

ENGINEERING TEST REPORT

**ART 400 Series Radio Modem
Model No.: ART400TR, (400T), (400R)
FCC ID: P8W-ART400**

Applicant:

**RF Data Tec
27 - 29 New Road, Hextable
Nr. Swanley, Kent
UK, BR8 7LS**

Tested in Accordance With

**Federal Communications Commission (FCC)
47 CFR, PARTS 2 and 90 (Subpart I)**

UltraTech's File No.: RFD1-FTX

This Test report is Issued under the Authority of
Tri M. Luu, Professional Engineer,
Vice President of Engineering
UltraTech Group of Labs

Date: March 28, 2002

Report Prepared by: Dan Huynh

Tested by: Mr. Hung Trinh, EMI/RFI Technician

Issued Date: March 22, 2002

Test Dates: April 2 - 8, 2001

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Telephone (905) 829-1570 Facsimile (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com

TABLE OF CONTENTS

EXHIBIT 1. SUBMITTAL CHECK LIST.....	1
EXHIBIT 2. INTRODUCTION	2
2.1. SCOPE	2
2.2. RELATED SUBMITTAL(S)/GRANT(S).....	2
2.3. NORMATIVE REFERENCES	2
EXHIBIT 3. PERFORMANCE ASSESSMENT	3
3.1. CLIENT INFORMATION	3
3.2. EQUIPMENT UNDER TEST (EUT) INFORMATION	3
3.3. EUT'S TECHNICAL SPECIFICATIONS	4
3.4. LIST OF EUT'S PORTS.....	5
EXHIBIT 4. EUT OPERATION CONDITIONS AND CONFIGURATIONS DURING TESTS	6
4.1. CLIMATE TEST CONDITIONS.....	6
4.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS.....	6
EXHIBIT 5. SUMMARY OF TEST RESULTS	7
5.1. LOCATION OF TESTS	7
5.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	7
5.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	7
5.4. DEVIATION OF STANDARD TEST PROCEDURES	7
EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS.....	8
6.1. TEST PROCEDURES	8
6.2. MEASUREMENT UNCERTAINTIES	8
6.3. MEASUREMENT EQUIPMENT USED	8
6.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER.....	8
6.5. RF POWER OUTPUT [47 CFR 2.1046 & 90.205]	9
6.5.1. <i>Limits</i>	9
6.5.2. <i>Method of Measurements</i>	9
6.5.3. <i>Test Equipment List</i>	9
6.5.4. <i>Test Arrangement</i>	9
6.5.5. <i>Test Data</i>	9
6.6. RF EXPOSURE REQUIREMENTS [47 CFR 1.1310 & 2.1091].....	10
6.6.1. <i>Limits</i>	10
6.6.2. <i>Method of Measurements</i>	10
6.6.3. <i>Test Data</i>	12
6.7. FREQUENCY STABILITY [47 CFR 2.1055 & 90.213]	13
6.7.1. <i>Limits</i>	13
6.7.2. <i>Method of Measurements</i>	13
6.7.3. <i>Test Equipment List</i>	13
6.7.4. <i>Test Arrangement</i>	13
6.7.5. <i>Test Data</i>	14

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.8. MODULATION LIMITING [47 CFR 2.1047(B) & 90.210].....	15
6.8.1. <i>Limits</i>	15
6.8.2. <i>Method of Measurements</i>	15
6.8.3. <i>Test Equipment List</i>	15
6.8.4. <i>Test Arrangement</i>	15
6.8.5. <i>Test Data</i>	15
6.9. EMISSION MASK [47 CFR 2.1049, 90.209 & 90.210]	16
6.9.1. <i>Limits</i>	16
6.9.2. <i>Method of Measurements</i>	16
6.9.3. <i>Test Equipment List</i>	16
6.9.4. <i>Test Arrangement</i>	16
6.9.5. <i>Test Data</i>	16
6.10. TRANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [47 CFR 90.210].....	17
6.10.1. <i>Limits</i>	17
6.10.2. <i>Method of Measurements</i>	17
6.10.3. <i>Test Equipment List</i>	17
6.10.4. <i>Test Arrangement</i>	17
6.10.5. <i>Test Data</i>	18
6.11. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [47 CFR 90.210]	19
6.11.1. <i>Limits</i>	19
6.11.2. <i>Method of Measurements</i>	19
6.11.3. <i>Test Equipment List</i>	19
6.11.4. <i>Test Arrangement</i>	20
6.11.5. <i>Test Data</i>	20
6.12. TRANSIENT FREQUENCY BEHAVIOR [47 CFR 90.214].....	21
6.12.1. <i>Limits</i>	21
6.12.2. <i>Method of Measurements</i>	21
6.12.3. <i>Test Equipment List</i>	22
6.12.4. <i>Test Arrangement</i>	22
6.12.5. <i>Test Data</i>	23

EXHIBIT 7. MEASUREMENT UNCERTAINTY..........**25**

7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY.....	25
---	----

EXHIBIT 8. MEASUREMENT METHODS..........**26**

8.1. CONDUCTED POWER MEASUREMENTS	26
8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD	27
8.2.1. <i>Maximizing RF Emission Level (E-Field)</i>	27
8.2.2. <i>Measuring the EIRP of Spurious/Harmonic Emissions Using Substitution Method</i>	28
8.3. FREQUENCY STABILITY	30
8.4. EMISSION MASK	31
8.5. SPURIOUS EMISSIONS (CONDUCTED)	31
8.6. TRANSIENT FREQUENCY BEHAVIOR.....	32

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 1. SUBMITTAL CHECK LIST

Annex No.	Exhibit Type	Description of Contents	Quality Check (OK)
--	Test Report	<ul style="list-style-type: none"> Exhibit 1: Submittal check lists Exhibit 2: Introduction Exhibit 3: Performance Assessment Exhibit 4: EUT Operation and Configuration during Tests Exhibit 5: Summary of test Results Exhibit 6: Measurement Data Exhibit 7: Measurement Uncertainty Exhibit 8: Measurement Methods 	OK
1	Test Data Plots	<ul style="list-style-type: none"> Occupied Bandwidth, Plots # 1 to 6 Emission Mask C and D, Plots # 7 to 12 Spurious Emissions at Antenna Terminals, Plots # 13 to 18 Transient Frequency Behavior, Plots # 19 to 26 	OK
2	Test Setup Photos	Radiated Emissions Test Setup Photos	OK
3	External EUT Photos	External ART 400 Series Radio Modem	OK
4	Internal EUT Photos	Internal ART 400 Series Radio Modem	OK
5	Cover Letters	<ul style="list-style-type: none"> Letter from Ultratech for Certification Request Letter from the Applicant to appoint Ultratech to act as an agent Letter from the Applicant to request for Confidentiality Filing 	OK
6	Attestation Statements	--	--
7	ID Label/Location Info	<ul style="list-style-type: none"> ID Label Location of ID Label 	OK
8	Block Diagrams	ART 400 Series Radio Modem Block Diagrams	OK
9	Schematic Diagrams	ART 400 Series Radio Modem Schematics	OK
10	Parts List/Tune Up Info	ART 400 Series Radio Modem Parts List	OK
11	Operational Description	ART 400 Series Design, Technical and Alignment Manual	OK
12	RF Exposure Info	MPE Evaluation (see section 6.6 of this test report for compliance with RF exposure requirements)	OK
13	Users Manual	ART 400 Series Installation, Operation & Programming Manual	OK

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
 March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 2. INTRODUCTION

2.1. SCOPE

Reference:	47 CFR, Parts 2 and 90
Title:	Telecommunication – 47 Code of Federal Regulations (CFR), Parts 2 & 90
Purpose of Test:	To gain FCC Certification Authorization for Radio operating in the frequency 406.125 - 512 MHz (12.5 kHz and 25 kHz Channel Spacings).
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

2.2. RELATED SUBMITTAL(S)/GRANT(S)

None

2.3. NORMATIVE REFERENCES

Publication	Year	Title
FCC CFR Parts 0-19, 80-End	2000	Code of Federal Regulations – Telecommunication
ANSI C63.4	1992	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CISPR 22 & EN 55022	1997	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
CISPR 16-1	1999	Specification for Radio Disturbance and Immunity measuring apparatus and methods

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 3. PERFORMANCE ASSESSMENT

3.1. CLIENT INFORMATION

APPLICANT	
Name:	RF Data Tec
Address:	27 - 29 New Road, Hextable Nr. Swanley, Kent UK, BR8 7LS
Contact Person:	Mr. Terry McCann Phone #: +44 (0) 1403 790 884 Fax #: +44 (0) 1403 790 986 Email Address: terry_mccann@compuserve.com

MANUFACTURER	
Name:	RF Data Tec
Address:	27 - 29 New Road, Hextable Nr. Swanley, Kent UK, BR8 7LS
Contact Person:	Mr. Richard Farr Phone #: +44 (0) 1322 614 313 Fax #: +44 (0) 1322 614 289 Email Address: richardfarr@dial.pipex.com

3.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	RF Data Tec
Product Name:	ART 400 Series Radio Modem
Model Name or Number:	ART400TR, (400T), (400R)
Serial Number:	Test Sample
Type of Equipment:	Non-broadcast Radio Communication Equipment
Input Power Supply Type:	External DC Sources
Transmitting/Receiving Antenna Type:	Non-integral
Primary User Functions of EUT:	Local Telemetry Transceiver

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

3.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER	
Equipment Type:	<input type="checkbox"/> Portable <input checked="" type="checkbox"/> Mobile <input type="checkbox"/> Base station (fixed use)
Intended Operating Environment:	<input checked="" type="checkbox"/> Commercial <input checked="" type="checkbox"/> Light Industry & Heavy Industry
Power Supply Requirement:	9.6V - 15VDC
RF Output Power Rating:	5W
Operating Frequency Range:	406.125 - 512 MHz
RF Output Impedance:	50 Ohms
Channel Spacing:	12.5 kHz and 25 kHz
Occupied Bandwidth (99%):	6.63 kHz (12.5 kHz channel spacing) 7.94 kHz (25 kHz channel spacing)
Emission Designation*:	9K80F1D 14K8F1D
Oscillator Frequencies:	Receiver Frequency – 45 MHz, Offset 44.545 MHz
Antenna Connector Type:	BNC

* For an average case of commercial telephony, the Necessary Bandwidth is calculated as follows:

For FM Digital Modulation:

12.5 KHz Channel Spacing:

D = 2.5 KHz max., K = 1, M = Data Rate in kb/s / Level of FM, Level of FM = 4
M = 9.6/4 kb/s

$$B_n = 2M + 2DK = 2(9.6/4) + 2(2.5)(1) = \underline{\underline{9.8 \text{ KHz}}}$$

Emission designation: 9K80F1D

25 KHz Channel Spacing:

D = 5 KHz max., K = 1, M = Data Rate in kb/s / Level of FM, Level of FM = 4
M = 9.6/4 kb/s

$$B_n = 2M + 2DK = 2(9.6/4) + 2(5)(1) = \underline{\underline{14.8 \text{ KHz}}}$$

Emission designation: 14K8F1D

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

3.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	Antenna	1	BNC	Terminated with 50 Ω RF Load
2	DC Input No. 12Vdc	1	Terminal Block	Non-shielded
3	RS232	1	D9Way	Shielded
4	Ancillary	1	Terminal Block	Non-shielded
5	Line Input/Output	1	Terminal Block	Non-shielded
6	I ₂ C Bus	1	RJ45	Non-shielded

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 4. EUT OPERATION CONDITIONS AND CONFIGURATIONS DURING TESTS

4.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	9.6V - 15VDC

4.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

Operating Modes:	The transmitter was operated in a continuous transmission mode with the carrier modulated as specified in the Test Data.
Special Test Software:	None
Special Hardware Used:	None
Transmitter Test Antenna:	The EUT is tested with the transmitter antenna port terminated to a 50 Ohms RF Load.

Transmitter Test Signals	
Frequency Band(s):	406.125 - 512 MHz
Frequency (ies) Tested:	Lowest: 406.125 MHz Middle: 450 MHz Highest: 470 MHz
RF Power Output (measured maximum output power):	4.9 Watts
Normal Test Modulation:	FM with 9600 baud random data rate
Modulating Signal Source:	<input checked="" type="checkbox"/> Internal <input type="checkbox"/> External

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 5. SUMMARY OF TEST RESULTS

5.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

Radiated Emissions were performed at the Ultratech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario.

The above site have been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville Open Field Test Site has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049). Last Date of Site Calibration: August 8, 2001.

5.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC PARAGRAPH	TEST REQUIREMENTS	APPLICABILITY (YES/NO)
90.205 & 2.1046	RF Power Output	Yes
1.1307, 1.1310, 2.1091 & 2.1093	RF Exposure Limit	Yes
90.213 & 2.1055	Frequency Stability	Yes
90.242(b)(8) & 2.1047(a)	Audio Frequency Response	N/A
90.210 & 2.1047(b)	Modulation Limiting	Yes
90.209 90.210 & 2.1049	Emission Limitation & Emission Mask	Yes
90.210, 2.1057 & 2.1051	Emission Limits - Spurious Emissions at Antenna Terminal	Yes
90.210, 2.1057 & 2.1053	Emission Limits - Field Strength of Spurious Emissions	Yes
90.214	Transient Frequency Behavior	Yes

ART 400 Series Radio Modem, Model No.: ART400TR, (400T), (400R), by **RF Data Tec** has also been tested and found to comply with **FCC Part 15, Subpart B - Radio Receivers and Class A Digital Devices**. The engineering test report has been documented and kept in file and it is available anytime upon FCC request.

5.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

5.4. DEVIATION OF STANDARD TEST PROCEDURES

None

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

6.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 8 of this report

6.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 7 for Measurement Uncertainties.

6.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4:1992 and CISPR 16-1.

6.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER

The essential function of the EUT is to correctly communicate data to and from radios over RF link.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

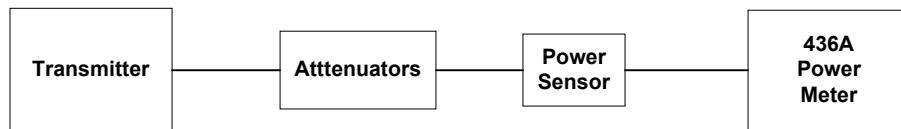
File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.5. RF POWER OUTPUT [47 CFR 2.1046 & 90.205]

6.5.1. Limits

Please refer to FCC 47 CFR, Part 90, Subpart I, Para. 90.205 for specification details.


6.5.2. Method of Measurements

Refer to Exhibit 8, section 8.1 (Conducted) of this report for measurement details

6.5.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Power Meter	Hewlett Packard	436A	1725A02249	10 kHz – 50 GHz, sensor dependent
Power Sensor	Hewlett Packard	8481A	2702A68983	10 MHz – 18 GHz
Attenuator	Weinschel	24-10-34	BJ8386	DC – 8.5 GHz
Attenuator	Weinschel	23-20-34	BH7876	DC – 18 GHz

6.5.4. Test Arrangement

6.5.5. Test Data

Transmitter Channel Output	Fundamental Frequency (MHz)	Measured (Average) Power (dBm)	Power Rating (dBm)
Lowest	406.125	36.9	37.0
Middle	450	36.9	37.0
Highest	470	36.9	37.0

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.6. RF EXPOSURE REQUIREMENTS [47 CFR 1.1310 & 2.1091]

6.6.1. Limits

FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f ²)	6
30–300	61.4	0.163	1.0	6
300–1500	f/300	6
1500–100,000	5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300–1500	f/1500	30
1500–100,000	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

6.6.2. Method of Measurements

Refer to FCC @ 1.1310, 2.1091 and Public Notice DA 00-705 (March 30, 2000)

- In order to demonstrate compliance with MPE requirements (see Section 2.1091), the following information is typically needed:
 - (1) Calculation that estimates the minimum separation distance (20 cm or more) between an antenna and persons required satisfying power density limits defined for free space.
 - (2) Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement
 - (3) Any caution statements and/or warning labels that are necessary in order to comply with the exposure limits
 - (4) Any other RF exposure related issues that may affect MPE compliance

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
 March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Calculation Method of RF Safety Distance:

$$S = PG/4\pi r^2 = EIRP/4\pi r^2$$

Where:

P: power input to the antenna in mW

EIRP: Equivalent (effective) isotropic radiated power.

S: power density mW/cm²

G: numeric gain of antenna relative to isotropic radiator

r: distance to centre of radiation in cm

$$r = \sqrt{PG/4\pi S}$$

FCC radio frequency exposure limits may not be exceeded at distances closer than r cm from the antenna of this device

- For portable transmitters (see Section 2.1093), or devices designed to operate next to a person's body, compliance is determined with respect to the SAR limit (define in the body tissues) for near-field exposure conditions. If the maximum average output power, operating condition configurations and exposure conditions are comparable to those of existing cellular and PCS phones., an SAR evaluation may be required in order to determine if such a device complies with SAR limit. When SAR evaluation data is not available, and the additional supporting information cannot assure compliance, the Commission may request that an SAR evaluation be performed, as provided for in Section 1.1307(d)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.6.3. Test Data

Evaluation of RF Exposure Compliance Requirements															
RF Exposure Requirements	Compliance with FCC Rules														
Minimum calculated separation distance between antenna and persons required:	<p>Manufacturer' instruction for separation distance between antenna and persons required:</p> <p>SAFE DISTANCE CALCULATION</p> <p>As safe distance calculation has been used to determine the safe distance a person should be from the antenna with the power level set at 5Watts.</p> <table> <thead> <tr> <th>Gain of Antenna</th> <th>Safe distance</th> </tr> </thead> <tbody> <tr> <td>Unity</td> <td>0.5Mtrs</td> </tr> <tr> <td>3dB</td> <td>0.7Mtrs</td> </tr> <tr> <td>6dB</td> <td>1.0Mtrs</td> </tr> <tr> <td>8dB</td> <td>1.3Mtrs</td> </tr> <tr> <td>10db</td> <td>1.6Mtrs</td> </tr> <tr> <td>12db</td> <td>2.0Mtrs</td> </tr> </tbody> </table>	Gain of Antenna	Safe distance	Unity	0.5Mtrs	3dB	0.7Mtrs	6dB	1.0Mtrs	8dB	1.3Mtrs	10db	1.6Mtrs	12db	2.0Mtrs
Gain of Antenna	Safe distance														
Unity	0.5Mtrs														
3dB	0.7Mtrs														
6dB	1.0Mtrs														
8dB	1.3Mtrs														
10db	1.6Mtrs														
12db	2.0Mtrs														
Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement	Please refer to section 4 of the user's manual for details														
Caution statements and/or warning labels that are necessary in order to comply with the exposure limits	Please refer to user's manual for RF exposure requirements.														
Any other RF exposure related issues that may affect MPE compliance	None														

Note: RF safety distance were calculated using the following formula and parameters:

EXPOSURE DISTANCE LIMITS: $r = (PG/4\pi S)^{1/2}$

S = 406/1500 mW/cm²

P = 5000 mW

G = {unity, 3dB, 6dB, 8dB, 10dB, 12dB}

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
 March 22, 2002

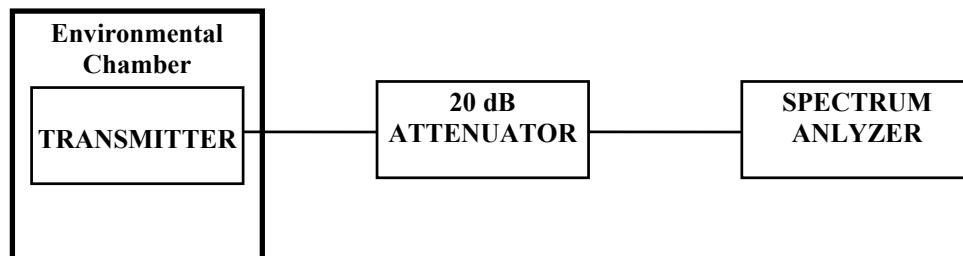
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.7. FREQUENCY STABILITY [47 CFR 2.1055 & 90.213]

6.7.1. Limits

Please refer to FCC 47 CFR, Part 90, Subpart I, Para. 90.213 for specification details.

Frequency Range (MHz)	Channel Spacing (kHz)	Frequency Tolerance (ppm)		
		Fixed and Base Stations	Mobile Station	
			> 2 Watts	≤ 2 Watts
421 - 512	6.25	0.5	1.0	1.0
	12.5	1.5	2.5	2.5
	25	2.5	5.0	5.0


6.7.2. Method of Measurements

Refer to Exhibit 8, section 8.3 of this report for measurement details

6.7.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Attenuator(s)	Bird	DC – 22 GHz
Temperature & Humidity Chamber	Tenney	T5	9723B	-40° to +60 ° C range

6.7.4. Test Arrangement

6.7.5. Test Data

Product Name:	ART 400 Series Radio Modem
Model No.:	ART400TR, (400T), (400R)
Center Frequency:	406.125 MHz
Full Power Level:	5 Watts
Frequency Tolerance Limit:	2.5 ppm or 1015 Hz at 406.125 MHz
Max. Frequency Tolerance Measured:	2.35 ppm
Input Voltage Rating:	12 Vdc

CENTER FREQUENCY & RF POWER OUTPUT VARIATION			
Ambient Temperature (°C)	Supply Voltage (Nominal) 12 Volts	Supply Voltage (85% of Nominal) 10.2 Volts	Supply Voltage (115% of Nominal) 13.8 Volts
	Hz	Hz	Hz
-30	956	N/A	N/A
-20	954	N/A	N/A
-10	934	N/A	N/A
0	822	N/A	N/A
+10	597	N/A	N/A
+20	-15	-20	-29
+30	-195	N/A	N/A
+40	-80	N/A	N/A
+50	-75	N/A	N/A

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
 March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

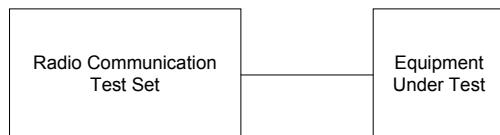
6.8. MODULATION LIMITING [47 CFR 2.1047(b) & 90.210]

6.8.1. Limits

Recommended frequency deviation characteristics are given below:

- 1.25 kHz for 6.25 kHz Channel Spacing System
- 2.5 kHz for 12.5 kHz Channel Spacing
- 5 kHz for 25 kHz Channel Spacing System

6.8.2. Method of Measurements


For Audio Transmitter: The carrier frequency deviation was measured with the tone input signal level varied from 0 Vp to audio input rating level plus 16 dB at frequencies 0.1, 0.5, 1.0, 3.0 and 5.0 kHz. The maximum deviation was recorded at each test condition.

For Data Transmitter with Maximum Frequency Deviation set by Factory: The EUT was set at maximum frequency deviation, and its peak frequency deviation was then measured using EUT's internal random data source.

6.8.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Radio Communication Test Set	Marconi Instruments	2955	132037/226	400kHz - 1000 MHz

6.8.4. Test Arrangement

6.8.5. Test Data

Data Modulation Limiting: FM modulation with random data and Modulation Limiter set at a Maximum Frequency Deviation (Factory Setting).

Data Baud Rate	Peak Deviation (kHz)	Maximum Limit (kHz)
12.5 kHz Channel Spacing		
9600	2.2	2.5
25 kHz Channel Spacing		
9600	3.0	5.0

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

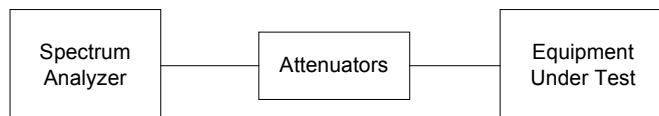
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.9. EMISSION MASK [47 CFR 2.1049, 90.209 & 90.210]

6.9.1. Limits

Emissions shall be attenuated below the mean output power of the transmitter as follows:

Frequency Range (MHz)	Maximum Authorized BW (KHz)	Channel Spacing (KHz)	Recommended Frequency Deviation (KHz)	FCC Applicable Mask
403-512	20.0	25.0	5.0	<ul style="list-style-type: none">• Mask B – Voice• Mask C – Data
403-512	11.25	12.5	2.5	<ul style="list-style-type: none">• Mask D – Voice & Data
403-512	6.0	6.25	1.25	<ul style="list-style-type: none">• Mask E – Voice & Data


6.9.2. Method of Measurements

Refer to Exhibit 8, section 8.4 of this report for measurement details

6.9.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Advantest	R3271	15050203	100 Hz – 26.5 GHz
Attenuator	Weinschel	24-10-34	BJ8386	DC – 8.5 GHz
Attenuator	Weinschel	23-20-34	BH7876	DC – 18 GHz

6.9.4. Test Arrangement

6.9.5. Test Data

Conform. Please refer to test data plots # 7 to 12 in Annex 1 for details of measurements

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

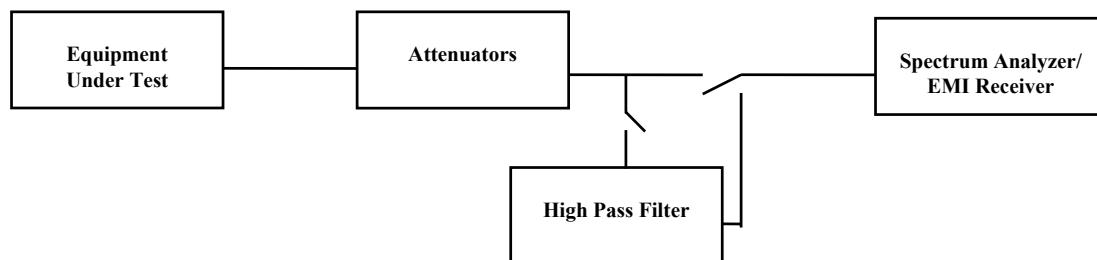
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.10. TRANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [47 CFR 90.210]

6.10.1. Limits

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC Rules	Frequency Range	Attenuation Limit (dBc)
90.210(b)&(c) – Voice & Data	10 MHz to Lowest frequency of the radio to 10 th harmonic of the highest frequency of the radio	43+10*log(P)
90.210(d) – Voice & Data	10 MHz to Lowest frequency of the radio to 10 th harmonic of the highest frequency of the radio	50+10*log(P) or 70 dBc whichever is less
90.210(e) – Voice & Data	10 MHz to Lowest frequency of the radio to 10 th harmonic of the highest frequency of the radio	55+10*log(P) or 65 dBc whichever is less


6.10.2. Method of Measurements

Refer to Exhibit 8 section 8.5 of this report for measurement details

6.10.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Advantest	R3271	15050203	100 Hz – 26.5 GHz
Attenuator	Weinschel	24-10-34	BJ8386	DC – 8.5 GHz
Attenuator	Weinschel	23-20-34	BH7876	DC – 18 GHz
High Pass Filter	Mini-Circuits	SHP-600	--	Cut-off Frequency at 600 MHz

6.10.4. Test Arrangement

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
 March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.10.5. Test Data

The RF spurious/harmonic emission characteristics between 2 different channel spacing operations are identical. Therefore, the following conducted emissions were performed with the radio set to 12.5 kHz Channel Spacing operation, and the results were compared with the more stringent attenuation limit of Emission Mask D for the worst case.

6.10.5.1. Near Lowest Frequency (406.125 MHz)

Fundamental Frequency: 406.125 MHz
RF Output Power: 36.9 dBm (conducted)
Modulation: FM with 9600 baud random data rate

Frequency (MHz)	Transmitter Conducted Antenna Emissions		Limit (dBc)	Margin (dB)	Pass/ Fail
	(dBm)	(dBc)			
815	-37.84	74.74	56.9	-17.8	Pass

The emissions were scanned from 10 MHz to 5 GHz and all emissions within 20 dB below the limits were recorded. Refer to test data plots # 13 to 14 for measurements results.

6.10.5.2. Near Middle Frequency (450 MHz)

The emissions were scanned from 10 MHz to 5 GHz and no emissions were found within 20 dB below the limits. Refer to test data plots # 13 to 14 for measurements results.

6.10.5.3. Near Highest Frequency (470 MHz)

The emissions were scanned from 10 MHz to 5 GHz and no emissions were found within 20 dB below the limits. Refer to test data plots # 15 to 16 for measurements results.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.11. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [47 CFR 90.210]

6.11.1. Limits

Emissions shall be attenuated below the mean output power of the transmitter as follows:

Frequency Range (MHz)	Maximum Authorized BW (kHz)	Channel Spacing (kHz)	Recommended Frequency Deviation (kHz)	FCC Applicable Mask
403-512	20.0	25.0	5.0	<ul style="list-style-type: none"> 90.210(b): Mask B – Voice 90.210(c): Mask C – Data
403-512	11.25	12.5	2.5	<ul style="list-style-type: none"> 90.210(d): Mask D – Voice & Data
403-512	6.0	6.25	1.25	<ul style="list-style-type: none"> 90.210(b): Mask E – Voice & Data

6.11.2. Method of Measurements

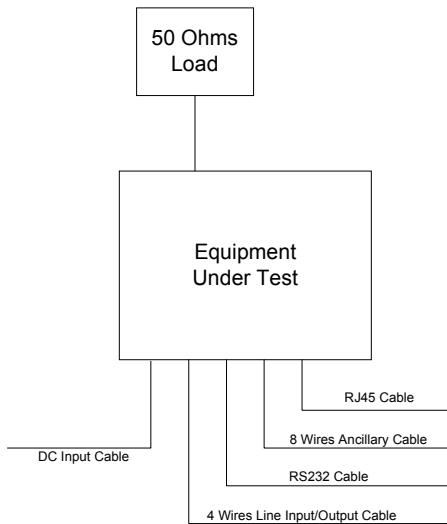
The spurious/harmonic ERP measurements are using substitution method specified in Exhibit 8, § 8.2 of this report and its value in dBc is calculated as follows:

- (1) If the transmitter's antenna is an integral part of the EUT, the ERP is measured using substitution method.
 If the transmitter's antenna is non-integral and diverse, the lowest ERP of the carrier with 0 dBi antenna gain is used for calculation of the spurious/harmonic emissions in dBc.
- (2) Spurious /harmonic emissions levels expressed in dBc (dB below carrier) are as follows:

$$\text{ERP of spurious/harmonic (dBc)} = \text{ERP of carrier (dBm)} - \text{ERP of spurious/harmonic emission (dBm)}$$

6.11.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Hewlett Packard	HP 8546A	...	9 kHz to 5.6 GHz with built-in 30 dB Gain Pre-selector, QP, Average & Peak Detectors.
RF Amplifier	Com-Power	PA-102		1 MHz to 1 GHz, 30 dB gain nominal
Microwave Amplifier	Hewlett Packard	HP 83017A		1 GHz to 26.5 GHz, 30 dB nominal
Biconilog Antenna	EMCO	3142	10005	30 MHz to 2 GHz
Dipole Antenna	EMCO	3121C	8907-434	30 GHz – 1 GHz
Dipole Antenna	EMCO	3121C	8907-440	30 GHz – 1 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Horn Antenna	EMCO	3155	9911-5955	1 GHz – 18 GHz
RF Signal Generator	Hewlett Packard	HP 83752B	3610A00457	0.01 – 20 GHz


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
 March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.11.4. Test Arrangement

6.11.5. Test Data

The RF spurious/harmonic emission characteristics between 2 different channel spacing operations are identical. Therefore, the following conducted emissions were performed with the radio set to 12.5 kHz Channel Spacing operation, and the results were compared with the more stringent attenuation limit of Emission Mask D for the worst case.

6.11.5.1. Near Lowest Frequency (406.125 MHz)

The emissions were scanned from 10 MHz to 5 GHz and no emissions were found within 20 dB below the limits.

6.11.5.2. Near Middle Frequency (450 MHz)

The emissions were scanned from 10 MHz to 5 GHz and no emissions were found within 20 dB below the limits.

6.11.5.3. Near Highest Frequency (470 MHz)

The emissions were scanned from 10 MHz to 5 GHz and no emissions were found within 20 dB below the limits.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.12. TRANSIENT FREQUENCY BEHAVIOR [47 CFR 90.214]

6.12.1. Limits

Transient frequencies must be within the maximum frequency difference limits during the time intervals indicated:

Time intervals ^{1, 2}	Maximum frequency difference ³	All equipment
		421 to 512 MHz
Transient Frequency Behavior for Equipment Designed to Operate on 25 kHz Channels		
t_1 ⁴	± 25.0 kHz	10.0 ms
t_2 ⁴	± 12.5 kHz	25.0 ms
t_3 ⁴	± 25.0 kHz	10.0 ms
Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels		
t_1 ⁴	± 12.5 kHz	10.0 ms
t_2 ⁴	± 6.25 kHz	25.0 ms
t_3 ⁴	± 12.5 kHz	10.0 ms
Transient Frequency Behavior for Equipment Designed to Operate on 6.25 kHz Channels		
t_1 ⁴	± 6.25 kHz	10.0 ms
t_2 ⁴	± 3.125 kHz	25.0 ms
t_3 ⁴	± 6.25 kHz	10.0 ms

1 t_{on} is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.

t_1 is the time period immediately following t_{on} .

t_2 is the time period immediately following t_1 .

t_3 is the time period from the instant when the transmitter is turned off until t_{off} .

t_{off} is the instant when the 1 kHz test signal starts to rise.

2 During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in § 90.213.

3 Difference between the actual transmitter frequency and the assigned transmitter frequency.

4 If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

6.12.2. Method of Measurements

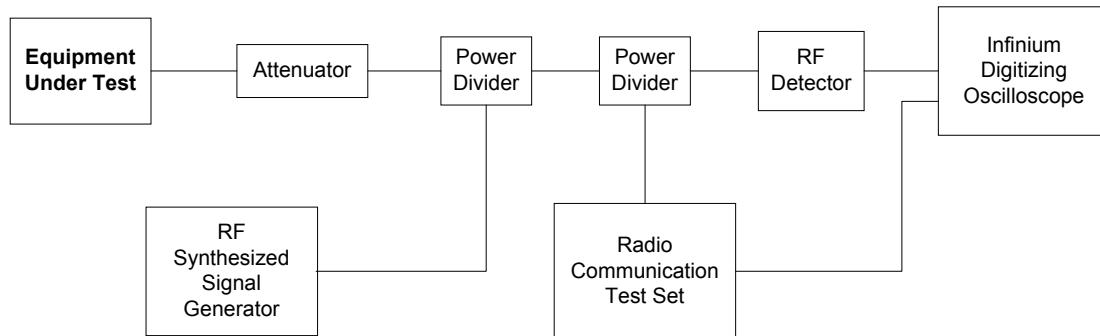
Refer to Exhibit 8, section 8.6 of this test report and ANSI/TIA/EIA - 603 - 1992, section 2.2.19, Page 83

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX


March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.12.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Radio Communication Test Set	Marconi Instruments	2955	132037/226	400kHz - 1000 MHz
Infinium Digitizing Oscilloscope	Hewlett Packard	54810A	US38380192	DC to 500 MHz, 1 Gsa/s
RF Synthesized Signal Generator	Fluke	6061A	4770301	10 kHz – 1050 MHz
RF Detector	Narda	503A-03	--	0.01 – 18.0 GHz
Attenuator	Weinschel	23-20-34	BH7876	DC – 18 GHz
Power Divider	Weinschel	1515	LU400	DC – 18.0 GHz
Power Divider	Weinschel	1515	LW725	DC – 18.0 GHz

6.12.4. Test Arrangement

6.12.5. Test Data

The graphical results for the following summary can be found in Annex 1, test data plots # 19 to 26:

➤ 12.5 kHz Channel Spacing Operation

Time Interval	Transient Frequency	Transient Frequency Limit
Test Configuration #1: Unmodulated		
t_1 (10 ms) Switch ON Condition	+2.7 kHz	12.5 kHz or no limit for RF Output Power < 6 Watts
t_2 (25 ms) Switch On Condition	0 kHz	6.25 kHz
After t_2 (10 ms) Switch On Condition	0 kHz	FCC Limit = \pm 1015.3 Hz (2.5 ppm @ 406.125 MHz)
Before t_3 (10 ms) Switch Off Condition	0 kHz	FCC Limit = \pm 1015.3 Hz (2.5 ppm @ 406.125 MHz)
t_3 (10 ms) Switch Off Condition	0 kHz	12.5 kHz or no limit for RF Output Power < 6 Watts
Test Configuration #2: FM modulation with 9600 baud random data rate		
t_1 (10 ms) Switch ON Condition	+3.3 kHz	12.5 kHz or no limit for RF Output Power < 6 Watts
t_2 (25 ms) Switch On Condition	0 kHz	6.25 kHz
After t_2 (10 ms) Switch On Condition	0 kHz	FCC Limit = \pm 1015.3 Hz (2.5 ppm @ 406.125 MHz)
Before t_3 (10 ms) Switch Off Condition	0 kHz	FCC Limit = \pm 1015.3 Hz (2.5 ppm @ 406.125 MHz)
t_3 (10 ms) Switch Off Condition	-3.0 kHz	12.5 kHz or no limit for RF Output Power < 6 Watts

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
 March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

➤ 25 kHz Channel Spacing Operation

Time Interval	Transient Frequency	Transient Frequency Limit
Test Configuration #1: Unmodulated		
t ₁ (10 ms) Switch ON Condition	7.6 kHz	25 kHz or no limit for RF Output Power < 6 Watts
t ₂ (25 ms) Switch On Condition	0 kHz	12.5 kHz
After t ₂ (10 ms) Switch On Condition	0 kHz	FCC Limit = \pm 2030.6 Hz (5 ppm @ 406.125 MHz)
Before t ₃ (10 ms) Switch Off Condition	0 kHz	FCC Limit = \pm 2030.6 Hz (5 ppm @ 406.125 MHz)
t ₃ (10 ms) Switch Off Condition	0 kHz	25 kHz or no limit for RF Output Power < 6 Watts
Test Configuration #2: FM modulation with 9600 baud random data rate		
t ₁ (10 ms) Switch ON Condition	-7.3 kHz	25 kHz or no limit for RF Output Power < 6 Watts
t ₂ (25 ms) Switch On Condition	0 kHz	12.5 kHz
After t ₂ (10 ms) Switch On Condition	0 kHz	FCC Limit = \pm 2030.6 Hz (5 ppm @ 406.125 MHz)
Before t ₃ (10 ms) Switch Off Condition	0 kHz	FCC Limit = \pm 2030.6 Hz (5 ppm @ 406.125 MHz)
t ₃ (10 ms) Switch Off Condition	0 kHz	25 kHz or no limit for RF Output Power < 6 Watts

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
 March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION (Radiated Emissions)	PROBABILITY DISTRIBUTION	UNCERTAINTY (\pm dB)	
		3 m	10 m
Antenna Factor Calibration	Normal (k=2)	± 1.0	± 1.0
Cable Loss Calibration	Normal (k=2)	± 0.3	± 0.5
EMI Receiver specification	Rectangular	± 1.5	± 1.5
Antenna Directivity	Rectangular	± 0.5	± 0.5
Antenna factor variation with height	Rectangular	± 2.0	± 0.5
Antenna phase center variation	Rectangular	0.0	± 0.2
Antenna factor frequency interpolation	Rectangular	± 0.25	± 0.25
Measurement distance variation	Rectangular	± 0.6	± 0.4
Site imperfections	Rectangular	± 2.0	± 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67(Bi)$ 0.3 (Lp) Uncertainty limits $20\log(1+\Gamma_1\Gamma_R)$	U-Shaped	+1.1 -1.25	± 0.5
System repeatability	Std. Deviation	± 0.5	± 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB} \quad \text{And} \quad U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
 March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 8. MEASUREMENT METHODS

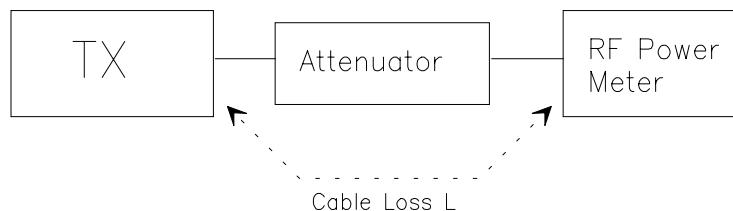
8.1. CONDUCTED POWER MEASUREMENTS

- The following shall be applied to the combination(s) of the radio device and its intended antenna(e).
- If the RF level is user adjustable, all measurements shall be made with the highest power level available to the user for that combination.
- The following method of measurement shall apply to both conducted and radiated measurements.
- The radiated measurements are performed at the Ultratech Calibrated Open Field Test Site.
- The measurement shall be performed using normal operation of the equipment with modulation.

Test procedure shall be as follows:

Step 1: Duty Cycle measurements if the transmitter's transmission is transient

- Using a EMI Receiver with the frequency span set to 0 Hz and the sweep time set at a suitable value to capture the envelope peaks and the duty cycle of the transmitter output signal;
- The duty cycle of the transmitter, $x = \text{Tx on} / (\text{Tx on} + \text{Tx off})$ with $0 < x < 1$, is measured and recorded in the test report. For the purpose of testing, the equipment shall be operated with a duty cycle that is equal or more than 0.1.


Step 2: Calculation of Average EIRP. See Figure 1

- The average output power of the transmitter shall be determined using a wideband, calibrated RF average power meter with the power sensor with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);
- The e.i.r.p. shall be calculated from the above measured power output "A", the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

$$\text{EIRP} = A + G + 10\log(1/x)$$

{ $X = 1$ for continuous transmission $\Rightarrow 10\log(1/x) = 0 \text{ dB}$ }

Figure 1.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD

8.2.1. Maximizing RF Emission Level (E-Field)

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m open area test site (listed with FCC, IC, ITI, NVLAP, ACA & VCCI).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor
E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

- (f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency
Resolution BW: 100 kHz
Video BW: same
Detector Mode: positive
Average: off
Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (l) Repeat for all different test signal frequencies

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions Using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency: equal to the signal source
Resolution BW: 10 kHz
Video BW: same
Detector Mode: positive
Average: off
Span: 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor
 $E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

(c) Select the frequency and E-field levels obtained in the Section 8.2.1 for ERP/EIRP measurements.
(d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):
◆ DIPOLE antenna for frequency from 30-1000 MHz or
◆ HORN antenna for frequency above 1 GHz }.
(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
(f) Use one of the following antenna as a receiving antenna:
◆ DIPOLE antenna for frequency from 30-1000 MHz or
◆ HORN antenna for frequency above 1 GHz }.
(g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
(h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
(i) Tune the EMI Receivers to the test frequency.
(j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
(k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
(l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
(m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

$$P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1$$

$$\text{EIRP} = P + G1 = P3 + L2 - L1 + A + G1$$

$$\text{ERP} = \text{EIRP} - 2.15 \text{ dB}$$

Total Correction factor in EMI Receiver # 2 = $L2 - L1 + G1$

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
(p) Repeat step (d) to (o) for different test frequency
(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port.
Correct the antenna gain if necessary.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX

March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Figure 2

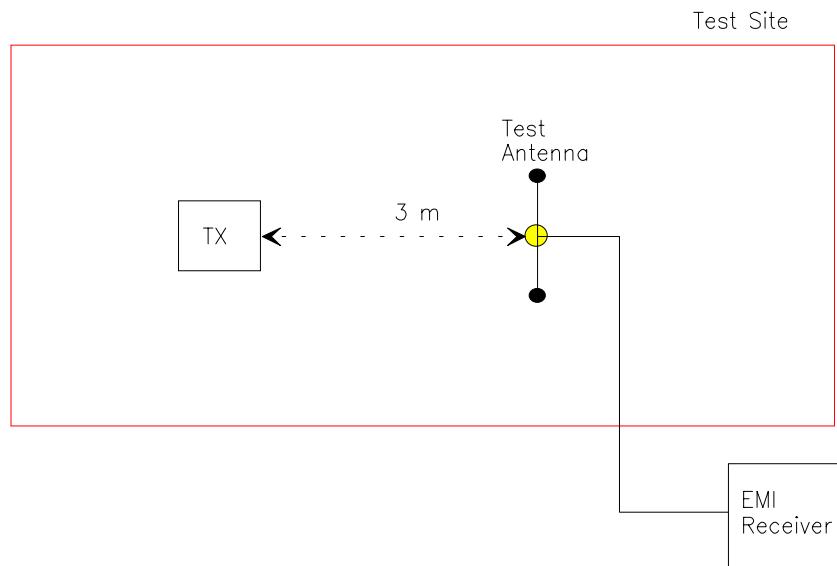
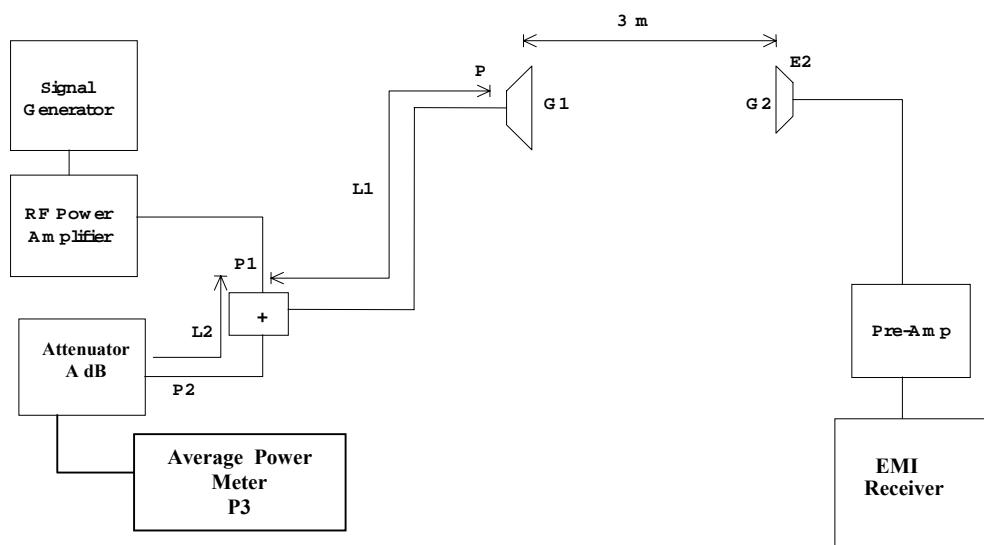



Figure 3

8.3. FREQUENCY STABILITY

Refer to FCC @ 2.1055.

- (a) The frequency stability shall be measured with variation of ambient temperature as follows: From -30 to +50 centigrade except that specified in subparagraph (2) & (3) of this paragraph.
- (b) Frequency measurements shall be made at extremes of the specified temperature range and at intervals of not more than 10 centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short-term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stability circuitry need be subjected to the temperature variation test.
- (d) The frequency stability supply shall be measured with variation of primary supply voltage as follows:
 - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
 - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
 - (3) The supply voltage shall be measured at the input to the cable normally provide with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- (e) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) and (d) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment).

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

8.4. EMISSION MASK

Voice or Digital Modulation Through a Voice Input Port @ 2.1049(c)(i): The transmitter was modulated by a 2.5 KHz tone signal at an input level 16 dB greater than that required to produce 50% modulation (e.g.: ± 2.5 KHz peak deviation at 1 KHz modulating frequency). The input level was established at the frequency of maximum response of the audio modulating circuit.

Digital Modulation Through a Data Input Port @ 2.1049(h): Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the Emission Masks shall be shown for operation with any devices used for modifying the spectrum when such devices are operational at the discretion of the user.

The following EMI Receiver bandwidth shall be used for measurement of Emission Mask/Out-of-Band Emission Measurements:

- (1) For 25 kHz Channel Spacing: RBW = 300 Hz
- (2) For 12.5 kHz or 6.25 kHz Channel Spacings: RBW = 100 Hz

In all cases the Video Bandwidth shall be equal or greater than the measuring bandwidth.

8.5. SPURIOUS EMISSIONS (CONDUCTED)

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.1049, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the EMI Receiver controls set as RBW = 30 kHz minimum, VBW \geq RBW and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

FCC 47 CFR, Para. 2.1057 - Frequency spectrum to be investigated: The spectrum was investigated from the lowest radio generated in the equipment up to at least the 10th harmonic of the carrier frequency or to the highest frequency practicable in the present state of the art of measuring techniques, whichever is lower. Particular attention should be paid to harmonics and subharmonics of the carrier frequency. Radiation at the frequencies of multiplier stages should be checked. The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

FCC 47 CFR, Para. 2.1051 - Spurious Emissions at Antenna Terminal: The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of the harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

8.6. TRANSIENT FREQUENCY BEHAVIOR

1. Connect the transmitter under tests as shown in the above block diagram
2. Set the signal generator to the assigned frequency and modulate with a 1 kHz tone at ± 12.5 kHz deviation and its output level to be 50 dB below the transmitter rf output at the test receiver end.
3. Set the horizontal sweep rate on the storage scope to 10 milliseconds per division and adjust the display to continuously view the 1000 Hz tone from the Demodulator Output Port (DOP) of the Test Receiver. Adjust the vertical scale amplitude control of the scope to display the 1000 Hz at ± 4 divisions vertical Center at the display.
4. Adjust the scope so it will trigger on an increasing magnitude from the RF trigger signal of the transmitter under test when the transmitter was turned on. Set the controls to store the display.
5. The output at the DOP, due to the change in the ratio of the power between the signal generator input power and transmitter output power will, because of the capture effect of the test receiver, produce a change in display: For the first part of the sweep it will show the 1 kHz test signal. Then once the receiver's demodulator has been captured by the transmitter power, the display will show the frequency difference from the assigned frequency to the actual transmitter frequency versus time. The instant when the 1 kHz test signal is completely suppressed (including any capture time due to phasing) is considered to be t_{on} . The trace should be maintained within the allowed divisions during the period t_1 and t_2 .
6. During the time from the end of t_2 to the beginning of t_3 the frequency difference should not exceed the limits set by the FCC in Part 90.214 and the outlined in the Carrier Frequency Stability sections. The allowed limit is equal to FCC frequency tolerance limits specified in FCC 90.213.
7. Repeat the above steps when the transmitter was turned off for measuring t_3 .

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: RFD1-FTX
March 22, 2002

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)