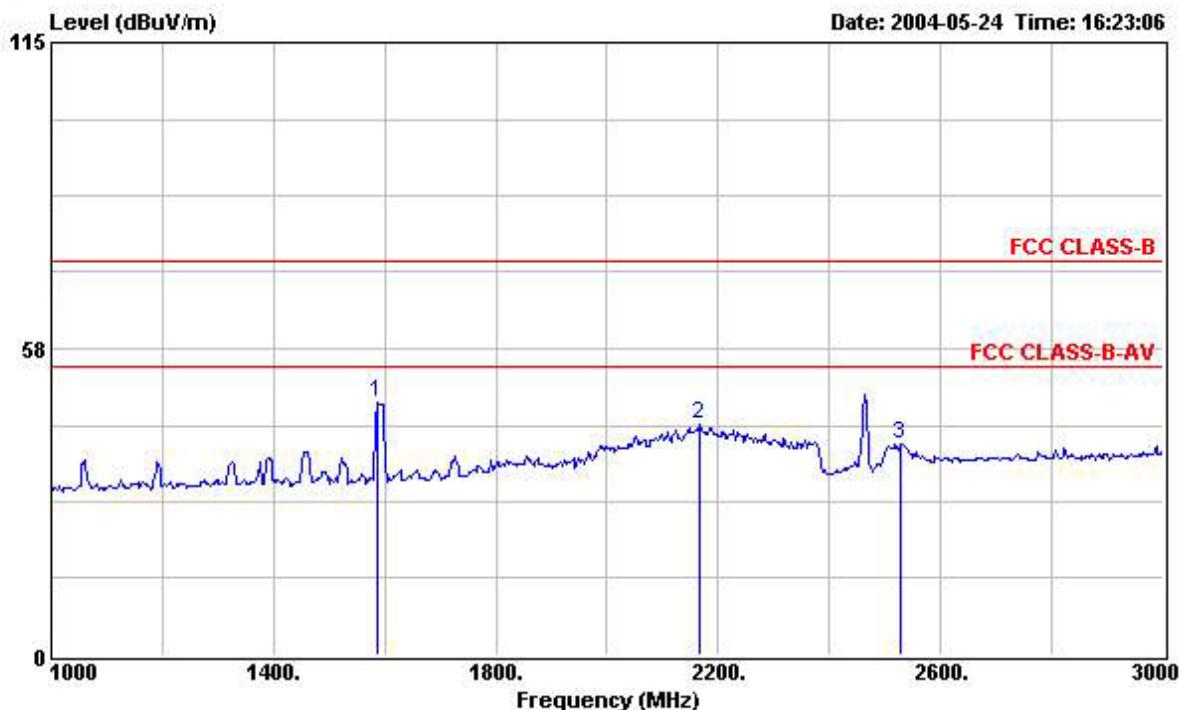
TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205

Page No. : 37 of 47

Issued Date : May 31, 2004



FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

Test Mode	Mode 3 (2462MHz)	Temperature	27 deg. C	Tested By	Steve Chen
Freq. Range	1GHz~25GHz	Humidity	63%		

(A) Polarization: Horizontal

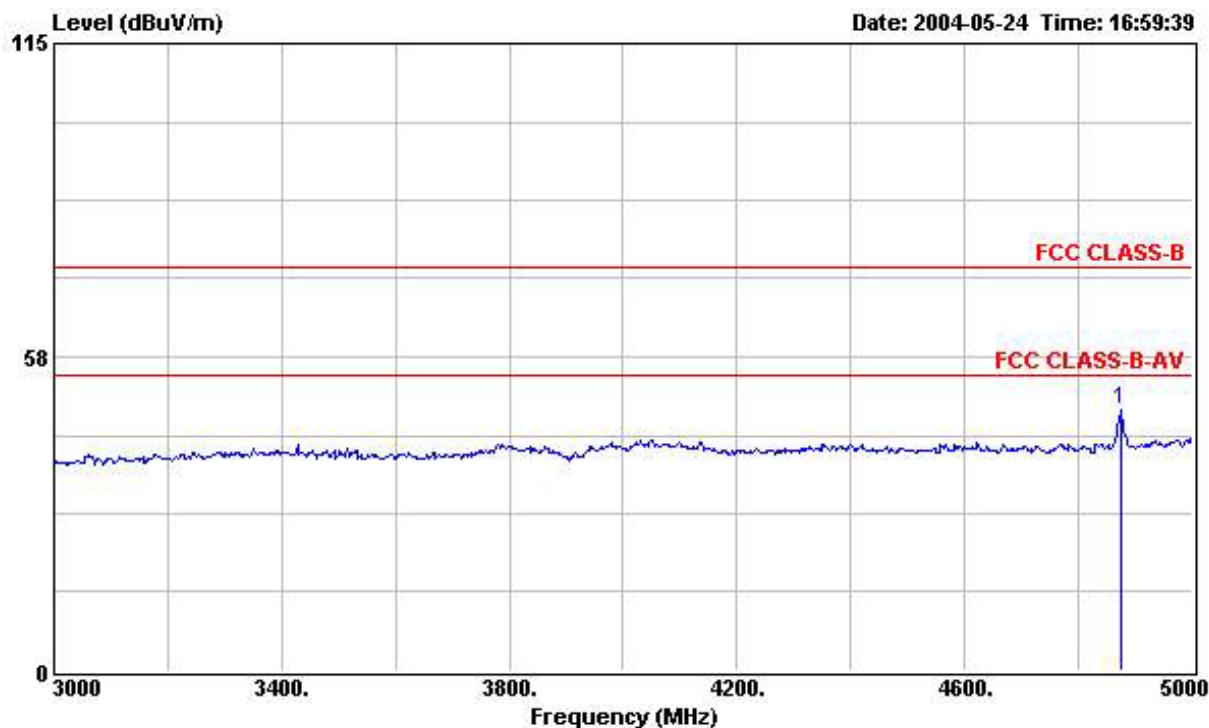
Freq	Level	Over Limit		Read Line	Probe Factor	Cable Preamp		Ant	Table	
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB		Pos	Table Pos
1	1588.000	47.52	-6.48	54.00	61.10	25.58	1.50	40.66	Average	---
2	2166.000	43.28	-10.72	54.00	55.05	27.55	1.69	41.01	Average	---
3	2526.000	39.76	-14.24	54.00	50.56	28.53	1.87	41.20	Average	---

SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205


Page No. : 38 of 47

Issued Date : May 31, 2004

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

	Freq	Level	Over Limit	Limit	Read Line	Probe Level	Cable Factor	Preamp Loss Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m		dB	dBuV/m	dBuV		dB		cm	deg
1	4876.000	47.88	-6.12	54.00	54.45	33.35	2.52	42.44	Average	---	---

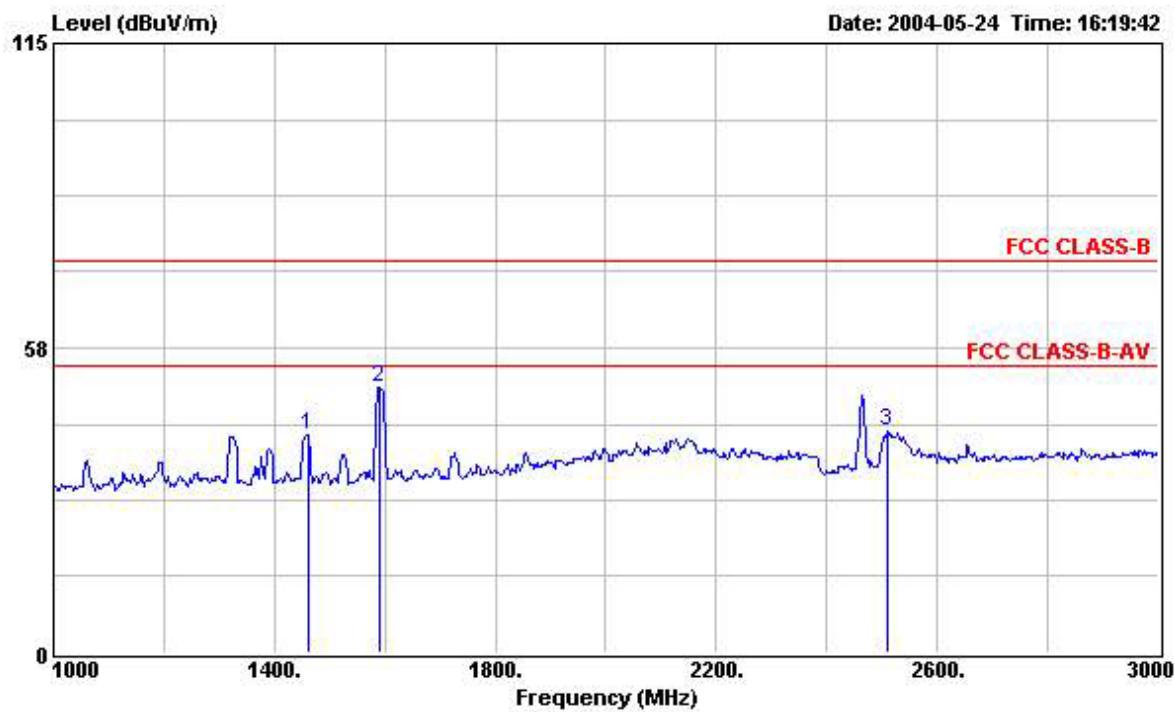
SPORTON International Inc.

TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205

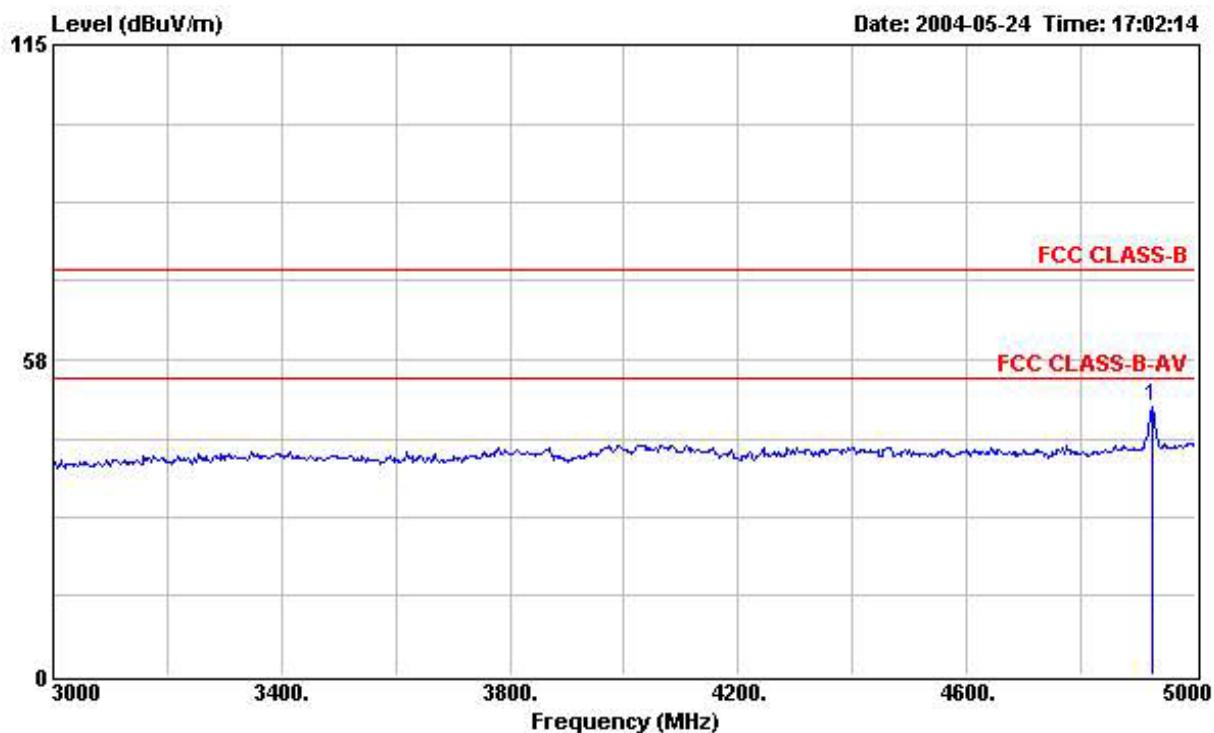
Page No. : 39 of 47


Issued Date : May 31, 2004

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

(B) Polarization: Vertical



Freq	Level	Over Limit	Limit	Read Line	Probe Level	Cable Factor	Preamp Factor	Remark	Ant	Table
									Pos	Pos
	MHz	dBuV/m		dB	dBuV/m	dBuV	dB	dB	cm	deg
1	1460.000	41.12	-12.88	54.00	55.10	25.13	1.46	40.57	Average	---
2	1590.000	50.13	-3.87	54.00	63.70	25.59	1.50	40.66	Average	102 217
3	2510.000	41.75	-12.25	54.00	52.62	28.47	1.86	41.20	Average	---

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

	Freq	Over Level	Limit	Read Line	Probe Level	Cable Factor	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB		cm	deg
1	4924.000	49.09	-4.91	54.00	55.67	33.46	2.47	42.51 Average	---	---

SPORTON International Inc.

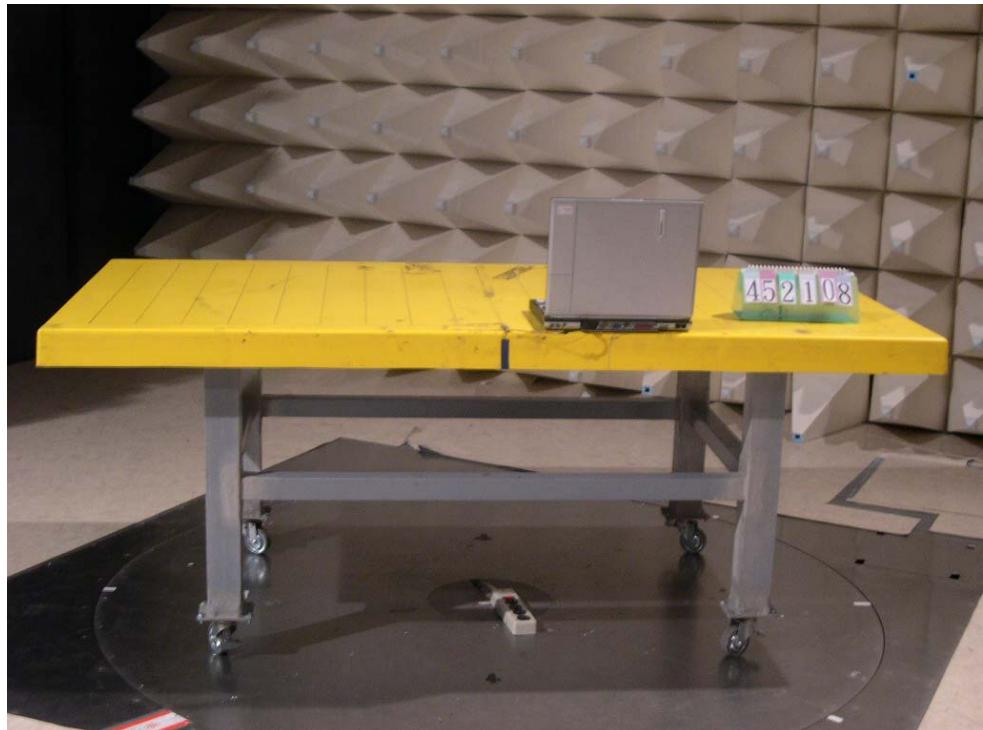
TEL : 886-2-2696-2468

FAX : 886-2-2696-2255

FCC ID. : PANWL1205

Page No. : 41 of 47

Issued Date : May 31, 2004


5.6.5 Photographs of Radiated Emission Test Configuration

- The photographs show the configuration that generates the maximum emission.

FRONT VIEW

REAR VIEW

5.7. Antenna Requirements

5.7.1 Standard Applicable

47 CFR Part15 Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

47 CFR Part15 Section 15.247 (b):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

5.7.2 Antenna Connected Construction

The antenna used in this product is on board chip antenna with reversed SMA connector. The gain of this antenna is 0dBi which is measured in our fully anechoic chamber.

5.8. RF Exposure

5.8.1. Limit For Maximum Permissible Exposure (MPE)

This product can be classified as mobile device, so the 20cm separation distance warning is required.

In this section, the power density at 20cm location is calculated to examine if it is lower than the limit.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

F = frequency in MHz

*Plane-wave equivalent power density

5.8.2. MPE Calculation Method

$$E \text{ (V/m)} = \frac{\sqrt{30 \times P \times G}}{d}$$

$$\text{Power Density: } Pd \text{ (mW/cm}^2\text{)} = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Peak RF output power (mW)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=20cm, as well as the gain of the used antenna, the RF power density can be obtained.

5.8.3. Calculated Result and Limit

Channel No.	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)
Channel 01	0	1	13.5	22.38	0.0044	1
Channel 10	0	1	13.3	21.38	0.0043	1
Channel 13	0	1	13.1	20.42	0.0041	1

From the calculated result shown in above table, the power density is lower than limit at location 20cm far away.

6. List of Measuring Equipments Used

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
1	EMC Receiver	R&S	ESCS 30	100132	9 KHz – 2.75 GHz	Jun. 12, 2003	Conduction (CO01-HY)
2	LISN	MessTec	NNB-2/16Z	2001/004	9 KHz – 30 MHz	Jun. 02, 2003	Conduction (CO01-HY)
3	LISN (Support Unit)	MessTec	NNB-2/16Z	99041	9 KHz – 30 MHz	Apr. 03, 2004	Conduction (CO01-HY)
4	EMI Filter	LINDGREN	LRE-2060	1004	< 450 Hz	N/A	Conduction (CO01-HY)
5	EMI Filter	LINDGREN	N6006	201052	0 ~ 60 Hz	N/A	Conduction (CO01-HY)
6	RF Cable-CON	Suhner Switzerland	RG223/U	CB029	9KHz~30MHz	Dec. 24, 2003	Conduction (CO01-HY)
7	50 ohm BNC type Terminal	NOBLE	50ohm	TM004	50 ohm	Apr. 07, 2004	Conduction (CO01-HY)
8	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz~1GHz 3m	Jun. 21, 2003	Radiation (03CH03-HY)
9	Spectrum analyzer	R&S	FSP40	100004	9KHZ~40GHz	Aug. 23, 2003	Radiation (03CH03-HY)
10	Amplifier	HP	8447D	2944A09072	100KHz – 1.3GHz	Nov. 05, 2003	Radiation (03CH03-HY)
11	Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30MHz –200MHz	Jul. 24, 2003	Radiation (03CH03-HY)
12	Log Antenna	SCHWARZBECK	VUSLP 9111	221	200MHz -1GHz	Jul. 24, 2003	Radiation (03CH03-HY)
13	RF Cable-R03m	Jye Bao	RG142	CB021	30MHz~1GHz	Dec. 03, 2003	Radiation (03CH03-HY)
14	Amplifier	MITEQ	AFS44	879981	100MHz~26.5GHz	Jul. 23, 2003	Radiation (03CH03-HY)
15	Horn Antenna	COM-POWER	3115	6821	1GHz – 18GHz	Sep. 12, 2003	Radiation (03CH03-HY)
16	Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
17	Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
18	Horn Antenna	Schwarzbeck	BBHA9170	154	15GHz~40GHz	Jun. 02, 2003	Radiation (03CH03-HY)
19	RF Cable-HIGH	Jye Bao	RG142	CB030-HIGH	1GHz~29.5GHz	Dec. 05, 2003	Radiation (03CH03-HY)

※ Calibration Interval of instruments listed above is one year.

FCC ID: PANWL1205
Issued on May 31, 2004

Report No.: F452108

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
20	Spectrum analyzer	R&S	FSP7	838858/014	9KHZ~7GHz	Sep. 03, 2003	Conducted
21	Power meter	R&S	NRVS	100444	DC~40GHz	May 28, 2003	Conducted
22	Power sensor	R&S	NRV-Z55	100049	DC~40GHz	May 28, 2003	Conducted
23	Power Sensor	R&S	NRV-Z32	100057	30MHz-6GHz	May 28, 2003	Conducted
24	AC power source	HPC	HPA-500W	HPA-9100024	AC 0~300V	May 27, 2003	Conducted
25	AC power source	G.W.	GPC-6030D	C671845	DC 1V~60V	Nov. 06, 2003	Conducted
26	Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2003	Conducted
27	RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz~7GHz	Jan. 01, 2004	Conducted
28	RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz~1GHz	Jan. 01, 2004	Conducted

※ Calibration Interval of instruments listed above is one year.