

**FCC Certification Test Report
for
Eka Systems, Inc.
FCC ID: P9X-EMS-H200**

May 31, 2002

Prepared for:

**Eka Systems, Inc.
444 N. Frederick Avenue, Suite 315
Gaithersburg, MD 20877**

Prepared By:

**Washington Laboratories, Ltd.
7560 Lindbergh Drive
Gaithersburg, Maryland 20879**

FCC Certification Test Program

FCC Certification Test Report for the Eka Systems, Inc. BlueMeter Hub FCC ID: P9X-EMS-H200

May 31, 2002

WLL JOB# 6959

Prepared by: Brian J. Dettling
Documentation Specialist

Reviewed by: Gregory M. Snyder
Chief EMC Engineer

Abstract

This report has been prepared on behalf of Eka Systems, Inc. to support the attached Application for Equipment Authorization. The test report and application are submitted for a Frequency Hopping Spread Spectrum Transmitter under Part 15.247 of the FCC Rules and Regulations. This Federal Communication Commission (FCC) Certification Test Report documents the test configuration and test results for the Eka Systems, Inc. BlueMeter Hub.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

The Eka Systems, Inc. BlueMeter Hub complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under Part 15.247 of the FCC Rules and Regulations.

Table of Contents

Abstract.....	ii
1 Introduction.....	1
1.1 Compliance Statement.....	1
1.2 Test Scope	1
1.3 Contract Information.....	1
1.4 Test Dates	1
1.5 Test and Support Personnel.....	1
1.6 Abbreviations.....	2
2 Equipment Under Test.....	3
2.1 EUT Identification & Description.....	3
2.2 Test Configuration.....	3
2.3 Testing Algorithm.....	3
2.4 Test Location.....	4
2.5 Measurements.....	4
2.5.1 References.....	4
2.6 Measurement Uncertainty.....	4
3 Test Equipment	5
4 Test Results	6
4.1 RF Power Output: (FCC Part §15.247(b)(1))	6
4.2 Occupied Bandwidth: (FCC Part §15.247(a)(1)(ii)).....	10
4.3 Power Spectral Density (FCC Part §15.247(d)).....	14
4.4 Spurious Emissions at Antenna Terminals (FCC Part §15.247(c))	14
4.5 Radiated Spurious Emissions: (FCC Part §15.247(c)).....	49
4.5.1 Test Procedure	49
5 Transmitter Environmental Assessment, Maximum Permissible Exposure (MPE).....	54
5.1 SCOPE.....	54
5.2 REFERENCE.....	54

List of Tables

Table 1. Device Summary	3
Table 2: Test Equipment List	5
Table 3: Conducted RF Power Output Results.....	6
Table 4. Occupied Bandwidth Results	10
Table 5. Power Spectral Density	14
Table 6. Conducted Spurious Emission Limits.....	15
Table 7: Radiated Emission Test Data (§15.205 Restricted Bands).....	51
Table 8. Evaluation of Maximum Permissible Exposure	54

List of Figures

Figure 1: Peak RF Power Output, Low	7
Figure 2: Peak RF Power Output, Mid	8
Figure 3: Peak RF Power Output, High	9
Figure 4. Occupied Bandwidth, Low	11
Figure 5. Occupied Bandwidth, Mid	12
Figure 6. Occupied Bandwidth, High	13
Figure 7: Conducted Spurious Emissions, Low Band, Plot 1.....	16
Figure 8: Conducted Spurious Emissions, Low Band, Plot 2.....	17
Figure 9: Conducted Spurious Emissions, Low Band, Plot 3.....	18
Figure 10: Conducted Spurious Emissions, Low Band, Plot 4.....	19
Figure 11: Conducted Spurious Emissions, Low Band, Plot 5.....	20
Figure 12: Conducted Spurious Emissions, Low Band, Plot 6.....	21
Figure 13: Conducted Spurious Emissions, Low Band, Plot 7.....	22
Figure 14: Conducted Spurious Emissions, Low Band, Plot 8.....	23
Figure 15: Conducted Spurious Emissions, Low Band, Plot 9.....	24
Figure 16: Conducted Spurious Emissions, Low Band, Plot 10.....	25
Figure 17: Conducted Spurious Emissions, Low Band, Plot 11.....	26
Figure 18: Conducted Spurious Emissions, Mid Band, Plot 1	27
Figure 19: Conducted Spurious Emissions, Mid Band, Plot 2	28
Figure 20: Conducted Spurious Emissions, Mid Band, Plot 3	29
Figure 21: Conducted Spurious Emissions, Mid Band, Plot 4	30
Figure 22: Conducted Spurious Emissions, Mid Band, Plot 5	31
Figure 23: Conducted Spurious Emissions, Mid Band, Plot 6	32
Figure 24: Conducted Spurious Emissions, Mid Band, Plot 7	33
Figure 25: Conducted Spurious Emissions, Mid Band, Plot 8	34
Figure 26: Conducted Spurious Emissions, Mid Band, Plot 9	35
Figure 27: Conducted Spurious Emissions, Mid Band, Plot 10	36
Figure 28: Conducted Spurious Emissions, Mid Band, Plot 11	37
Figure 29: Conducted Spurious Emissions, High Band, Plot 1.....	38
Figure 30: Conducted Spurious Emissions, High Band, Plot 2.....	39
Figure 31: Conducted Spurious Emissions, High Band, Plot 3.....	40
Figure 32: Conducted Spurious Emissions, High Band, Plot 4.....	41
Figure 33: Conducted Spurious Emissions, High Band, Plot 5.....	42
Figure 34: Conducted Spurious Emissions, High Band, Plot 6.....	43
Figure 35: Conducted Spurious Emissions, High Band, Plot 7.....	44
Figure 36: Conducted Spurious Emissions, High Band, Plot 8.....	45
Figure 37: Conducted Spurious Emissions, High Band, Plot 9.....	46
Figure 38: Conducted Spurious Emissions, High Band, Plot 10.....	47

Figure 39: Conducted Spurious Emissions, High Band, Plot 12.....48

1 Introduction

1.1 Compliance Statement

The Eka Systems, Inc. BlueMeter Hub complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under Part 15.247 of the FCC Rules and Regulations.

1.2 Test Scope

Tests for radiated and conducted spurious emissions were performed. All measurements were performed according to the 1992 version of ANSI C63.4. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer:	Eka Systems, Inc. 444 N. Frederick Avenue, Suite 315 Gaithersburg, MD 20877
Purchase Order Number:	20035
Quotation Number:	59515

1.4 Test Dates

Testing was performed from February 19, 2002 to March 21, 2002.

1.5 Test and Support Personnel

Washington Laboratories, LTD	Steve Koster
Customer	Tzeta Tsau

1.6 Abbreviations

A	Ampere
Ac	alternating current
AM	Amplitude Modulation
Amps	Amperes
b/s	bits per second
BW	Bandwidth
CE	Conducted Emission
cm	centimeter
CW	Continuous Wave
dB	decibel
dc	direct current
EMI	Electromagnetic Interference
EUT	Equipment Under Test
FM	Frequency Modulation
G	giga - prefix for 10^9 multiplier
Hz	Hertz
IF	Intermediate Frequency
k	kilo - prefix for 10^3 multiplier
M	Mega - prefix for 10^6 multiplier
m	Meter
μ	micro - prefix for 10^{-6} multiplier
NB	Narrowband
LISN	Line Impedance Stabilization Network
RE	Radiated Emissions
RF	Radio Frequency
rms	root-mean-square
SN	Serial Number
S/A	Spectrum Analyzer
V	Volt

2 Equipment Under Test

2.1 EUT Identification & Description

The BlueMeter Hub communicates and collects data from up to 64 electricity meters. The BlueMeter Hub is composed of two major components: an embedded computer and a wireless module. The embedded computer is the hardware of a router which is configured with proprietary software. The wireless module uses a Bluetooth transceiver and interfaces to the embedded computer through an RS-232 interface. The transceiver performs spectrum spreading by frequency hopping in 79 frequencies that are displaced by 1 MHz, between 2.402GHz and 2.480GHz. All 79 channels are equally used. The channel is divided into time slots, with a nominal slot length of 625µs, where each slot corresponds to different RF hop frequencies thus the dwell time on any one channel is 625us.

Table 1. Device Summary

ITEM	DESCRIPTION
Manufacturer:	Eka Systems, Inc.
FCC ID Number	P9X-EMS-H200
EUT Name:	Hub
Model:	BlueMeter
FCC Rule Parts:	§15.247
Frequency Range:	2.402 – 2.480 GHz
Maximum Output Power:	11.17dBm, Conducted Power
Modulation:	GFSK
Occupied Bandwidth:	960 kHz
Keying:	Automatic
Type of Information:	Data
Number of Channels:	79
Power Output Level	Fixed
Antenna Type	Permanently attached monopole
Interface Cables:	(DB-9) RS-232 Port
Power Source & Voltage:	120VAC

2.2 Test Configuration

The BlueMeter Hub was configured with a support PC that was powered from 120VAC power.

2.3 Testing Algorithm

The BlueMeter was operated continuously by being set to transmit on three different channels; 2402, 2441, and 2480 MHz. The functions were controlled by CSR Blue test software v. 1.4 installed on the PC.

Worst case emission levels are provided in the test results data.

2.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

2.5 Measurements

2.5.1 References

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

FCC Public Notice DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems; Released March 30, 2000

2.6 Measurement Uncertainty

All results reported herein relate only to the equipment tested. For the purposes of the measurements performed by Washington Laboratories, the measurement uncertainty is ± 2.3 dB. This has been calculated for a *worst-case situation* (radiated emissions measurements performed on an open area test site).

The following measurement uncertainty calculation is provided:

$$\text{Total Uncertainty} = (A^2 + B^2 + C^2)^{1/2}/(n-1)$$

where:

A = Antenna calibration uncertainty, in dB = 2 dB

B = Spectrum Analyzer uncertainty, in dB = 1 dB

C = Site uncertainty, in dB = 4 dB

n = number of factors in uncertainty calculation = 3

Thus, Total Uncertainty = $0.5 (2^2 + 1^2 + 4^2)^{1/2} = \pm 2.3$ dB.

3 Test Equipment

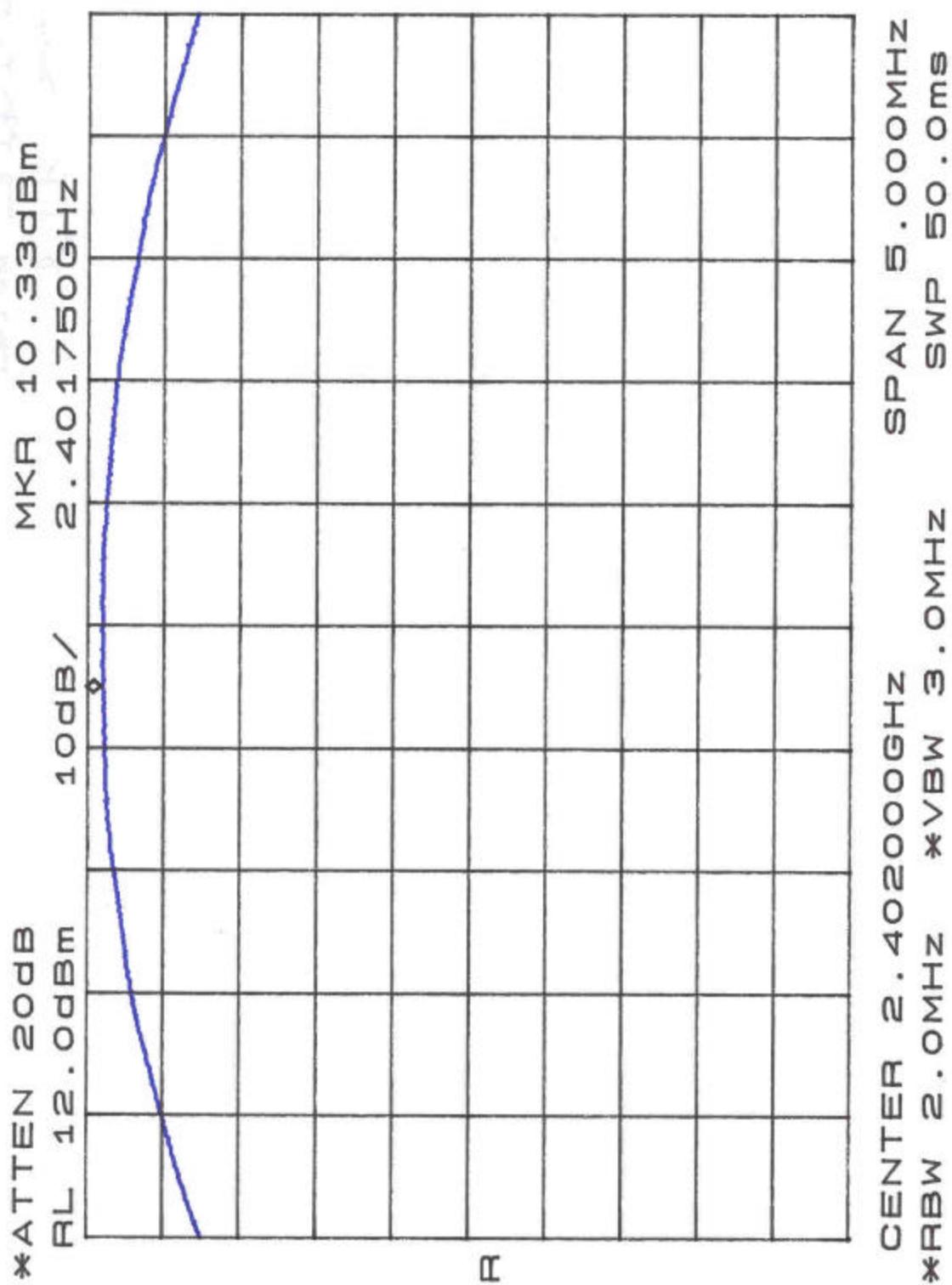
Table 2 shows a list of the test equipment used for measurements along with the calibration information.

Table 2: Test Equipment List

Manufacturer & Model	Description	Serial Number	Property Number	Date Calibrated	Calibration Due Date
Antenna Research Associates DRG-118/A	Horn Antenna	1010	00004	10/20/01	10/20/02
Antenna Research Associates LPB-2520	Biconilog Antenna Site 2	1118		5/15/01	5/15/02
Hewlett Packard 8449B	Pre-Amplifier	3008A00729	00066	1/31/02	1/31/03
Hewlett Packard 8564E	Spectrum Analyzer	3643A00657	00067	4/11/01	4/11/02
Hewlett Packard 85650A	Q.P. Adapter (Site 2)	2811A01283	00068	6/29/01	6/29/02
Hewlett Packard 85685A	RF Preselector (Site 2)	3221A01395	00071	6/28/01	6/28/02
Hewlett Packard 8568B	Spectrum Analyzer (Site 2)	2928A04750	00072	6/29/01	6/29/02
Hewlett Packard 8593A	Spectrum Analyzer	3009A00739	00074	5/10/01	5/10/02
Solar Electronics 8012-50-R-24-BNC	LISN	8379493	00124	8/15/01	8/15/02

4 Test Results

4.1 RF Power Output: (FCC Part §15.247(b)(1))


The output from the transmitter was fitted with a coaxial connector and connected to an attenuator and then to the input of the HP8564E RF Spectrum Analyzer. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system. For the power measurement, the resolution bandwidth was set to 2MHz and the video bandwidth was set to 3MHz.

The transmitter was then set to the low, middle and high channels, individually, and the conducted transmitted power was measured. The following table lists the conducted power measurements.

Table 3: Conducted RF Power Output Results

Channel Frequency (MHz)	Measured Power (dBm)	Limit (dBm)	Pass/Fail
2402	10.33	30	Pass
2441	11.17	30	Pass
2480	10.50	30	Pass

Figure 1 through Figure 3 show the peak conducted power at Low, Mid, and High channels respectively.

Figure 1: Peak RF Power Output, Low

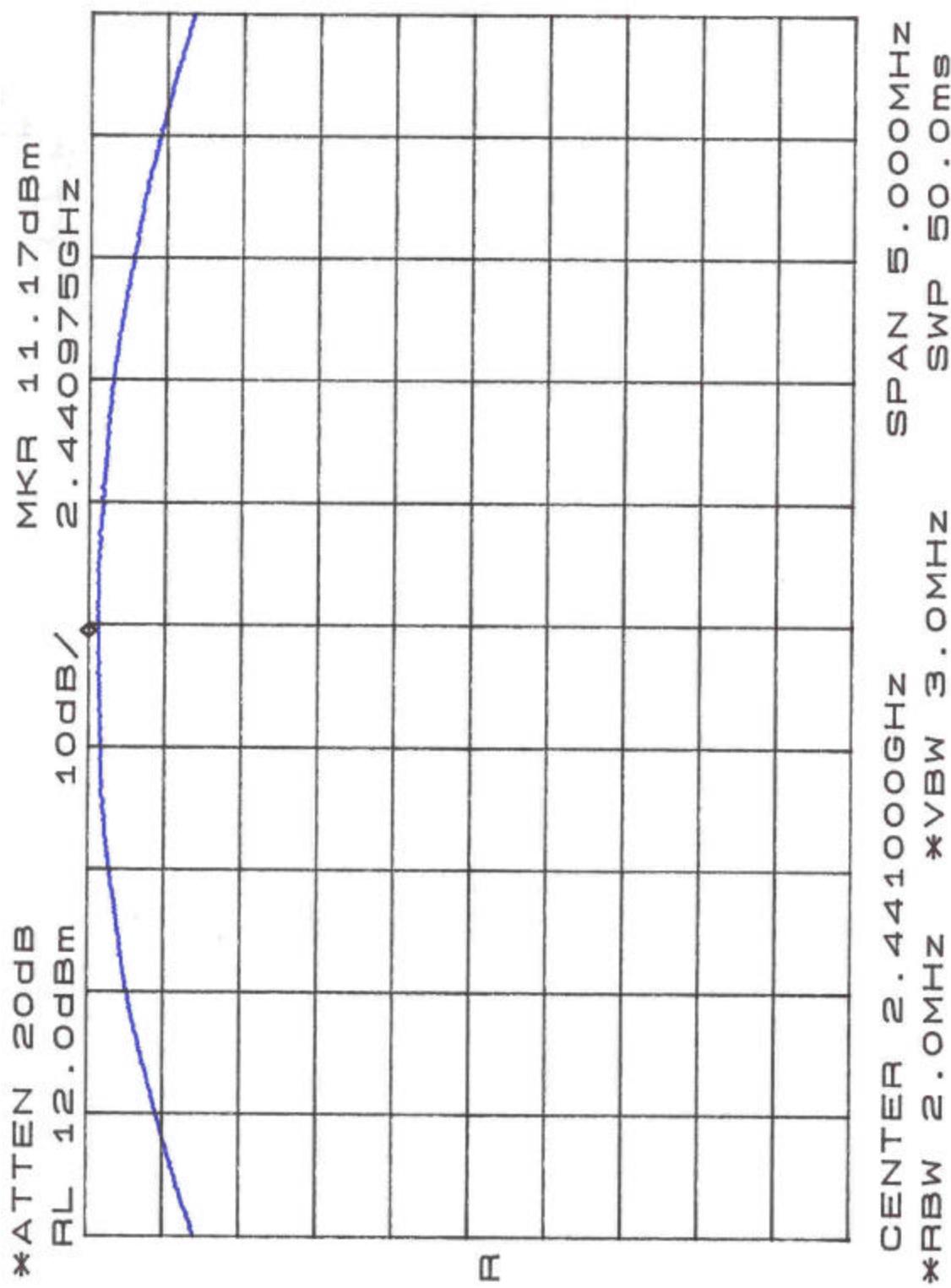


Figure 2: Peak RF Power Output, Mid

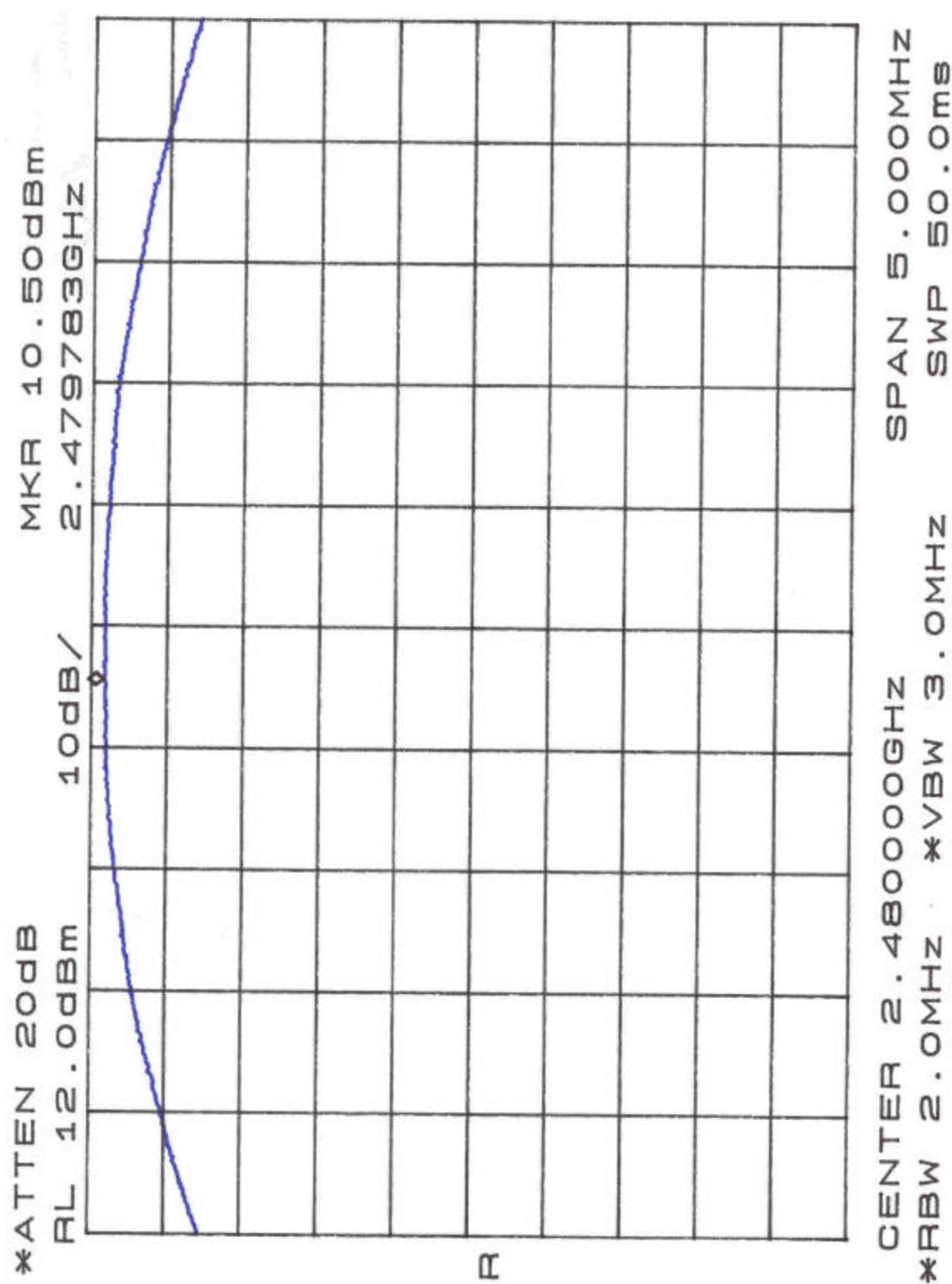


Figure 3: Peak RF Power Output, High

4.2 Occupied Bandwidth: (FCC Part §15.247(a)(1)(ii))

The antenna was replaced with a coaxial. Occupied bandwidth measurement was performed by direct connection of the output of the EUT to the input of a spectrum analyzer.

For Frequency Hopping Spread Spectrum Systems, FCC Part 15.247 requires the maximum 20 dB bandwidth be no greater than 1 MHz.

At full modulation, the occupied bandwidth was measured for the low, middle and high channels. Figure 4 through Figure 6 are plots of the 20 dB bandwidth measurement results.

Table 4 provides a summary of the Occupied Bandwidth Results.

Table 4. Occupied Bandwidth Results

Frequency	Bandwidth (MHz)	Limit (MHz)	Pass/Fail
Low Channel 2402 MHz	0.960	1	Pass
Mid Channel 2441 MHz	0.913	1	Pass
High Channel 2480 MHz	0.902	1	Pass

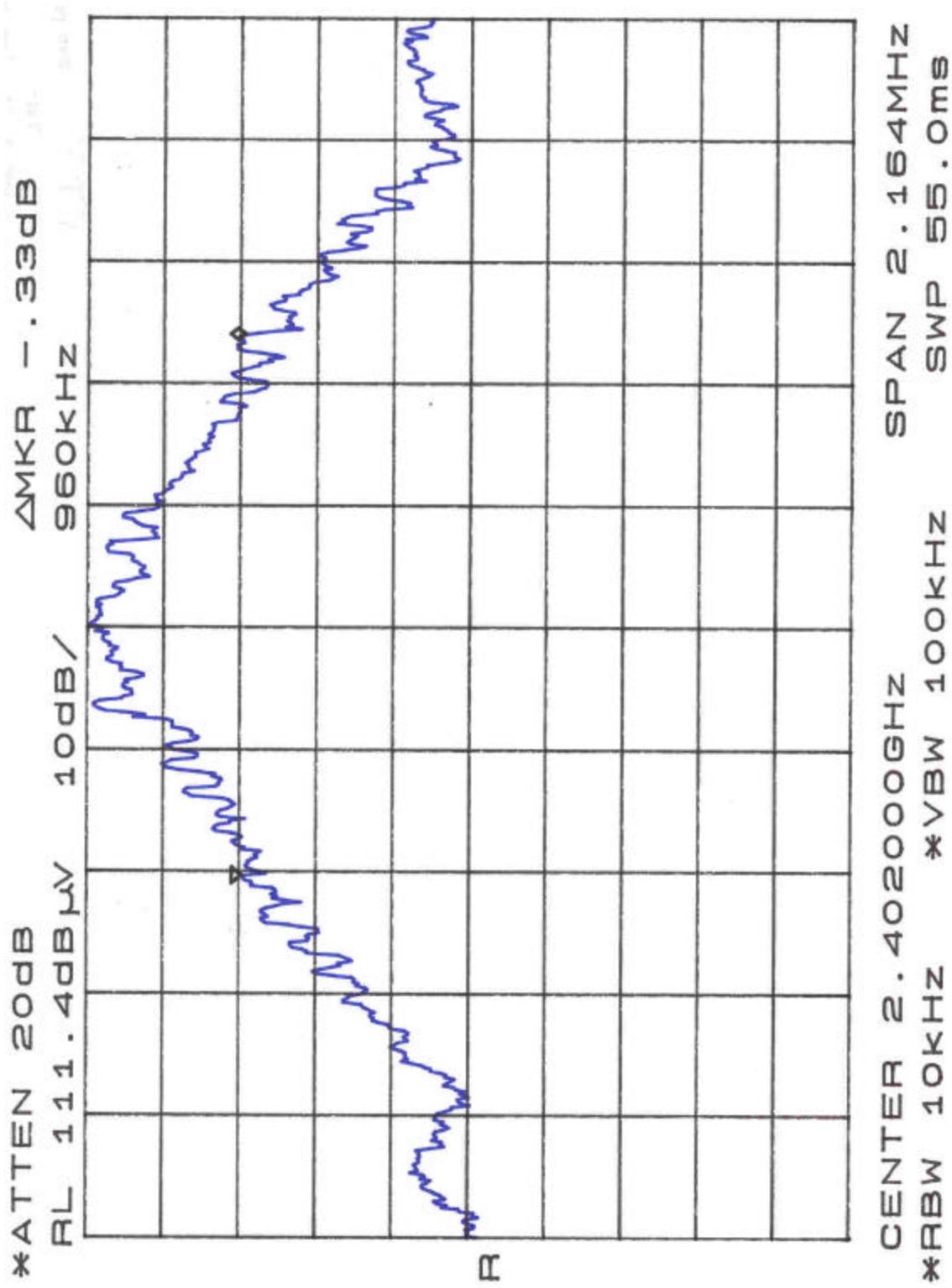


Figure 4. Occupied Bandwidth, Low

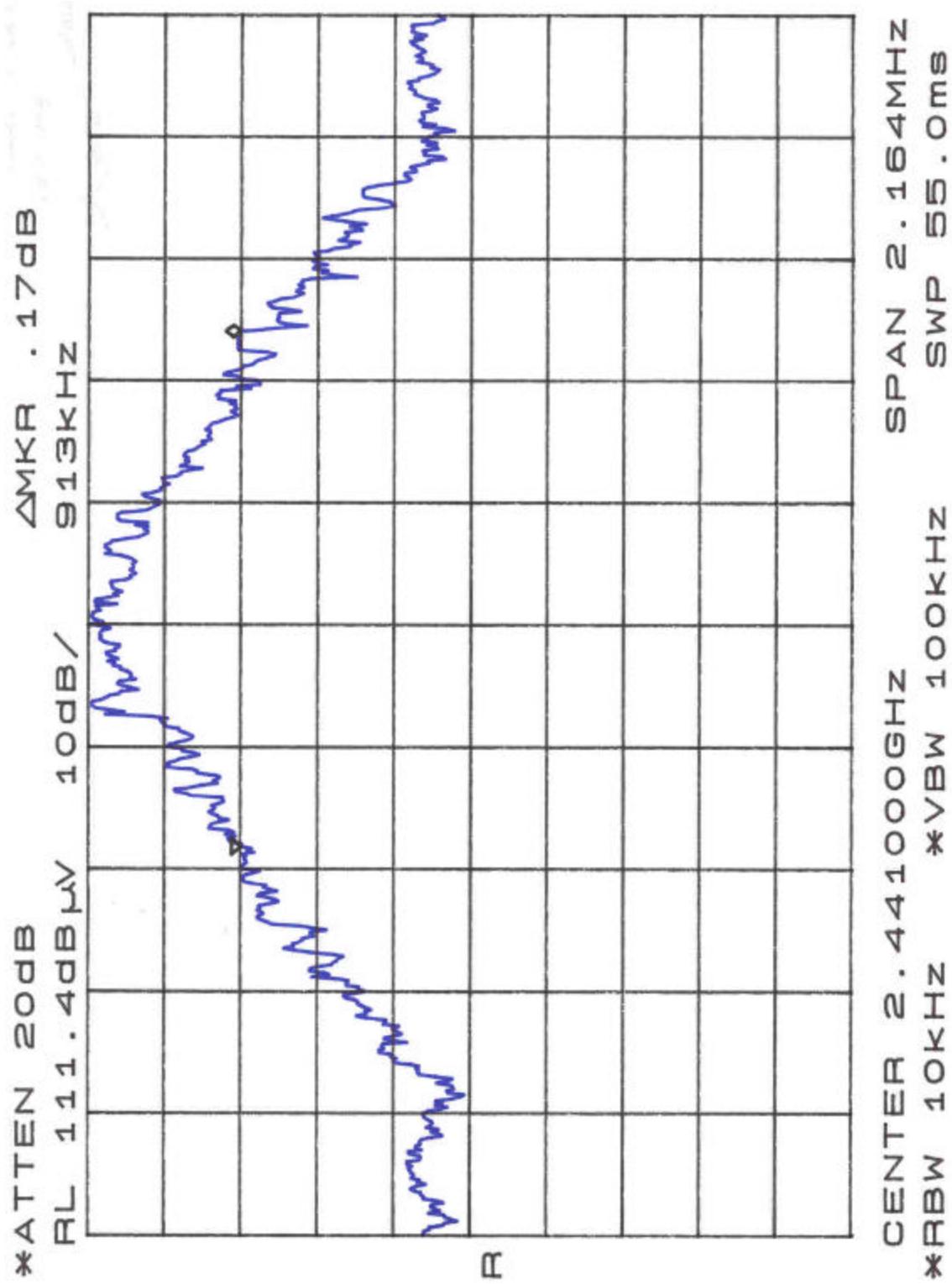


Figure 5. Occupied Bandwidth, Mid

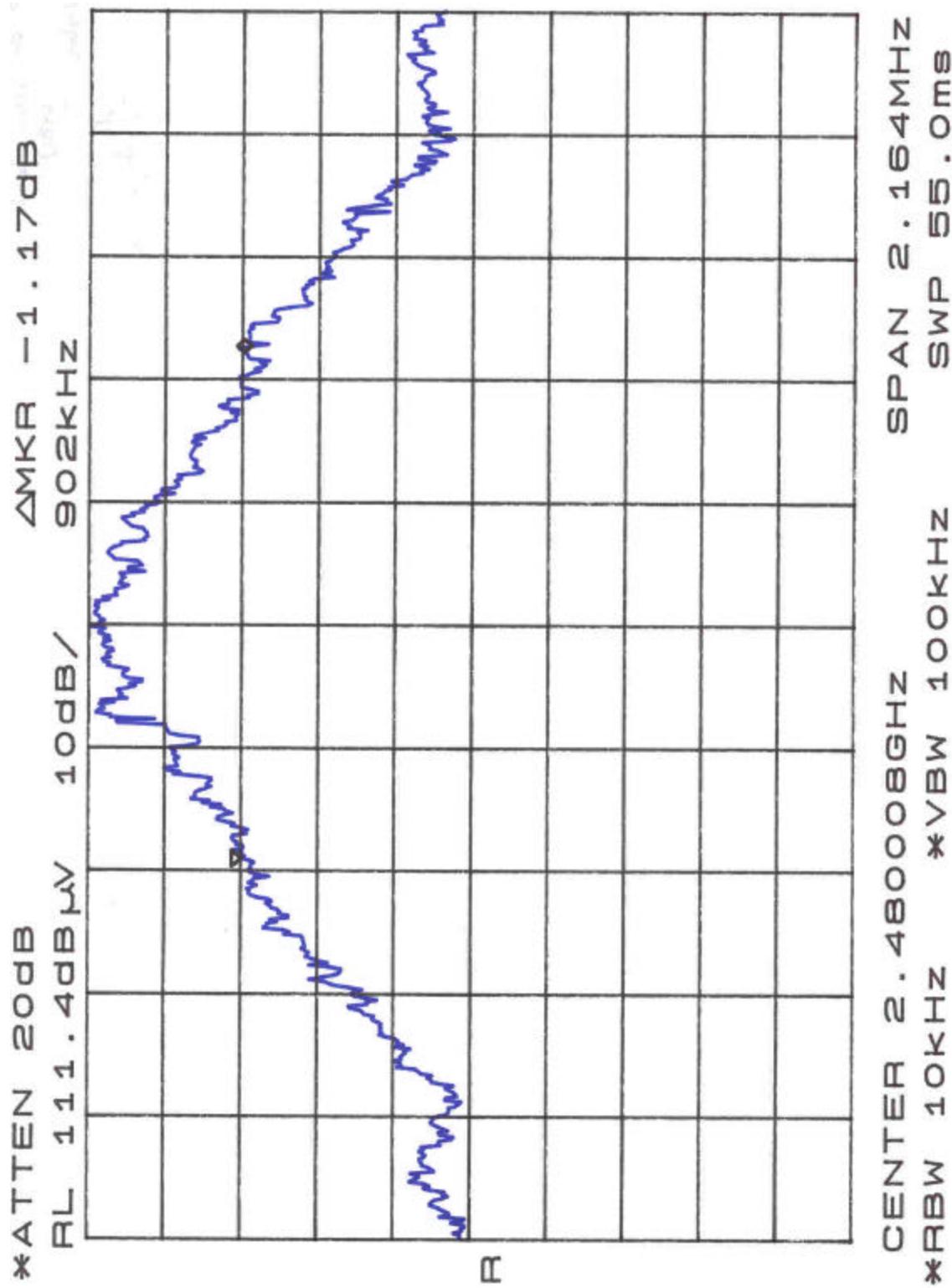


Figure 6. Occupied Bandwidth, High

4.3 Power Spectral Density (FCC Part §15.247(d))

As the Bluetooth device is a hybrid type spread spectrum transmitter it is required to comply with the Power Spectral Density requirements while in the acquisition mode.

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system. The spectrum analyzer had the following settings:

- Resolution Bandwidth: 3 kHz
- Video Bandwidth: 10 kHz
- Sweep Time: 100 seconds
- Span: 300 kHz

The unit was then placed in the acquisition mode and the power spectral density was measured. Table 5 provides the worst case test results for the measured power spectral density while in the acquisition mode.

Table 5. Power Spectral Density

Frequency	Level	Limit	Pass/Fail
2402 MHz	-1.5 dBm	8 dBm	Pass

4.4 Spurious Emissions at Antenna Terminals (FCC Part §15.247(c))

The EUT must comply with requirements for spurious emissions at antenna terminals. In any 100kHz band outside of the spread spectrum operating frequency all spurious emissions must be at least 20 dB below the highest emission level within the band as found with a 100kHz bandwidth.

Testing for spurious emissions was performed as a conducted test. Measurements of the peak levels in a 100kHz bandwidth for the low, middle and high channels and the limits for the conducted spurious emissions are listed in the following table.

For the purpose of this testing the hopping was stopped and the transmitter was set to continuously transmit.

Table 6. Conducted Spurious Emission Limits

Frequency (MHz)	100kHz Fundamental Level (dBm)	Harmonic Limit (20 dBc) (dBm)
Low Channel (2402)		
Fundamental	10.50	
Harmonics		-9.5
Mid Channel (2441)		
Fundamental	10.33	
Harmonics		-9.7
High Channel (2480)		
Fundamental	9.81	
Harmonics		-10.2

Test results for the conducted spurious emissions for the low, middle and high channels are included in the plots contained in Figure 7 through Figure 39.